
Provably Correct Conflict Prevention Bands Algorithms

Anthony Narkawicza, César Muñoza, Gilles Dowekb

aNASA Langley Research Center, Hampton, VA
bÉcole Polytechnique, France

Abstract

In air traffic management, a pairwise conflict is a predicted loss of separa-
tion between two aircraft, referred to as the ownship and the intruder. A
conflict prevention bands system displays ranges of maneuvers for the own-
ship that characterize regions in the airspace that are either conflict-free or
“don’t go” zones that the ownship has to avoid. Errors in the calculation of
prevention bands may result in incorrect separation assurance information
being displayed to pilots or air traffic controllers. Algorithms that compute
conflict prevention bands are surprisingly difficult to formalize and verify.
This paper presents a method for the analysis and verification of preven-
tion bands algorithms. The method, which has been implemented in the
Prototype Verification System (PVS), is illustrated with a provably correct
3-dimensional prevention bands algorithm for track angle maneuvers.

Keywords: formal verification, theorem proving, air traffic management

1. Introduction

The next generation of air traffic management systems may enable modes
of operations where aircraft take a primary responsibility in the manage-
ment of air traffic separation. These modes of operations are supported by
advances in hardware and software technologies. For example, global navi-
gation satellite systems, such as Global Positioning System (GPS), provide
accurate surveillance information, which is then broadcast to traffic aircraft
and ground elements by systems such as Automatic Dependent Surveillance-
Broadcast (ADS-B). This information is then used by separation assurance
system to advise aircraft crew and air traffic controllers about air traffic
conflicts.

In air traffic management, a (pairwise) conflict is a predicted loss of
separation between two aircraft within a lookahead time. One of the aircraft

Preprint submitted to Science of Computer Programming July 21, 2011

is called the ownship and the other aircraft, which represents an arbitrary
traffic aircraft, is called the intruder. A conflict prevention system consists of
algorithms that sense traffic aircraft and characterize ranges of maneuvers
for the ownship that are either conflict-free or that lead to conflict. The
maneuvers are typically constrained to those where only one parameter of
the ownship’s velocity is varied at a time. Examples of such maneuvers are
those that modify either the track angle, vertical speed, or ground speed of
the aircraft.

A (pairwise) prevention bands algorithm, for a given parameter such as
track angle, has as input the state information of the ownship and intruder
aircraft, i.e., their 3-dimensional position and velocity vectors, and returns a
list of regions, called bands, consisting of values for the specified parameter.
There is a natural way to associate a color, either red or green, to each band.
Red bands specify “don’t go” zones, i.e., parameter values that the ownship
has to avoid because they lead to conflict. Conversely, the green bands
specify parameter values for the ownship that yield conflict-free maneuvers.

A pairwise prevention bands algorithm is correct if every possible value
for the chosen parameter is either contained in a band or is a boundary
point of one of the bands, and if the colors of the bands characterize conflict
as follows. For all bands B and parameter values x ∈ B, the ownship’s
maneuver corresponding to the value x is in conflict with the intruder aircraft
if and only if the color of B is red. Equivalently, the ownship’s maneuver
corresponding to x is not in conflict if and only if the color of B is green.

There are serious safety implications if a preventions band algorithm is
incorrect, since a pilot may assume that certain maneuvers are safe when
they are not. Thus, formal verification of such algorithms ensures reliabil-
ity and hence safety of the airspace system. Surprisingly, mathematically
precise conflict prevention bands algorithms are difficult to analyse and ver-
ify [1]. The formal verification of a prevention bands algorithm for horizon-
tal conflicts was described in [2]. Three-dimensional prevention bands algo-
rithms were presented, without correctness proofs, in [3]. The 3-dimensional
algorithms presented in that paper compute incorrect bands for some special
cases. Hoekstra [4] graphically describes some algorithms developed in the
National Aerospace Laboratory (NLR) in the Netherlands [5], but he does
not provide much detail about how the algorithms actually work.

If a verifiable conflict detection algorithm is available, an iterative ap-
proximation of preventions bands is possible. For instance, approximate
colored bands for track angle maneuvers can be computed by varying the
ownship’s track angle by some small value and checking, using the conflict
detection probe, whether the angle variations result in a conflict or not.

2

However, such an iterative approach would consume more computational
resources than an analytical one where the edges of the bands are computed
directly. Furthermore, an iterative approach may not scale well where such
separation assurance algorithms must be executed for many different traffic
aircraft every second.

This paper presents a method for the analysis and verification of preven-
tion bands algorithms. The method is illustrated with a corrected version
of a 3-dimensional prevention bands algorithm for track angle maneuvers
originally proposed in [3]. Corrected versions of 3-dimensional ground speed
and vertical speed prevention bands algorithms have been also developed
and are presented in a companion technical report [6].

The mathematical development presented in this paper has been spec-
ified and formally verified in the Prototype Verification System (PVS) [7].
PVS is a proof assistant that consists of a specification language, based on
classical higher-order logic, and a mechanical theorem prover for this logic.
The PVS specification language allows for the precise definition of mathe-
matical objects such as functions and relations, and the precise statement
of logical formulas such as lemmas and theorems. Proofs of logical formulas
can be mechanically checked using the PVS theorem prover, which guaran-
tees that every proof step is correct and that all possible cases of a proof
are covered. All lemmas and theorems presented in this paper have been
mechanically checked in PVS. For the sake of simplicity, only proof sketches
of the main results are presented in the paper. A self-contained development
that includes definitions and formal proofs and all required libraries is avail-
able in a compressed file at http://shemesh.larc.nasa.gov/people/cam/
ACCoRD/PVS-Feb-23-10.tgz. Once this file is uncompressed, a README
file provides instructions for rebuilding the development using a standard
version of PVS 4.2 (http://http://pvs.csl.sri.com/download.shtml).
A summary of that development is presented in the appendix of this paper.

Notation
The use of a formal language, e.g., in this case the specification language

of PVS, enforces rigorous definitions of mathematical objects, where all de-
pendencies are clearly specified. This level of rigor guarantees a very high
confidence on the correctness of the results presented in this paper. However,
this also makes the notation heavy and difficult to read for the non-expert
reader. For this reason, the work presented here uses standard mathematical
notation and does not assume that the reader is familiar with the syntax or
semantics of the PVS language. In particular, the following conventions are

3

used by the authors to make this development more accessible to the casual
reader:

• The PVS specification language is strongly typed, i.e., all declarations
are explicitly typed. This feature guarantees that all PVS functions
are total and well-defined. For instance, a mathematical formula that
includes a division needs to make explicit the fact that the divisor is
different from zero, otherwise the expression would be undefined. In
PVS, these conditions are handled by a type system, which is enforced
by the PVS type-checker. Since PVS type annotations tend to be
verbose, formulas in this paper appear untyped. When necessary, the
type domain of variables is made explicit in the context where the
formula appears.

• PVS is based on higher-order logic, so it supports the definition of
functions that return functions or that have functions as arguments. In
this paper, arguments of a higher-order function are called parameters
and those parameters are implicitly defined in the text. For example, a
function f : R 7→ R with implicit parameters s and v is indeed defined
in PVS as a higher-order function f that given s and v returns a
function of type R 7→ R.

• The PVS notation is declarative, i.e., there is not a notion of mem-
ory state as in imperative programming languages. In this paper,
algorithms are represented by functions. By convention, names of
functions that are intended to have a logical meaning are written in
italics. Functions that represent algorithms to be implemented in a
programming language are written in typewriter font.

The following mathematical notations are used in this paper. Vector
variables are written in boldface and can denoted by their components. For
example, if w ∈ R3 and u ∈ R2, then w = (wx,wy,wz) and u = (ux,uy).
The notation w(x,y) denotes the projection of w in the horizontal plane,
i.e.,1

w(x,y) ≡ (wx,wy),

and the notation u with [z ← r] denotes the 3-dimensional vector whose
projection to R2 is u and whose z-coefficient is r ∈ R, i.e.,

u with [z ← r] ≡ (ux,uy, r).

1The symbol ≡ is used in this paper to introduce mathematical definitions.

4

The notation ‖w‖ refers to the norm of the vector w and the notation
w ·w′ refers to the dot product of the vectors w and w′. The expression 0
represents the zero vector, e.g., the vector whose components are 0.

If u ∈ R2, then u⊥ denotes the (right) perpendicular vector:

u⊥ ≡ (uy,−ux).

The function sign: R 7→ {−1, 1} is defined such that sign(x) = 1 if x ≥ 0
and sign(x) = −1 otherwise. The expression ι = ±1 denotes the fact that
an integer ι belongs to the set {−1, 1}. Moreover, ¬, =⇒ , ⇐⇒ denote
logical negation, implication, and equivalence, respectively.

2. Statement of the Problem

The prevention bands algorithms discussed here only use the state-based
information of the ownship and intruder aircraft, i.e., constant position and
velocity vectors that are elements of the 3-dimensional Euclidean space R3.
Aircraft dynamics are represented by a point moving at constant linear
speed. The current position and velocity vectors of the ownship are denoted
so and vo, respectively, while the vectors si and vi denote the current state
of the intruder aircraft/

In the airspace system, the separation requirement for two aircraft is
specified as a minimum horizontal separation D and a minimum vertical
separation H. A conflict between the ownship and the intruder occurs when
there is a time in the future, within a lookahead time T , such that the
horizontal distance between the aircraft is less than D, and the vertical
distance is less than H. Typically, D is 5 nautical miles, H is 1000 feet, and
T is 5 minutes.

For the remainder of the paper, it is assumed that the ground speeds
of the ownship and intruder aircraft are not zero, i.e., ‖vo(x,y)‖ 6= 0 and
‖vi(x,y)‖ 6= 0, and that the aircraft are not in loss of separation, i.e., either
‖so(x,y)− si(x,y)‖ ≥ D or |soz − siz| ≥ H. Therefore, vo(x,y) 6= 0, vi(x,y) 6= 0,
and so − si 6= 0.

2.1. Conflicts
The ownship and the intruder aircraft are in conflict if there exists t ∈

[0, T] such that, at time t, vertical separation is lost, i.e,

|((so + tvo)− (si + tvi))z| < H,

5

T

D

H

conflict?(s,v) = Truev

s

t1

t2

Figure 1: Conflict scenario

and horizontal separation is lost, i.e.,

‖(so + tvo)(x,y) − (si + tvi)(x,y)‖ < D.

Since (so + tvo)− (si + tvi) = (so − si) + t (vo − vi), the predicate that
characterizes conflict can be defined on s = so − si and v = vo − vi, i.e.,
the relative position and velocity vector, respectively, of the ownship with
respect to the intruder. By notational convenience, conflict is defined by a
predicate of the two relative vectors s and v rather than a predicate of four
vectors so, vo, si, and vi.

conflict?(s,v) ≡ ∃t ∈ [0, T] : |(s + tv)z| < H and
‖s(x,y) + tv(x,y)‖ < D.

(1)

For the remainder of this paper, the relative position and velocity vectors,
s and v, will be used in place of so − si and vo − vi, respectively.

The separation requirement can be understood as an imaginary horizon-
tal cylinder, called protected zone, of height 2H and radius D around the
intruder aircraft. A conflict between the ownship and the intruder aircraft
occurs when there exists a time t ∈ [0, T] at which the ownship is in the inte-
rior of the intruder’s protected zone. Figure 1 illustrates the protected zone
around the intruder aircraft and a conflict scenario with a loss of separation
during the time interval (t1, t2).

2.2. Ownship Maneuvers
A maneuver is a new velocity vector for the ownship that is assumed

to be implemented in zero time. The set of maneuvers that are relevant to

6

vo

α
νtrk(α)

Same Length
(Speed)

Figure 2: Track angle maneuver for the ownship

prevention bands are those generated by a function ν : R 7→ R3, implicitly
parametrized by vo, that given a value r returns a new velocity vector ν(r).
For instance, track angle maneuvers are characterized by the function νtrk,
which is defined as follows:

νtrk(α) ≡ (‖vo(x,y)‖ sinα, ‖vo(x,y)‖ cosα,voz), (2)

where α ∈ R is a track angle. In this case, there exists a function track : R3 7→
R that satisfies

track(νtrk(α)) = α. (3)

Track angle maneuvers satisfy the following properties:

‖νtrk(α)(x,y)‖ = ‖vo(x,y)‖ (4)

νtrk(α)z = voz (5)

The track angle maneuver for the ownship that is given by νtrk(α) is illus-
trated by Figure 2.

Other functions ν : R → R3, such as those that characterize ground
speed maneuvers and vertical speed maneuvers, can be similarly defined.
For such a function ν, an argument x of ν can be viewed as a parameter of
the ownship’s velocity, and ν(x) as the corresponding velocity vector.

2.3. Conflict Detection Algorithms
A conflict detection algorithm cd is a function that takes as parameters

the relative position s of the aircraft and the velocity vectors vo, vi, and
returns a Boolean value, i.e., True or False.

7

Definition 1. The algorithm cd is correct if it holds that

conflict?(s,vo − vi) =⇒ cd(s,vo,vi).

The algorithm cd is complete if it holds that

cd(s,vo,vi) =⇒ conflict?(s,vo − vi).

In other words, a conflict detection algorithm is correct if it does not have
missed alerts, i.e., it detects all conflicts, and it is complete if it does not
have false alerts, i.e., it only detects actual conflicts. Note that a conflict
detection algorithm that always returns True is correct but not complete
and an algorithm that always returns False is complete but not correct.
An example of a correct and complete conflict detection algorithm is cd3d
(see Appendix in [3]).

2.4. Prevention Bands Algorithms
Given a function ν : R 7→ R3 that is implicitly parameterized by vo as

above, and a closed interval I of real numbers, a prevention bands algorithm
for ν over I is a function with parameters s, vo, and vi that returns a
finite, ordered sequence Lν of elements of I, such that the upper and lower
bounds of I are in Lν . The lower and upper bounds of the interval I are
minimum and maximum values for the argument of ν. For ν = νtrk, the
closed interval I is defined as [0, 2π]. For ν = νvs, the lower and upper
bounds of I are typically the minimum and maximum vertical speeds for
the ownship, respectively.

Each consecutive pair A and B of entries in Lν determines an open
interval (A,B), which is called a band (for the parameter represented by ν).
By abuse of notation, the syntax (A,B) ∈ Lν will denote that (A,B) is a
band in Lν , i.e., A and B are consecutive entries in Lν .

To each band (A,B) in Lν , a Boolean value is associated as follows

conflict band(s,vi, A,B) ≡ cd(s, ν(
A+B

2
),vi), (6)

where cd is any correct conflict detection algorithm, such as cd3d. The
algorithm conflict band tests whether there is a conflict for the ownship
maneuver that is given by evaluating ν on the midpoint of the interval
(A,B).

Definition 2. Given a function ν : R 7→ R3 and a closed interval I ⊆ R, a
prevention bands algorithm for ν is correct if and only if for any band (A,B)
in Lν ,

conflict band(s,vi, A,B) ⇐⇒ ∀y ∈ (A,B) : conflict?(s, ν(y)− vi) (7)

8

The definition above states that all the points in a band computed by
a correct prevention bands algorithm have the same conflict property, i.e.,
either all the points yield conflict-free maneuvers or all the points yield
maneuvers that lead to conflict. It is important to note that for a correct
preventions band algorithm, the midpoint in Equation (6) can be replaced
by any other point in the band (A,B), since all the points have the same
conflict property.

A preventions band algorithm L can be represented graphically by as-
signing a color, either red or green, to each band (A,B) ∈ Lν . The asso-
ciated color is red if conflict band(s,vi, A,B) = True, and it is green if
conflict band(s,vi, A,B) = False, then the corresponding color is green.
This is illustrated in Figure 3 for the track angle case, i.e., ν = νtrk and
I = [0, 2π].

A prevention bands algorithm for track angle maneuvers will return a
finite, ordered sequence Lνtrk of track angles in the interval [0, 2π]. This
sequence will contain both of the angles 0 and 2π. If the algorithm is correct,
then each consecutive pair, α and β, of track angles in this sequence defines
a band, i.e., an open interval (α, β), with the property that either

1. all track angles between α and β result in conflict, or
2. all track angles between α and β do not result in conflict.

If the track angles between α and β all result in conflict, the region between
α and β is colored red. Otherwise, this region is colored green.

2.5. Proving Correctness of a Prevention Bands Algorithm
This section provides a general strategy that can be followed to formally

verify that a given prevention bands algorithm is correct. Subsequent sec-
tions will describe the use of this strategy in the formal verification of a
track angle prevention bands algorithm.

Recall that a prevention bands algorithm depends on a function ν : R 7→
R3, implicitly parametrized by vo, and a closed interval I ⊆ R. The real-
valued argument of the function ν determines a new velocity vector for the
ownship. For instance, if ν = νtrk and I = [0, 2π], the domain of νtrk are
track angles such that for any α ∈ I, νtrk(α) is a new velocity vector for the
ownship that has the same ground speed as vo.

Theorem 1 can be used to verify the correctness of a prevention bands
algorithm for ν over I that computes a finite sequence Lν . It requires the
construction of a particular continuous function, called classification func-
tion, and a completeness property on Lν .

9

by algorithm

45

0

135

90

180

270

315

225

Red Midpoint Angle (RMA)
Green Midpoint Angle (GMA)

Green Band

Red Band

Green Band

Red Band

GMA

GMA

GMA

RMA

RMA

RMA

Track Angle

Points computed

Track Angle

Figure 3: Relation between track angle prevention bands algorithm and graphical display

Definition 3. A classification function function for ν, Ων : R 7→ R, is a
continuous function, implicitly parameterized by s and vi, that characterizes
conflict? in the following way:

Ων(x) < 1 ⇐⇒ conflict?(s, ν(x)− vi).

Definition 4. Let Ων : R 7→ R be a function, implicitly parameterized by
s and vi. A finite sequence Lν of real numbers in a closed interval I is
Ων-complete if for all x ∈ I,

Ων(x) = 1 =⇒ x ∈ Lν ,

Theorem 1. A prevention bands algorithm for ν over I that computes a
finite sequence Lν is correct if there exists a classification function Ων such
that Lν is Ων-complete.

Proof. Assume that there exists a classification function Ων such that Lν is
Ων-complete. Let (A,B) be a band in Lν .

• Assume that conflict band(s,vi, A,B) holds. Let y be a real number
in the open interval (A,B). Suppose, by reduction to absurdity, that
¬conflict?(s, ν(y)−vi). Since Ων is a classification function, Ων(y) ≥ 1.

10

By hypothesis, Lν is Ων-complete. Thus, since (A,B) ∈ Lν and y is
equal to neither A nor B, it follows that Ων(y) > 1. By the definition
of the function conflict band given in Equation (6), it holds that
conflict?(s, ν(x) − vi), where x = A+B

2 . Since Ων is a classification
function, Ων(x) < 1. By definition, Ων is continuous. Thus, the
intermediate value theorem implies that there exists some z between
x and y such that Ων(z) = 1. Since z is therefore in the interval (A,B),
A and B are consecutive in Lν , and the algorithm computes all points
where Ων realizes a value of 1, this is a contradiction.

• Similar reasoning is used to show that if ¬conflict band(s,vi, A,B),
then any y in (A,B) satisfies ¬conflict?(s, ν(y)− vi).

Using Theorem 1 to verify that a prevention bands algorithm that com-
putes Lν is correct requires construction of a classification function Ων such
that Lν is Ων-complete. Section 3 proposes the definition of a generic func-
tion Ω that can be used to construct classification functions for a given
function ν : R 7→ R3. Section 4 presents a theorem that can be used to
prove Ων-completeness for a given sequence Lν .

3. The Function Ω

Let Ω: R3 7→ R3 be a continuous function, implicitly parametrized by s
(= so − si), that characterizes conflict? in the following way:

Ω(v) < 1 ⇐⇒ conflict?(s,v). (8)

For any continuous function ν, a classification function Ων can be con-
structed as follows.

Ων(x) ≡ Ω(ν(x)− vi). (9)

Given such a function Ω, the verification of correctness of a prevention
bands algorithm over an interval I is reduced to proving that Lν is Ων-
complete, i.e., the sequence returned by each algorithm contains all x ∈ I
where the function Ων attains a value of 1. Since the algorithm correspond-
ing to ν will compute a sequence of values in a distinct way, a special proof of
Ων-completeness will be required for each function ν : R→ R3. The function
Ω will be of use in this step as well. Indeed, the function Ω will be defined
such that vectors v where Ω(v) = 1 have particular forms. The proof that
Lν is Ων-complete can then be completed by by proving that x ∈ Lν if and

11

only if the vector ν(x) has one of these forms. An example of a successful
application of this strategy can be found in Section 5, where ν = νtrk.

The rest of this section concerns the definition of such a function Ω.

3.1. Cylindrical Distance
Recall from Section 2.1 that the protected zone is a horizontal cylinder

around the intruder aircraft that has half-height H and radius D. In order
to define the function Ω that satisfies Equation (8), a notion of cylindrical
distance is needed.

Definition 5. The cylindrical length of a vector w ∈ R3 is the quantity

‖w‖cyl ≡ max(
‖w(x,y)‖

D
,
|wz|
H

).

Definition 6. The cylindrical distance between two vectors, w1 and w2, is
the quantity ‖w1 −w2‖cyl.

Cylindrical distance is a metric on R3, in the sense of real analysis [8],
and R3 is a metric space with this metric. In particular, this means that the
triangle inequality holds for any w0,w1,w2 ∈ R3:

‖w0 −w2‖cyl ≤ ‖w0 −w1‖cyl + ‖w1 −w2‖cyl. (10)

The key property of cylindrical distance, as it relates to loss of separation
of aircraft, is stated in the following theorem.

Theorem 2. Two aircraft are in loss of separation if and only if ‖s‖cyl < 1,
where, as in Section 1, s = so − si is the relative position vector of the
aircraft.

3.2. The Definition of Ω
By Theorem 2, the ownship and the intruder aircraft are in conflict if

and only if there exists some time t ∈ [0, T] such that ‖s+ tv‖cyl < 1. Thus,
for s such that ‖s‖cyl 6= 1, i.e., for s not on the boundary of the protected
zone, the function Ω(v) is defined as

Ω(v) ≡ min
t∈[0,T]

‖s + tv‖cyl. (11)

Two important remarks on the definition of the function Ω given by
Formula (11) are in order. First, the function Ω is well-defined since the
quantity ‖s+tv‖cyl actually attains a minimum as t ranges over the interval

12

v

v

s

v

v

v

Figure 4: Infinite many places where mint∈[0,T] ‖s + t v‖cyl = 1

[0, T]. That is, there exists some τ ∈ [0, T] such that ‖s+τ v‖cyl ≤ ‖s+tv‖cyl

for all t ∈ [0, T]. Indeed, when the vectors s and v are fixed, the function
dcyl : [0, T] 7→ R defined by dcyl(t) = ‖s + tv‖cyl is continuous, and every
continuous function on a closed interval attains a minimum on that interval.
The function dcyl is continuous because it is the maximum of two functions,
dhoriz and dvert, defined by

dhoriz(t) ≡
‖(s + tv)(x,y)‖

D
,

dvert(t) ≡
|(s + tv)z|

H
,

both of which are continuous.
Second, Formula (11) does not define Ω when ‖s‖cyl = 1. If ‖s‖cyl = 1,

in which case s is on the boundary of the cylinder, then any v which points
outward from the cylinder will satisfy mint∈[0,T] ‖s + tv‖cyl = 1. This is
because the minimum is attained at t = 0 for any such v. This is illustrated
in Figure 4 in the case where ‖s(x,y)‖ = D and |sz| < H.

Therefore, if ‖s‖cyl = 1, there is an infinite number of vectors v such
that mint∈[0,T] ‖s + tv‖cyl = 1. Defining Ω in this case using Formula (11)
would make Lν Ων-incomplete, as by definition the sequence Lν is finite.

This shows that some care is needed when defining Ω on the boundary
of the cylinder. Formula (12) presents a definition of Ω that is suitable for

13

showing that a sequence Lν is Ων-complete.

Ω(v) ≡


s(x,y) · v(x,y) if ‖s(x,y)‖ = D and |sz| < H

szvz if ‖s(x,y)‖ < D and |sz| = H

max(s(x,y) · v(x,y), szvz) if ‖s(x,y)‖ = D and |sz| = H

mint∈[0,T] ‖s + tv‖cyl otherwise, i.e., if ‖s‖cyl 6= 1

(12)

The following theorem states that Formula (12) defines a function Ω that
satisfies Equation (8). The proof of this theorem is a basic exercise in vector
algebra.

Theorem 3. conflict?(s,v) ⇐⇒ Ω(v) < 1.

The formal proof that Ω is continuous requires more work and it is
explained in the rest of this section. Section 4 provides a classification
theorem for Ω, which is used in section 5 to show that a particular prevention
bands algorithm, e.g., ν = νtrk, is Ων-complete.

3.3. Continuity of Ω
Since the if-statements in the definition of Ω do not depend on v, Ω is

continuous if and only if each of the quantities s(x,y) ·v(x,y), szvz, max(s(x,y) ·
v(x,y), szvz), and mint∈[0,T] ‖s + tv‖cyl are continuous functions of v. Only
one of these four statements is nontrivial, that the minimum mint∈[0,T] ‖s +
tv‖cyl is continuous in v. This is proved using standard techniques from
real analysis [8]. In fact, it follows from a generalization of the Heine-
Cantor theorem, which says that a continuous function on a closed interval
is uniformly continuous.

Theorem 4. If A and B are real numbers with A < B and f : [A,B] ×
Rn 7→ R is continuous, then the function g : Rn 7→ R defined by g(v) ≡
mint∈[A,B] f(t,v) is continuous.

The formal proof of this theorem required the development of a vector
analysis library in PVS, which is now part of the PVS NASA Libraries.2

The continuity of Ω is a direct consequence of Theorem 4, when A = 0,
B = T , and f(t,v) = ‖s + tv‖cyl.

Theorem 5. The function Ω is continuous.

2The PVS NASA Libraries are available from http://shemesh.larc.nasa.gov/fm/

ftp/larc/PVS-library/pvslib.html.

14

vz > 0

D

2H

ττ

vz < 0

Figure 5: Case vz 6= 0, 0 < τ < T , |sz + τ vz| = H, and ‖(s + τ v)(x,y)‖ < D

The purpose for constructing the function Ω was to provide a definition
for Ων : R 7→ R for every function ν : R 7→ R3. The following corollaries
follow directly from theorems 3 and 5.

Corollary 6. For any ν : R 7→ R3, the function Ων , defined in Equation (9),
satisfies Ων(x) < 1 if and only if conflict?(s, ν(x)− vi).

Corollary 7. If ν : R 7→ R3 is continuous, then the function Ων is continu-
ous.

4. Classification of Critical Vectors

To verify the correctness of a prevention bands algorithm for ν over a
closed interval I, it must be shown that the computed sequence Lν is finite
and includes all points x ∈ I such that Ω(ν(x) − vi) = 1. Vectors v that
satisfy Ω(v) = 1 are called critical vectors. This section shows that critical
vectors can be analytically classified in a finite way. Since critical vectors
correspond to maneuvers that are tangent to the protected zone, algorithms
for finding maneuvers that result in critical vectors are useful for conflict
resolution. Indeed, the classification of critical vectors was originally used
for conflict resolution algorithms [9].

Consider a relative position vector s that satisfies ‖s‖cyl 6= 1 and a critical
vector v. Since Ω(v) = 1, it holds that mint∈[0,T] ‖s + tv‖cyl = 1. This
minimum is attained at a real number τ ∈ [0, T]. Since ‖s‖cyl 6= 1, it follows
that τ 6= 0. Thus, either τ = T or 0 < τ < T . If it holds that vz 6= 0,
0 < τ < T , |sz + τ vz| = H, and ‖(s + τv)(x,y)‖ < D, then it can be shown
that mint∈[0,T] ‖s + tv‖cyl < 1. That is, there is a time near τ where the
aircraft will be in loss of separation. This is illustrated in Figure 5.

15

v

D

2H

s

T

Figure 6: Case τ = T , |sz + T vz| = H, and ‖(s + T v)(x,y)‖ < D

D

s
v

T

Figure 7: Case τ = T , |sz + T vz| < H, and ‖(s + T v)(x,y)‖ = D

If the same conditions hold, but with vz = 0, then τ is not unique, and
it can also be shown that a particular τ can be chosen so that 0 < τ < T ,
|sz + τ vz| = H, and ‖(s + τ v)(x,y)‖ = D.

Since, 1 = Ω(v) = ‖s + τ v‖cyl = max(‖(s+τ v)(x,y)‖
D , |sz+τ vz |

H), this leaves
the following cases.

1. Case τ = T , |sz + T vz| = H, and ‖(s + T v)(x,y)‖ < D.
2. Case τ = T , |sz + T vz| < H, and ‖(s + T v)(x,y)‖ = D.
3. Case |sz + τ vz| = H and ‖(s + τ v)(x,y)‖ = D.
4. Case 0 < τ < T , |sz + τ vz| < H, and ‖(s + τ v)(x,y)‖ = D.

These four cases are illustrated in figures 6, 7, 8, and 9, respectively.
These cases will be formalized using four predicates: vertical case? (Sec-

tion 4.1), circle case 2D? (Section 4.2), circle case 3D? (Section 4.3), and
line case? (Section 4.4). It will be shown in Section 4.5 that these four pred-
icates are sufficient to classify solutions to the equation Ω(v) = 1, even in
the case where ‖s‖cyl = 1.

16

T

D

2H

s

v

Figure 8: Case |sz + τ vz| = H, and ‖(s + τ v)(x,y)‖ = D

D

s

v

T

Figure 9: Case 0 < τ < T , |sz + τ vz| < H, and ‖(s + τ v)(x,y)‖ = D

4.1. Vertical Case
Consider the case 1 where τ = T , |sz +T vz| = H, and ‖(s+T v)(x,y)‖ <

D, which is illustrated by Figure 6. In this case, if (sz + T vz) vz > 0, it is
formally proved that there is some t ∈ (0, T) such that ‖s+tv‖cyl < 1, which
is a contradiction. This motivates the definition of the following predicate
on sz, vz, a real number t, and an integer ι = ±1.

vertical case?(sz,vz, t, ι) ≡ |sz + tvz| = H and
ι (sz + tvz) vz ≥ 0.

(13)

Intuitively, the number ι can be thought of as direction, with ι = −1 corre-
sponding to entry into the protected zone at time t, and ι = 1 corresponding
to exit.

Case 1 corresponds to vertical case?(sz,vz, T,−1). The condition

‖(s + T v)(x,y)‖ < D

is explicitly not included in this predicate, because the more general form
is useful when classifying other types of critical vectors. It is important to

17

note that if |sz + T vz| = H, then vertical case?(sz,vz, T, ι) holds for some
ι = ±1.

Vectors v that satisfy the predicate vertical case? are called vertical so-
lutions.

4.2. Circle Case 2D
Consider the case 2 where τ = T , |sz +T vz| < H, and ‖(s+T v)(x,y)‖ =

D, which is illustrated by Figure 7. If (s(x,y) +T v(x,y)) ·v(x,y) > 0, then it is
formally proved that there is some t ∈ (0, T) such that ‖s+tv‖cyl < 1, which
is a contradiction. This motivates the definition of the following predicate
on s, v, a real number t, and ι = ±1.

circle case 2D?(s,v, t, ι) ≡ ‖(s + tv)(x,y)‖ = D and

ι (s(x,y) + tv(x,y)) · v(x,y) ≥ 0.
(14)

Case 2 corresponds to circle case 2D?(s,v, T,−1). The condition

|sz + T vz| < H

is not included in this predicate, because it will be used, along with vertical case?,
to classify other types of critical vectors. As for the predicate vertical case?
above, an important property of circle case 2D? is that ‖(s + tv)(x,y)‖ = D
implies that circle case 2D?(s,v, t, ι) holds for some ι = ±1.

Vectors v that satisfy the predicate circle case 2D? are called 2D circle
solutions.

4.3. Circle Case 3D
Consider the case 3 where |sz+τ vz| = H and ‖(s+τ v)(x,y)‖ = D, which

is illustrated by Figure 8. It follows from the definitions of vertical case?
and circle case 2D? that there exists ι1, ι2, each equal to −1 or 1, such that
vertical case?(sz,vz, τ, ι1) and circle case 2D?(s,v, τ, ι2). If τ is positive and
ι1 = ι2, it can be proved that either vertical case?(sz,vz, T,−1) or Ω(v) <
1. In classifying the solutions to the equation Ω(v) = 1, the case where
vertical case?(sz,vz, T,−1) is true is handled separately. Since it holds that
Ω(v) = 1, a requirement for the case where |sz + τ vz| = H and ‖(s +
τ v)(x,y)‖ = D is therefore that ι1 = −ι2. This motivates the definition
of the following predicate. Similar to the predicate circle case 2D?, this
predicate depends on s, v, ι = ±1, and a real number t.

18

α

D

β

s v

v⊥

Figure 10: Line case: v is tangent to the circle

circle case 3D?(s,v, t, ι) ≡ t > 0 and
circle case 2D?(s,v, t, ι) and
vertical case?(sz,vz, t,−ι).

(15)

Vectors v that satisfy the predicate circle case 3D? are called 3D circle
solutions.

4.4. Line Case
Consider the case 4 where 0 < τ < T , |sz + τ vz| < H, and ‖(s +

τ v)(x,y)‖ = D, which is illustrated by Figure 9. As Figure 10 indicates, the
fact that τ satisfies mint∈[0,T] ‖s + tv‖cyl = ‖s + τ v‖cyl can be used to show
that the trajectory from s(x,y) along v(x,y) is tangent to the circle of radius
D around the origin. In this figure, the vector v⊥ is the vector (vy,−vx,vz).

It is immediately clear from Figure 10 that the angle α can be no greater
than π/2. Since s(x,y) · −v(x,y) = ‖s(x,y)‖‖v(x,y)‖ cosα ≥ 0, it follows that
s(x,y) · v(x,y) ≤ 0. In addition, cosβ = D

‖s(x,y)‖
. Thus,

s(x,y) · v⊥(x,y) = ‖s(x,y)‖‖v(x,y)‖ cosβ

= D‖v(x,y)‖.
(16)

This construction depends on a vector v(x,y) that is tangent to the right
side of the circle. The analogous construction for a vector v(x,y) that is
tangent to the left side of the circle would use −v⊥ in the place of the vector

19

v⊥. This motivates the definition of the following predicate, which depends
on s, v, and a parameter ε, which is equal to either −1 for a right-tangent,
or 1 for a left-tangent.

line case?(s,v, ε) ≡ s(x,y) · v(x,y) ≤ 0 and

− ε (s(x,y) · v⊥(x,y)) = D‖v(x,y)‖.
(17)

Vectors v that satisfy the predicate line case? are called line solutions.

4.5. The Classification Theorem
Critical vectors can be classified according to the following theorem.

Theorem 8. If Ω(v) = 1, then one of the following conditions holds.

1. ‖s(x,y)‖ ≥ D and line case?(s,v, ι) holds for some ι = ±1.
2. |sz + T vz| < H and circle case 2D?(s,v, T,−1)
3. There exists a real number t > 0 such circle case 3D?(s,v, t, ι) holds

for some ι = ±1.
4. ‖s(x,y) + T v(x,y)‖ ≤ D and vertical case?(sz,vz, T,−1)

This theorem can be used to show that a sequence Lν computed by a
prevention bands algorithm for ν over a closed interval I is Ων-complete by
proving that Lν contains all the vectors that have one of the four forms. It
follows from this that Lν contains all points x ∈ I such that Ων(x) = 1.

5. Track Angle Prevention Bands

This section presents a formally verified algorithm, namely track bands,
for track angle prevention bands over the closed interval [0, 2π], for the
function νtrk : R 7→ R3, defined by Equation (2) in Section 2.2. The purpose
is to illustrate the usefulness of the approach outlined in the previous sections
for verifying prevention bands algorithms. Similar algorithms, for ground
speed and vertical speed maneuvers, have been formally verified using this
approach [6].

The definition of track bands depends on the algorithms track line,
track circle 2D, and track circle 3D, which compute track angle ma-
neuvers that are line solutions, 2D circle solutions, and 3D circle solutions,
respectively. These three algorithms are proved to be complete, i.e., they
compute all vectors that satisfy their respective predicate, and correct, i.e.,
only vectors that satisfy their respective predicate are computed. The
correctness of track bands depends on the completeness of track line,
track circle 3D, and track circle 2D.

20

5.1. A Special Case
For ν = νtrk, the function Ων , defined in Formula (9) of Section 3,

characterizes conflict in the sense of Corollary 6 (Section 3.3). To prove the
correctness of a track angle prevention bands algorithm, it must be shown
that the finite sequence Lν returned by the algorithm contains all track
angles α ∈ [0, 2π] such that Ων(α) = 1. An obvious requirement is that
there be only finitely many track angles in the interval [0, 2π] for which this
equation holds. As it turns out, there are several special cases where this
equation has infinitely many solutions for track angles α ∈ [0, 2π]. These
special cases are specified by the following predicate.

track spc?(s,vo,vi, t) ≡ s(x,y) = tvi(x,y) and

‖vo(x,y)‖2 =
D2

t2
.

(18)

The approach outlined in this paper for verifying a prevention bands algo-
rithm using a function Ων can be used in every case to verify the correct-
ness of the algorithm track bands. However, in some special cases where
track spc? holds, a special version of Ων must be defined in place of the def-
inition given by Formula (9) of Section 3. For simplicity, these cases have
been excluded from the proofs in this paper. In the following sections, the
exclusion of these cases is explicitly noted where applicable. For a complete
discussion of the verification of the algorithm presented here, see [6].

5.2. Line Solutions For Track Angle Maneuvers
The algorithm track line, defined below, takes as parameters s, vo,

vi, t, ε = ±1, and ι = ±1. It returns a vector v′o ∈ R3 that is either
the zero vector or is equal to νtrk(α) for some α ∈ [0, 2π) such that the
relative velocity vector v′ = v′o − vi is tangent to the circle, i.e., it satisfies
line case?(s,v′, ε).

The definition of track line requires the definition an auxiliary func-
tion, namely tangent line, that takes as parameter a relative position vec-
tor s ∈ R3 such that ‖s(x,y)‖ ≥ D and a number ε = ±1, and returns a

21

vector in R3 that is tangent to the protected zone.

tangent line(s, ε) ≡
if ‖s(x,y)‖ = D then ε s⊥

else

let d = ‖s(x,y)‖2 in

(
D2

d
− 1) s +

εD
√
d−D2

d
s⊥

endif

(19)

The proofs of the following lemmas rely on standard vector algebra.

Lemma 9. If ‖s(x,y)‖ ≥ D and ε = ±1, then

line case?(s, tangent line(s, ε), ε)

holds.

The algorithm track line is defined as follows.

track line(s,vo,vi, ε, ι) ≡
let

k = track only line(tangent line(s, ε)(x,y),vo,vi, ι),

v′o = (k tangent line(s, ε)(x,y) + vi(x,y)) with [z ← voz]

in

if k ≥ 0 then v′oelse 0 endif

(20)

where
track only line(u,vo,vi, ι) ≡

let

a = ‖u‖2,
b = 2 vi(x,y) · u,
c = ‖vi(x,y)‖2 − ‖vo(x,y)‖2

in

if b2 − 4ac ≥ 0 then

−b+ ι
√
b2 − 4ac

2a
else 0
endif

(21)

22

The next lemma states that the algorithm track only line computes
solutions for k to the equation v′o(x,y) = k u + vi(x,y), where ‖v′o(x,y)‖ =
‖vo(x,y)‖.
Lemma 10. If u 6= 0, then ‖v′o(x,y)‖ = ‖vo(x,y)‖ and k u = v′o(x,y)− vi(x,y)
if and only if

k = track only line(u,vo,vi, ι),

for some ι = ±1.

The proofs of the correctness and completeness of track line follow
from its definition and Lemma 10.

Theorem 11 (Correctness and completeness of track line). If ‖s(x,y)‖ ≥
D and v′o(x,y) 6= 0, then ‖v′o(x,y)‖ = ‖vo(x,y)‖, v′oz = voz, and line case?(s,v′o−
vi, ε) holds if and only if

v′o = track line(s,vo,vi, ε, ι),

for some ι = ±1.

5.3. 2D Circle Solutions For Track Angle Maneuvers
The algorithm track circle 2D, defined below, takes as parameters s,

vo, vi, t, ι = ±1, and ε = ±1. It returns a vector v′o ∈ R3 that is either the
zero vector or is equal to νtrk(α) for some α ∈ [0, 2π) such that the relative
velocity vector v′ = v′o − vi satisfies circle case 2D?(s,v′, t, ι).

track circle 2D(s,vo,vi, t, ι, ε) ≡
let

u = (s− tvi)(x,y),

j =
1
2t

(D2 − ‖s(x,y)‖2 − t2(‖vo(x,y)‖2 − ‖vi(x,y)‖2))

in

if u 6= 0 then

let

v′o = track only dot(u,vo,vi, j, ε)
in

if ι (s + t (v′o − vi)) ≥ 0 then v′o
else 0

endif

else 0

endif

(22)

23

where

track only dot(u,vo,vi, j, ι) ≡

let k = track only line(u⊥,vo,vi +
j

‖u(x,y)‖2
u, ι) in

(ku⊥ + vi(x,y) +
j

‖u(x,y)‖2
u) with [z ← voz]

(23)

The next lemma shows that the algorithm track only dot can be used to
solve equations of the form u · (v′o(x,y)−vi(x,y)) = j for v′o when ‖v′o(x,y)‖ =
‖vo(x,y)‖.

Lemma 12. For all j ∈ R, u 6= 0, and v′o(x,y) 6= 0, ‖v′o(x,y)‖ = ‖vo(x,y)‖,
v′oz = voz, and u · (v′o(x,y) − vi(x,y)) = j if and only if

v′o = track only dot(u,vo,vi, j, ι),

for some ι = ±1.

The correctness and completeness of track circle 2D follow from its
definition and Lemma 12.

Theorem 13 (Correctness of track circle 2D). If v′o(x,y) 6= 0 and

v′o = track circle 2D(s,vo,vi, t, ι, ε),

then ‖v′o(x,y)‖ = ‖vo(x,y)‖, v′oz = voz, and circle case 2D?(s,v′o − vi, t, ι)
holds.

Theorem 14 (Completeness of track circle 2D). If ‖v′o(x,y)‖ = ‖vo(x,y)‖,
v′oz = voz, and

circle case 2D?(s,v′o − vi, t, ι)

holds, then either track spc?(s,vo,vi, t) holds or

v′o = track circle 2D(s,vo,vi, t, ι, ε)

for some ε = ±1.

5.4. 3D Circle Solutions For Track Angle Maneuvers
Theorems 13 and 14 imply that the algorithm track circle 2D can

be used to compute vectors v′o such that circle case 2D?(s,v′o − vi, t, ι)
holds, where t > 0. By the definition of the predicate circle case 3D? in
Section 4.3, this algorithm can be used to compute vectors v′o such that

24

circle case 3D?(s,v′o − vi,ΘH(sz,voz − viz,−ι), ι) holds when ΘH(sz,voz −
viz,−ι) > 0, where

ΘH(sz,vz, ι) ≡
ι sign(vz)H − sz

vz
, for vz 6= 0. (24)

It is easy to check that ΘH satisfies |sz + ΘH(sz,vz, ι) vz| = H. In addition,

ΘH(sz,vz,−1) < ΘH(sz,vz, 1). (25)

Intuitively, the times ΘH(sz,vz,−1) and ΘH(sz,vz, 1) are the times at which
the z-component of the trajectory from s along v enters and exits the interval
[−H,H], respectively.

This motivates the definition of the algorithm track circle 3D, which
takes as a parameters s, vo, vi, ι = ±1, and ε = ±1. It returns a vec-
tor v′o ∈ R3 that is either the zero vector or is equal to νtrk(α) for some
α ∈ [0, 2π) such that the relative velocity vector v′ = v′o − vi satisfies
circle case 3D?(s,v′,ΘH(sz,voz − viz,−ι), ι).

track circle 3D(s,vo,vi, ι, ε) ≡
if voz = viz then 0

else

let t = ΘH(sz,voz − viz,−ι) in

if t > 0 then

track circle 2D(s,vo,vi, t, ι, ε)
else 0

endif

endif

(26)

The following theorems state that track circle 3D is correct and com-
plete for 3D circle solutions that are track angle maneuvers.

Theorem 15 (Correctness of track circle 3D). If v′o(x,y) 6= 0 and

v′o = track circle 3D(s,vo,vi, ι, ε),

then ‖v′o(x,y)‖ = ‖vo(x,y)‖, v′oz = voz, and

circle case 3D?(s,v′o − vi,ΘH(sz,voz − viz,−ι), ι)

holds.

25

Theorem 16 (Completeness of track circle 3D). If ‖v′o(x,y)‖ = ‖vo(x,y)‖,
v′oz = voz, voz 6= viz, and circle case 3D?(s,v′o−vi,ΘH(sz,voz−viz,−ι), ι)
holds, then either track spc?(s,vo,vi,ΘH(sz,voz − viz,−ι)) holds or

v′o = track circle 3D(s,vo,vi, ι, ε),

for some ε = ±1.

5.5. A Prevention Bands Algorithm For Track Angle Maneuvers
Using the functions defined in the previous section, the prevention bands

algorithm track bands for the function νtrk : R 7→ R3 can be defined as
follows. The function sort takes a set of real numbers as argument and
returns the sequence of elements in the set that is sorted by increasing order.
The function track, specified by Formula (3) in Section 2.2, takes a vector
as argument and returns its track angle. It is assumed that track(0) = 0.
That function is implemented using a two-argument arc tangent function,
usually called atan2 in programming languages.

track bands(s,vo,vi) ≡
sort({0, 2π} ∪

{track(track circle 3D(s,vo,vi,−1,−1)),
track(track circle 3D(s,vo,vi,−1, 1)),
track(track circle 3D(s,vo,vi, 1,−1)),
track(track circle 3D(s,vo,vi, 1, 1))} ∪
if ‖s(x,y)‖ ≥ D then

{track(track circle 2D(s,vo,vi, T,−1,−1)),
track(track circle 2D(s,vo,vi, T,−1, 1)),
track(track line(s,vo,vi,−1,−1)),
track(track line(s,vo,vi,−1, 1)),
track(track line(s,vo,vi, 1,−1)),
track(track line(s,vo,vi, 1, 1)})}

else ∅
endif)

(27)

The finite, ordered sequence returned by track bands is computed using
every possible instantiation of the parameters ε and ι, both of which can
be ±1, in track line, track circle 2D, and track circle 3D. For each

26

vector v′o returned by one of these three algorithms for s, vo, and vi, the
track angle of v′o is an element of the sequence returned by track bands.

Theorem 17 (Correctness of track bands). The track angle prevention
bands algorithm track bands is correct for νtrk over the interval [0, 2π].

Proof. By Theorem 1 in Section 2.5 and Corollary 6 in Section 3.3, it suffices
to prove that the function Ων , defined in Formula 9 in Section 3, satisfies
the following property: For all α ∈ [0, 2π], Ων(α) = 1 implies that α ∈
track bands(s,vo,vi).

This proof excludes the cases defined by the predicate track spc? (Sec-
tion 5.1). For an outline of the complete proof, see [6]. Here, the proof is
restricted to the cases where neither of the following conditions hold.

1. voz 6= viz and there exists ι = ±1 such that track spc?(s,vo,vi, t) and
0 < t ≤ T , where t = ΘH(sz,voz − viz, ι).

2. track spc?(s,vo,vi, T) and |sz + T (voz − viz)| < H.

Suppose that α ∈ [0, 2π] and Ων(α) = 1. Since Ων(α) = Ω(νtrk(α)− vi),
Theorem 8 in Section 4.5 implies that one of the following conditions holds,
where v = νtrk(α)− vi.

• ‖s(x,y)‖ ≥ D and line case?(s,v, ε), for some ε = ±1.

• |sz + Tvz| < H and circle case 2D?(s,v, T,−1).

• There is some real number t > 0 such that circle case 3D?(s,v, t, ι),
for some ι = ±1.

• ‖s(x,y) + Tv(x,y)‖ ≤ D and vertical case?(sz,vz, T,−1).

These cases are now considered individually.

• Suppose first that ‖s(x,y)‖ ≥ D and line case?(s, νtrk(α) − vi, ε), for
some ε = ±1. By completeness of track line (Theorem 11), νtrk(α)
is equal to track line(s,vo,vi, ε, ι), for some ι = ±1. Thus, α =
track(νtrk(α)) is equal to track(track line(s,vo,vi, ε, ι)), which, by
definition, is an element of track bands(s,vo,vi).

• Suppose that |sz+Tvz| < H and circle case 2D?(s, νtrk(α)−vi, T,−1).
By completeness of the algorithm track circle 2D (Theorem 14),
νtrk(α) is equal to track circle 2D(s,vo,vi, t, ι, ε), for some ι = ±1
and ε = ±1. Thus,

α = track(νtrk(α)) = track(track circle 2D(s,vo,vi, t, ι, ε)).

Hence, α is an element of track bands(s,vo,vi).

27

• Suppose that there is a real number t > 0 such that

circle case 3D?(s,v, t, ι),

where ι = ±1. Assume that voz 6= viz. By completeness of the
algorithm track circle 3D (Theorem 16),

νtrk(α) = track circle 3D(s,vo,vi, ι, ε),

for some ι = ±1 and ε = ±1. Thus, as above,

α = track(νtrk(α)) = track(track circle 3D(s,vo,vi, ι, ε)).

Hence, α is an element of track bands(s,vo,vi). The case where
voz = viz can be equally discharged.

• Finally, suppose that ‖s(x,y) + Tv(x,y)‖ ≤ D and

vertical case?(sz,vz, T,−1).

In this case, νtrk(α)z = voz implies that conflict?(s, νtrk(α)− vi) does
not hold for any α ∈ R. From there, the correctness of the algorithm
track bands is trivial.

6. Conclusion

This paper presents a general method for proving that a prevention bands
algorithm for a set of maneuvers defined by a function ν : R 7→ R3 is correct,
i.e., that the algorithm correctly computes all the critical values where the
prevention bands potentially change color. A direct proof that a prevention
bands algorithm is correct is tedious, error prone, and difficult. This paper
proposes a method that decomposes the correctness proof into two steps:

1. The definition of a continuous function Ων : R 7→ R that characterizes
conflicts, i.e., Ων(x) < 1 if and only if conflict?(s, ν(x)− vi).

2. A proof that the algorithm is Ων-complete, i.e., that it finds all values
x where Ων(x) = 1.

In most cases, the function Ων can be defined independently of the algorithm
using a function Ω : R3 7→ R provided in this paper. The proof that Ων is
continuous and correctly characterizes conflicts is given once and for all and
only depends on the continuity of ν, which is typically easy to verify.

28

The method presented here also provides a classification theorem for Ων

that characterizes the vectors that satisfy Ω(v) = 1. Using this theorem,
proving that the algorithm is Ων-complete reduces to proving that the al-
gorithm correctly computes all vectors that have a particular form. The
method is illustrated with the proof of correctness of a prevention bands
algorithm for track angle maneuvers that was originally presented, without
verification, in [3].

This paper focuses on pairwise algorithms, i.e., it considers only one
traffic aircraft, the intruder. Prevention bands algorithms for an arbitrary
number of traffic aircraft can be obtained from a pairwise algorithm by
simply letting the conflict bands for n-aircraft be the union of the conflict
bands computed for the ownship and each individual traffic aircraft. The
conflict-free bands can be computed as the complement of the conflict bands.
The correctness of the algorithms for n-aircraft can be easily derived from
the correctness of the pairwise prevention bands algorithms.

The prevention bands algorithm presented here is part of NASA’s Air-
borne Coordinated Conflict Resolution and Detection (ACCORD) frame-
work (http://shemesh.larc.nasa.gov/people/cam/ACCoRD). ACCoRD
is a PVS development for the design and verification of state-based sepa-
ration assurance systems, including formally verified algorithms for conflict
detection, conflict resolution, loss of separation recovery, and conflict pre-
ventions bands. These algorithms are being integrated into NASA’s air
traffic simulation environments such as Autonomous Operations Planner
(AOP) [10], Traffic Manager (TMX) [11], and Airspace Concept Evaluation
System (ACES) [12].

The results presented in this paper have been mechanically checked us-
ing an interactive theorem prover, which provides strong guarantees that
the mathematical development is correct. Although other researchers have
looked into the formal verification of air traffic management systems [13, 14],
the authors are not aware of formal verification efforts of air traffic manage-
ment systems entirely based on theorem proving. The use of a mechanical
theorem prover entails a detailed description of the problem and a metic-
ulous proof process. This level of rigor is justified by the critical role that
aircraft separation plays in the overall safety of the next generation of air
traffic management systems.

References

[1] R. Butler, G. Hagen, J. Maddalon, C. Muñoz, A. Narkawicz, G. Dowek,
How formal methods impels discovery: A short history of an air traf-

29

fic management project, in: C. Muñoz (Ed.), Proceedings of the Sec-
ond NASA Formal Methods Symposium (NFM 2010), NASA/CP-2010-
216215, NASA, Langley Research Center, Hampton VA 23681-2199,
USA, 2010, pp. 34–46.

[2] J. Maddalon, R. Butler, C. Muñoz, G. Dowek, A mathematical analysis
of conflict prevention information, in: Proceedings of the AIAA 9th
Aviation, Technology, Integration, and Operations Conference, AIAA-
2009-6907, Hilton Head, South Carolina, USA, 2009.

[3] J. Maddalon, R. Butler, C. Muñoz, G. Dowek, Mathematical basis for
the safety analysis of conflict prevention algorithms, Technical Mem-
orandum NASA/TM-2009-215768, NASA, Langley Research Center,
Hampton VA 23681-2199, USA (June 2009).

[4] J. M. Hoekstra, Designing for safety: The free flight air traffic manage-
ment concept, Tech. Rep. 90-806343-2-8, Technische Universiteir Delft
(Nov. 2001).

[5] J. Hoekstra, R. Ruigrok, R. van Gent, J. Visser, B. Gijsbers, M. Valenti,
W. Heesbeen, B. Hilburn, J. Groeneweg, F. Bussink, Overview of NLR
free flight project 1997-1999, Tech. Rep. NLR-CR-2000-227, National
Aerospace Laboratory (NLR) (May 2000).

[6] A. Narkawicz, C. Muñoz, G. Dowek, Formal verification of air traf-
fic prevention bands algorithms, Technical Memorandum NASA/TM-
2010-216706, NASA, Langley Research Center, Hampton VA 23681-
2199, USA (June 2010).

[7] S. Owre, J. Rushby, N. Shankar, PVS: A prototype verification system,
in: D. Kapur (Ed.), Proceeding of the 11th International Conference
on Automated Deductioncade, Vol. 607 of Lecture Notes in Artificial
Intelligence, Springer, 1992, pp. 748–752.

[8] W. Rudin, Principles of Mathematical Analysis, 3rd Edition, McGraw-
Hill, 1976.

[9] J. Maddalon, R. Butler, A. Geser, C. Muñoz, Formal verification of
a conflict resolution and recovery algorithm, Tech. Rep. NASA/TP-
2004-213015, NASA Langley Research Center, NASA LaRC,Hampton
VA 23681-2199, USA (April 2004).

30

[10] D. A. Karr, D. A. Roscoe, R. A. Vivona, An integrated flight-deck
decision-support tool in an autonomous flight simulation, in: Proceed-
ings of the AIAA Modeling and Simulation Technologies Conference
and Exhibit, no. AIAA 2004-5261, Providence, Rhode Island, 2004.

[11] F. J. L. Bussink, J. M. Hoekstra, B. W. Heesbeen, Traffic manager:
A flexible desktop simulation tool enabling future ATM research, in:
Proceedings of the 24th Digital Avionics Systems Conference, DASC
2005, Washington D.C., 2005.

[12] D. N. Sweet, V. Manikonda, J. S. Aronson, K. Roth, M. Blake, Fast-
time simulation system for analysis of advanced air transportation con-
cepts, in: Proceedings of the AIAA Modeling and Simulation Tech-
nologies Conference and Exhibit, no. AIAA 2002-4593, Monterey, CA,
USA, 2002.

[13] D. Bushnell, D. Giannakopoulou, P. Mehlitz, R. Paielli, C. Pasareanu,
Verification and validation of air traffic systems: Tactical separation
assurance, in: Proceedings of the IEEE Aerospace Conference, Big Sky,
Montana, USA, 2009.

[14] A. Platzer, E. M. Clarke, Formal verification of curved flight colli-
sion avoidance maneuvers: A case study, in: FM, Vol. 5850 of LNCS,
Springer, 2009, pp. 547–562.

Appendix A. Summary of PVS Development

% This file summarizes all the results presented in the paper
% "Provably Correct Conict Prevention Bands Algorithms" by
% Anthony Narkawicz, Cesar Munoz, and Gilles Dowek submitted to
% Elsevier’s Science of Computer Programming.

SCP[D,H,gsmin,gsmax:posreal,vsmin,vsmax:real,T:posreal] : THEORY
BEGIN
ASSUMING
gs_min_lt_max: ASSUMPTION gsmin < gsmax
vs_min_lt_max: ASSUMPTION vsmin < vsmax

ENDASSUMING
IMPORTING bands[D,H,gsmin,gsmax,vsmin,vsmax]

ilow,
ihigh : VAR real

31

s : VAR Sp_vect3
ss,w : VAR Vect3
vo,vi : VAR Nzv2_vect3
trkb : VAR (trk_fseq?)
gsb : VAR (gs_fseq?)
trk : VAR nnreal_lt_2pi
trk2 : VAR r: real | 0<=r AND r<=2*pi
gs : VAR r: real | gsmin<=r AND r<=gsmax
vs : VAR r: real | vsmin<=r AND r<=vsmax
vnu : VAR [Nzv2_vect3->[real->Nzv2_vect3]]
L : VAR [[Sp_vect3,posreal,Nzv2_vect3,Nzv2_vect3]->fseq]
cdalg : VAR [[Sp_vect3,Nzv2_vect3,Nzv2_vect3]->bool]
A,B,x : VAR real

contin_fun?(f:[real->real]) : bool =
analysis@continuity_ms_def[reals.real,
analysis@real_metric_space.real_dist,
reals.real,
analysis@real_metric_space.real_dist].continuous?(f)

% Conflict Detection Algorithms.
CdAlgorithmCorrect?(cdalg): bool =
FORALL (s,vo,vi): conflict_3D?(s,T,vo-vi) IMPLIES cdalg(s,vo,vi)

CdAlgorithmComplete?(cdalg): bool =
FORALL (s,vo,vi): cdalg(s,vo,vi) IMPLIES conflict_3D?(s,T,vo-vi)

% Definition 1.
CdAlgorithmCorrectAndComplete?(cdalg): bool =
CdAlgorithmCorrect?(cdalg) and CdAlgorithmComplete?(cdalg)

% A correct conflict detection (CD) algorithm.
cd: VAR (CdAlgorithmCorrectAndComplete?)

% This theorem states that a correct CD algorithm exists.
CorrectCompleteCdAlgExists: LEMMA
EXISTS (cdalg): CdAlgorithmCorrectAndComplete?(cdalg)

Iclosed(ilow,ihigh) : set[real] = r:real | ilow<=r AND r<=ihigh
Iopen(ilow,ihigh) : set[real] = r:real | ilow< r AND r< ihigh

% Prevention Bands Algorithm.
PrevBandsAlgorithm?(ilow,ihigh)(L) : bool =
FORALL (s,vo,vi): LET Lnu = L(s,T,vo,vi) IN
Lnu‘length >= 2 AND increasing?(Lnu) AND

32

(FORALL (i:below(Lnu‘length)): Iclosed(ilow,ihigh)(Lnu‘seq(i)))
AND Lnu‘seq(0) = ilow AND Lnu‘seq(Lnu‘length-1) = ihigh

% Equation 6.
conflict_band?(cd,vnu)(s,vo,vi,A,B) : bool =
cd(s,vnu(vo)((A+B)/2),vi)

% Definition 2.
BandsAlgCorrect?(cd,vnu,ilow,ihigh)

(L:(PrevBandsAlgorithm?(ilow,ihigh))): bool =
FORALL (s,vo,vi): LET Lnu = L(s,T,vo,vi) IN
FORALL (i:below(Lnu‘length-1)): LET A=Lnu‘seq(i),B=Lnu‘seq(i+1) IN
A<B IMPLIES
((conflict_band?(cd,vnu)(s,vo,vi,A,B) IFF
(FORALL (y:(Iopen(A,B))): conflict_3D?(s,T,vnu(vo)(y)-vi)))

AND
((NOT conflict_band?(cd,vnu)(s,vo,vi,A,B)) IFF
(FORALL (y:(Iopen(A,B))): NOT conflict_3D?(s,T,vnu(vo)(y)-vi))))

% Classification Functions.
OmegaNu : VAR [[Sp_vect3,Nzv2_vect3]->[real->real]]

% Definition 3.
ClassFun?(vnu)(OmegaNu): bool = FORALL (s,vo,vi,x):
contin_fun?(OmegaNu(s,vi)) AND (OmegaNu(s,vi)(x) < 1 IFF
conflict_3D?(s,T,vnu(vo)(x)-vi))

% Definition 4.
SeqComplete?(OmegaNu,ilow,ihigh)(L): bool =
FORALL (s,vo,vi)(x:(Iclosed(ilow,ihigh))):
OmegaNu(s,vi)(x) = 1 IMPLIES member(x,L(s,T,vo,vi))

Theorem1: THEOREM ilow < ihigh AND
PrevBandsAlgorithm?(ilow,ihigh)(L) AND
ClassFun?(vnu)(OmegaNu) AND SeqComplete?(OmegaNu,ilow,ihigh)(L)
IMPLIES
BandsAlgCorrect?(cd,vnu,ilow,ihigh)(L)

% Definition 5.
cyl_length(w) : nnreal = max(norm(vect2(w))/D,abs(w‘z)/H)

% Definition 6.
cyl_dist(w1,w2:Vect3): nnreal = cyl_length(w1-w2)

Theorem2: THEOREM FORALL (ss:Vect3): los?(ss) IFF cyl_length(ss) < 1

33

% Definition of Omega (Equation 12).
Omega_fun(ss)(w) : real =
IF on_H?(ss‘z) AND on_D?(ss) THEN
max(ss‘z*w‘z,vect2(ss)*vect2(w))+1

ELSIF vertical_los?(ss‘z) AND on_D?(ss) THEN
vect2(ss)*vect2(w)+1

ELSIF on_H?(ss‘z) AND horizontal_los?(ss) THEN
ss‘z*w‘z+1

ELSE
inf(LAMBDA(t: Lookahead(T)):cyl_length(ss+t*w))

ENDIF

Omega_fun_3D_lt: LEMMA Omega_fun(ss)(w) < 1 IFF omega_v3(ss,T)(w) < 0

Omega_fun_3D_gt: LEMMA Omega_fun(ss)(w) > 1 IFF omega_v3(ss,T)(w) > 0

Omega_fun_3D_eq: LEMMA Omega_fun(ss)(w) = 1 IFF omega_v3(ss,T)(w) = 0

Theorem3: THEOREM FORALL (ss,w:Vect3): conflict_3D?(ss,T,w) IFF
Omega_fun(ss)(w) < 1

% Theorem 4 is in the vect_analysis directory, in the file
% vect3_Heine.pvs. The lemma there is called curried_min_is_cont_3D.

Theorem5: THEOREM continuous?(Omega_fun(ss))

% Given vnu, the next function gives Omnu (Equation 10).

Omnu(ss,vo,vi)(vnu)(x:real) : real = Omega_fun(ss)(vnu(vo)(x)-vi)

Corollary6: COROLLARY Omnu(ss,vo,vi)(vnu)(x) < 1 IFF
conflict_3D?(ss,T,vnu(vo)(x)-vi)

Corollary7: COROLLARY continuous?(vnu(vo)) IMPLIES
contin_fun?(Omnu(ss,vo,vi)(vnu))

% The predicates line_case?, circle_case_2D?, circle_case_3D?,
% and vertical_case? in the paper correspond, respectively, to
% the following predicates in the PVS development:
% line_solution?, circle_solution_2D?, circle_solution?, and
% vertical_solution?. They are found in the files
% line_solutions.pvs, horizontal.pvs, circle_solutions.pvs,
% and vertical.pvs, respectively.

34

% The classification theorem for critical vectors.
Theorem8: THEOREM FORALL (v:Vect3): Omega_fun(ss)(v) = 1 IMPLIES
horizontal_sep?(ss) AND line_solution?(ss,v) OR
vertical_los?(ss‘z+T*v‘z) AND
circle_solution_2D?(ss,v,T,Entry) OR
circle_solution?(ss,v) OR
NOT strict_horizontal_sep?(ss+T*v) AND
vertical_solution?(ss‘z,v‘z,T,Entry)

% Lemma 9 corresponds to lemma line_solution_tangent_line in
% the file tangent_line.pvs.
% Lemma 10 follows from lemma trk_only_line_complete,
% which is found in the file trk_only.pvs.
% Theorem 11 follows from lemmas called trk_line_is_line_solution
% and trk_line_complete, which are found in the file trk_line.pvs.
% Lemma 12 follows from lemma trk_only_dot_complete, as well from
% the definition of the function trk_only_dot, both of which are
% found in the file trk_only.pvs.
% Theorems 13 and 14 correspond to lemmas trk_only_circle_solution
% and trk_only_circle_complete in the file trk_only.pvs.
% Theorems 15 and 16 correspond to lemmas trk_circle_solution and
% trk_circle_complete in the file trk_circle.pvs.
% The algorithm trk_bands, which is called track_bands in the paper,
% is defined in the file bands.pvs.
% The function nu_trk in the paper, which appears in the
% statement of Theorem 17, is called trk2v3 in the PVS development,
% and it is defined in the file trk_bands_3D.pvs.

Theorem17: THEOREM BandsAlgCorrect?(cd,trk2v3,0,2*pi)(trk_bands)
END SCP

35

