Toward Automated Test Generation for Engineering
Applications

*
Songtao Xia
Mail Stop 130
NASA Langley Research Center
Hampton, VA, 23681

s.xia@larc.nasa.gov

ABSTRACT

In test generation based on model-checking, white-box test
criteria are represented as trap conditions written in a tem-
poral logic. A model checker is used to refute trap con-
ditions with counter-examples. From a feasible counter-
example test inputs are then generated. FEarlier research
has demonstrated the usefulness of this approach and re-
vealed its weakness. The major problems of applying this
approach to engineering applications derive from the fact
that engineering programs have an infinite state space and
non-linear numerical computations. Our solution is to com-
bine predicate abstraction (which reduces the state space)
with a numerical decision procedure (which supports predi-
cate abstraction by solving non-linear constraints) based on
interval analysis. We have developed a prototype and ap-
plied it to MC/DC (Modified Condition/Decision Coverage)
test case generation. We have used the prototype on a num-
ber of C modules taken from a conflict detection and avoid-
ance system and from a Boeing 737 autopilot simulator. The
modules range from tens of lines up to thousands of lines
in size. Our experience shows that although in theory the
inclusion of a decision procedure for non-linear arithmetic
may lead to non-terminating behavior and false positives (as
abstraction-based model checking already does), our proto-
type is able to automatically produce feasible counterexam-
ples with only a few exceptions. Furthermore, the process
runs with acceptable execution times, without requiring any
other knowledge of the specification, and without tampering
with the original C programs.

Categories and Subject Descriptors

D.2.4 [Software Engineering]: Software/Program Verifi-
cation; D.2.5 [Software Engineering]: Testing and De-
bugging

*National Research Council Post-doctoral Researcher

20th IEEE/ACM International Conference on Automated Software Engi-

neeringLong Beach, California, USA

Ben Di Vito
Mail Stop 130
NASA Langley Research Center
Hampton, Virginia, 23681

b.divito@nasa.gov

César Mufioz
National Institute of Aerospace 100
Exploration Way
Hampton, Virginia, 23666

munoz@nianet.org

General Terms
Verification, Theory

Keywords

Test case generation, model-checking, predicate abstraction

1. INTRODUCTION

FAA’s regulations concerning DO-178B [39] explicitly set
test criteria for different levels of safety related software. For
example, certification of level A software, one that involves
human safety, requires test cases that satisfy the MC/DC
(Modified Condition/Decision Coverage) criteria [9,25]. Ef-
forts in meeting these criteria are highly iterative and labor-
intensive. Even small improvements in automated test case
generation could help to reduce significantly the develop-
ment cost of certified software.

In recent years, an active community of researchers on test
case generation based on model checking has formed. Sev-
eral tools have been developed (c.f., [1,7,21,26,43]). The
inputs to these generators are a specification (in a few cases,
a program) and a coverage criterion; the outputs are value
assignments to the program input parameters. Feeding the
value assignments to a test harness will guarantee the cov-
erage demanded by the criteria. Our attention in this pa-
per focuses on generating test cases from a program rather
than from a specification. Our tool can be combined with
specification-based approaches to accelerate the process of
achieving MC/DC coverage.

Using a model checker in test case generation relies on its
ability to find a counter-example of an invalid formula. In
particular, from coverage criteria one is able to construct a
so-called trap condition of the form “P is always not true”
for some predicate P. For example, using linear time logic,
a trap condition can be: O-(pc = L A (x > 0)), where
pc is an artificial variable ranging over program locations.
The model checker might find that this trap condition is
not true, in which case a counter-example is generated. The
counter-example demonstrates how L is reached and x > 0
is satisfied. From such a counter-example, one may use a
data concretizer to discover test inputs.

Avionics systems are likely to frustrate most existing model
checkers because of large state spaces, complicated control
structures, and non-linear computation. A large state space



Non-linear
Programs

Tegt Inputs

Unable to proceed

Figure 1: Architecture of Automated Test Case
Generation for Engineering Software

implies that abstraction is necessary. The most successful
abstraction technique in recent years is predicate abstrac-
tion (c.f., [3,6,8,14,18,20,22,30,40]). Model checking based
on predicate abstraction can be automated through counter-
example driven predicate discovery (c.f., [4,10,11,15,32,41]).
The abstraction relation computation, the feasibility test of
a candidate counter-example, and the automated predicate
discovery, all depend on cooperative decision procedures.
State-of-the-art cooperative decision procedures (c.f., [5, 16,
19,33]) do not handle non-linear arithmetic due to undecid-
ability®.

In automating test case generation, imprecision (from the
point of view of rigorous verification) and incompleteness
are tolerated and numerical solutions are acceptable (if not
sought). In addition to the current decision procedures, we
adopt techniques from the constraint programming com-
munity, where numerical methods based on interval anal-
ysis [36] can decide (un)satisfiability, and compute either
mathematical or numerical solutions of a non-linear formula
(c.f., [23,27,38]). The contribution of our research is the use
of a numerical satisfiability solver in place of the decision
procedures in model checking based on predicate abstrac-
tion. Used as the engine for test case generation, such a
model checker will find feasible counter-examples that can-
not be found by other tools to the best of our knowledge. A
general architecture of our framework is illustrated in Fig-
ure 1. Further details will be explained in Section 2.

Care must be taken when adopting such decision proce-
dures. Various theoretical limitations (such as termination)
and practical considerations (such as the trade-off between
speed and precision) will cause the checker to be either un-
sound (producing false positives) or incomplete (producing
false negatives). Indeed, under certain assumptions, our ap-
proach of integrating these decision procedures into predi-
cate abstraction is considered sound. That our approach is
incomplete is obvious.

We implement LAST (Logic-based Automation for Software

"What we vaguely refer to as non-linear arithmetic here
includes non-linear multiplication, transcendental functions
and mixed real and integer arithmetic, all of which con-
tribute to undecidability.

Testing) as a prototype of our method. LAST is based on
BLAST (Berkeley Lazy Abstraction and Software verifica-
tion Toolkit) [29], which analyzes C programs. It extends
BLAST’s predicate abstraction with a numerical non-linear
constraint unsatisfiability checker based on Realpaver [23],
an experimental interval analysis tool developed at the Uni-
versity of Nantes. We have applied our prototype implemen-
tation to the MC/DC test case generation for a number of C
modules, including those from a conflict detection and res-
olution program [17] and a Boeing 737 autopilot simulator.
The largest module contains about 2000 lines of code. Our
prototype is able to automatically produce feasible counter-
examples for MC/DC-like criteria, with only a few excep-
tions, within acceptable execution time, without any other
knowledge of the specification, and without tampering with
the original C programs.

2. THEORETICAL FRAMEWORK
2.1 Definitions

Throughout the paper, our use of terms such as “decisions”
(except in the term “decision procedure”) and “conditions”
is in accordance with DO-178B. For a (procedural) pro-
gram?, a decision refers to a (Boolean) expression based on
which the choice of the next target is made. A condition is an
atomic Boolean expression (a relational expression) where
there are no logical connectives. A state is a type preserving
value assignment to program variables, including artificial
ones such as pc. We denote by E(s) the value of expres-
sion E at state s. We write s = P if the predicate P holds
at state s. A set of test inputs is said to achieve MC/DC
coverage only if® for every condition C; in decision D at lo-
cation L, there are at least two test inputs 71 and 7%, where
executing the program with 77 and 7> will reach states s1
and s2 respectively, such that: a) pe(s1) = pe(s2) = L, b)
s1 = C; and sq = —C;, c) for every other condition C' that
appears in D, s1 = C iff s3 = C, and d) D(s1) = —D(sz2).

Coverage criteria can be characterized as logic assignments
to conditions. A trap condition is a temporal logic formula
R of the form O-(pc = L A P), where P is a conjunction of
conditions or their negations. A counter-example to a trap
condition R = O-FEr is a sequence of states s;,i =1,...,n,
such that s, = Er.

We assume that a sound computation of weakest precondi-
tion in the language exists and the weakest precondition is
expressible in the syntax in Figure 2. We further assume
that there is only one machine number format throughout
the development process.

2.2 Predicate Abstraction

We give an operational definition of predicate abstraction
partially following the account in Ball’s paper [2]. Predi-
cate abstraction accepts as input a statement c¢ and a set
® of predicates and outputs a function (called abstraction
transition) between two abstract states represented as two

2Throughout the paper, we use the term “program” to refer
to the unit being tested.

3We list only necessary conditions of the coverage criteria
relevant to our development here.



Constraint P
Expression f =

f=flie=f]f<=]
fHFIF=FIf*f1ff
IR
constants | vars | F( f)
min | max | pow | sqrt | log

Interpreted Funs F ::=

| exp | cos | sin | tan | acos | asin. . .

Figure 2: Syntax for Constraints

vectors. Every bit? in the vector represents the truth value
(plus possibly another value %) of a predicate in ®.

The computation can be understood as observing the pro-
gram’s behavior over ® in a piecewise manner. Informally,
the effect of a statement ¢ over a predicate P; € & can be
written as an assignment:

bi = WP(C, PZ)

where we use b; for the bit corresponding to P;. Because
the domain of the abstraction has to be an abstract state
too, that is, every control has to be made solely based on
an abstract state, we have to compute an approximation of
WP(c, P) using the bit vector. We write such an approxima-
tion of WP(c, P) as WPE(c, P), which can be computed by
checking for every conjunction @; in ® if @Q; = WP(c, P).
This is implemented by calling a satisfiability checker on the
formula Q; A “WP(c, P). Thus, WPEg(c, P) is defined as
the disjunction of all Q;’s that pass the check. Note that, in
general, W Pg(c, P) # =W Pg(c, ~P), thus the assignment
to b; can be written as a program (called Boolean program,
or BP) statement of the form:

bi = if WPg(c, P;)) then true
elseif (WPE(c, ~F;)) then false else x

where * represents a non-deterministic choice. Note that a
BP is only used as the input to a model checker, where a
test of * means both branches based on this test must be
searched by the model checker.

An abstract state (bit-vector) s, can also be represented as a
proposition. Suppose the residue of the vector after filtering
out the * bits is v. Then the proposition is:

v(sa) = /\ if (v(4)) then P; else —P;.
i=1
Function - is called a concretization function.

From an initial abstract state so and a set of predicates ®, a
model checker can repeatedly apply the abstract transition
to compute a set of reachable states until a fixed point is
reached, or an error state is met. Every possible move is
followed; when more than one move is eligible, each one is
followed and the other is retained for future backtracking.

2.3 Predicate Discovery

Based on counter-example feasibility testing, counter-example
driven predicate discovery allows the model checker to in-
crementally discover a suitable set of predicates, starting

4Strictly speaking not a bit, but a variable ranging over
values from a lattice induced from {true, false}.

with an initial value of ® that includes the atomic predi-
cates in Er of the form (pc = L) A ¢. This procedure is also
known as predicate refinement and is in general incomplete
(c.f., [2]) because it is possible that the path is not feasi-
ble and we could not find new predicates. Given an error
path 8 = so,...,Sn, Wwe compute a sequence of statements
tr(8) = ci1,...,cn (less by one than the number of states in
the error path). Iteratively, we compute the weakest pre-
conditions P, ..., P, using the equations below:

P WP(cn, ¢)
Pii1 = WP(cn—it1, Pi)

We check whether P; is satisfiable. If, for some j, P; is
not satisfiable, we attempt to find new predicates from the
path from s; to sn,. One way to find new predicates is to
collect all the predicates involved or use certain heuristics to
select the new predicates. A better approach is to use Craig
interpolation ( [28,35]).

2.4 System Diagram

Constraint satisfiability is studied by the constraint logic
programming community. Modern constraint solvers often
combines interval arithmetic [36] with local inconsistency
checking [34]. Practical considerations such as speed or
time-out contribute to the imprecision of constraint solvers.
We divide them into satisfiability checkers, whose “yes” de-
cision is accurate, and unsatisfiability ones, whose “no solu-
tion” answer is accurate®. Unsatisfiability constraint solvers
can be used to construct a (semi-)decision procedure to be
used in predicate abstraction. An unsatisfiability solver
may fail to identify that an implication holds thus intro-
duce further overapproximation. A satisfiability constraint
solver is suitable for feasibility test ©. In addition, the data
concretizer itself should be constructed from a satisfiability
solver.

The discussion above is reflected in Figure 1. A test require-
ment analyzer analyzes the input program and generates
trap conditions. The trap conditions and source program
are then taken into an iterative abstraction-model checking-
refinement process. This process depends on different deci-
sion procedures. Traditional ones are colored blue (darker

gray-scale) while numerical ones are colored pale yellow (lighter

gray-scale). This iterative process may not terminate. When
it does, it either generates test inputs, or declares the trap
condition can never happen, or complains that new predi-
cates cannot be found (the latter two are combined as “un-
able to proceed” in the figure). Finally, we have the sound-
ness theorem under the assumptions above.

CLAIM 1 (SOUNDNESS). If the process described in Sec-
tion 2 returns a feasible error path (3, then there exists a test
input, the execution of which will satisfy the coverage criterion.

2.5 Example
Figure 3 is a code snippet from a Boeing 737 autopilot sim-
ulator. Suppose the decision we are interested in is a # 0.0

5We refrain from using the words “sound” and “complete”
because they are potentially confusing in this context. For
example, what is not sound to the decision problem could
be sound for predicate abstraction.

SBecause a satisfiability solver is often slow, we use an un-
satisfiability checker as an approximation in our prototype



1 /* COMPUTE PARTIAL G WITH RESPECT TO X
2 : if ( (+lastout > deflmt[0]) &&
3 (*lastout < deflmt[1]) )

4 pGwrx = 1.0;

5 else

6 pGwrx = 0.0;

7 a = —gain % pHwre * pGwrx;

8 : if (a != 0.0 ) {

9 : /* something else x/

10: } else {

11: /+* something else =x/

12: }

Figure 3: Code snippet from autopilot simulator

at line 8. We feed a trap condition O—(pc = 8 A a # 0.0) to
the model checker. A counter-example driven approach will
start from the predicates that appear in the trap condition
({a = 0.0}). Because a is not relevant to the decision in
Line 2 and 3, the decision will be abstracted to *. Suppose
the else branch is taken first. Line 6 does not affect a. The
abstract state after Line 7 is still by = *. Now Line 8 is
reached, and the conjunction of * and a # 0.0 is indeed sat-
isfiable. The trace leading to this error state will be returned
as a counter-example, which will be analyzed to see if it is
feasible. For example, the trace corresponding to lines 2-3-6-
7-8-9 is not feasible because it requires both pGwrx = 0 and
a # 0, which is impossible due to the assignment at Line 7.
This conclusion is drawn by inquiring the decision procedure
about the following constraints, which are computed using
weakest precondition:
a # 0.0

0.0 +#
0.0 +#

Because the constraint set is non-linear, traditional decision
procedures cannot solve it. However, the numerical deci-
sion procedure will have no difficulty in deciding that the
constraints are not satisfiable. Thus the error trace is not
feasible.

—gain * pHwre * pGwrx A

—gain * pHwre * 0.0 A

From such an analysis, the tool realizes that it is the execu-
tion of Line 6 that causes the constraints to be unsatisfiable.
Therefore, ® is updated to {a = 0.0, pGwrx = 0.0}. Subse-
quent search based on the new set of predicates should notice
that if Line 6 is reached then a = 0.0 will be true after ex-
ecuting Line 7. Then the error state is not reached because
a =0.0Aa # 0.0 is false. The model checker backtracks and
selects Line 4 instead of Line 6. This time, the error state
is reached at Line 8 and the counter-example is feasible.

3. IMPLEMENTATION

We implement our prototype system based on two existing
systems, BLAST from Berkeley and Realpaver from Univer-
sity of Nantes. BLAST provides the reachability test of a C
program; Realpaver can be used to determine the satisfiabil-
ity of a set of non-linear constraints. We extend Realpaver
to a decision procedure of the Nelson and Oppen flavor. We
then plug the new decision procedure into BLAST, replacing
the decision procedures used there (one of Vampyre, Sim-
plify, or CVC-lite, though Simplify is favored and sometimes

*/

hard coded). Some amount of reprogramming is required to
tailor BLAST for our purpose. Realpaver is claimed to sat-
isfy the following property [23]:

PROPOSITION 1
of bozes that contains all the solutions of the original constraint
satisfaction problem. Therefore, if no box is computed by Real-
paver, the constraint satisfaction problem has no solutions.

We apply our prototype to two programs. One is an exper-
imental air traffic conflict detection and resolution system,
called KB3D [17]. The other is a linear dynamics simula-
tor for a Boeing 737 autopilot system (called simulator be-
low). Both programs contains non-linear computations that
involve non-linear terms as well as exponential and trigono-
metric functions. The former is a small program containing
several modules, while the latter is a larger program that
contains 20 modules. The sizes of the modules range from
tens of lines to thousands of lines. The number of decisions
are 40 for the KB3D program and 220 for the simulator.

We first generate test cases for each of the modules. With
a few exceptions (4 cases for the simulator), we are able
to generate feasible examples. Note that certain for-loops
are taken special care of in predicate abstraction based ap-
proaches. The running time of our prototype is short, typ-
ically seconds, with the longest one more than 20 minutes
on a commodity computer. The Realpaver-based decision
procedure handles the smaller problems generated during
abstraction quickly. More complicated problems generated
during feasibility testing, which often contain more than 100
variables and hundreds of constraints, take as long as 10
minutes for Realpaver to respond. Our ongoing research in-
cludes experimenting with rsolver [38] to generate test cases
from the feasible paths.

4. RELATED WORK

e Test Case Generation It has been long recognized that
test cases can be generated from symbolic execution
of the program [31]. Early work in the area of model
checking based test case generation [1,21,26] generates
test cases from specification. A few others [7,43] take
program as input but do not handle non-linear compu-
tation. Using a constraint solver in test case generation
is built into commercial tools (for example,Reactis”).
Test case generation for real time system is explored by
Hamon et al [24]. Some non-linear decisions are sup-
ported by the underlying ICS decision [19] procedure.
This work also suggests that for test case generation,
a combination of different model checking techniques
is needed.

e Decision Procedures Tarski [42] shows the first order
theory of real numbers with addition and multiplica-
tion is decidable through quantifier elimination. Collins
shows that quantifier elimination can be done through
Cylindrical Algebraic Decomposition [12]. Adding pe-
riodic functions will cause the theory to be undecid-
able, while adding exp is decidable if Schanuel’s con-
jecture holds.

"http://www.reactis.com

(RELIABILITY). Realpaver computes a union



5.
1]

[4]

[6]

7]

[10]

[11]

e Data Flow Analysis ASTREE [13], a dataflower ana-
lyzer for safety critical systems, is based on such ab-
straction domains as octagon, ellipsoid and decision
trees.

REFERENCES

P. Ammann, P. Black, and W. Majurski. Using model
checking to generate tests from specifications. In
Proceedings of the Second IEEE International
Conference on Formal Engineering Methods (ICFEM),
pages 46-54, 1998.

T. Ball. Formalizing counter-example driven predicate
refinement with weakest preconditions. Technical
Report MSR-TR-2004-134, Microsoft Research, 2004.

T. Ball, A. Podelski, and S. Rajamani. Boolean and
Cartesian Abstraction for Model-checking C
Programs. In Conference on Tools and Algorithms for
Construction and Analysis of Systems (TACAS) 2001,
Lecture Notes in Computer Science 2031, pages
268-283. Springer-Verlag, 2001.

T. Ball and S. Rajamani. Automatically Validating
Temporal Safety Properties of Interfaces. In
SPIN2001, Lecture Notes in Computer Science 2057,
pages 103—122. Springer-Verlag, May 2001.

C. Barrett and S. Berezin. CVC Lite: A new
implementation of the cooperating validity checker. In
R. Alur and D. A. Peled, editors, CAV, Lecture Notes
in Computer Science. Springer, 2004.

S. Bensalem, Y. Lakhnech, and S. Owre. Computing
Abstractions of Infinite State Systems Compositionally
and Automatically. In Proceedings of Conference on
Computer Aided Verification (CAV) 98, Lecture Notes
in Computer Science 1427, pages 319-331, June 1998.

D. Beyer, A. J. Chlipala, T. A. Henzinger, R. Jhala,
and R. Majumdar. Generate tests from
counter-examples. In Proceedings of the 26th

International Conference on Software Engineering
(ICSE), Portland, Oregon, 2004. IEEE.

S. Chaki, E. Clarke, A. Groce, and S. Jha. Modular
verification of software components in c. In

Proceedings of the 25th International Conference on
Software Engineering (ICSE), pages 385-395, 2003.

J. Chilenski and S. Miller. Applicability of modified
condition/decision coverage to software testing.
Software Engineering Journal, pages 193—-200,
September 1994.

E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith.
Counterexample-guided abstraction refinement. In
Proceedings of Conference on Computer Aided
Verification (CAV) 00. Springer-Verlag, 2000.

E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and

H. Veith. Counterexample-Guided Abstraction
Refinement. In Proceedings of the Conference on
Computer Aided Verification (CAV), pages 154-169,
2000.

(12]

(13]

(14]

(16]

(17]

(18]

(19]

20]

23]

G. Collins. Quantifier elimination for real closed fields
by cylindrical algebraic decomposition. In Proceedings
of the Second GI Conference on Automata Theory and
Formal Languages, volume 33 of Lecture Notes in
Computer Science, pages 134-183. Springer-Verlag,
1975.

P. Cousot, R. Cousot, J. Feret, L. Mauborgne,
A. Miné, D. Monniaux, and X. Rival. The astre
analyzer. In ESOP’05, 2005.

S. Das, D. Dill, and S. J. Park. Experience with
Predicate Abstraction. In Proceedings of Conference
on Computer Aided Verification(CAV) 99, Lecture
Notes in Computer Science 1633, pages 160-171,
Trento, Italy, July 1999.

S. Das and D. L. Dill. Counter-example based
predicate discovery in predicate abstraction. In
Proceedings of Conference on Formal Methods in
Computer-Aided Design, Portland, Oregon, November
2002.

D. Detlefs, G. Nelson, and J. Saxe. Simplify: A
theorem prover for program checking, 2003.

G. Dowek, A. Geser, and C. Muifioz. Tactical conflict
detection and resolution in a 3-D airspace. In
Proceedings of the 4th USA/Europe Air Traffic
Management REDSeminar, ATM 2001, Santa Fe,
New Mexico, 2001. A long version appears as report
NASA/CR-2001-210853 ICASE Report No. 2001-7.

M. Dwyer, J. Hatcliff, R. Joehanes, S. Laubach,

C. Pasareanu, R. Visser, and H. Zheng.
Tool-supported Program Abstraction for Finite-state
Verification.

J.-C. Filliatre, S. Owre, H. Ruef, and N. Shankar.
ICS: Integrated Canonizer and Solver. In G. Berry,
H. Comon, and A. Finkel, editors, Proceedings of the
18th International Conference on Computer Aided
Verification (Paris, France), volume 2102 of Lecture
Notes in Computer Science, pages 246—249.
Springer-Verlag, July 2001.

C. Flanagan and S. Qadeer. Predicate Abstraction for
Software Verification. In Proceedings of Symposium on
Principles of Programming Languages (POPL) 2002,
pages 191-202, 2002.

A. Gargantini and C. Heitmeyer. Using model
checking to generate tests from requirements
specifications. In ESEC/FSE-7: Proceedings of the 7th
FEuropean software engineering conference held jointly
with the 7th ACM SIGSOF'T international symposium
on Foundations of software engineering, pages
146-162, London, UK, 1999. Springer-Verlag.

S. Graf and H. Saidi. Construction of Abstract State
Graphs with PVS. In Proceedings of Conference on
Computer Aided Verification (CAV) 97, Lecture Notes
in Computer Science 1254, pages 72-83, Haifa, Israel,
June 1997. Springer-Verlag.

L. Granvilliers. On the combination of interval
constraint solvers. Reliable Computing, 7(6):467-483,
2001.



[24]

[25]

[29]

[30]

[31]

[32]

G. Hamon, L. deMoura, and J. Rushby. Generating
efficient test sets with a model checker. In 2nd
International Conference on Software Engineering and
Formal Methods, pages 261-270, Beijing, China, Sept.
2004. IEEE Computer Society.

K. Hayhurst, D. Veerhusen, J. Chilenski, and

L. Rierson. A practical tutorial on modified
condition/decision coverage. Technical Report
NASA/TM-2001-210876, NASA Langley Research
Center, May 2001.

M. P. Heimdahl, S. Rayadurgam, W. Visser,
G. Devaraj, and J. Gao. Auto-generating test
sequences using model checkers: A case study. In 3rd

International Worshop on Formal Approaches to
Testing of Software (FATES 2003), 2003.

P. V. Hentenryck, L. Michel, and Y. Deville.
Numerica, A Modeling Language for Global
Optimization. The MIT Press, 1997.

T. Henzinger, R. Jhala, R. Majumdar, and

K. McMillan. Abstraction from Proofs. In Proceedings
of ACM SIGPLAN-SIGACT Conference on Principles
of Programming Languages (POPL), pages 232-244,
2004.

T. Henzinger, R. Jhala, R. Majumdar, G. Necula,
G. Sutre, and W. Weimer. Temporal-Safety Proofs
for Systems Code. In Proceedings of Conference on
Computer-Aided Verification (CAV), pages 526-538,
2002.

T. A. Henzinger, R. Jhala, R. Majumdar, and

G. Sutre. Lazy Abstraction. In Proceedings of ACM
SIGPLAN-SIGACT Conference on Principles of
Programming Languages (POPL), pages 58-70, 2002.

J. C. King. Symbolic execution and program testing.
Commun. ACM, 19(7):385-394, 1976.

R. Kurshan. Models Whose Checks Don’t Explode. In
Proceedings of Computer-Aided Verification (CAV),
pages 222-233, 1994.

S. K. Lahiri and S. A. Seshia. The uclid decision
procedure. In CAV, pages 475-478, 2004.

O. Lhomme. Consistency techniques for numerical
csps. In Proceedings of International Joint Conference
on Artificial Inteligence (IJCAI), pages 232-238, 1993.

K. L. McMillan. Craig interpolation and reachability
analysis. In SAS, page 336, 2003.

R. Moore. Interval Analysis. Prentice-Hall, 1966.

S. Ratschan. Slides, available at
http://www.mpi-sb.mpg.de/fatschan/decprocl.pdf.

S. Ratschan. Continuous first-order constraint
satisfaction. In Proceedings of Artificial Intelligence
and Symbolic Computation, LNCS. Springer, 2002.

RTCA SC-167 and EUROCAE WG-12. Software
considerations in airborne systems and equipment
certification, December 1992.

(40]

42]

(43]

H. Saidi. Model-checking Guided Abstraction and
Analysis. In Proceedings of Static Analysis Symposium
(SAS) 00, Lecture Notes in Computer Science 1824,
pages 377-389, Santa Barbara, CA, USA, July 2000.
Springer-Verlag.

H. Saidi and N. Shankar. Abstract and Model-check
While You Prove. In Proceedings of Conference on
Computer Aided Verification (CAV) 99, Lecture Notes
in Computer Science 1633, pages 443-454.
Springer-Verlag, July 1999.

A. Tarski. Logic, Semantics, Metamathematics, papers
from 1923 to 1958. Hackett Publishing Company,
1983. English Version, original in Polish.

W. Visser, C. S. Pasareanu, and S. Khurshid. Test
input generation with java pathfinder. In ISSTA ’04:
Proceedings of the 2004 ACM SIGSOFT international
symposium on Software testing and analysis, pages
97-107, New York, NY, USA, 2004. ACM Press.



