Inferring Definitive Counterexamples Through Under-Approximation

Jörg Brauer (RWTH Aachen, Germany) <u>Axel Simon</u> (TU Munich, Germany)

/ Fakultät für Informatik

Motivation

Inferring Definitive Counterexamples

Motivation

• proof absence of bugs using static analysis

Inferring Definitive Counterexamples

Tuesday, April 10, 2012

Jörg Brauer, Axel Simon

Motivation

- proof absence of bugs using static analysis
- recover from precision loss due to overapproximating domains

Counterexamples

Inferring Definitive Counterexamples

Jörg Brauer, Axel Simon

Counterexamples

- model checking yields counter examples
 - considered invaluable for fixing defects
 - software model checking: model is an abstraction; is counterexample spurious?

Counterexamples

- model checking yields counter examples
 - considered invaluable for fixing defects
 - software model checking: model is an abstraction; is counterexample spurious?
- abstract interpretation merges traces
 - a warning may always be spurious

Revert Merge of Traces

• Spurious warning:

• Over-approximating backwards:

• Under-approximating backwards:

Jörg Brauer, Axel Simon

Inferring Definitive Counterexamples

Difficulty of Backward Reasoning

Inferring Definitive Counterexamples

Difficulty of Backward Reasoning

- Need to solve abduction problem:
 - Given *B* and *C*, compute *A* s.th. A∧B⊧C
 - A is called pseudo-complement of B relative to C

Difficulty of Backward Reasoning

- Need to solve abduction problem:
 - Given B and C, compute A s.th. $A \land B \models C$
 - A is called pseudo-complement of B relative to C
- Few domains allow to allow this precisely
 - any domain closed under negation
 - standard numeric domains: no (convexity)

Domains for Backward Reasoning

- Idea: use Domain of Boolean functions
- Express program semantics at the bit-level
 - use a relational (input/output) semantics
 - XOR a b gives $\bigwedge_{i=0}^{31} (\mathbf{a}'[i] \leftrightarrow \mathbf{a}[i] \oplus \mathbf{b}[i])$
 - given a post-state s' over a', calculate a pre-state s over a, b using SAT-solving

Inferring Definitive Counterexamples

• Suppose an abstract interpreter finds assertion ψ violated in post-state s' starting from s

- Suppose an abstract interpreter finds assertion ψ violated in post-state s' starting from s
- let ϕ encode transformer: $s' = \phi \Lambda s$

- Suppose an abstract interpreter finds assertion \u03c8 violated in post-state s' starting from s
- let ϕ encode transformer: $s' = \phi \Lambda s$
- then $\phi \Lambda_S' \Lambda \neg \psi$ describe those states in s that violate the assertions

- Suppose an abstract interpreter finds assertion \u03c8 violated in post-state s' starting from s
- let ϕ encode transformer: $s' = \phi \Lambda s$
- then $\phi \Lambda_S' \Lambda \neg \psi$ describe those states in s that violate the assertions
- idea: project $\phi \Lambda s' \Lambda \neg \psi$ onto variables in s

- Suppose an abstract interpreter finds assertion ψ violated in post-state s' starting from s
- let ϕ encode transformer: $s' = \phi \Lambda s$
- then $\phi \Lambda_S' \Lambda \neg \psi$ describe those states in s that violate the assertions
- idea: project $\phi \Lambda \texttt{s'} \Lambda \neg \psi$ onto variables in s
- ϕ only represents one step: repeat!

Inferring Definitive Counterexamples

i		0	1	2	3	4	5	6	7	8
S . –	$\int x$	any	≤ 99	[0, 99]	≥ 100	[100, 200]	[0, 200]	[1, 200]	[-1, 199]	[-1,0]
$D_i -$	r	any	any	$\left[1,1 ight]$	any	[2, 2]	[1, 2]	[1,2]	[1,2]	[1, 2]
<u>S'</u> _	$\int x$						1	[0,1]	-1	-1
$D_i -$	r						2	[1,2]	[1,2]	[1, 2]
<u><u> </u></u>	$\int x$	[101, 125]			[101, 125]	[101, 125]	[1, 125]			
$ \mathcal{D}_i -$	r	2			2	2	2			

Jörg Brauer, Axel Simon

i		0	1	2	3	4	5	6	7	8
C	$\int x$	any	≤ 99	[0, 99]	≥ 100	[100, 200]	[0, 200]	[1, 200]	[-1, 199]	[-1,0]
$\mathcal{D}_i =$	r	any	any	[1,1]	any	[2, 2]	[1, 2]	[1, 2]	[1, 2]	[1,2]
<u>S'</u> _	$\int x$					I	1	[0,1]	-1	-1
$ \mathcal{D}_i -$	r						2	[1,2]	[1,2]	[1,2]
<u><u>s''</u>_</u>	$\int x$	[101, 125]			[101, 125]	[101, 125]	[1, 125]			
$ \mathcal{D}_i -$	r	2			2	2	2			

Jörg Brauer, Axel Simon

i		0	1	2	3	4	5	6	7	8
C	$\int x$	any	≤ 99	[0, 99]	≥ 100	[100, 200]	[0, 200]	[1, 200]	[-1, 199]	[-1,0]
$\mathcal{D}_i = \mathcal{D}_i$	r	any	any	[1, 1]	any	[2, 2]	[1, 2]	[1, 2]	[1, 2]	[1, 2]
<u>S'</u>	$\int x$					I	1	[0,1]	-1	-1
$ \mathcal{D}_i - \mathcal{A}_i $	r						2	[1, 2]	[1, 2]	[1, 2]
<u>S''</u>	$\int x$	[101, 125]			[101, 125]	[101, 125]	[1, 125]			
$ \mathcal{D}_i - \mathcal{D}_i $	r	2			2	2	2			

i		0	1	2	3	4	5	6	7	8
	$\int x$	any	≤ 99	[0, 99]	≥ 100	[100, 200]	[0, 200]	[1, 200]	[-1, 199]	[-1,0]
$D_i -$	r	any	any	[1,1]	any	[2, 2]	[1,2]	[1, 2]	[1,2]	[1,2]
<u>S'</u> _	$\int x$			1		I	1	[0,1]	-1	-1
$D_i -$	r						2	[1,2]	[1,2]	[1, 2]
<u>s''</u> _	$\int x$	[101, 125]		1	[101, 125]	[101, 125]	[1, 125]			
$ \mathcal{D}_i -$	r	2			2	2	2			

i		0	1	2	3	4	5	6	7	8
	$\int x$	any	≤ 99	[0, 99]	≥ 100	[100, 200]	[0, 200]	[1, 200]	[-1, 199]	[-1,0]
$D_i =$	r	any	any	$\left[1,1 ight]$	any	[2, 2]	[1,2]	[1,2]	[1,2]	[1,2]
<u>S'</u> _	$\int x$						1	[0,1]	-1	-1
$D_i -$	r						2	[1, 2]	[1,2]	[1,2]
<u><u> </u></u>	$\int x$	[101, 125]			[101, 125]	[101, 125]	[1, 125]			
$ \mathcal{D}_i $ –	$\left r \right $	2			2	2	2			

Jörg Brauer, Axel Simon

i		0	1	2	3	4	5	6	7	8
	$\int x$	any	≤ 99	[0, 99]	≥ 100	[100, 200]	[0, 200]	[1, 200]	[-1, 199]	[-1,0]
$\mathcal{D}_i =$	r	any	any	[1, 1]	any	[2, 2]	[1,2]	[1,2]	[1,2]	[1,2]
<u>S'</u>	$\int x$						1	[0,1]	-1	-1
$ \mathcal{D}_i - \mathcal{D}_i $	r						2	[1,2]	[1, 2]	[1,2]
<u>S''</u>	$\int x$	[101, 125]			[101, 125]	[101, 125]	[1, 125]			
$ \mathcal{D}_i - \mathcal{D}_i $	r	2			2	2	2			

i		0	1	2	3	4	5	6	7	8
	$\int x$	any	≤ 99	[0, 99]	≥ 100	[100, 200]	[0, 200]	[1, 200]	[-1, 199]	[-1, 0]
$ \mathcal{D}_i $ —	r	any	any	[1,1]	any	[2, 2]	[1,2]	[1, 2]	[1, 2]	[1, 2]
<u>S'</u> _	$\int x \mid$			1			1	[0,1]	-1	-1
$D_i - 1$	r						2	[1, 2]	[1,2]	[1,2]
S''_	$\int x$	[101, 125]		1	[101, 125]	[101, 125]	[1, 125]			
$ \mathcal{D}_i -$	r	2			2	2	2			

i		0	1	2	3	4	5	6	7	8
C	$\int x$	any	≤ 99	[0, 99]	≥ 100	[100, 200]	[0, 200]	[1, 200]	[-1, 199]	[-1,0]
$\mathcal{D}_i =$	r	any	any	[1, 1]	any	[2,2]	[1, 2]	[1, 2]	[1, 2]	[1, 2]
<u>S'</u> _	$\int x$						1	[0,1]	-1	-1
$D_i -$	r						2	[1,2]	[1, 2]	[1,2]
S''_	$\int x$	[101, 125]			[101, 125]	[101, 125]	[1, 125]			
$ \mathcal{D}_i -$	r	2			2	2	2			

i		0	1	2	3	4	5	6	7	8
	$\int x$	any	≤ 99	[0, 99]	≥ 100	[100, 200]	[0,200]	[1, 200]	[-1, 199]	[-1,0]
\mathcal{D}_i —	r	any	any	[1, 1]	any	[2, 2]	[1,2]	[1, 2]	[1, 2]	[1,2]
<u>S'</u>	$\int x$					I	1	[0,1]	-1	-1
$D_i - \delta$	r						2	[1,2]	[1,2]	[1,2]
<u>S''</u>	$\int x$	[101, 125]			[101, 125]	[101, 125]	[1, 125]			
$D_i - C_i$	r	2			2	2	2			

Jörg Brauer, Axel Simon

i		0	1	2	3	4	5	6	7	8
	$\int x$	any	≤ 99	[0, 99]	≥ 100	[100, 200]	[0, 200]	[1, 200]	[-1, 199]	[-1,0]
$D_i =$	r	any	any	[1,1]	any	[2,2]	[1, 2]	[1, 2]	[1,2]	[1,2]
<u>S'</u> _	$\int x$			I			1	[0,1]	-1	-1
$D_i -$	r					<u> </u>	2	[1,2]	[1,2]	[1,2]
<u><u> </u></u>	$\int x$	[101, 125]		I	[101, 125]	[101, 125]	[1, 125]			
$ \mathcal{D}_i $	r	2			2	2	2			

i		0	1	2	3	4	5	6	7	8
	$\begin{bmatrix} x \end{bmatrix}$	any	≤ 99	[0, 99]	≥ 100	[100, 200]	[0, 200]	[1, 200]	[-1, 199]	[-1,0]
$\mathcal{S}_i = \{$	r	any	any	$\begin{bmatrix} 1,1 \end{bmatrix}$	any	[2,2]	[1,2]	[1,2]	[1,2]	[1,2]
$S' = \int$	\overline{x}						1	[0,1]	-1	-1
$ \mathcal{D}_i - \langle$	r						2	[1,2]	[1,2]	[1,2]
<u></u>	\overline{x}	[101, 125]			[101, 125]	[101, 125]	[1, 125]			
$ \mathcal{D}_i - \langle$	r	2			2	2	2			

Inferring Definitive Counterexamples

 Let f=[[x'=x-r, r'=r]] denote Boolean formulae of loop transformer

- Let f=[[x'=x-r, r'=r]] denote Boolean formulae of loop transformer
- pre-calculate $f^2 = f \cdot f$, $f^4 = f^2 \cdot f^2$,...

- Let f≡[[x'=x-r, r'=r]] denote Boolean formulae of loop transformer
- pre-calculate $f^2 = f \cdot f$, $f^4 = f^2 \cdot f^2$,...
- calculate $\phi_{i+1} = \phi_i \vee \phi_i \cdot f^{2i}$ where $\phi_0 = id$

- Let f≡[[x'=x-r, r'=r]] denote Boolean formulae of loop transformer
- pre-calculate $f^2 = f \cdot f$, $f^4 = f^2 \cdot f^2$,...
- calculate $\phi_{i+1} = \phi_i \vee \phi_i \cdot f^{2i}$ where $\phi_0 = id$
- in the example, compose loop 2⁵ times:

- Let f≡[[x'=x-r, r'=r]] denote Boolean formulae of loop transformer
- pre-calculate $f^2 = f \cdot f$, $f^4 = f^2 \cdot f^2$,...
- calculate $\phi_{i+1} = \phi_i \vee \phi_i \cdot f^{2i}$ where $\phi_0 = id$
- in the example, compose loop 2⁵ times:
 - $\varphi_5(S_5) = [x=2n-1, n\in [1, 63], r=2]$

i		0	1	2	3	4	5	6	7	8
	$\int x$	any	≤ 99	[0, 99]	≥ 100	[100, 200]	[0, 200]	[1, 200]	[-1, 199]	[-1,0]
$ \mathcal{D}_i $ —	r	any	any	[1,1]	any	[2,2]	[1, 2]	[1,2]	[1,2]	[1,2]
<u>S'</u> _	$\int x$					I	1	[0,1]	-1	-1
$D_i - V_i$	r					<u> </u>	2	[1,2]	[1,2]	[1,2]
<u> </u>	$\int x$	[101, 125]		1	[101, 125]	[101, 125]	[1, 125]			
$D_i - D_i$	r	2			2	2	2			

20

i		0	1	2	3	4	5	6	7	8
$S_i =$	$\int x$	any	≤ 99	[0, 99]	≥ 100	[100, 200]	[0, 200]	[1, 200]	[-1, 199]	[-1,0]
	r	any	any	[1,1]	any	[2, 2]	[1, 2]	[1,2]	[1,2]	[1,2]
$S'_i = $	$\int x$			I			1	[0,1]	-1	-1
	r					<u> </u>	2	[1,2]	[1, 2]	[1,2]
<u><u> </u></u>	$\int x$	[101, 125]		I	[101, 125]	[101, 125]	[1, 125]			
$ \mathcal{D}_i - \mathcal{D}_i $	r	2			2	2	2			

Inferring Definitive Counterexamples

i		0	1	2	3	4	5	6	7	8
$S_i =$	$\int x$	any	≤ 99	[0, 99]	≥ 100	[100, 200]	[0, 200]	[1, 200]	[-1, 199]	[-1,0]
	r	any	any	[1,1]	any	[2, 2]	[1, 2]	[1,2]	[1,2]	[1,2]
$S'_i = \cdot$	$\int x$			I			1	[0,1]	-1	-1
	r					<u> </u>	2	[1,2]	[1,2]	[1,2]
<u> </u>	$\int x$	[101, 125]			[101, 125]	[101, 125]	[1, 125]			
$ \mathcal{D}_i - \mathcal{D}_i $	r	2			2	2	2			

Inferring Definitive Counterexamples

Jörg Brauer, Axel Simon

i		0	1	2	3	4	5	6	7	8
$S_i =$	$\int x$	any	≤ 99	[0, 99]	≥ 100	[100, 200]	[0, 200]	[1, 200]	[-1, 199]	[-1,0]
	$\left r \right $	any	any	$\left[1,1 ight]$	any	[2, 2]	[1,2]	[1, 2]	[1,2]	[1,2]
<u>S'</u> _	$\int x$						1	[0,1]	-1	-1
$D_i -$	$\left r \right $						2	[1,2]	[1,2]	[1, 2]
S''_	$\int x$	[101, 125]			[101, 125]	[101, 125]	[1, 125]			
$ \mathcal{D}_i -$	$\left r \right $	2			2	2	2			

Inferring Definitive Counterexamples

Strategy for Loops

Strategy for Loops

• whenever backwards propagation fails at p

- for each loop between assertion and p
- double the number of unrollings
- until backward propagation succeeds

Strategy for Loops

• whenever backwards propagation fails at p

- for each loop between assertion and p
- double the number of unrollings
- until backward propagation succeeds
- cheaper: infer minimal no of unrollings

• many loops have a counter: f=[[i'=i+1]]

- many loops have a counter: f=[[i'=i+1]]
- $\bullet\,$ infer affine transformations in $\pm\,$

- many loops have a counter: f≡[[i'=i+1]]
- $\bullet\,$ infer affine transformations in $\pm\,$
- if a loop must be unrolled at least 2ⁱ times:
 - calculate $\varphi_{i+1} = \varphi_i \cdot f^{2i}$
 - instead of $\varphi_{i+1} = \varphi_i \vee \varphi_i \cdot f^{2i}$

Remove Spurious Warnings

- there exists an i such that $\phi_{i+1} \models \phi_i$
- in this state, the warning is spurious:
 - unsigned int log2(unsigned char c) { 1 unsigned char i = 0; $\mathbf{2}$ 3 if (c==0) return 0; else c--;while (c > 0) { 4 i = i + 1;5 c = c >> 1;6 78 assert (i <= 7); 9 return i; 10

 \bullet formula f relates input s to output s '

- \bullet formula f relates input s to output s '
- for $f^2 = f \cdot f$ must rename s, s' to s', s"

- \bullet formula f relates input s to output s'
- for $f^2 = f \cdot f$ must rename s, s' to s', s"
- cannot rename variables forever: calculating $f^4 = f^2 \cdot f^2$ requires two copies of f^2

- formula f relates input s to output s'
- for $f^2 = f \cdot f$ must rename s, s' to s', s"
- cannot rename variables forever: calculating $f^4 = f^2 \cdot f^2$ requires two copies of f^2
- $f^{2^{i}}$ requires formula of size O(2ⁱ)

- \bullet formula f relates input s to output s '
- for $f^2 = f \cdot f$ must rename s, s' to s', s"
- cannot rename variables forever: calculating $f^4 = f^2 \cdot f^2$ requires two copies of f^2
- $f^{2^{i}}$ requires formula of size O(2ⁱ)
- use projection: $f^2 = \exists_{vars(s')} (f \cdot f)$

Implementation of **B**

- algorithm of [Brauer et al., CAV'II]:
 - given a CNF: $c_1 \Lambda \ldots \Lambda c_n$,
 - for a subset of variables:
 - calculate d_1 , $d_1 V d_2$, ..., $d_1 V ... V d_m$ with $d_1 V ... V d_m \models ... d_1 V d_2 \models d_1$
 - once DNF is complete, apply alg. again

• strategy: stop calculating DNF d_1 , d_1 V d_2 , ..., d_1 V . . . V d_m after threshold m

- strategy: stop calculating DNF d_1 , d_1 V d_2 , ..., d_1 V . . . V d_m after threshold m
- sub-sequence is under-approximation

- strategy: stop calculating DNF d_1 , d_1 V d_2 , ..., d_1 V . . . V d_m after threshold m
- sub-sequence is under-approximation
- may be enough to find backward trace

- strategy: stop calculating DNF d_1 , d_1 V d_2 , ..., d_1 V . . . V d_m after threshold m
- sub-sequence is under-approximation
- may be enough to find backward trace
- could stop calculation of DNF at depth m

- strategy: stop calculating DNF d_1 , d_1 V d_2 , ..., d_1 V . . . V d_m after threshold m
- sub-sequence is under-approximation
- may be enough to find backward trace
- could stop calculation of DNF at depth m
- iterative deepening by increasing m?

Incremental Backward Analysis

unsigned int hamDist(int x, int y) { unsigned int d = 0; unsigned int v = x \hat{y} ; while (v != 0) { d = d + 1; v = v & (v - 1); } assert(d < 32); return d;

• affine relations: at least 32 iterations

- affine relations: at least 32 iterations
- f^{32} is very complex to calculate, so approx!

- affine relations: at least 32 iterations
- f^{32} is very complex to calculate, so approx!
- limiting m doesn't scale: $m=1: 2^{31} \le d \le 2^{32-1}$

- affine relations: at least 32 iterations
- f^{32} is very complex to calculate, so approx!
- limiting m doesn't scale: $m=1: 2^{31} \le d \le 2^{32-1}$
- search for traces that emanate near correct/incorrect boundary in ψ

- affine relations: at least 32 iterations
- f^{32} is very complex to calculate, so approx!
- limiting m doesn't scale: $m=1: 2^{31} \le d \le 2^{32-1}$
- search for traces that emanate near correct/incorrect boundary in ψ
- in example: try $2^{5} \le d \le 2^{6}$, $2^{6} \le d \le 2^{7}$,...

Implementation

- affine loop transfer function: SAT4J
- projection: MiniSat for $CNF \rightarrow DNF$
- BDD for DNF \rightarrow CNF using CUDD 2.4.2
- tracked times for
 - loop transfer function synthesis (TF)
 - counter example generation (CE)

Experiments

Donobroorle	4 Inctr	Runtir	ne (Full)	Runtime (Simp.)		
Бенсппагк	# Instr.	TF	CE	TF	CE	
bit-cnt	26	4.1s	0.9s	0.4s	0.4s	
ham-dist	19	4.8s	1.7s	0.8s	0.3s	
inc-lshift	14	3.2s	$2.7\mathrm{s}$	0.8s	0.6s	
log	22	1.9s	1.3s	0.3s	0.3s	
parity	28	8.3s	1.2s	1.2s	0.4s	
parity_mit	17	6.2s	2.6s	1.5s	1.2s	
randerson	23	8.0s	$2.4\mathrm{s}$	4.2s	0.6s	
swap	15	5.9s	1.8s	0.9s	0.5s	
loops	207	43.6s	8.0s	13.1s	$5.8\mathrm{s}$	

Inferring Definitive Counterexamples

Jörg Brauer, Axel Simon

Related Approaches

- CEGAR: counter example in the model is given by model checker
 - need to find trace in concrete semantics
- bounded model checking: limit unrollings
 - we refine/unroll back to front
- backward over-approximation

Future Work

Inferring Definitive Counterexamples

Future Work

- scalability
 - use cheaper domains if possible
 - combine with domains that are able to express abduction (SMT?)
 - allow for user input
Future Work

- scalability
 - use cheaper domains if possible
 - combine with domains that are able to express abduction (SMT?)
 - allow for user input
- Iose soundness: allow for qualified traces?