
Inferring Definitive
Counterexamples
Through Under-
Approximation

Jörg Brauer (RWTH Aachen, Germany)
Axel Simon (TU Munich, Germany)

1

Tuesday, April 10, 2012

Inferring Definitive Counterexamples Jörg Brauer, Axel Simon

Motivation

2

Tuesday, April 10, 2012

Inferring Definitive Counterexamples Jörg Brauer, Axel Simon

Motivation

• proof absence of bugs using static analysis

2

Tuesday, April 10, 2012

Inferring Definitive Counterexamples Jörg Brauer, Axel Simon

Motivation

• proof absence of bugs using static analysis

• recover from precision loss due to over-
approximating domains

2

Tuesday, April 10, 2012

Inferring Definitive Counterexamples Jörg Brauer, Axel Simon

Counterexamples

3

Tuesday, April 10, 2012

Inferring Definitive Counterexamples Jörg Brauer, Axel Simon

Counterexamples

• model checking yields counter examples

• considered invaluable for fixing defects

• software model checking: model is an
abstraction; is counterexample spurious?

3

Tuesday, April 10, 2012

Inferring Definitive Counterexamples Jörg Brauer, Axel Simon

Counterexamples

• model checking yields counter examples

• considered invaluable for fixing defects

• software model checking: model is an
abstraction; is counterexample spurious?

• abstract interpretation merges traces

• a warning may always be spurious

3

Tuesday, April 10, 2012

Inferring Definitive Counterexamples Jörg Brauer, Axel Simon

• Spurious warning:

• Over-approximating backwards:

• Under-approximating backwards:

Revert Merge of Traces

4

Tuesday, April 10, 2012

Inferring Definitive Counterexamples Jörg Brauer, Axel Simon

Difficulty of Backward
Reasoning

5

Tuesday, April 10, 2012

Inferring Definitive Counterexamples Jörg Brauer, Axel Simon

Difficulty of Backward
Reasoning

• Need to solve abduction problem:

• Given B and C, compute A s.th. A∧B⊧C

• A is called pseudo-complement of B
relative to C

5

Tuesday, April 10, 2012

Inferring Definitive Counterexamples Jörg Brauer, Axel Simon

Difficulty of Backward
Reasoning

• Need to solve abduction problem:

• Given B and C, compute A s.th. A∧B⊧C

• A is called pseudo-complement of B
relative to C

• Few domains allow to allow this precisely

• any domain closed under negation

• standard numeric domains: no (convexity)

5

Tuesday, April 10, 2012

Inferring Definitive Counterexamples Jörg Brauer, Axel Simon

Domains for Backward
Reasoning

• Idea: use Domain of Boolean functions

• Express program semantics at the bit-level

• use a relational (input/output) semantics

• XOR a b gives

• given a post-state s’ over a’, calculate a
pre-state s over a, b using SAT-solving

6

Tuesday, April 10, 2012

Inferring Definitive Counterexamples Jörg Brauer, Axel Simon

Example

7

Tuesday, April 10, 2012

Inferring Definitive Counterexamples Jörg Brauer, Axel Simon

Example
• Suppose an abstract interpreter finds

assertion ψ violated in post-state s’
starting from s

7

Tuesday, April 10, 2012

Inferring Definitive Counterexamples Jörg Brauer, Axel Simon

Example
• Suppose an abstract interpreter finds

assertion ψ violated in post-state s’
starting from s

• let φ encode transformer: s’=φ∧s

7

Tuesday, April 10, 2012

Inferring Definitive Counterexamples Jörg Brauer, Axel Simon

Example
• Suppose an abstract interpreter finds

assertion ψ violated in post-state s’
starting from s

• let φ encode transformer: s’=φ∧s

• then φ∧s’∧¬ψ describe those states in s
that violate the assertions

7

Tuesday, April 10, 2012

Inferring Definitive Counterexamples Jörg Brauer, Axel Simon

Example
• Suppose an abstract interpreter finds

assertion ψ violated in post-state s’
starting from s

• let φ encode transformer: s’=φ∧s

• then φ∧s’∧¬ψ describe those states in s
that violate the assertions

• idea: project φ∧s’∧¬ψ onto variables in s

7

Tuesday, April 10, 2012

Inferring Definitive Counterexamples Jörg Brauer, Axel Simon

Example
• Suppose an abstract interpreter finds

assertion ψ violated in post-state s’
starting from s

• let φ encode transformer: s’=φ∧s

• then φ∧s’∧¬ψ describe those states in s
that violate the assertions

• idea: project φ∧s’∧¬ψ onto variables in s

• φ only represents one step: repeat!
7

Tuesday, April 10, 2012

Inferring Definitive Counterexamples Jörg Brauer, Axel Simon

Analysis of Loops

8

x=min(x,200); r=2

x=max(x,0); r=1

S1

S2

S4

S5
x<100

x!100

x=x-r

x>0

x"0
assert(x==0);

S3

S6

S7

S8S0

x=min(x,200); r=2

x=max(x,0); r=1

S1

S2

S4

S5
x<100

x!100

x=x-r

x>0

x"0
assert(x==0);

S3

S6

S7

S8S0

Fig. 1. Backward propagation past a loop

i 0 1 2 3 4 5 6 7 8

Si =


x
r

any
any

≤ 99
any

[0, 99]
[1, 1]

≥ 100
any

[100, 200]
[2, 2]

[0, 200]
[1, 2]

[1, 200]
[1, 2]

[−1, 199]
[1, 2]

[−1, 0]
[1, 2]

S�
i =


x
r

⊥ ⊥ 1
2

[0, 1]
[1, 2]

−1
[1, 2]

−1
[1, 2]

S��
i =


x
r

[101, 125]
2

⊥ [101, 125]
2

[101, 125]
2

[1, 125]
2

Table 1. Abstract states in the analyzer, presented as ranges for conciseness

2 Backward Analysis using Under-Approximation

The various SAT-based algorithms that constitute our backwards analysis are
orchestrated by a strategy that tries to find a path to the beginning of the program

with minimal effort. Specifically, the idea is to perform iterative deepening when
unrolling loops until either a counterexample is found or a proof that the alarm
was spurious. We illustrate this strategy using Fig. 1 which shows a program
that limits some signed input variable x to 0 ≤ x ≤ 200 and then iteratively
decreases x by one if the original input was x < 100 and by two otherwise.
The abstract states S0, . . . S8 inferred by a forward analysis (here based on
intervals) are stored for each tip of an edge where an edge represents either a
guard or some assignments. The resulting states of the forward analysis are listed

in Table 1. Since S8 violates the assertion x = 0, we propagate the negated
assertion x ≤ −1 ∨ x ≥ 1 backwards as an assumption. As the forward analysis
constitutes a sound over-approximation of the reachable states, we may intersect

the assumption with S8, leading to the refined assumption S�
8 in Table 1. We

follow the flow backwards by applying the guard x ≤ 0 which has no effect on S�
8.

At this point, we try to continue backwards without entering the loop. This
strategy ensures that the simplest counterexample is found first. However, in this

case S�
8 conjoined with S5 yields an empty state, indicating that the chosen path

cannot represent a counterexample. The only feasible trace is therefore one that
passes through the loops that we have skipped so far. In the example, only one
loop exists on the path, and we calculate the effect of this loop having executed
0, . . . , 2i times, beginning with i = 0. At the bit-level, the effect of executing a
loop body backwards can be modelled as a Boolean function f which one can
compose with itself to express the effect of executing the body twice: f2 = f ◦ f .
For the sake of presentation, let f ∨ f2 denote the effect of executing the loop
once or twice. We then pre-compute f2i

and express the semantics of 0, . . . , 2i

Tuesday, April 10, 2012

Inferring Definitive Counterexamples Jörg Brauer, Axel Simon

Analysis of Loops

9

x=min(x,200); r=2

x=max(x,0); r=1

S1

S2

S4

S5
x<100

x!100

x=x-r

x>0

x"0
assert(x==0);

S3

S6

S7

S8S0

x=min(x,200); r=2

x=max(x,0); r=1

S1

S2

S4

S5
x<100

x!100

x=x-r

x>0

x"0
assert(x==0);

S3

S6

S7

S8S0

Fig. 1. Backward propagation past a loop

i 0 1 2 3 4 5 6 7 8

Si =


x
r

any
any

≤ 99
any

[0, 99]
[1, 1]

≥ 100
any

[100, 200]
[2, 2]

[0, 200]
[1, 2]

[1, 200]
[1, 2]

[−1, 199]
[1, 2]

[−1, 0]
[1, 2]

S�
i =


x
r

⊥ ⊥ 1
2

[0, 1]
[1, 2]

−1
[1, 2]

−1
[1, 2]

S��
i =


x
r

[101, 125]
2

⊥ [101, 125]
2

[101, 125]
2

[1, 125]
2

Table 1. Abstract states in the analyzer, presented as ranges for conciseness

2 Backward Analysis using Under-Approximation

The various SAT-based algorithms that constitute our backwards analysis are
orchestrated by a strategy that tries to find a path to the beginning of the program

with minimal effort. Specifically, the idea is to perform iterative deepening when
unrolling loops until either a counterexample is found or a proof that the alarm
was spurious. We illustrate this strategy using Fig. 1 which shows a program
that limits some signed input variable x to 0 ≤ x ≤ 200 and then iteratively
decreases x by one if the original input was x < 100 and by two otherwise.
The abstract states S0, . . . S8 inferred by a forward analysis (here based on
intervals) are stored for each tip of an edge where an edge represents either a
guard or some assignments. The resulting states of the forward analysis are listed

in Table 1. Since S8 violates the assertion x = 0, we propagate the negated
assertion x ≤ −1 ∨ x ≥ 1 backwards as an assumption. As the forward analysis
constitutes a sound over-approximation of the reachable states, we may intersect

the assumption with S8, leading to the refined assumption S�
8 in Table 1. We

follow the flow backwards by applying the guard x ≤ 0 which has no effect on S�
8.

At this point, we try to continue backwards without entering the loop. This
strategy ensures that the simplest counterexample is found first. However, in this

case S�
8 conjoined with S5 yields an empty state, indicating that the chosen path

cannot represent a counterexample. The only feasible trace is therefore one that
passes through the loops that we have skipped so far. In the example, only one
loop exists on the path, and we calculate the effect of this loop having executed
0, . . . , 2i times, beginning with i = 0. At the bit-level, the effect of executing a
loop body backwards can be modelled as a Boolean function f which one can
compose with itself to express the effect of executing the body twice: f2 = f ◦ f .
For the sake of presentation, let f ∨ f2 denote the effect of executing the loop
once or twice. We then pre-compute f2i

and express the semantics of 0, . . . , 2i

Tuesday, April 10, 2012

Inferring Definitive Counterexamples Jörg Brauer, Axel Simon

Analysis of Loops

10

x=min(x,200); r=2

x=max(x,0); r=1

S1

S2

S4

S5
x<100

x!100

x=x-r

x>0

x"0
assert(x==0);

S3

S6

S7

S8S0

x=min(x,200); r=2

x=max(x,0); r=1

S1

S2

S4

S5
x<100

x!100

x=x-r

x>0

x"0
assert(x==0);

S3

S6

S7

S8S0

Fig. 1. Backward propagation past a loop

i 0 1 2 3 4 5 6 7 8

Si =


x
r

any
any

≤ 99
any

[0, 99]
[1, 1]

≥ 100
any

[100, 200]
[2, 2]

[0, 200]
[1, 2]

[1, 200]
[1, 2]

[−1, 199]
[1, 2]

[−1, 0]
[1, 2]

S�
i =


x
r

⊥ ⊥ 1
2

[0, 1]
[1, 2]

−1
[1, 2]

−1
[1, 2]

S��
i =


x
r

[101, 125]
2

⊥ [101, 125]
2

[101, 125]
2

[1, 125]
2

Table 1. Abstract states in the analyzer, presented as ranges for conciseness

2 Backward Analysis using Under-Approximation

The various SAT-based algorithms that constitute our backwards analysis are
orchestrated by a strategy that tries to find a path to the beginning of the program

with minimal effort. Specifically, the idea is to perform iterative deepening when
unrolling loops until either a counterexample is found or a proof that the alarm
was spurious. We illustrate this strategy using Fig. 1 which shows a program
that limits some signed input variable x to 0 ≤ x ≤ 200 and then iteratively
decreases x by one if the original input was x < 100 and by two otherwise.
The abstract states S0, . . . S8 inferred by a forward analysis (here based on
intervals) are stored for each tip of an edge where an edge represents either a
guard or some assignments. The resulting states of the forward analysis are listed

in Table 1. Since S8 violates the assertion x = 0, we propagate the negated
assertion x ≤ −1 ∨ x ≥ 1 backwards as an assumption. As the forward analysis
constitutes a sound over-approximation of the reachable states, we may intersect

the assumption with S8, leading to the refined assumption S�
8 in Table 1. We

follow the flow backwards by applying the guard x ≤ 0 which has no effect on S�
8.

At this point, we try to continue backwards without entering the loop. This
strategy ensures that the simplest counterexample is found first. However, in this

case S�
8 conjoined with S5 yields an empty state, indicating that the chosen path

cannot represent a counterexample. The only feasible trace is therefore one that
passes through the loops that we have skipped so far. In the example, only one
loop exists on the path, and we calculate the effect of this loop having executed
0, . . . , 2i times, beginning with i = 0. At the bit-level, the effect of executing a
loop body backwards can be modelled as a Boolean function f which one can
compose with itself to express the effect of executing the body twice: f2 = f ◦ f .
For the sake of presentation, let f ∨ f2 denote the effect of executing the loop
once or twice. We then pre-compute f2i

and express the semantics of 0, . . . , 2i

Tuesday, April 10, 2012

Inferring Definitive Counterexamples Jörg Brauer, Axel Simon

Analysis of Loops

11

x=min(x,200); r=2

x=max(x,0); r=1

S1

S2

S4

S5
x<100

x!100

x=x-r

x>0

x"0
assert(x==0);

S3

S6

S7

S8S0

x=min(x,200); r=2

x=max(x,0); r=1

S1

S2

S4

S5
x<100

x!100

x=x-r

x>0

x"0
assert(x==0);

S3

S6

S7

S8S0

Fig. 1. Backward propagation past a loop

i 0 1 2 3 4 5 6 7 8

Si =


x
r

any
any

≤ 99
any

[0, 99]
[1, 1]

≥ 100
any

[100, 200]
[2, 2]

[0, 200]
[1, 2]

[1, 200]
[1, 2]

[−1, 199]
[1, 2]

[−1, 0]
[1, 2]

S�
i =


x
r

⊥ ⊥ 1
2

[0, 1]
[1, 2]

−1
[1, 2]

−1
[1, 2]

S��
i =


x
r

[101, 125]
2

⊥ [101, 125]
2

[101, 125]
2

[1, 125]
2

Table 1. Abstract states in the analyzer, presented as ranges for conciseness

2 Backward Analysis using Under-Approximation

The various SAT-based algorithms that constitute our backwards analysis are
orchestrated by a strategy that tries to find a path to the beginning of the program

with minimal effort. Specifically, the idea is to perform iterative deepening when
unrolling loops until either a counterexample is found or a proof that the alarm
was spurious. We illustrate this strategy using Fig. 1 which shows a program
that limits some signed input variable x to 0 ≤ x ≤ 200 and then iteratively
decreases x by one if the original input was x < 100 and by two otherwise.
The abstract states S0, . . . S8 inferred by a forward analysis (here based on
intervals) are stored for each tip of an edge where an edge represents either a
guard or some assignments. The resulting states of the forward analysis are listed

in Table 1. Since S8 violates the assertion x = 0, we propagate the negated
assertion x ≤ −1 ∨ x ≥ 1 backwards as an assumption. As the forward analysis
constitutes a sound over-approximation of the reachable states, we may intersect

the assumption with S8, leading to the refined assumption S�
8 in Table 1. We

follow the flow backwards by applying the guard x ≤ 0 which has no effect on S�
8.

At this point, we try to continue backwards without entering the loop. This
strategy ensures that the simplest counterexample is found first. However, in this

case S�
8 conjoined with S5 yields an empty state, indicating that the chosen path

cannot represent a counterexample. The only feasible trace is therefore one that
passes through the loops that we have skipped so far. In the example, only one
loop exists on the path, and we calculate the effect of this loop having executed
0, . . . , 2i times, beginning with i = 0. At the bit-level, the effect of executing a
loop body backwards can be modelled as a Boolean function f which one can
compose with itself to express the effect of executing the body twice: f2 = f ◦ f .
For the sake of presentation, let f ∨ f2 denote the effect of executing the loop
once or twice. We then pre-compute f2i

and express the semantics of 0, . . . , 2i

Tuesday, April 10, 2012

Inferring Definitive Counterexamples Jörg Brauer, Axel Simon

Analysis of Loops

12

x=min(x,200); r=2

x=max(x,0); r=1

S1

S2

S4

S5
x<100

x!100

x=x-r

x>0

x"0
assert(x==0);

S3

S6

S7

S8S0

x=min(x,200); r=2

x=max(x,0); r=1

S1

S2

S4

S5
x<100

x!100

x=x-r

x>0

x"0
assert(x==0);

S3

S6

S7

S8S0

Fig. 1. Backward propagation past a loop

i 0 1 2 3 4 5 6 7 8

Si =


x
r

any
any

≤ 99
any

[0, 99]
[1, 1]

≥ 100
any

[100, 200]
[2, 2]

[0, 200]
[1, 2]

[1, 200]
[1, 2]

[−1, 199]
[1, 2]

[−1, 0]
[1, 2]

S�
i =


x
r

⊥ ⊥ 1
2

[0, 1]
[1, 2]

−1
[1, 2]

−1
[1, 2]

S��
i =


x
r

[101, 125]
2

⊥ [101, 125]
2

[101, 125]
2

[1, 125]
2

Table 1. Abstract states in the analyzer, presented as ranges for conciseness

2 Backward Analysis using Under-Approximation

The various SAT-based algorithms that constitute our backwards analysis are
orchestrated by a strategy that tries to find a path to the beginning of the program

with minimal effort. Specifically, the idea is to perform iterative deepening when
unrolling loops until either a counterexample is found or a proof that the alarm
was spurious. We illustrate this strategy using Fig. 1 which shows a program
that limits some signed input variable x to 0 ≤ x ≤ 200 and then iteratively
decreases x by one if the original input was x < 100 and by two otherwise.
The abstract states S0, . . . S8 inferred by a forward analysis (here based on
intervals) are stored for each tip of an edge where an edge represents either a
guard or some assignments. The resulting states of the forward analysis are listed

in Table 1. Since S8 violates the assertion x = 0, we propagate the negated
assertion x ≤ −1 ∨ x ≥ 1 backwards as an assumption. As the forward analysis
constitutes a sound over-approximation of the reachable states, we may intersect

the assumption with S8, leading to the refined assumption S�
8 in Table 1. We

follow the flow backwards by applying the guard x ≤ 0 which has no effect on S�
8.

At this point, we try to continue backwards without entering the loop. This
strategy ensures that the simplest counterexample is found first. However, in this

case S�
8 conjoined with S5 yields an empty state, indicating that the chosen path

cannot represent a counterexample. The only feasible trace is therefore one that
passes through the loops that we have skipped so far. In the example, only one
loop exists on the path, and we calculate the effect of this loop having executed
0, . . . , 2i times, beginning with i = 0. At the bit-level, the effect of executing a
loop body backwards can be modelled as a Boolean function f which one can
compose with itself to express the effect of executing the body twice: f2 = f ◦ f .
For the sake of presentation, let f ∨ f2 denote the effect of executing the loop
once or twice. We then pre-compute f2i

and express the semantics of 0, . . . , 2i

Tuesday, April 10, 2012

Inferring Definitive Counterexamples Jörg Brauer, Axel Simon

Analysis of Loops

13

x=min(x,200); r=2

x=max(x,0); r=1

S1

S2

S4

S5
x<100

x!100

x=x-r

x>0

x"0
assert(x==0);

S3

S6

S7

S8S0

x=min(x,200); r=2

x=max(x,0); r=1

S1

S2

S4

S5
x<100

x!100

x=x-r

x>0

x"0
assert(x==0);

S3

S6

S7

S8S0

Fig. 1. Backward propagation past a loop

i 0 1 2 3 4 5 6 7 8

Si =


x
r

any
any

≤ 99
any

[0, 99]
[1, 1]

≥ 100
any

[100, 200]
[2, 2]

[0, 200]
[1, 2]

[1, 200]
[1, 2]

[−1, 199]
[1, 2]

[−1, 0]
[1, 2]

S�
i =


x
r

⊥ ⊥ 1
2

[0, 1]
[1, 2]

−1
[1, 2]

−1
[1, 2]

S��
i =


x
r

[101, 125]
2

⊥ [101, 125]
2

[101, 125]
2

[1, 125]
2

Table 1. Abstract states in the analyzer, presented as ranges for conciseness

2 Backward Analysis using Under-Approximation

The various SAT-based algorithms that constitute our backwards analysis are
orchestrated by a strategy that tries to find a path to the beginning of the program

with minimal effort. Specifically, the idea is to perform iterative deepening when
unrolling loops until either a counterexample is found or a proof that the alarm
was spurious. We illustrate this strategy using Fig. 1 which shows a program
that limits some signed input variable x to 0 ≤ x ≤ 200 and then iteratively
decreases x by one if the original input was x < 100 and by two otherwise.
The abstract states S0, . . . S8 inferred by a forward analysis (here based on
intervals) are stored for each tip of an edge where an edge represents either a
guard or some assignments. The resulting states of the forward analysis are listed

in Table 1. Since S8 violates the assertion x = 0, we propagate the negated
assertion x ≤ −1 ∨ x ≥ 1 backwards as an assumption. As the forward analysis
constitutes a sound over-approximation of the reachable states, we may intersect

the assumption with S8, leading to the refined assumption S�
8 in Table 1. We

follow the flow backwards by applying the guard x ≤ 0 which has no effect on S�
8.

At this point, we try to continue backwards without entering the loop. This
strategy ensures that the simplest counterexample is found first. However, in this

case S�
8 conjoined with S5 yields an empty state, indicating that the chosen path

cannot represent a counterexample. The only feasible trace is therefore one that
passes through the loops that we have skipped so far. In the example, only one
loop exists on the path, and we calculate the effect of this loop having executed
0, . . . , 2i times, beginning with i = 0. At the bit-level, the effect of executing a
loop body backwards can be modelled as a Boolean function f which one can
compose with itself to express the effect of executing the body twice: f2 = f ◦ f .
For the sake of presentation, let f ∨ f2 denote the effect of executing the loop
once or twice. We then pre-compute f2i

and express the semantics of 0, . . . , 2i

Tuesday, April 10, 2012

Inferring Definitive Counterexamples Jörg Brauer, Axel Simon

Analysis of Loops

14

x=min(x,200); r=2

x=max(x,0); r=1

S1

S2

S4

S5
x<100

x!100

x=x-r

x>0

x"0
assert(x==0);

S3

S6

S7

S8S0

x=min(x,200); r=2

x=max(x,0); r=1

S1

S2

S4

S5
x<100

x!100

x=x-r

x>0

x"0
assert(x==0);

S3

S6

S7

S8S0

Fig. 1. Backward propagation past a loop

i 0 1 2 3 4 5 6 7 8

Si =


x
r

any
any

≤ 99
any

[0, 99]
[1, 1]

≥ 100
any

[100, 200]
[2, 2]

[0, 200]
[1, 2]

[1, 200]
[1, 2]

[−1, 199]
[1, 2]

[−1, 0]
[1, 2]

S�
i =


x
r

⊥ ⊥ 1
2

[0, 1]
[1, 2]

−1
[1, 2]

−1
[1, 2]

S��
i =


x
r

[101, 125]
2

⊥ [101, 125]
2

[101, 125]
2

[1, 125]
2

Table 1. Abstract states in the analyzer, presented as ranges for conciseness

2 Backward Analysis using Under-Approximation

The various SAT-based algorithms that constitute our backwards analysis are
orchestrated by a strategy that tries to find a path to the beginning of the program

with minimal effort. Specifically, the idea is to perform iterative deepening when
unrolling loops until either a counterexample is found or a proof that the alarm
was spurious. We illustrate this strategy using Fig. 1 which shows a program
that limits some signed input variable x to 0 ≤ x ≤ 200 and then iteratively
decreases x by one if the original input was x < 100 and by two otherwise.
The abstract states S0, . . . S8 inferred by a forward analysis (here based on
intervals) are stored for each tip of an edge where an edge represents either a
guard or some assignments. The resulting states of the forward analysis are listed

in Table 1. Since S8 violates the assertion x = 0, we propagate the negated
assertion x ≤ −1 ∨ x ≥ 1 backwards as an assumption. As the forward analysis
constitutes a sound over-approximation of the reachable states, we may intersect

the assumption with S8, leading to the refined assumption S�
8 in Table 1. We

follow the flow backwards by applying the guard x ≤ 0 which has no effect on S�
8.

At this point, we try to continue backwards without entering the loop. This
strategy ensures that the simplest counterexample is found first. However, in this

case S�
8 conjoined with S5 yields an empty state, indicating that the chosen path

cannot represent a counterexample. The only feasible trace is therefore one that
passes through the loops that we have skipped so far. In the example, only one
loop exists on the path, and we calculate the effect of this loop having executed
0, . . . , 2i times, beginning with i = 0. At the bit-level, the effect of executing a
loop body backwards can be modelled as a Boolean function f which one can
compose with itself to express the effect of executing the body twice: f2 = f ◦ f .
For the sake of presentation, let f ∨ f2 denote the effect of executing the loop
once or twice. We then pre-compute f2i

and express the semantics of 0, . . . , 2i

Tuesday, April 10, 2012

Inferring Definitive Counterexamples Jörg Brauer, Axel Simon

Analysis of Loops

15

x=min(x,200); r=2

x=max(x,0); r=1

S1

S2

S4

S5
x<100

x!100

x=x-r

x>0

x"0
assert(x==0);

S3

S6

S7

S8S0

x=min(x,200); r=2

x=max(x,0); r=1

S1

S2

S4

S5
x<100

x!100

x=x-r

x>0

x"0
assert(x==0);

S3

S6

S7

S8S0

Fig. 1. Backward propagation past a loop

i 0 1 2 3 4 5 6 7 8

Si =


x
r

any
any

≤ 99
any

[0, 99]
[1, 1]

≥ 100
any

[100, 200]
[2, 2]

[0, 200]
[1, 2]

[1, 200]
[1, 2]

[−1, 199]
[1, 2]

[−1, 0]
[1, 2]

S�
i =


x
r

⊥ ⊥ 1
2

[0, 1]
[1, 2]

−1
[1, 2]

−1
[1, 2]

S��
i =


x
r

[101, 125]
2

⊥ [101, 125]
2

[101, 125]
2

[1, 125]
2

Table 1. Abstract states in the analyzer, presented as ranges for conciseness

2 Backward Analysis using Under-Approximation

The various SAT-based algorithms that constitute our backwards analysis are
orchestrated by a strategy that tries to find a path to the beginning of the program

with minimal effort. Specifically, the idea is to perform iterative deepening when
unrolling loops until either a counterexample is found or a proof that the alarm
was spurious. We illustrate this strategy using Fig. 1 which shows a program
that limits some signed input variable x to 0 ≤ x ≤ 200 and then iteratively
decreases x by one if the original input was x < 100 and by two otherwise.
The abstract states S0, . . . S8 inferred by a forward analysis (here based on
intervals) are stored for each tip of an edge where an edge represents either a
guard or some assignments. The resulting states of the forward analysis are listed

in Table 1. Since S8 violates the assertion x = 0, we propagate the negated
assertion x ≤ −1 ∨ x ≥ 1 backwards as an assumption. As the forward analysis
constitutes a sound over-approximation of the reachable states, we may intersect

the assumption with S8, leading to the refined assumption S�
8 in Table 1. We

follow the flow backwards by applying the guard x ≤ 0 which has no effect on S�
8.

At this point, we try to continue backwards without entering the loop. This
strategy ensures that the simplest counterexample is found first. However, in this

case S�
8 conjoined with S5 yields an empty state, indicating that the chosen path

cannot represent a counterexample. The only feasible trace is therefore one that
passes through the loops that we have skipped so far. In the example, only one
loop exists on the path, and we calculate the effect of this loop having executed
0, . . . , 2i times, beginning with i = 0. At the bit-level, the effect of executing a
loop body backwards can be modelled as a Boolean function f which one can
compose with itself to express the effect of executing the body twice: f2 = f ◦ f .
For the sake of presentation, let f ∨ f2 denote the effect of executing the loop
once or twice. We then pre-compute f2i

and express the semantics of 0, . . . , 2i

Tuesday, April 10, 2012

Inferring Definitive Counterexamples Jörg Brauer, Axel Simon

Analysis of Loops

16

x=min(x,200); r=2

x=max(x,0); r=1

S1

S2

S4

S5
x<100

x!100

x=x-r

x>0

x"0
assert(x==0);

S3

S6

S7

S8S0

x=min(x,200); r=2

x=max(x,0); r=1

S1

S2

S4

S5
x<100

x!100

x=x-r

x>0

x"0
assert(x==0);

S3

S6

S7

S8S0

Fig. 1. Backward propagation past a loop

i 0 1 2 3 4 5 6 7 8

Si =


x
r

any
any

≤ 99
any

[0, 99]
[1, 1]

≥ 100
any

[100, 200]
[2, 2]

[0, 200]
[1, 2]

[1, 200]
[1, 2]

[−1, 199]
[1, 2]

[−1, 0]
[1, 2]

S�
i =


x
r

⊥ ⊥ 1
2

[0, 1]
[1, 2]

−1
[1, 2]

−1
[1, 2]

S��
i =


x
r

[101, 125]
2

⊥ [101, 125]
2

[101, 125]
2

[1, 125]
2

Table 1. Abstract states in the analyzer, presented as ranges for conciseness

2 Backward Analysis using Under-Approximation

The various SAT-based algorithms that constitute our backwards analysis are
orchestrated by a strategy that tries to find a path to the beginning of the program

with minimal effort. Specifically, the idea is to perform iterative deepening when
unrolling loops until either a counterexample is found or a proof that the alarm
was spurious. We illustrate this strategy using Fig. 1 which shows a program
that limits some signed input variable x to 0 ≤ x ≤ 200 and then iteratively
decreases x by one if the original input was x < 100 and by two otherwise.
The abstract states S0, . . . S8 inferred by a forward analysis (here based on
intervals) are stored for each tip of an edge where an edge represents either a
guard or some assignments. The resulting states of the forward analysis are listed

in Table 1. Since S8 violates the assertion x = 0, we propagate the negated
assertion x ≤ −1 ∨ x ≥ 1 backwards as an assumption. As the forward analysis
constitutes a sound over-approximation of the reachable states, we may intersect

the assumption with S8, leading to the refined assumption S�
8 in Table 1. We

follow the flow backwards by applying the guard x ≤ 0 which has no effect on S�
8.

At this point, we try to continue backwards without entering the loop. This
strategy ensures that the simplest counterexample is found first. However, in this

case S�
8 conjoined with S5 yields an empty state, indicating that the chosen path

cannot represent a counterexample. The only feasible trace is therefore one that
passes through the loops that we have skipped so far. In the example, only one
loop exists on the path, and we calculate the effect of this loop having executed
0, . . . , 2i times, beginning with i = 0. At the bit-level, the effect of executing a
loop body backwards can be modelled as a Boolean function f which one can
compose with itself to express the effect of executing the body twice: f2 = f ◦ f .
For the sake of presentation, let f ∨ f2 denote the effect of executing the loop
once or twice. We then pre-compute f2i

and express the semantics of 0, . . . , 2i

Tuesday, April 10, 2012

Inferring Definitive Counterexamples Jörg Brauer, Axel Simon

Analysis of Loops

17

x=min(x,200); r=2

x=max(x,0); r=1

S1

S2

S4

S5
x<100

x!100

x=x-r

x>0

x"0
assert(x==0);

S3

S6

S7

S8S0

x=min(x,200); r=2

x=max(x,0); r=1

S1

S2

S4

S5
x<100

x!100

x=x-r

x>0

x"0
assert(x==0);

S3

S6

S7

S8S0

Fig. 1. Backward propagation past a loop

i 0 1 2 3 4 5 6 7 8

Si =


x
r

any
any

≤ 99
any

[0, 99]
[1, 1]

≥ 100
any

[100, 200]
[2, 2]

[0, 200]
[1, 2]

[1, 200]
[1, 2]

[−1, 199]
[1, 2]

[−1, 0]
[1, 2]

S�
i =


x
r

⊥ ⊥ 1
2

[0, 1]
[1, 2]

−1
[1, 2]

−1
[1, 2]

S��
i =


x
r

[101, 125]
2

⊥ [101, 125]
2

[101, 125]
2

[1, 125]
2

Table 1. Abstract states in the analyzer, presented as ranges for conciseness

2 Backward Analysis using Under-Approximation

The various SAT-based algorithms that constitute our backwards analysis are
orchestrated by a strategy that tries to find a path to the beginning of the program

with minimal effort. Specifically, the idea is to perform iterative deepening when
unrolling loops until either a counterexample is found or a proof that the alarm
was spurious. We illustrate this strategy using Fig. 1 which shows a program
that limits some signed input variable x to 0 ≤ x ≤ 200 and then iteratively
decreases x by one if the original input was x < 100 and by two otherwise.
The abstract states S0, . . . S8 inferred by a forward analysis (here based on
intervals) are stored for each tip of an edge where an edge represents either a
guard or some assignments. The resulting states of the forward analysis are listed

in Table 1. Since S8 violates the assertion x = 0, we propagate the negated
assertion x ≤ −1 ∨ x ≥ 1 backwards as an assumption. As the forward analysis
constitutes a sound over-approximation of the reachable states, we may intersect

the assumption with S8, leading to the refined assumption S�
8 in Table 1. We

follow the flow backwards by applying the guard x ≤ 0 which has no effect on S�
8.

At this point, we try to continue backwards without entering the loop. This
strategy ensures that the simplest counterexample is found first. However, in this

case S�
8 conjoined with S5 yields an empty state, indicating that the chosen path

cannot represent a counterexample. The only feasible trace is therefore one that
passes through the loops that we have skipped so far. In the example, only one
loop exists on the path, and we calculate the effect of this loop having executed
0, . . . , 2i times, beginning with i = 0. At the bit-level, the effect of executing a
loop body backwards can be modelled as a Boolean function f which one can
compose with itself to express the effect of executing the body twice: f2 = f ◦ f .
For the sake of presentation, let f ∨ f2 denote the effect of executing the loop
once or twice. We then pre-compute f2i

and express the semantics of 0, . . . , 2i

Tuesday, April 10, 2012

Inferring Definitive Counterexamples Jörg Brauer, Axel Simon

Analysis of Loops

18

x=min(x,200); r=2

x=max(x,0); r=1

S1

S2

S4

S5
x<100

x!100

x=x-r

x>0

x"0
assert(x==0);

S3

S6

S7

S8S0

x=min(x,200); r=2

x=max(x,0); r=1

S1

S2

S4

S5
x<100

x!100

x=x-r

x>0

x"0
assert(x==0);

S3

S6

S7

S8S0

Fig. 1. Backward propagation past a loop

i 0 1 2 3 4 5 6 7 8

Si =


x
r

any
any

≤ 99
any

[0, 99]
[1, 1]

≥ 100
any

[100, 200]
[2, 2]

[0, 200]
[1, 2]

[1, 200]
[1, 2]

[−1, 199]
[1, 2]

[−1, 0]
[1, 2]

S�
i =


x
r

⊥ ⊥ 1
2

[0, 1]
[1, 2]

−1
[1, 2]

−1
[1, 2]

S��
i =


x
r

[101, 125]
2

⊥ [101, 125]
2

[101, 125]
2

[1, 125]
2

Table 1. Abstract states in the analyzer, presented as ranges for conciseness

2 Backward Analysis using Under-Approximation

The various SAT-based algorithms that constitute our backwards analysis are
orchestrated by a strategy that tries to find a path to the beginning of the program

with minimal effort. Specifically, the idea is to perform iterative deepening when
unrolling loops until either a counterexample is found or a proof that the alarm
was spurious. We illustrate this strategy using Fig. 1 which shows a program
that limits some signed input variable x to 0 ≤ x ≤ 200 and then iteratively
decreases x by one if the original input was x < 100 and by two otherwise.
The abstract states S0, . . . S8 inferred by a forward analysis (here based on
intervals) are stored for each tip of an edge where an edge represents either a
guard or some assignments. The resulting states of the forward analysis are listed

in Table 1. Since S8 violates the assertion x = 0, we propagate the negated
assertion x ≤ −1 ∨ x ≥ 1 backwards as an assumption. As the forward analysis
constitutes a sound over-approximation of the reachable states, we may intersect

the assumption with S8, leading to the refined assumption S�
8 in Table 1. We

follow the flow backwards by applying the guard x ≤ 0 which has no effect on S�
8.

At this point, we try to continue backwards without entering the loop. This
strategy ensures that the simplest counterexample is found first. However, in this

case S�
8 conjoined with S5 yields an empty state, indicating that the chosen path

cannot represent a counterexample. The only feasible trace is therefore one that
passes through the loops that we have skipped so far. In the example, only one
loop exists on the path, and we calculate the effect of this loop having executed
0, . . . , 2i times, beginning with i = 0. At the bit-level, the effect of executing a
loop body backwards can be modelled as a Boolean function f which one can
compose with itself to express the effect of executing the body twice: f2 = f ◦ f .
For the sake of presentation, let f ∨ f2 denote the effect of executing the loop
once or twice. We then pre-compute f2i

and express the semantics of 0, . . . , 2i

Tuesday, April 10, 2012

Inferring Definitive Counterexamples Jörg Brauer, Axel Simon

Loop Transformers

19

Tuesday, April 10, 2012

Inferring Definitive Counterexamples Jörg Brauer, Axel Simon

Loop Transformers

• Let f≡⟦x’=x-r, r’=r⟧ denote Boolean
formulae of loop transformer

19

Tuesday, April 10, 2012

Inferring Definitive Counterexamples Jörg Brauer, Axel Simon

Loop Transformers

• Let f≡⟦x’=x-r, r’=r⟧ denote Boolean
formulae of loop transformer

• pre-calculate f2=f⋅f, f4=f2⋅f2,...

19

Tuesday, April 10, 2012

Inferring Definitive Counterexamples Jörg Brauer, Axel Simon

Loop Transformers

• Let f≡⟦x’=x-r, r’=r⟧ denote Boolean
formulae of loop transformer

• pre-calculate f2=f⋅f, f4=f2⋅f2,...

• calculate φi+1=φi⋁φi⋅f2i where φ0=id

19

Tuesday, April 10, 2012

Inferring Definitive Counterexamples Jörg Brauer, Axel Simon

Loop Transformers

• Let f≡⟦x’=x-r, r’=r⟧ denote Boolean
formulae of loop transformer

• pre-calculate f2=f⋅f, f4=f2⋅f2,...

• calculate φi+1=φi⋁φi⋅f2i where φ0=id

• in the example, compose loop 25 times:

19

Tuesday, April 10, 2012

Inferring Definitive Counterexamples Jörg Brauer, Axel Simon

Loop Transformers

• Let f≡⟦x’=x-r, r’=r⟧ denote Boolean
formulae of loop transformer

• pre-calculate f2=f⋅f, f4=f2⋅f2,...

• calculate φi+1=φi⋁φi⋅f2i where φ0=id

• in the example, compose loop 25 times:

• φ5(S5)=⟦x=2n-1,n∈[1,63],r=2⟧

19

Tuesday, April 10, 2012

Inferring Definitive Counterexamples Jörg Brauer, Axel Simon

Analysis of Loops

20

x=min(x,200); r=2

x=max(x,0); r=1

S1

S2

S4

S5
x<100

x!100

x=x-r

x>0

x"0
assert(x==0);

S3

S6

S7

S8S0

x=min(x,200); r=2

x=max(x,0); r=1

S1

S2

S4

S5
x<100

x!100

x=x-r

x>0

x"0
assert(x==0);

S3

S6

S7

S8S0

Fig. 1. Backward propagation past a loop

i 0 1 2 3 4 5 6 7 8

Si =


x
r

any
any

≤ 99
any

[0, 99]
[1, 1]

≥ 100
any

[100, 200]
[2, 2]

[0, 200]
[1, 2]

[1, 200]
[1, 2]

[−1, 199]
[1, 2]

[−1, 0]
[1, 2]

S�
i =


x
r

⊥ ⊥ 1
2

[0, 1]
[1, 2]

−1
[1, 2]

−1
[1, 2]

S��
i =


x
r

[101, 125]
2

⊥ [101, 125]
2

[101, 125]
2

[1, 125]
2

Table 1. Abstract states in the analyzer, presented as ranges for conciseness

2 Backward Analysis using Under-Approximation

The various SAT-based algorithms that constitute our backwards analysis are
orchestrated by a strategy that tries to find a path to the beginning of the program

with minimal effort. Specifically, the idea is to perform iterative deepening when
unrolling loops until either a counterexample is found or a proof that the alarm
was spurious. We illustrate this strategy using Fig. 1 which shows a program
that limits some signed input variable x to 0 ≤ x ≤ 200 and then iteratively
decreases x by one if the original input was x < 100 and by two otherwise.
The abstract states S0, . . . S8 inferred by a forward analysis (here based on
intervals) are stored for each tip of an edge where an edge represents either a
guard or some assignments. The resulting states of the forward analysis are listed

in Table 1. Since S8 violates the assertion x = 0, we propagate the negated
assertion x ≤ −1 ∨ x ≥ 1 backwards as an assumption. As the forward analysis
constitutes a sound over-approximation of the reachable states, we may intersect

the assumption with S8, leading to the refined assumption S�
8 in Table 1. We

follow the flow backwards by applying the guard x ≤ 0 which has no effect on S�
8.

At this point, we try to continue backwards without entering the loop. This
strategy ensures that the simplest counterexample is found first. However, in this

case S�
8 conjoined with S5 yields an empty state, indicating that the chosen path

cannot represent a counterexample. The only feasible trace is therefore one that
passes through the loops that we have skipped so far. In the example, only one
loop exists on the path, and we calculate the effect of this loop having executed
0, . . . , 2i times, beginning with i = 0. At the bit-level, the effect of executing a
loop body backwards can be modelled as a Boolean function f which one can
compose with itself to express the effect of executing the body twice: f2 = f ◦ f .
For the sake of presentation, let f ∨ f2 denote the effect of executing the loop
once or twice. We then pre-compute f2i

and express the semantics of 0, . . . , 2i

Tuesday, April 10, 2012

Inferring Definitive Counterexamples Jörg Brauer, Axel Simon

Analysis of Loops

21

x=min(x,200); r=2

x=max(x,0); r=1

S1

S2

S4

S5
x<100

x!100

x=x-r

x>0

x"0
assert(x==0);

S3

S6

S7

S8S0

x=min(x,200); r=2

x=max(x,0); r=1

S1

S2

S4

S5
x<100

x!100

x=x-r

x>0

x"0
assert(x==0);

S3

S6

S7

S8S0

Fig. 1. Backward propagation past a loop

i 0 1 2 3 4 5 6 7 8

Si =


x
r

any
any

≤ 99
any

[0, 99]
[1, 1]

≥ 100
any

[100, 200]
[2, 2]

[0, 200]
[1, 2]

[1, 200]
[1, 2]

[−1, 199]
[1, 2]

[−1, 0]
[1, 2]

S�
i =


x
r

⊥ ⊥ 1
2

[0, 1]
[1, 2]

−1
[1, 2]

−1
[1, 2]

S��
i =


x
r

[101, 125]
2

⊥ [101, 125]
2

[101, 125]
2

[1, 125]
2

Table 1. Abstract states in the analyzer, presented as ranges for conciseness

2 Backward Analysis using Under-Approximation

The various SAT-based algorithms that constitute our backwards analysis are
orchestrated by a strategy that tries to find a path to the beginning of the program

with minimal effort. Specifically, the idea is to perform iterative deepening when
unrolling loops until either a counterexample is found or a proof that the alarm
was spurious. We illustrate this strategy using Fig. 1 which shows a program
that limits some signed input variable x to 0 ≤ x ≤ 200 and then iteratively
decreases x by one if the original input was x < 100 and by two otherwise.
The abstract states S0, . . . S8 inferred by a forward analysis (here based on
intervals) are stored for each tip of an edge where an edge represents either a
guard or some assignments. The resulting states of the forward analysis are listed

in Table 1. Since S8 violates the assertion x = 0, we propagate the negated
assertion x ≤ −1 ∨ x ≥ 1 backwards as an assumption. As the forward analysis
constitutes a sound over-approximation of the reachable states, we may intersect

the assumption with S8, leading to the refined assumption S�
8 in Table 1. We

follow the flow backwards by applying the guard x ≤ 0 which has no effect on S�
8.

At this point, we try to continue backwards without entering the loop. This
strategy ensures that the simplest counterexample is found first. However, in this

case S�
8 conjoined with S5 yields an empty state, indicating that the chosen path

cannot represent a counterexample. The only feasible trace is therefore one that
passes through the loops that we have skipped so far. In the example, only one
loop exists on the path, and we calculate the effect of this loop having executed
0, . . . , 2i times, beginning with i = 0. At the bit-level, the effect of executing a
loop body backwards can be modelled as a Boolean function f which one can
compose with itself to express the effect of executing the body twice: f2 = f ◦ f .
For the sake of presentation, let f ∨ f2 denote the effect of executing the loop
once or twice. We then pre-compute f2i

and express the semantics of 0, . . . , 2i

Tuesday, April 10, 2012

Inferring Definitive Counterexamples Jörg Brauer, Axel Simon

Analysis of Loops

22

x=min(x,200); r=2

x=max(x,0); r=1

S1

S2

S4

S5
x<100

x!100

x=x-r

x>0

x"0
assert(x==0);

S3

S6

S7

S8S0

x=min(x,200); r=2

x=max(x,0); r=1

S1

S2

S4

S5
x<100

x!100

x=x-r

x>0

x"0
assert(x==0);

S3

S6

S7

S8S0

Fig. 1. Backward propagation past a loop

i 0 1 2 3 4 5 6 7 8

Si =


x
r

any
any

≤ 99
any

[0, 99]
[1, 1]

≥ 100
any

[100, 200]
[2, 2]

[0, 200]
[1, 2]

[1, 200]
[1, 2]

[−1, 199]
[1, 2]

[−1, 0]
[1, 2]

S�
i =


x
r

⊥ ⊥ 1
2

[0, 1]
[1, 2]

−1
[1, 2]

−1
[1, 2]

S��
i =


x
r

[101, 125]
2

⊥ [101, 125]
2

[101, 125]
2

[1, 125]
2

Table 1. Abstract states in the analyzer, presented as ranges for conciseness

2 Backward Analysis using Under-Approximation

The various SAT-based algorithms that constitute our backwards analysis are
orchestrated by a strategy that tries to find a path to the beginning of the program

with minimal effort. Specifically, the idea is to perform iterative deepening when
unrolling loops until either a counterexample is found or a proof that the alarm
was spurious. We illustrate this strategy using Fig. 1 which shows a program
that limits some signed input variable x to 0 ≤ x ≤ 200 and then iteratively
decreases x by one if the original input was x < 100 and by two otherwise.
The abstract states S0, . . . S8 inferred by a forward analysis (here based on
intervals) are stored for each tip of an edge where an edge represents either a
guard or some assignments. The resulting states of the forward analysis are listed

in Table 1. Since S8 violates the assertion x = 0, we propagate the negated
assertion x ≤ −1 ∨ x ≥ 1 backwards as an assumption. As the forward analysis
constitutes a sound over-approximation of the reachable states, we may intersect

the assumption with S8, leading to the refined assumption S�
8 in Table 1. We

follow the flow backwards by applying the guard x ≤ 0 which has no effect on S�
8.

At this point, we try to continue backwards without entering the loop. This
strategy ensures that the simplest counterexample is found first. However, in this

case S�
8 conjoined with S5 yields an empty state, indicating that the chosen path

cannot represent a counterexample. The only feasible trace is therefore one that
passes through the loops that we have skipped so far. In the example, only one
loop exists on the path, and we calculate the effect of this loop having executed
0, . . . , 2i times, beginning with i = 0. At the bit-level, the effect of executing a
loop body backwards can be modelled as a Boolean function f which one can
compose with itself to express the effect of executing the body twice: f2 = f ◦ f .
For the sake of presentation, let f ∨ f2 denote the effect of executing the loop
once or twice. We then pre-compute f2i

and express the semantics of 0, . . . , 2i

Tuesday, April 10, 2012

Inferring Definitive Counterexamples Jörg Brauer, Axel Simon

Analysis of Loops

23

x=min(x,200); r=2

x=max(x,0); r=1

S1

S2

S4

S5
x<100

x!100

x=x-r

x>0

x"0
assert(x==0);

S3

S6

S7

S8S0

x=min(x,200); r=2

x=max(x,0); r=1

S1

S2

S4

S5
x<100

x!100

x=x-r

x>0

x"0
assert(x==0);

S3

S6

S7

S8S0

Fig. 1. Backward propagation past a loop

i 0 1 2 3 4 5 6 7 8

Si =


x
r

any
any

≤ 99
any

[0, 99]
[1, 1]

≥ 100
any

[100, 200]
[2, 2]

[0, 200]
[1, 2]

[1, 200]
[1, 2]

[−1, 199]
[1, 2]

[−1, 0]
[1, 2]

S�
i =


x
r

⊥ ⊥ 1
2

[0, 1]
[1, 2]

−1
[1, 2]

−1
[1, 2]

S��
i =


x
r

[101, 125]
2

⊥ [101, 125]
2

[101, 125]
2

[1, 125]
2

Table 1. Abstract states in the analyzer, presented as ranges for conciseness

2 Backward Analysis using Under-Approximation

The various SAT-based algorithms that constitute our backwards analysis are
orchestrated by a strategy that tries to find a path to the beginning of the program

with minimal effort. Specifically, the idea is to perform iterative deepening when
unrolling loops until either a counterexample is found or a proof that the alarm
was spurious. We illustrate this strategy using Fig. 1 which shows a program
that limits some signed input variable x to 0 ≤ x ≤ 200 and then iteratively
decreases x by one if the original input was x < 100 and by two otherwise.
The abstract states S0, . . . S8 inferred by a forward analysis (here based on
intervals) are stored for each tip of an edge where an edge represents either a
guard or some assignments. The resulting states of the forward analysis are listed

in Table 1. Since S8 violates the assertion x = 0, we propagate the negated
assertion x ≤ −1 ∨ x ≥ 1 backwards as an assumption. As the forward analysis
constitutes a sound over-approximation of the reachable states, we may intersect

the assumption with S8, leading to the refined assumption S�
8 in Table 1. We

follow the flow backwards by applying the guard x ≤ 0 which has no effect on S�
8.

At this point, we try to continue backwards without entering the loop. This
strategy ensures that the simplest counterexample is found first. However, in this

case S�
8 conjoined with S5 yields an empty state, indicating that the chosen path

cannot represent a counterexample. The only feasible trace is therefore one that
passes through the loops that we have skipped so far. In the example, only one
loop exists on the path, and we calculate the effect of this loop having executed
0, . . . , 2i times, beginning with i = 0. At the bit-level, the effect of executing a
loop body backwards can be modelled as a Boolean function f which one can
compose with itself to express the effect of executing the body twice: f2 = f ◦ f .
For the sake of presentation, let f ∨ f2 denote the effect of executing the loop
once or twice. We then pre-compute f2i

and express the semantics of 0, . . . , 2i

Tuesday, April 10, 2012

Inferring Definitive Counterexamples Jörg Brauer, Axel Simon

Strategy for Loops

24

Tuesday, April 10, 2012

Inferring Definitive Counterexamples Jörg Brauer, Axel Simon

Strategy for Loops

• whenever backwards propagation fails at p

• for each loop between assertion and p

• double the number of unrollings

• until backward propagation succeeds

24

Tuesday, April 10, 2012

Inferring Definitive Counterexamples Jörg Brauer, Axel Simon

Strategy for Loops

• whenever backwards propagation fails at p

• for each loop between assertion and p

• double the number of unrollings

• until backward propagation succeeds

• cheaper: infer minimal no of unrollings

24

Tuesday, April 10, 2012

Inferring Definitive Counterexamples Jörg Brauer, Axel Simon

Minimal no. of Unrollings

25

Tuesday, April 10, 2012

Inferring Definitive Counterexamples Jörg Brauer, Axel Simon

Minimal no. of Unrollings

• many loops have a counter: f≡⟦i’=i+1⟧

25

Tuesday, April 10, 2012

Inferring Definitive Counterexamples Jörg Brauer, Axel Simon

Minimal no. of Unrollings

• many loops have a counter: f≡⟦i’=i+1⟧

• infer affine transformations in f

25

Tuesday, April 10, 2012

Inferring Definitive Counterexamples Jörg Brauer, Axel Simon

Minimal no. of Unrollings

• many loops have a counter: f≡⟦i’=i+1⟧

• infer affine transformations in f

• if a loop must be unrolled at least 2i times:

• calculate φi+1=φi⋅f2i

• instead of φi+1=φi⋁φi⋅f2i

25

Tuesday, April 10, 2012

Inferring Definitive Counterexamples Jörg Brauer, Axel Simon

Remove Spurious
Warnings

• there exists an i such that φi+1⊧φi

• in this state, the warning is spurious:

26

1 unsigned i n t log2 (unsigned char c) {
2 unsigned char i = 0 ;
3 i f (c==0) re turn 0 ; e l s e c−−;
4 whi l e (c > 0) {
5 i = i + 1 ;
6 c = c >> 1 ;
7 }
8 a s s e r t (i <= 7) ;
9 re turn i ;

10 }

Fig. 2. Computation of the log2 of an unsigned integer c; even though the code is correct,
abstract interpreters based on domains such as convex polyhedra emit a warning

3 Eliminating False Positives

Consider the program in Fig. 2, which computes the logarithm to the base 2 of an
unsigned character c (a bit-vector of length 8) and stores the result in i. Clearly,
i should hold a value less than 8, which is formulated in terms of an assertion.
The assertion is valid, yet most abstract interpreters emit a warning; typical
domains fail to capture the relation between i, which is used in the assertion, and
c, which specifies the termination condition. We build towards our technique,
which proves the non-existence of a defective path, in three steps.

3.1 Concrete relational semantics in Boolean logic

To mark the warning as spurious, our analysis thus attempts to exclude all paths
that lead to a state satisfying the invariant ι = (0 ≤ i ≤ 255∧0 ≤ c ≤ 0) produced
by the forward analysis for line 8, and at the same time violates 0 ≤ i ≤ 7. We
express the concrete relational semantics of each block in the program in Boolean
logic. The values of i on entry and exit of each basic block are represented using
bit-vectors i and i�, respectively. Likewise, use bit-vectors c and c� to represent c.
In the following, let �x� =

�7
i=0 2i ·x[i] denote the unsigned value of a bit-vector

x, and let x[j] denote the jth bit of x. Let the notation �·� encode an arithmetic
constraint as Boolean formula. Then, fI(V ,V �) := �i� = 0, c �= 0, c� = c − 1�
encodes the initialization block of the function over inputs V = {c, i} and outputs
V � = {c�, i�}. In a similar fashion, fL(V ,V �) encodes the loop body:

fI(V ,V �) =
��7

j=0 ¬i�[j] ∧
�7

j=0 c�[j] ∧ ((
�7

j=0 c[j] ↔ (c�[j]⊕
�j−1

k=0 c�[k])

fL(V ,V �) =

�
(
�7

j=0 c[j]) ∧ ¬c�[7] ∧ (
�6

j=0 c�[j] ↔ c[j + 1])∧
(
�7

j=0 i�[j] ↔ (i[j]⊕
�j−1

k=0 i[k])

In order to find a path to a state that satisfies ι and violates the assertion, encode ι
in Boolean logic as �ι� =

�7
j=0 ¬c[j]. Furthermore, let �0 ≤ �i� ≤ 7� =

�7
j=4 ¬i[j]

encode the assertion. The error state g(V) after the loop is given as:

Tuesday, April 10, 2012

Inferring Definitive Counterexamples Jörg Brauer, Axel Simon

Projection

27

Tuesday, April 10, 2012

Inferring Definitive Counterexamples Jörg Brauer, Axel Simon

Projection

• formula f relates input s to output s’

27

Tuesday, April 10, 2012

Inferring Definitive Counterexamples Jörg Brauer, Axel Simon

Projection

• formula f relates input s to output s’

• for f2=f⋅f must rename s, s’ to s’, s”

27

Tuesday, April 10, 2012

Inferring Definitive Counterexamples Jörg Brauer, Axel Simon

Projection

• formula f relates input s to output s’

• for f2=f⋅f must rename s, s’ to s’, s”

• cannot rename variables forever: calculating
f4=f2⋅f2 requires two copies of f2

27

Tuesday, April 10, 2012

Inferring Definitive Counterexamples Jörg Brauer, Axel Simon

Projection

• formula f relates input s to output s’

• for f2=f⋅f must rename s, s’ to s’, s”

• cannot rename variables forever: calculating
f4=f2⋅f2 requires two copies of f2

• f2i requires formula of size O(2i)

27

Tuesday, April 10, 2012

Inferring Definitive Counterexamples Jörg Brauer, Axel Simon

Projection

• formula f relates input s to output s’

• for f2=f⋅f must rename s, s’ to s’, s”

• cannot rename variables forever: calculating
f4=f2⋅f2 requires two copies of f2

• f2i requires formula of size O(2i)

• use projection: f2=∃vars(s’)(f⋅f)

27

Tuesday, April 10, 2012

Inferring Definitive Counterexamples Jörg Brauer, Axel Simon

Implementation of ∃

• algorithm of [Brauer et al., CAV’11]:

• given a CNF: c1∧...∧cn,

• for a subset of variables:

• calculate d1, d1∨d2, ..., d1∨...∨dm
with d1∨...∨dm ⊧ ... d1∨d2 ⊧ d1

• once DNF is complete, apply alg. again

28

Tuesday, April 10, 2012

Inferring Definitive Counterexamples Jörg Brauer, Axel Simon

Under-Approximations

29

Tuesday, April 10, 2012

Inferring Definitive Counterexamples Jörg Brauer, Axel Simon

Under-Approximations

• strategy: stop calculating DNF d1,
d1∨d2, ..., d1∨...∨dm after threshold m

29

Tuesday, April 10, 2012

Inferring Definitive Counterexamples Jörg Brauer, Axel Simon

Under-Approximations

• strategy: stop calculating DNF d1,
d1∨d2, ..., d1∨...∨dm after threshold m

• sub-sequence is under-approximation

29

Tuesday, April 10, 2012

Inferring Definitive Counterexamples Jörg Brauer, Axel Simon

Under-Approximations

• strategy: stop calculating DNF d1,
d1∨d2, ..., d1∨...∨dm after threshold m

• sub-sequence is under-approximation

• may be enough to find backward trace

29

Tuesday, April 10, 2012

Inferring Definitive Counterexamples Jörg Brauer, Axel Simon

Under-Approximations

• strategy: stop calculating DNF d1,
d1∨d2, ..., d1∨...∨dm after threshold m

• sub-sequence is under-approximation

• may be enough to find backward trace

• could stop calculation of DNF at depth m

29

Tuesday, April 10, 2012

Inferring Definitive Counterexamples Jörg Brauer, Axel Simon

Under-Approximations

• strategy: stop calculating DNF d1,
d1∨d2, ..., d1∨...∨dm after threshold m

• sub-sequence is under-approximation

• may be enough to find backward trace

• could stop calculation of DNF at depth m

• iterative deepening by increasing m?

29

Tuesday, April 10, 2012

Inferring Definitive Counterexamples Jörg Brauer, Axel Simon

Incremental Backward
Analysis

30

1 unsigned i n t hamDist (i n t x , i n t y) {
2 unsigned i n t d = 0 ;
3 unsigned i n t v = x ˆ y ;
4 whi l e (v != 0) {
5 d = d + 1 ;
6 v = v & (v − 1) ;
7 }
8 a s s e r t (d < 32) ;
9 re turn d ;

10 }

Fig. 3. Erroneous hamming distance calculation; the assertion in line 8 does not hold

Note that, due to monotonicity, there exists an i ≥ 0 with ϕi(V) |= ϕi−1(V). In

the example, since ϕ4(V) |= ϕ3(V) and ϕ3(V) ∧ �ω� is unsatisfiable, we deduce

that no trace from �ω� to the erroneous state g(V) exists that iterates more than

eight times. Hence, the warning emitted by the forward analysis is spurious. In

certain cases, calculating ϕi can become too costly, which is addressed next.

4 Finding Counterexamples

Although the iterative deepening heuristic reduces the complexity of the generated

formulae, exact state spaces cannot always be computed since calculating ∃V � :
f2i

(V ,V �
) ∧ ϕi−1(V �

) may result in an exponentially sized formula. However, if

the aim is to only find a counterexample rather than eliminating false positives, an

under-approximation of the projection ∃V �
: ψ suffices. In order to illustrate the

idea, consider Fig. 3 which presents a function to calculate the Hamming distance

of two integers x and y. Once more, we bit-blast the concrete semantics of both,

loop body and loop pre-condition. Here, ⊕ denotes the Boolean exclusive-or and

u is an auxiliary bit-vector that captures the intermediate value of v-1:

fI(V ,V �) =
��31

j=0 ¬d�[j] ∧
�31

j=0 v�[i] ↔ x[j]⊕ y[j]

fL(V ,V �) =

�
(
�31

j=0 d�[j] ↔ (d[j]⊕
�j−1

k=0 d[k])) ∧ (
�31

j=0 v[j])∧
(
�31

j=0 v[j] ↔ (u[j]⊕
�j−1

k=0 u[k])) ∧ (
�31

j=0 v�[j] ↔ (v[j] ∧ u[j]))

As before, let ι = (�v� = 0 ∧ �d� = �) describe the invariant derived at the
assertion which was inferred during the forward analysis and let ω = (�d� =
0 ∧ �v� = �x� ⊕ �y�) represent the state at loop entry. The erroneous state after
the loop is thus characterized as g(V) = �ι� ∧

�31
j=5 d[j] in Boolean logic.

4.1 Lower Bounds on the Number of Loop Iterations

Again, to compute a lower bound on the number of loop iterations required to
reach the erroneous state g(V) from the pre-condition V � defined by fI(V ,V �),

Tuesday, April 10, 2012

Inferring Definitive Counterexamples Jörg Brauer, Axel Simon

Approximation Strategy

31

Tuesday, April 10, 2012

Inferring Definitive Counterexamples Jörg Brauer, Axel Simon

Approximation Strategy

• affine relations: at least 32 iterations

31

Tuesday, April 10, 2012

Inferring Definitive Counterexamples Jörg Brauer, Axel Simon

Approximation Strategy

• affine relations: at least 32 iterations

• f32 is very complex to calculate, so approx!

31

Tuesday, April 10, 2012

Inferring Definitive Counterexamples Jörg Brauer, Axel Simon

Approximation Strategy

• affine relations: at least 32 iterations

• f32 is very complex to calculate, so approx!

• limiting m doesn’t scale: m=1: 231≤d≤232-1

31

Tuesday, April 10, 2012

Inferring Definitive Counterexamples Jörg Brauer, Axel Simon

Approximation Strategy

• affine relations: at least 32 iterations

• f32 is very complex to calculate, so approx!

• limiting m doesn’t scale: m=1: 231≤d≤232-1

• search for traces that emanate near
correct/incorrect boundary in ψ

31

Tuesday, April 10, 2012

Inferring Definitive Counterexamples Jörg Brauer, Axel Simon

Approximation Strategy

• affine relations: at least 32 iterations

• f32 is very complex to calculate, so approx!

• limiting m doesn’t scale: m=1: 231≤d≤232-1

• search for traces that emanate near
correct/incorrect boundary in ψ

• in example: try 25≤d≤26, 26≤d≤27,...

31

Tuesday, April 10, 2012

Inferring Definitive Counterexamples Jörg Brauer, Axel Simon

Implementation

• affine loop transfer function: SAT4J

• projection: MiniSat for CNF→DNF

• BDD for DNF→CNF using CUDD 2.4.2

• tracked times for

• loop transfer function synthesis (TF)

• counter example generation (CE)

32

Tuesday, April 10, 2012

Inferring Definitive Counterexamples Jörg Brauer, Axel Simon

Experiments

33

Benchmark # Instr.
Runtime (Full) Runtime (Simp.)
TF CE TF CE

bit-cnt 26 4.1s 0.9s 0.4s 0.4s
ham-dist 19 4.8s 1.7s 0.8s 0.3s
inc-lshift 14 3.2s 2.7s 0.8s 0.6s
log 22 1.9s 1.3s 0.3s 0.3s
parity 28 8.3s 1.2s 1.2s 0.4s
parity mit 17 6.2s 2.6s 1.5s 1.2s
randerson 23 8.0s 2.4s 4.2s 0.6s
swap 15 5.9s 1.8s 0.9s 0.5s
loops 207 43.6s 8.0s 13.1s 5.8s
Table 2. Experimental results for PLC benchmarks

Hence, we employ a heuristic that constrains g(V) so that a sub-range of

target values are considered that lie close to the feasible state, extending the sub-

range to the next power of two iff the given under-approximation is insufficient
for finding a counterexample. This is a straightforward extension considering the

bit-level encodings of integer values. For the example in Sect. 4, this strategy is
applied as follows: The goal-state requires 2

5 ≤ �d� ≤ 2
32−1. In the first iteration,

our strategy tries to find values that satisfy 25 ≤ �d� ≤ 26. If no counterexample
is found, we proceed with 2

5 ≤ �d� ≤ 2
7
, and so forth. This focusses model

enumeration to regions that are more likely to contain an actual trace. These

simpler models also reduce the runtime of computing projection. The difference
is shown in the columns “Runtime (Simp.)”, showing significant speed-ups to

find counterexamples compared to the “Full” column where g is used without

restrictions. Depending on the problems, counterexamples can be found up to 10

times faster by searching near states that do not violate the assertion.

5.3 Discussion

Using Boolean functions to represent a program state has obvious limits. However,

when trading the ability to remove false positives for the aspiration of finding

backwards traces, under-approximation can yield useful results, even on complex

loops. Interestingly, each prime implicant and each sub-range can be tested for
feasibility in parallel, which squares with the advent of multi-core processors and

may allow the search for counterexamples on larger computer clusters.

6 Related Work

A sound static analysis, usually expressed using the abstract interpretation frame-

work [10], is bound to calculate an over-approximate result to elude undecidability.

Due to over-approximation, a safety property may not be verifiable even though
it holds. In this case, the emitted warning is a so-called false positive [3] which
cannot a priori be distinguished from an actual defect in the software. While

an analysis with zero false positives is possible [11], it is crucial to understand

Tuesday, April 10, 2012

Inferring Definitive Counterexamples Jörg Brauer, Axel Simon

Related Approaches

• CEGAR: counter example in the model is
given by model checker

• need to find trace in concrete semantics

• bounded model checking: limit unrollings

• we refine/unroll back to front

• backward over-approximation

34

Tuesday, April 10, 2012

Inferring Definitive Counterexamples Jörg Brauer, Axel Simon

Future Work

35

Tuesday, April 10, 2012

Inferring Definitive Counterexamples Jörg Brauer, Axel Simon

Future Work

• scalability

• use cheaper domains if possible

• combine with domains that are able to
express abduction (SMT?)

• allow for user input

35

Tuesday, April 10, 2012

Inferring Definitive Counterexamples Jörg Brauer, Axel Simon

Future Work

• scalability

• use cheaper domains if possible

• combine with domains that are able to
express abduction (SMT?)

• allow for user input

• lose soundness: allow for qualified traces?

35

Tuesday, April 10, 2012

