
Automated Analysis of Parametric
Timing-Based Mutual Exclusion Algorithms

(slides revision: Tuesday 10th April, 2012, 21:03)

R. Bruttomesso, A. Carioni, S. Ghilardi, S. Ranise

University of Milan, Italy
FBK Trento, Italy

April 4, 2012

R. Bruttomesso (UniMi) NFM 2012 April 4, 2012 1 / 30

Outline

1 Introduction

2 Mutual Exclusion Algorithms
Asynchrounous Mutual Exclusion Algorithms
Infinite-State Safety Verification with mcmt

3 Mutual Exclusion and Deadlock Freedom
Timing-based Mutual Exclusion Algorithms
Infinite-State Safety Verification with mcmt

4 Deadlock-Freedom via Waiting time constraints
Verification
Automatic Verification
Automatic Synthesis

5 Conclusion

R. Bruttomesso (UniMi) NFM 2012 April 4, 2012 2 / 30

Introduction

Mutual Exclusion Algorithms

remainder: the region of code not
concerned with the access to
critical resources

trying: the region of code where
the process tries to acquire access
to the critical region

critical: the region of code with
exclusive access

exit: the region of code where the
process exits from the critical
region

Process i:

repeat forever
remainder region
trying region
critical region
exit region

end repeat

R. Bruttomesso (UniMi) NFM 2012 April 4, 2012 4 / 30

Properties of interest

Mutual Exclusion (MEX): in any
reachable state, at most one
process is in its critical region (it
is a safety property)

Deadlock Freedom (DF): in any
execution, if some process is in the
trying region, and no process is in
the critical region, then eventually
some process enters the critical
region (it is not a safety property)

Process i:

repeat forever
remainder region
trying region
critical region
exit region

end repeat

We assume there are N processes running concurrently (but N is
never fixed during verification, it’s a parameter: result of verification
is valid for every N .)

R. Bruttomesso (UniMi) NFM 2012 April 4, 2012 5 / 30

Properties of interest

Mutual Exclusion (MEX): in any
reachable state, at most one
process is in its critical region (it
is a safety property)

Deadlock Freedom (DF): in any
execution, if some process is in the
trying region, and no process is in
the critical region, then eventually
some process enters the critical
region (it is not a safety property)

Process i:

repeat forever
remainder region
trying region
critical region
exit region

end repeat

We assume there are N processes running concurrently (but N is
never fixed during verification, it’s a parameter: result of verification
is valid for every N .)

R. Bruttomesso (UniMi) NFM 2012 April 4, 2012 5 / 30

Mutual Exclusion Algorithms

Lamport’s Mutual Exclusion Algorithm

Simple algorithm based on two
“barriers”

Uses two shared registers

x holds process id that may
access the critical region
y set to 1 when some

process wants to access the
critical region

Algorithm 1

x, y: shared registers
initially y = 0

repeat forever
0: remainder exiti
1: x := i;
2: if y 6= 0 then goto 1;
3: y := 1;
4: if x 6= i then goto 1;
5: critical entryi
6: critical exiti
7: y := 0;
8: remainder entryi
end repeat

R. Bruttomesso (UniMi) NFM 2012 April 4, 2012 7 / 30

Infinite-State Safety Verification with mcmt

mcmt (Model Checking Modulo Theories)1 verifies safety of
array-based-systems, which are suitable to encode interactions of
processes in a protocol

Intuitively, a[i] indicates a value for process i (array is not bounded)

An array-based-system is a transition system

(a, I, τ)

where

a is a tuple of arrays (they are the state variables)
I is the initial state of the form ∀i. ϕ(i, a[i])
τ is the transition relation of the form

∨
l τl

where τl = ∃i. (ϕ(i, a[i]) ∧ Update(i, a′, a))

1
Please ref. to – Backward Reachability of Array-based Systems by SMT-solving: Termination

and Invariant Synthesis, Ghilardi and Ranise – for a thorough and precise description.

R. Bruttomesso (UniMi) NFM 2012 April 4, 2012 8 / 30

Infinite-State Safety Verification with mcmt

mcmt (Model Checking Modulo Theories)1 verifies safety of
array-based-systems, which are suitable to encode interactions of
processes in a protocol

Intuitively, a[i] indicates a value for process i (array is not bounded)

An array-based-system is a transition system

(a, I, τ)

where

a is a tuple of arrays (they are the state variables)
I is the initial state of the form ∀i. ϕ(i, a[i])
τ is the transition relation of the form

∨
l τl

where τl = ∃i. (ϕ(i, a[i]) ∧ Update(i, a′, a))

1
Please ref. to – Backward Reachability of Array-based Systems by SMT-solving: Termination

and Invariant Synthesis, Ghilardi and Ranise – for a thorough and precise description.

R. Bruttomesso (UniMi) NFM 2012 April 4, 2012 8 / 30

Lamport’s Mutual Exclusion Algorithm

Initial I

∀i. (y = 0 ∧ pc[i] = 0)

Transition τ1

∃i. (pc[i] = 0 ∧
pc′ = λj. ite(i = j, 1, pc[j]))

Transition Relation T =
∨
l τl

(Negation of) Property MEX

∃i, k. (i 6= k ∧
5 ≤ pc[i] ≤ 6 ∧
5 ≤ pc[k] ≤ 6)

Algorithm 1

x, y: shared registers
initially y = 0

repeat forever
0: remainder exiti
1: x := i;
2: if y 6= 0 then goto 1;
3: y := 1;
4: if x 6= i then goto 1;
5: critical entryi
6: critical exiti
7: y := 0;
8: remainder entryi
end repeat

R. Bruttomesso (UniMi) NFM 2012 April 4, 2012 9 / 30

Lamport’s Mutual Exclusion Algorithm

Initial I

∀i. (y = 0 ∧ pc[i] = 0)

Transition τ1

∃i. (pc[i] = 0 ∧
pc′ = λj. ite(i = j, 1, pc[j]))

Transition Relation T =
∨
l τl

(Negation of) Property MEX

∃i, k. (i 6= k ∧
5 ≤ pc[i] ≤ 6 ∧
5 ≤ pc[k] ≤ 6)

Algorithm 1

x, y: shared registers
initially y = 0

repeat forever
0: remainder exiti
1: x := i;
2: if y 6= 0 then goto 1;
3: y := 1;
4: if x 6= i then goto 1;
5: critical entryi
6: critical exiti
7: y := 0;
8: remainder entryi
end repeat

R. Bruttomesso (UniMi) NFM 2012 April 4, 2012 9 / 30

Infinite-State Safety Verification with mcmt

mcmt explores the state space in a backward manner, i.e., it explores
the space of unsafe states starting from the negation of the property

Preimage computation is done in such a way that (previous) unsafe
states remain in the form ∃i. ϕ(i, a[i])

mcmt leverage on the efficiency of SMT-solvers to execute two checks:

Safety check: checks intersection of an unsafe state and I.
If SAT then property violated (system is unsafe)

Fix-point check: check if unsafe states are inductive w.r.t. τ .
If VALID (and Safety check UNSAT) then property holds (system is
safe)

R. Bruttomesso (UniMi) NFM 2012 April 4, 2012 10 / 30

Infinite-State Safety Verification with mcmt

System Status: UNKNOWN

Initial States Reachable States

Unsafe/Bad States Reachable Bad States

R. Bruttomesso (UniMi) NFM 2012 April 4, 2012 11 / 30

Infinite-State Safety Verification with mcmt

System Status: UNKNOWN

Initial States Reachable States

Unsafe/Bad States Reachable Bad States

R. Bruttomesso (UniMi) NFM 2012 April 4, 2012 11 / 30

Infinite-State Safety Verification with mcmt

System Status: UNKNOWN

Initial States Reachable States

Unsafe/Bad States Reachable Bad States

R. Bruttomesso (UniMi) NFM 2012 April 4, 2012 11 / 30

Infinite-State Safety Verification with mcmt

System Status: UNSAFE

Initial States Reachable States

Unsafe/Bad States Reachable Bad States

R. Bruttomesso (UniMi) NFM 2012 April 4, 2012 11 / 30

Infinite-State Safety Verification with mcmt

System Status: UNSAFE

τ2

τ3 τ2

τ4

Initial States Reachable States

Unsafe/Bad States Reachable Bad States

R. Bruttomesso (UniMi) NFM 2012 April 4, 2012 11 / 30

Infinite-State Safety Verification with mcmt

System Status: SAFE

τ1

τ4
τ2

τ5

τ3

Initial States Reachable States

Unsafe/Bad States Reachable Bad States

R. Bruttomesso (UniMi) NFM 2012 April 4, 2012 11 / 30

Infinite-State Safety Verification with mcmt

System Status: SAFE

Initial States Reachable States

Unsafe/Bad States Reachable Bad States

R. Bruttomesso (UniMi) NFM 2012 April 4, 2012 11 / 30

Lamport’s Mutual Exclusion Algorithm

The property MEX is verified almost istantaneously by mcmt2

Protocol Property Result Time (s)

Lamport MEX SAFE 0.04

2Tools, encoded protocols, and results are available at
http://www.oprover.org/mcmt_lynch_shavit.html

R. Bruttomesso (UniMi) NFM 2012 April 4, 2012 12 / 30

http://www.oprover.org/mcmt_lynch_shavit.html

Mutual Exclusion and

Deadlock-Freedom

Mutual Exclusion Algorithm and Deadlock-Freedom
The asynchronous case

Consider the case in which we want to guarantee Deadlock-Freedom in
addition to Mutual Exclusion.

There is a limitation of asynchronous algorithms (such as the
Lamport’s) with respect to DF which makes them impractical:

Theorem (Burns and Lynch ’89)
There is no asynchronous algorithm providing MEX and DF for n ≥ 2
processes using fewer than n shared read/write registers.

Solution: introduce the notion of time in the protocol (timing-based
algorithms).

R. Bruttomesso (UniMi) NFM 2012 April 4, 2012 14 / 30

Timing-based Mutual Exclusion Algorithms

In a timing-based algorithm, each process has a local notion of time

In particular

TC1: each process must execute a step in a given interval [1, C]

TC2: a process can pause its execution with a pause(delay)
instruction, whose duration is in (F,G]

C,F,G

are 3 parameters (they will have no fixed value in our verification)
subjected to the condition

1 ≤ C ≤ F ≤ G

TC1 and TC2 are called Timing Constraints

R. Bruttomesso (UniMi) NFM 2012 April 4, 2012 15 / 30

Timing-based Mutual Exclusion Algorithms

Algorithm 1

x, y: shared registers
initially y = 0

repeat forever
0: remainder exiti
1: x := i;
2: if y 6= 0 then goto 1;
3: y := 1;
4: if x 6= i then goto 1;
5: critical entryi
6: critical exiti
7: y := 0;
8: remainder entryi
end repeat

Algorithm 2

x: shared register, initially 0
delay: positive integer constant

repeat forever
0: remainder exiti
1: if x 6= 0 then goto 1;
2: x := i;
3: pause(delay);
4: if x 6= i then goto 1;
5: critical entryi
6: critical exiti
7: x := 0;
8: remainder entryi
end repeat

Algorithm 3

x, y: shared registers initially 0
delay: positive integer constant

repeat forever
0: remainder exiti
1: if x 6= 0 then goto 1;
2: x := i;
3: pause(delay);
4: if x 6= i then goto 1;
5: if y 6= 0 then goto 1;
6: y := 1;
7: if x 6= i then goto 1;
8: critical entryi
9: critical exiti
10: y := 0;
11: x := 0;
12: remainder entryi
end repeat

Lamport’s Fischer’s Lynch-Shavit’s3

Algorithm TC respected TC not respected

Fischer’s MEX, DF DF
Lynch-Shavit MEX, DF MEX

3
Algorithms 2, 3 first proposed in in Timing-based mutual exclusion, Lynch and Shavit.

R. Bruttomesso (UniMi) NFM 2012 April 4, 2012 16 / 30

Encoding Timing-based Algorithms

In order to handle the notion of time we extend array-based-systems into that of
parametrized timed systems.

We introduce:

an array pcclock : pcclock[i] measures the time spent by process i between two

program locations. It is reset to 0 when i changes location.

suitable time constraints (e.g., pcclock[i] ≤ C) are added to the “standard” transitions

time elapsing transitions of the form

∃ε ≥ 0. (∀j. ϕ(j, a[j], pcclock[j], ε) ∧ a′ = a ∧ pc′clock = λj. (pcclock[j] + ε))

which reads as

there is a positive time-elapse ∃ε ≥ 0
such that it holds the invariant ∀j. ϕ(j, a[j], pcclock[j], ε)
the process stays the same a′ = a
but some time has passed pc′clock = λj. (pcclock[j] + ε)

Remark: the guard ∀j. ϕ(j, a[j], pcclock[j], ε) is “problematic” for the framework of
mcmt: an approximated analysis is used (stopping failure model) which still suffices
for proving properties

R. Bruttomesso (UniMi) NFM 2012 April 4, 2012 17 / 30

Encoding Timing-based Algorithms

In order to handle the notion of time we extend array-based-systems into that of
parametrized timed systems.

We introduce:

an array pcclock : pcclock[i] measures the time spent by process i between two

program locations. It is reset to 0 when i changes location.

suitable time constraints (e.g., pcclock[i] ≤ C) are added to the “standard” transitions

time elapsing transitions of the form

∃ε ≥ 0. (∀j. ϕ(j, a[j], pcclock[j], ε) ∧ a′ = a ∧ pc′clock = λj. (pcclock[j] + ε))

which reads as

there is a positive time-elapse ∃ε ≥ 0
such that it holds the invariant ∀j. ϕ(j, a[j], pcclock[j], ε)
the process stays the same a′ = a
but some time has passed pc′clock = λj. (pcclock[j] + ε)

Remark: the guard ∀j. ϕ(j, a[j], pcclock[j], ε) is “problematic” for the framework of
mcmt: an approximated analysis is used (stopping failure model) which still suffices
for proving properties

R. Bruttomesso (UniMi) NFM 2012 April 4, 2012 17 / 30

Encoding Timing-based Algorithms

In order to handle the notion of time we extend array-based-systems into that of
parametrized timed systems.

We introduce:

an array pcclock : pcclock[i] measures the time spent by process i between two

program locations. It is reset to 0 when i changes location.

suitable time constraints (e.g., pcclock[i] ≤ C) are added to the “standard” transitions

time elapsing transitions of the form

∃ε ≥ 0. (∀j. ϕ(j, a[j], pcclock[j], ε) ∧ a′ = a ∧ pc′clock = λj. (pcclock[j] + ε))

which reads as

there is a positive time-elapse ∃ε ≥ 0
such that it holds the invariant ∀j. ϕ(j, a[j], pcclock[j], ε)
the process stays the same a′ = a
but some time has passed pc′clock = λj. (pcclock[j] + ε)

Remark: the guard ∀j. ϕ(j, a[j], pcclock[j], ε) is “problematic” for the framework of
mcmt: an approximated analysis is used (stopping failure model) which still suffices
for proving properties

R. Bruttomesso (UniMi) NFM 2012 April 4, 2012 17 / 30

MEX Verification for Fischer and Lynch-Shavit

Algorithm TC respected TC not respected

Fischer’s MEX, DF DF

Lynch-Shavit MEX, DF MEX

Protocol Property Result Time (s) Notes

Fischer

MEX SAFE 2.64 TC specified

MEX UNSAFE 3.73 TC not specified

MEX + I1 SAFE (0.02 + 0.17) 0.19 Invariant added

Lynch-Shavit

MEX SAFE 24.39 TC specified

MEX SAFE 353.91 TC not specified

MEX abstr. SAFE 8.56 Uses mcmt’s abstraction

R. Bruttomesso (UniMi) NFM 2012 April 4, 2012 18 / 30

Deadlock-Freedom via

Verification and Synthesis of

Waiting-time Constraints

Deadlock-Freedom and Waiting time constraints

Notice that Deadlock-Freedom is not a safety property. However it can be shown that:4

Observation
It is possible to derive an upper bound for an arbitrary process to enter the critical region.
This upper bound is independent from the number running processes, and it is a linear
polynome p(C,G) in the parameters C and G.

Optimal polynomes were (manually) shown to be

p(C,G) = 2G+ 5C for Fischer’s

p(C,G) = 2G+ 9C for Lynch-Shavit’s

Deadlock-Freedom can be recast as

DF: from any reachable state such that

(i) some process is in the trying region

(ii) no process is in the critical region

it is never the case that p(C,G) time passes before a process enters the critical region.

4
See e.g. Chapter 24 of book Distributed Algorithms, Nancy Lynch.

R. Bruttomesso (UniMi) NFM 2012 April 4, 2012 20 / 30

Deadlock-Freedom and Waiting time constraints

Notice that Deadlock-Freedom is not a safety property. However it can be shown that:4

Observation
It is possible to derive an upper bound for an arbitrary process to enter the critical region.
This upper bound is independent from the number running processes, and it is a linear
polynome p(C,G) in the parameters C and G.

Optimal polynomes were (manually) shown to be

p(C,G) = 2G+ 5C for Fischer’s

p(C,G) = 2G+ 9C for Lynch-Shavit’s

Deadlock-Freedom can be recast as

DF: from any reachable state such that

(i) some process is in the trying region

(ii) no process is in the critical region

it is never the case that p(C,G) time passes before a process enters the critical region.

4
See e.g. Chapter 24 of book Distributed Algorithms, Nancy Lynch.

R. Bruttomesso (UniMi) NFM 2012 April 4, 2012 20 / 30

Deadlock-Freedom and Waiting time constraints

Notice that Deadlock-Freedom is not a safety property. However it can be shown that:4

Observation
It is possible to derive an upper bound for an arbitrary process to enter the critical region.
This upper bound is independent from the number running processes, and it is a linear
polynome p(C,G) in the parameters C and G.

Optimal polynomes were (manually) shown to be

p(C,G) = 2G+ 5C for Fischer’s

p(C,G) = 2G+ 9C for Lynch-Shavit’s

Deadlock-Freedom can be recast as

DF: from any reachable state such that

(i) some process is in the trying region

(ii) no process is in the critical region

it is never the case that p(C,G) time passes before a process enters the critical region.

4
See e.g. Chapter 24 of book Distributed Algorithms, Nancy Lynch.

R. Bruttomesso (UniMi) NFM 2012 April 4, 2012 20 / 30

Verification of Waiting time constraints

DF: from any reachable state such that

(i) some process is in the trying region

(ii) no process is in the critical region

it is never the case that p(C,G) time passes before a process enters the critical region.

We automatically verify the optimal bounds by running the following auxiliary
verification problem which has the same transitions of the protocol, but:

I. We introduce a shared absolute clock absclock and a Boolean flag k (k = true

means some process has entered the critical section)

II. We set the initial states as

(a) absclock = 0 and k = false
(b) process 1 is in trying and no process is in critical

III. We declare the unsafe states as absclock > p(C,G) and k = false

IV. We add “manually derived” invariants to overapproximate the set of
reachable states5

5
These invariants are used in proofs in Timing-based mutual exclusion, Lynch and Shavit.

R. Bruttomesso (UniMi) NFM 2012 April 4, 2012 21 / 30

Verification of Waiting time constraints

DF: from any reachable state such that

(i) some process is in the trying region

(ii) no process is in the critical region

it is never the case that p(C,G) time passes before a process enters the critical region.

We automatically verify the optimal bounds by running the following auxiliary
verification problem which has the same transitions of the protocol, but:

I. We introduce a shared absolute clock absclock and a Boolean flag k (k = true

means some process has entered the critical section)

II. We set the initial states as

(a) absclock = 0 and k = false
(b) process 1 is in trying and no process is in critical

III. We declare the unsafe states as absclock > p(C,G) and k = false

IV. We add “manually derived” invariants to overapproximate the set of
reachable states5

5
These invariants are used in proofs in Timing-based mutual exclusion, Lynch and Shavit.

R. Bruttomesso (UniMi) NFM 2012 April 4, 2012 21 / 30

Verification of Waiting time constraints

DF: from any reachable state such that

(i) some process is in the trying region

(ii) no process is in the critical region

it is never the case that p(C,G) time passes before a process enters the critical region.

We automatically verify the optimal bounds by running the following auxiliary
verification problem which has the same transitions of the protocol, but:

I. We introduce a shared absolute clock absclock and a Boolean flag k (k = true

means some process has entered the critical section)

II. We set the initial states as

(a) absclock = 0 and k = false
(b) process 1 is in trying and no process is in critical

III. We declare the unsafe states as absclock > p(C,G) and k = false

IV. We add “manually derived” invariants to overapproximate the set of
reachable states5

5
These invariants are used in proofs in Timing-based mutual exclusion, Lynch and Shavit.

R. Bruttomesso (UniMi) NFM 2012 April 4, 2012 21 / 30

Verification of Waiting time constraints

DF: from any reachable state such that

(i) some process is in the trying region

(ii) no process is in the critical region

it is never the case that p(C,G) time passes before a process enters the critical region.

We automatically verify the optimal bounds by running the following auxiliary
verification problem which has the same transitions of the protocol, but:

I. We introduce a shared absolute clock absclock and a Boolean flag k (k = true

means some process has entered the critical section)

II. We set the initial states as

(a) absclock = 0 and k = false
(b) process 1 is in trying and no process is in critical

III. We declare the unsafe states as absclock > p(C,G) and k = false

IV. We add “manually derived” invariants to overapproximate the set of
reachable states5

5
These invariants are used in proofs in Timing-based mutual exclusion, Lynch and Shavit.

R. Bruttomesso (UniMi) NFM 2012 April 4, 2012 21 / 30

Verification of Waiting time constraints

DF: from any reachable state such that

(i) some process is in the trying region

(ii) no process is in the critical region

it is never the case that p(C,G) time passes before a process enters the critical region.

We automatically verify the optimal bounds by running the following auxiliary
verification problem which has the same transitions of the protocol, but:

I. We introduce a shared absolute clock absclock and a Boolean flag k (k = true

means some process has entered the critical section)

II. We set the initial states as

(a) absclock = 0 and k = false
(b) process 1 is in trying and no process is in critical

III. We declare the unsafe states as absclock > p(C,G) and k = false

IV. We add “manually derived” invariants to overapproximate the set of
reachable states5

5
These invariants are used in proofs in Timing-based mutual exclusion, Lynch and Shavit.

R. Bruttomesso (UniMi) NFM 2012 April 4, 2012 21 / 30

Verification of Waiting time constraints

System Status: UNKNOWN

P
ro

to
co

l
A

u
x
il
ia

ry

Initial

(+ inv)

Reachable

(+ inv)

Initial

Reachable

Bad States

R. Bruttomesso (UniMi) NFM 2012 April 4, 2012 22 / 30

Verification of Waiting time constraints

System Status: UNSAFE ?

P
ro

to
co

l
A

u
x
il
ia

ry

Initial

(+ inv)

Reachable

(+ inv)

Initial

Reachable

Bad States

R. Bruttomesso (UniMi) NFM 2012 April 4, 2012 22 / 30

Verification of Waiting time constraints

System Status: UNSAFE ? No, false alarm !

P
ro

to
co

l
A

u
x
il
ia

ry

Initial

(+ inv)

Reachable

(+ inv)

Initial

Reachable

Bad States

R. Bruttomesso (UniMi) NFM 2012 April 4, 2012 22 / 30

Verification of Waiting time constraints

System Status:

P
ro

to
co

l
A

u
x
il
ia

ry

Initial

(+ inv)

Reachable

(+ inv)

Initial

Reachable

Bad States

R. Bruttomesso (UniMi) NFM 2012 April 4, 2012 22 / 30

Verification of Waiting time constraints

System Status: SAFE

P
ro

to
co

l
A

u
x
il
ia

ry

Initial

(+ inv)

Reachable

(+ inv)

Initial

Reachable

Bad States

R. Bruttomesso (UniMi) NFM 2012 April 4, 2012 22 / 30

Automatic Verification of Waiting time constraints

(IV) We add “manually derived” invariants to overapproximate the set of
reachable states6

It is also possible to mechanize the generation of the “manually derived” invariants. The
stragegy consists in running two different safety problems, say a guesser and a checker.

guesser (the Auxiliary System):

Search for states that violates the provided polynome p(C,G)

If “violating states” are found, pass them to checker

Otherwise p(C,G) holds !

checker (the Original Protocol):

checks if “violating states” provided by guesser are actually reachable in the original
system

If they are reachable, than p(C,G) does not hold !

Otherwise the negation of “violating states” are actually an invariant for the protocol

Add this invariant to the guesser and run it again

6
These invariants are used in proofs in Timing-based mutual exclusion, Lynch and Shavit.

R. Bruttomesso (UniMi) NFM 2012 April 4, 2012 23 / 30

Automatic Verification of Waiting time constraints

(IV) We add “manually derived” invariants to overapproximate the set of
reachable states6

It is also possible to mechanize the generation of the “manually derived” invariants. The
stragegy consists in running two different safety problems, say a guesser and a checker.

guesser (the Auxiliary System):

Search for states that violates the provided polynome p(C,G)

If “violating states” are found, pass them to checker

Otherwise p(C,G) holds !

checker (the Original Protocol):

checks if “violating states” provided by guesser are actually reachable in the original
system

If they are reachable, than p(C,G) does not hold !

Otherwise the negation of “violating states” are actually an invariant for the protocol

Add this invariant to the guesser and run it again

6
These invariants are used in proofs in Timing-based mutual exclusion, Lynch and Shavit.

R. Bruttomesso (UniMi) NFM 2012 April 4, 2012 23 / 30

Automatic Verification of Waiting time constraints

(IV) We add “manually derived” invariants to overapproximate the set of
reachable states6

It is also possible to mechanize the generation of the “manually derived” invariants. The
stragegy consists in running two different safety problems, say a guesser and a checker.

guesser (the Auxiliary System):

Search for states that violates the provided polynome p(C,G)

If “violating states” are found, pass them to checker

Otherwise p(C,G) holds !

checker (the Original Protocol):

checks if “violating states” provided by guesser are actually reachable in the original
system

If they are reachable, than p(C,G) does not hold !

Otherwise the negation of “violating states” are actually an invariant for the protocol

Add this invariant to the guesser and run it again

6
These invariants are used in proofs in Timing-based mutual exclusion, Lynch and Shavit.

R. Bruttomesso (UniMi) NFM 2012 April 4, 2012 23 / 30

Automatic Verification of Waiting time constraints

System Status: UNKNOWN

P
ro

to
co

l
(c

h
ec

k
er

)
A

u
x
il
ia

ry
(g

u
es

se
r)

Initial

Reachable

Initial

Reachable

Bad States

R. Bruttomesso (UniMi) NFM 2012 April 4, 2012 24 / 30

Automatic Verification of Waiting time constraints

System Status: UNSAFE ?

P
ro

to
co

l
(c

h
ec

k
er

)
A

u
x
il
ia

ry
(g

u
es

se
r)

Initial

Reachable

Initial

Reachable

Bad States

R. Bruttomesso (UniMi) NFM 2012 April 4, 2012 24 / 30

Automatic Verification of Waiting time constraints

System Status: UNSAFE ?

P
ro

to
co

l
(c

h
ec

k
er

)
A

u
x
il
ia

ry
(g

u
es

se
r)

Initial

Reachable

Initial

Reachable

Bad States

R. Bruttomesso (UniMi) NFM 2012 April 4, 2012 24 / 30

Automatic Verification of Waiting time constraints

System Status: UNSAFE ? Yes, it is really so

P
ro

to
co

l
(c

h
ec

k
er

)
A

u
x
il
ia

ry
(g

u
es

se
r)

Initial

Reachable

Initial

Reachable

Bad States

R. Bruttomesso (UniMi) NFM 2012 April 4, 2012 24 / 30

Automatic Verification of Waiting time constraints

System Status: UNSAFE ? Yes, it is really so

P
ro

to
co

l
(c

h
ec

k
er

)
A

u
x
il
ia

ry
(g

u
es

se
r)

τ1

τ4

τ2

τ1

τ2

τ1

τ3

τ5

Initial

Reachable

Initial

Reachable

Bad States

R. Bruttomesso (UniMi) NFM 2012 April 4, 2012 24 / 30

Automatic Verification of Waiting time constraints

System Status: UNSAFE ? No, it is a false alarm

P
ro

to
co

l
(c

h
ec

k
er

)
A

u
x
il
ia

ry
(g

u
es

se
r)

Initial

Reachable

Initial

Reachable

Bad States

R. Bruttomesso (UniMi) NFM 2012 April 4, 2012 24 / 30

Automatic Verification of Waiting time constraints

System Status: Adding Negation of Bad State as Invariant !

P
ro

to
co

l
(c

h
ec

k
er

)
A

u
x
il
ia

ry
(g

u
es

se
r)

Initial

Reachable

Initial

Reachable

Bad States

R. Bruttomesso (UniMi) NFM 2012 April 4, 2012 24 / 30

Automatic Verification of Waiting time constraints

System Status: UNKNOWN

P
ro

to
co

l
(c

h
ec

k
er

)
A

u
x
il
ia

ry
(g

u
es

se
r)

Initial

Reachable

Initial

Reachable

Bad States

R. Bruttomesso (UniMi) NFM 2012 April 4, 2012 24 / 30

Automatic Synthesis of Waiting time constraints

Suppose that the polynomes were unknown to us. Using the previous
“Guess-Check” procedure as sub-routine we can synthesize them given
a template

p(C,G) = αG+ βC

by running a sort of “binary search” on the values α, β

α, β Bound Holds Guess-Check Iters Time (s)

Fischer

2, 2 NO 1 62.06
2, 4 NO 5 110.68
2, 5 YES 8 155.56
2, 6 YES 6 130.69
2, 10 YES 3 51.25

Lynch-Shavit

2, 2 NO 1 224.74
2, 8 NO 11 5764.42
2, 9 YES 16 27995.78
2, 10 YES 10 6935.91
2, 14 YES 3 974.06

R. Bruttomesso (UniMi) NFM 2012 April 4, 2012 25 / 30

Automatic Synthesis of Waiting time constraints

Suppose that the polynomes were unknown to us. Using the previous
“Guess-Check” procedure as sub-routine we can synthesize them given
a template

p(C,G) = αG+ βC

by running a sort of “binary search” on the values α, β

α, β Bound Holds Guess-Check Iters Time (s)

Fischer

2, 2 NO 1 62.06
2, 4 NO 5 110.68
2, 5 YES 8 155.56
2, 6 YES 6 130.69
2, 10 YES 3 51.25

Lynch-Shavit

2, 2 NO 1 224.74
2, 8 NO 11 5764.42
2, 9 YES 16 27995.78
2, 10 YES 10 6935.91
2, 14 YES 3 974.06

R. Bruttomesso (UniMi) NFM 2012 April 4, 2012 25 / 30

Conclusion

Conclusion

We have shown a set of techniques to automatically verify
parametrized timed systems

We have applied them to the non-trivial verification of the Fischer and
Lynch-Shavit protocols for an unbounded number of running processes

but they may apply to other timed cases as well (they are generic, not
specific to the two test cases presented)

These techniques include automatic verification of Deadlock-Freedom
by reduction to a number of sub-calls to a safety verification problem

Experiments were run with the tool mcmt showing that the method is
viable and efficient in practice

R. Bruttomesso (UniMi) NFM 2012 April 4, 2012 27 / 30

Thanks for your attention

Fischer’s Mutual Exclusion Algorithm

Transition τ3

∃i. (pc[i] = 1 ∧
pcclock[i] ≥ 1 ∧
x 6= 0 ∧

x′ = x ∧
pc′ = λj. ite(i = j, 1, pc[j]) ∧
pc′clock = λj. ite(i = j, 0, pcclock[j])

)

Algorithm 2

x: shared register, initially 0
delay: positive integer constant

repeat forever
0: remainder exiti
1: if x 6= 0 then goto 1;
2: x := i;
3: pause(delay);
4: if x 6= i then goto 1;
5: critical entryi
6: critical exiti
7: x := 0;
8: remainder entryi
end repeat

R. Bruttomesso (UniMi) NFM 2012 April 4, 2012 29 / 30

Verification of Waiting time constraints

Protocol Property Result Time (s)

Fischer DF + Inv. SAFE (8.95 + 80.97) 89.92

Lynch-Shavit DF + Inv. SAFE (236.51 + 1374.38) 1610.89

R. Bruttomesso (UniMi) NFM 2012 April 4, 2012 30 / 30

	Introduction
	Mutual Exclusion Algorithms
	Asynchrounous Mutual Exclusion Algorithms
	Infinite-State Safety Verification with mcmt

	Mutual Exclusion and Deadlock Freedom
	Timing-based Mutual Exclusion Algorithms
	Infinite-State Safety Verification with mcmt

	Deadlock-Freedom via Waiting time constraints
	Verification
	Automatic Verification
	Automatic Synthesis

	Conclusion

