Open Issues

The following are comments made during the Open Issues Breakout session.

In this session, attendees were invited to raise issues on any topic of concern. In many cases, the topics were not limited to OOT. The list below is an unedited listing of the comments.

Formal Methods:

Why aren’t correct-by-construction and static verification recognized as valuable within the aviation community?

Ignorance about static verification

Documentation of best practices that include formal methods for producing better software

Formal methods should be included in DO-178C, acknowledging the maturity of formal methods.

Determine the gain you get from formal methods by showing how it affects Annex A

Garbage Collection and memory management. Are we “going to fly” garbage collection? There has been a lot of work done in this area and nearing maturity. Destructors/finalizers are a partial alternative, but raise issues of predictability and performance.

Exception handling. Use of this feature raises issues with control flow, run-time support, real-time predictability, and deactivated code.

Concurrency. Use of this feature raises issues with control flow, run-time support, real-time predictability, and deactivated code.

What characteristics of a program make it OO? What tells you that you are dealing with an OO program? (Dynamic dispatching)

Distinction between object-based and object oriented program

What level of capability should we expect from developers and auditors – and how would be measure that?

Does OOT introduce a level of complexity that is not understandable by humans? (spaghetti data structures) Does OOT allow you to more easily slip down the path of complexity?

Does doing OO change the picture that already exists?

Should there be consideration of maintenance of large OO programs? Should the handbook offer guidance for long term maintainability?

Moving target of language standard (e.g., Java moves every 6 months)

Should we be addressing other programming paradigms?

What about the consistency of guidelines among ground-based, space-based, and airborne systems?

Is it worth looking for other instances of object oriented use that should be advised against (such as those given in the multiple inheritance chapter)?

Mapping OO life cycle data to DO-178B section 11 life cycle data; e.g., what are requirements, design, and code in OO?

How do you review code that has been generated by a non-qualified code generator?

If you are going to go OO, you may require more processing power and memory for the delivered system than if you had not used OO

