
FORMAL VERIFICATION OF
TIME-TRIGGERED SYSTEMS

Lee Pike

Submitted to the faculty of the University Graduate School
in partial fulfillment of the requirements

for the degree
Doctor of Philosophy

in the Department of Computer Science
Indiana University
December 12, 2005

Accepted by the Graduate Faculty, Indiana University, in partial fulfillment of the
requirements for the degree of Doctor of Philosophy.

Steven D. Johnson, Ph.D.

Geoffrey Brown, Ph.D.

Lawrence S. Moss, Ph.D.

Paul S. Miner, Ph.D.

December 12, 2005

ii

Copyright 2005
Lee Pike

ALL RIGHTS RESERVED

iii

To Bloomington, Indiana
We parted too soon.

iv

Acknowledgements

I thank Professor Steven Johnson for advising this work while I was in residence

at the NASA Langley Research Center. He introduced me to the field of formal

methods through his excellent graduate course on the subject at Indiana University,

Bloomington. He taught me both how to think and write.

Paul Miner served as my “advisor in residence” at NASA. I thank him for inviting

me to participate in the SPIDER project, for providing me the freedom to pursue

this research, and for his guidance in doing so.

I thank the other members of the SPIDER team including Jeffery Maddalon,

Alfons Geser, Wilfredo Torres-Pomales, and Mahyar Malekpour for their advice and

collaboration. Their contributions to this work are inextricable.

I thank Ricky Butler, the NASA Langley Formal Methods Group leader, for pro-

viding me the opportunity to pursue this research during my employment in his

group. Additionally, I benefited from many discussions with other members of NASA

Langley/National Institute of Aerospace Formal Methods Group, particularly C esar

Muñoz, Ben Di Vito, Victor Carreño, and Radu Siminiceanu.

It was a pleasure to have Professors Geoffrey Brown and Lawrence Moss on my

committee. In particular, Geoffrey kindly gave his time and advice in teaching me

about hardware verification.

The tools employed in this work were developed at SRI, International. I thank

the developers for both excellent tools and for providing guidance on using them

v

effectively. The problems addressed and the approach taken in this work are heavily

influenced by the work of John Rushby of SRI.

I thank Gerald Allwein for his advisement early in my graduate career and for

easing my transition to computer science research. I benefited from collaborations

with Darren Abramson in formal methods at Indiana University (despite losing many

pizzas to him in friendly theorem-proving wagers). I also thank my undergraduate

advisor, Michael O’Rourke, for his continuous support.

Finally, I thank my parents for their support, my brother for showing me what is

important in life, and Mr. Dacolias, the consummate teacher.

vi

Abstract

Fault-tolerant real-time distributed control systems are being developed for next-

generation aircraft and automobiles. They employ numerous complex protocols; be-

cause their uses are safety-critical, the design and implementation of these protocols

must be error-free. The following modeling considerations make the formal verifi-

cation of these protocols difficult: faults, real-time constraints, distributed control,

nonfunctional behavioral requirements, and intricate protocol interactions. We de-

scribe a methodology for the formal verification of time-triggered systems, a class of

synchronized fault-tolerant control and communication architectures.

The methodology centers around the distinct timing assumptions made in time-

triggered systems. First, we describe a set of abstractions for specifying time-triggered

protocols in an untimed synchronous model of computation that is particularly well-

suited for mechanical theorem-proving. The abstractions systematically abstract

faults, data, communication, and fault-masking. An untimed synchronous specifi-

cation simplifies the specification and verification overhead, but a large semantic gap

exists between the timing characteristics of an untimed protocol specification and its

implementation. We therefore extend previous work to formally demonstrate via me-

chanical theorem-proving that under certain assumptions, a simulation exists between

a time-triggered implementation of a protocol and its untimed synchronous specifica-

tion. We then use a combination of bounded model-checking and automated solvers

to verify that realized protocol schedules satisfy the necessary time-triggered assump-

tions. Finally, some protocols do not satisfy the time-triggered model constraints due

vii

to the fact they execute when the system is unsynchronized, such as during startup or

restart. We also use bounded model-checking and automated solvers to verify explicit

real-time models of such protocols.

The methodology is demonstrated by verifying NASA Langley’s SPIDER fly-by-

wire bus architecture.

viii

Contents

List of Figures xi

Chapter 1. Introduction 1

1. Motivation and Approach 3

2. Outline 9

Chapter 2. Preliminaries & Related Work 11

1. Fault-Tolerant Distributed Systems 11

2. Time-Triggered Systems 12

3. Time-Triggered Bus Architectures 14

4. SPIDER 21

5. Time-Triggered System Verification 25

6. Tools 27

7. Timing Models 39

8. Timeout Automata: A Real-Time Model 40

Chapter 3. Synchronous Protocol Verification 43

1. The Synchronous Model 44

2. Abstracting Messages 47

3. Abstracting Faults 48

4. Abstracting Fault-Masking 52

5. Abstracting Communication 55

6. Summary 62

ix

Chapter 4. Time-Triggered Protocol Verification 63

1. The Time-Triggered Model 66

2. Extending The Axiomatization 71

3. Schedule Verification 85

4. Summary 96

Chapter 5. Partially-Synchronous Protocol Verification 97

1. Synchronizing Timeout Automata (STA) 98

2. Case-Study: The SPIDER Reintegration Protocol 108

3. Summary 132

Chapter 6. Conclusion 135

1. Limitations 135

2. Future Work 137

3. Concluding Remarks 140

Bibliography 141

Index 154

Appendix A. Inconsistent Axioms in Rushby’s Specification 160

x

List of Figures

1 Verification Strategy for Time-Triggered Systems 6

1 A Generic Fault-Tolerant Bus Architecture 15

2 SPIDER Architecture 22

3 Set Definition in PVS 30

4 Interactive Proof Session in PVS (Continued in Figure 5) 32

5 Interactive Proof Session in PVS (Continued from Figure 4) 33

6 Rushby’s SAL Specification of the Bakery Algorithm [1] 38

1 Abstract Messages Datatype 48

2 The Inexact Function Condition for Inexact Communication 57

3 Inexact Validity 61

1 Axiom 4.5 68

2 Pipelined Communication Phase (Axiom 4.24) 76

3 The Reception Window (Axiom 4.25) 78

4 Type and Constant Declarations 88

5 SAL Specification of the Generalized System Assumptions 89

6 A Round-Based State Machine 91

7 Clock Synchronization Event-Triggered Schedule Update 94

1 The Train-Gate-Controller 103

xi

2 The Frame Property 112

3 State Machine Model of the Protocol Mode Control 113

4 Synchronization Frame Module 118

5 Operational Node Module 119

6 Operational Clique Module 119

7 The Reintegrator TA Misses Echo Messages 121

8 Faulty Node Module 122

9 Mode Control Module 123

10 Preliminary Diagnosis Module 125

11 Frame Synchronization Module 126

12 Synchronization Capture Module 127

13 The Composition of the Reintegrator’s Modes 127

14 Reintegrator Module 128

15 Full System Composition 128

xii

CHAPTER 1

Introduction

Digital control systems are being designed for use in safety-critical contexts such as

automobiles (“drive-by-wire”) and commercial aircraft (“fly-by-wire”) [2–6]. Safety-

critical systems embedded in commercial aircraft must have a failure rate no worse

than 10−9 per hour of operation [7,8]. A design error causing a system to fail more

often – say once in 108 hours – is unacceptable, yet it is infeasible to determine

whether a system has this reliability through testing alone [9].

The inability to demonstrate correctness through testing motivates us to prove

these systems are correct. A variety of protocols are executed in drive-by-wire and

fly-by-wire systems. The following considerations make the formal modeling and

verification of these protocols difficult: faults, distributed control, nonfunctional be-

havioral requirements, and intricate protocol interactions. Furthermore, regardless of

the protocol or correctness condition to be proved, one must address the real-time

properties of these systems and protocols. The specific class of systems considered in

this dissertation are time-triggered systems . Time-triggered systems are implemented

as distributed systems in which each node in the system is independently-clocked,

and synchronization mechanisms maintain agreement among these local clocks [8].

Time-triggered systems and their protocols make multiple real-time assumptions and

guarantees dependent on the system state; therefore, a variety of real-time models

are used in their specification and verification. Under normal operating conditions,

these systems maintain tight synchronization among the distributed nodes. When the

nodes are tightly synchronized, the temporal behavior of the system can be abstracted

1

1. INTRODUCTION 2

as if the nodes execute in lock-step. This sort of model is the synchronous model or

untimed model . The synchronous abstraction depends on a realization (i.e., a con-

crete implementation – hardware and/or software executing on hardware) satisfying

key properties regarding scheduling, message delays, clock skew, message-reception

windows, and so on. A more fine-grained model that addresses these properties for

time-triggered systems is the time-triggered model . Finally, time-triggered systems

have states in which the temporal assumptions made in the time-triggered model

are not satisfied. In these cases, a more general timing model, such as the partially-

synchronous model is required. This dissertation develops a methodology for reason-

ing within and between these three timing models for time-triggered systems.

The first contribution is a set of abstractions for specifying time-triggered pro-

tocols in a synchronous model that is suited for verification in a higher-order logic

mechanical theorem-prover; in particular, these abstractions model messages, faults,

fault-masking computations, and communication.

A synchronous specification simplifies the specification and verification overhead

by eliminating timing concerns, but a large semantic gap remains between the tim-

ing characteristics of a synchronous protocol specification and its implementation.

Therefore, in the second contribution, the time-triggered model [10] is generalized,

and arbitrary algorithms in the generalization are proved, using mechanical theorem-

proving, to implement their synchronous specifications. We then describe the use

of an automated theorem-proving technique that combines bounded model-checking

with automated solvers for proving safety properties in infinite-state systems. The

technique is used to verify that the protocol implementation schedules satisfy the

time-triggered model constraints.

Finally, there are cases in which the time-triggered assumptions cannot be as-

sumed to hold. In particular, because time-triggered systems are safety-critical, they

1. MOTIVATION AND APPROACH 3

are designed to tolerate faults. The occurrence of faults can drive a time-triggered

system into a state in which the assumptions do not hold. For protocols executing

in these states, our third contribution is a description of how to use the same com-

bination of bounded model-checking and automated solvers to verify parameterized

real-time specifications of the protocols.

The motivating case-study to which we apply the methodology developed in this

work is the SPIDER family time-triggered bus architecture being developed at the

NASA Langley Research Center [11,12]. All of the specifications and proofs described

herein are provided online [13].

1. Motivation and Approach

1.1. Motivation. Proving the correctness of an entire industrial-scale system

such as SPIDER is infeasible, or at the least, it would be the outcome of a “grand

challenge” similar in spirit to the ones outlined by Hoare and Moore [14,15]. There-

fore, a preliminary challenge is to determine those aspects of the system in greatest

need of formal analysis and for which the analysis is feasible.

In this work, we focus on the communication protocols that provide essential

system services and fault-tolerance. One motivation is that the protocols are spec-

ifications of behavior, and a flawed specification results in flawed implementations.

In our case, we are dealing with real-time fault-tolerant protocols, which are partic-

ularly complex, and previous designs have been subtly flawed [16,17]. Furthermore,

the protocols are the most novel aspect of the design of SPIDER and similar bus archi-

tectures. Once the protocols are specified, the design of the hardware and interfaces

of the replicated nodes may be substantial but is largely routine.

After determining what is to be verified, the next question is how to approach the

verification. A way to reduce the complexity of formally verifying an industrial-scale

1. MOTIVATION AND APPROACH 4

system is to develop models that distinguish aspects of its design. Johnson identifies

four general aspects – the “ABCD’s” – of system design: architecture, behavior ,

coordination, and data [18]. Each aspect requires a different perspective. Some

prominent characteristics of SPIDER that make its formal verification challenging

are instances of the ABCD’s:

• Architecture: The number of nodes and interconnects in the topology is

parameterized (SPIDER is a family of architectures).

• Behavior : The protocols are complex and interdependent.

• Coordination: The nodes are independently-clocked, yet communication has

hard real-time deadlines.

• Data: The system is designed to be able to pass multiple kinds of data (e.g.,

clock readings, diagnostic data, sensor readings) and to tolerate data faults.

This work can be understood as developing a set of models for reasoning about the

ABCD’s of safety-critical real-time embedded systems, with an emphasis on behav-

ior and coordination. The synchronous model emphasizes behavior while abstracting

issues relating to architecture, coordination, and data. The time-triggered model

emphases coordination, and we show how to ensure this model is consistent with

the behavioral model. The partially-synchronous model, however, emphasizes both

behavior and coordination, while abstracting architecture and data. Because it em-

phasizes more than one design aspect, it is the most complex and detailed of the

models. To reduce the complexity in reasoning within this model, we use a highly

automated tool and reserve the model for only those cases in which behavior and

coordination must be reasoned about simultaneously.

Of the four aspects, coordination is the most difficult to reason about in fault-

tolerant systems. Real-time behavior in and of itself is notoriously difficult to get

1. MOTIVATION AND APPROACH 5

correct since it requires modeling (some degree of) temporal nondeterminism. Rea-

soning about fault-tolerance, even in the synchronous model, requires modeling non-

deterministic behavior and data modifications introduced by faults. Thus, reasoning

about real-time fault-tolerance requires a model of both sorts of nondeterminism as

well as the additional temporal nondeterminism faults may introduce. Therefore, we

emphasize temporal abstractions in this work. By minimizing the amount of reasoning

that is carried out in a real-time model, the verification effort becomes manageable.

Finally, we do not develop specialized tools or specification languages. Our work

suggests that off-the-shelf tools are adequate for tackling industrial-scale formal ver-

ification challenges. PVS is a mature tool and has been widely applied. SAL is more

recent, but it incorporates technology that has been shown to reduce the verification

effort required in a mechanical theorem-proving approach by orders of magnitude for

some real-time verifications [19]. Furthermore, the strong similarities between the

languages of PVS and SAL simplify heterogeneous approaches to formal reasoning.

The heterogeneous reasoning we carry out is an instance of a more general effort to

integrate tools for formal specification and verification [20–22].

1.2. Approach. The methodology as applied to SPIDER is illustrated in Fig-

ure 1. Four protocols essential to SPIDER are shown: an interactive consistency

protocol (IC Protocol), a distributed diagnosis protocol (DD Protocol), a clock syn-

chronization protocol (CS Protocol), and a reintegration protocol (RI Protocol). Of

these four protocols, three have synchronous specifications, as depicted. The pro-

tocols are interdependent, such that the guarantees provided by one protocol (the

satisfied by relation) serve as assumptions or preconditions for another (the assumes

relation). In particular, both the interactive consistency and distributed diagnosis

protocols depend on the correctness of the clock synchronization protocol, and the

clock synchronization protocol depends on the correctness of the distributed diagnosis

1. MOTIVATION AND APPROACH 6

time−triggered model

synchronous model

DD Protocol

implements

IC Protocol

schedule (SAL)

partially−synchronous model

(PVS)

satisfied by
(PVS)

assumes
(PVS)

assumes
(SAL) by (SAL)

satisfied
satisfied by

CS Protocol

CS ProtocolDD ProtocolIC ProtocolRI Protocol

time−triggered timing requirementsrequirements

requirements

Figure 1. Verification Strategy for Time-Triggered Systems

protocol. The formulation1 and verification of protocols at this level of abstraction is

carried out using a mechanical theorem-prover; we use PVS [23].

1The mathematical formalization of a model or proof, which can be done with paper and pencil,

should not be confused with its formulation in the language of a mechanical theorem-prover or

model checker. Nevertheless, the semantics of the language in which a formulation is given attach a

formalization to a formulation.

1. MOTIVATION AND APPROACH 7

As demonstrated by Rushby [10], the timing requirements for an arbitrary time-

triggered protocol can be formulated in PVS, and then a theorem can be proved

stating that if these timing requirements are satisfied, a time-triggered protocol im-

plements its synchronous specification. The theorem is represented by the implements

relation between the time-triggered timing requirements block and the synchronous

model. The Symbolic Analysis Laboratory (SAL) [24], which implements an infinite-

state bounded model-checker, is then used to verify that the implementation schedules

satisfy the time-triggered model constraints. This verification is decomposed so that

the scheduling characteristics of each protocol can be verified independently, and the

verification is automatic. This is demonstrated using the schedules from the VHDL

for the latest FPGA-based prototype of SPIDER’s underlying bus [11].

Finally, the reintegration protocol is a partially-synchronous protocol that cannot

be meaningfully abstracted in the time-triggered or the synchronous models. We

again use SAL to verify the correctness of the reintegration protocol in a real-time

model. The SAL automated solvers allow us to complete a proof parameterized over

a range of real-time values.

In general, verification should occur at the most abstract level that does not omit

the important characteristics to be verified. Furthermore, in a time-triggered system,

protocols do not execute in isolation. The protocols are tightly integrated and inter-

dependent. In describing future work in the formal verification of the Time-Triggered

Architecture (TTA), one particular time-triggered system, Rushby describes the im-

portance of formally modeling and reasoning about the system-wide properties that

“emerge” from individual protocols behaving and interacting correctly:

What makes TTA useful are not the individual properties of its

constituent protocols, but the emergent properties that come about

1. MOTIVATION AND APPROACH 8

through their combination. These emergent properties are under-

stood by the designers and advocates of TTA, but they have not

been articulated formally in ways that are fully satisfactory, and I

consider this the most important and interesting of the tasks that

remain in the formal analysis of TTA [25].

Specifying and verifying these emergent properties can be simplified if the interde-

pendent protocols are specified in the same timing model. For example, in TTP/C (a

version of TTA), for the clock synchronization protocol to behave correctly, diagnostic

correctness conditions must be satisfied. The three essential correctness conditions

are as follows [26].

• Agreement : nonfaulty nodes agree as to which nodes are faulty;

• Self-Diagnosis : faulty nodes diagnose themselves as faulty;

• Validity : nonfaulty nodes can believe that no more than one faulty node is

nonfaulty.

The satisfaction of these conditions depends on the diagnosis protocol being cor-

rect. On the other hand, the diagnosis protocol requires that the clocks of nonfaulty

nodes be synchronized within a small skew, which depends on the clock synchroniza-

tion protocol being correct. Specifying these two protocols in distinct timing models

makes it difficult to reason about their interdependence. This is the approach taken

in one verification of the TTA: the TTP/C diagnosis protocol is verified in a syn-

chronous model, the TTP/C clock synchronization protocol is verified in a partially-

synchronous model, and then these models are related in an assume-guarantee style

proof, all of which is carried out in the PVS mechanical theorem-prover [26]. While

feasible, the approach is substantial and can require on the order of engineer-years to

complete for detailed models of these protocols.

2. OUTLINE 9

A more automated approach is described herein in which we combine the use of

mechanical theorem-proving and infinite-state bounded model-checking. Mechanical

theorem-proving is necessary in the specification and verification of fault-tolerant syn-

chronous protocols that require reasoning about parameterized models (e.g., proofs for

an arbitrary number of nodes in the distributed system), complex fault-hypotheses [27],

complex distributed computations, and non-executable specifications; more auto-

mated tools are currently inadequate for this sort of reasoning. However, the ver-

ification cost is incurred once for a family of protocols at this level of abstraction.

To connect these specifications to their implementations, we develop a refinement

mapping from synchronous specifications to time-triggered implementations and use

mechanical theorem-proving to verify the correctness of the mapping abstractly, but

then use highly-automated infinite-state bounded model-checking to demonstrate that

a particular protocol implementation satisfies the conditions necessary to instantiate

the mapping.

2. Outline

In Chapter 2, we describe preliminary concepts of this work as well as present

related work. In Chapter 3, we present the synchronous model and abstractions for

specification and verification in the model. In Chapter 4, the time-triggered model is

presented, and we describe how to prove a time-triggered specification implements a

synchronous specification. We also demonstrate how to prove that a realized protocol

schedule satisfies the constraints of the time-triggered model. In Chapter 5, we de-

scribe the use of a recently-developed real-time verification technique to specify and

verify protocols in the partially-synchronous model.

Chapter 4 borrows heavily from a formal specification and verification of the time-

triggered model presented by Rushby [10]; Appendix A gives proofs of inconsistency

2. OUTLINE 10

for axioms in his presentation, and it gives appropriate replacements for the incon-

sistent axioms [28].

Full specifications and proof scripts of the work described herein can be found

on-line [13].

CHAPTER 2

Preliminaries & Related Work

1. Fault-Tolerant Distributed Systems

Introductory material on the foundations of distributed systems and algorithms

can be found in Lynch’s textbook [29]. Some examples of systems that have fault-

tolerant distributed implementations are databases, operating systems, communica-

tion buses, file systems, and server groups [7,30,31].

A distributed system is modeled as a graph with directed edges. Vertices are called

nodes or processes . Directed edges are called communication channels or channels .

If channel c points from node p to node p′, then p can send messages over c to p′,

and p′ can receive messages over c from p. In this context, p is the sending node or

sender , and p′ is the receiving node or receiver . Channels may point from a node to

itself.

The terms failure, error, and fault have technical meanings in the fault-tolerance

literature. A failure occurs when a system is unable to provide its required functions.

An error is “that part of the system state which is liable to lead to subsequent failure,”

while a fault is “the adjudged or hypothesized cause of an error” [32]. For example,

a sensor may break due to a fault introduced by overheating. The sensor reading

error may then lead to system failure. A fault-tolerant system is one that continues

to provide its required functionality in the presence of faults. A fault-tolerant system

must not contain a single point of failure such that if that single subsystem fails, the

entire system fails (for the faults tolerated). Thus, fault-tolerant systems are often

implemented as distributed collections of nodes such that a fault that affects one

11

2. TIME-TRIGGERED SYSTEMS 12

node will not adversely affect the whole system’s functionality. This type of system

is referred to as a fault-tolerant distributed system.

2. Time-Triggered Systems

Distributed systems coordinate the times at which computation and communi-

cation takes place. Events that cause these actions to occur are called triggers . In

real-time distributed systems, there are two approaches for implementing triggers,

event-triggering and time-triggering . Event-triggers signal the occurrence of some

event, e.g., a sensor reaches some threshold. Time-triggers signal some predeter-

mined time has been reached [8, p. 15]. Time-triggers can be considered a special

case of event-triggers insofar as they signal the occurrence of an oscillator reaching a

threshold [33].

Because the execution of a time-triggered system is driven by the passage of time,

it is imperative that the nodes in the system are synchronized and that they agree

with the real time or “wall-clock time”. If nodes are unsynchronized, then even if they

share the same schedule of events, the time at which one node takes an action and the

time at which another may expect that action to be taken may differ. Likewise, if the

nodes do not agree with real time, then an external component cannot predict when

the system will perform some action, even if that component knows the schedule. For

example, a time-triggered system may drive an actuator for a motor, and the motor

may need to be actuated every ten milliseconds to operate correctly.

There are two means by which synchronization can be achieved. The first and

most obvious is if all the nodes in the system share an independent global clock

that maintains a precise record of real time. However, often no global clock can be

realized, and in a fault-tolerant system, it would represent a single point of failure.

A second strategy is for each node to have its own clock. In this case, the nodes

2. TIME-TRIGGERED SYSTEMS 13

must synchronize their clocks to ensure agreement with each other and with real

time. Maintaining synchrony requires the nodes to preserve the precision of the local

clocks, and maintaining agreement with real time (within a linear envelope) requires

the nodes to preserve the accuracy of the local clocks [34]. Precision and accuracy

can be achieved by periodically executing a clock synchronization protocol [35].

Time-triggered implementations have characteristics that make them attractive

for use in real-time safety-critical systems [7,8]. The execution of a time-triggered

system is driven by a schedule agreed upon by the nodes in the system. Therefore,

time-triggered systems can reduce the risk of faults propagating from one node to

another. Each node knows when to expect certain messages from other nodes. Sim-

ilarly, time-triggered systems can be easier to compose, and they can ensure hard

real-time deadlines are met.

The main disadvantage of time-triggered systems as compared to event-triggered

ones is that they are bound to their schedule and can therefore be inflexible in re-

sponding to external demands. This can be mitigated by introducing a dynamic

schedule, as opposed to a static schedule [8]. A static schedule is loaded off-line be-

fore the system is started. A dynamic schedules can be loaded and unloaded on-line,

in response to system demands.

A time-triggered system is designed to maintain synchrony the vast majority of

time during which it is operable. However, there are “corner cases” during which the

system will not be synchronized, and a system must contain protocols that behave

correctly despite the lack of synchrony in these situations. After power-up, there may

be a large skew (on the order of seconds) between the time at which the nodes become

active. A similar situation occurs during a restart. Restart can be either manual, such

as when it is triggered by a human operator, or automatic. Automatic restart can be

triggered by massive correlated faults in the system. A special case of restart is when

3. TIME-TRIGGERED BUS ARCHITECTURES 14

a single node restarts independently of the rest of the system. If a node determines

itself to have suffered a fault, it may attempt to restart itself and reintegrate with the

other nodes in the system. Fault-tolerant protocols that behave correctly despite the

lack of synchrony are used to gain synchronization in these corner cases.

3. Time-Triggered Bus Architectures

Safety-critical bus architectures are a kind of time-triggered system being devel-

oped for drive-by-wire and fly-by-wire applications. A generic example of such a bus

architecture is presented in Figure 1. There are three essential components in the

architecture. The hosts are computing platforms distributed throughout a vehicle.

Associated with each host may be sensors and actuators for one or more physical

plants , such as an engine or braking system. As illustrated, these platforms may

host various distributed control applications . For example, an automobile may have

both steer-by-wire and brake-by-wire control applications, and the applications may

reside on the replicated microprocessors that are distributed at each wheel. Each

host may have sensors to measure the wheel’s skew, rotational velocity, acceleration,

etc., and actuators to control these attributes. The bus interface units (BIUs) are

the interfaces between the hosts and the interconnect through which communication

takes place. In the figure, the BIUs reside in between the hosts and interconnect. De-

pending on the architecture, the BIUs may physically be part of the hosts or distinct

from them [7]. The entire system, including the hosts, BIUs, and interconnect, is the

bus architecture.

In our context, the bus is conceptual rather than physical. The realization of

the bus and what is considered to belong to it depends on the implementation. For

example, in SPIDER (Section 4), the BIUs are considered to be part of the bus,

3. TIME-TRIGGERED BUS ARCHITECTURES 15

BIU

BIU BIU

App. A

Host
App. B App. A App. C

Host

App. CApp. B

Host

Interconnect

Figure 1. A Generic Fault-Tolerant Bus Architecture

whereas in SAFEbus [36], the BIUs are considered to be distinct from it. The bus

may have a distributed implementation.

If the bus itself has a distributed implementation, then a bus architecture is a

“second-order” distributed system: it is a distributed system at the application level ,

since applications are distributed over the hosts, as well as the at the bus level .

The two levels of distribution increases the conceptual complexity of a distributed

bus architecture. Nevertheless, the bus level distribution should be transparent to

the hosts and applications; to them, the bus appears to be a single highly-reliable

interconnect. A time-triggered bus architecture is distinguished by the property that

essential bus-related activities are governed by a global schedule.

3.1. Desiderata. Bus architectures are designed to satisfy four essential desider-

ata: fault-tolerance, integration, partitioning , and predictability .

3.1.1. Fault-Tolerance. Fault-tolerant bus architectures must be extremely reli-

able as compared to off-the-shelf hardware components. Safety-critical applications

3. TIME-TRIGGERED BUS ARCHITECTURES 16

in commercial aircraft must have failure rates no worse than 10−9 per hour of opera-

tion. Because bus architectures may support many applications, their failure rates in

commercial aircraft must be no worse than 10−10 per hour of operation [7,8]. Because

physical components fail at a higher rate, these systems must be designed to tolerate

faults. Various mechanisms are incorporated into the design to ensure as many faults

as possible are caught and appropriately handled.

System-wide fault-tolerance depends on the existence of fault-containment regions

(FCRs) [7,37]. FCRs are regions in a system designed to ensure faults do not propa-

gate to other regions. The easiest way to ensure this is to completely isolate separate

FCRs. However, because separate FCRs may need to communicate, they share inter-

communication channels. Care must be taken to ensure faults cannot propagate over

these channels.

What constitutes an FCR depends on the architecture, protocols, and hypothe-

sized faults for the system. In general, a host and its associated BIU should be in

a FCR that is distinct from FCRs of the other hosts and BIUs. Even a host and

its BIU may be in separate FCRs. Additional FCRs may exist in the architecture;

see Section 4 for an example. Generally, physical faults in separate FCRs are sta-

tistically independent, but under exceptional circumstances, simultaneous faults may

be observed in FCRs. For example, widespread high-intensity radiation may affect

multiple FCRs.

Faults can be classified according to the hybrid fault model of Thambidurai and

Park [38]. The fault model, along with abstractions for it, are described in detail

in Section 3 of Chapter 3. Briefly, all non-faulty nodes are also said to be good . A

node is called benign, or manifest , if it sends only benign messages . Benign messages

abstract various sorts of misbehavior. A message that is sufficiently garbled during

3. TIME-TRIGGERED BUS ARCHITECTURES 17

transmission may be caught by an error-checking code and deemed benign. In syn-

chronized systems with global communication schedules, messages not received when

expected and messages received but unexpected by their recipients are considered to

be benign. A node is called symmetric if it sends every receiver the same message,

but these messages may be arbitrary. A node is called asymmetric or Byzantine if it

arbitrarily sends different messages to different receivers [39].

A maximum fault assumption (MFA) states the maximum kind, number, and ar-

rival rate of faults for each FCR under which the system is hypothesized to operate

correctly. If the MFA is violated, the system may behave arbitrarily. Therefore,

the formal verification of a fault-tolerant system or protocol is always under the

assumption of some MFA. The satisfaction of the MFA itself is established by sta-

tistical models that take into account experimental data regarding the reliability of

the hardware, the environment, and other relevant factors [40]. For example, for bus

architectures designed for commercial aircraft, statistical analysis should ensure that

the probability of their MFAs being violated is less than 10−10 per hour of operation.

Even if a system is proved to behave correctly under its MFA, but the probability of

the MFA being violated is too high, the system will not reliably serve its intended

function.

3.1.2. Integration. In a single vehicle, multiple control systems, or functions , as

they are known in avionics, may be implemented. For example, an automobile may be

designed with digitally-controlled braking, steering, and throttling systems. Imple-

menting separate buses for each system increases the cost, weight, power consumption,

hardware volume, and wiring volume. Furthermore, advanced integrated by-wire sys-

tems may be interdependent; for instance, the braking system may behave differently

if the steering system notifies it that the vehicle is turning sharply. For these reasons,

3. TIME-TRIGGERED BUS ARCHITECTURES 18

a bus architecture should allow these multiple control systems to be composed. Ide-

ally, the architecture provides a simple interface for integrating off-the-shelf control

applications.

Besides the advantages described above, a single bus architecture allows fault-

tolerance to be centralized. Without a centralized bus architecture, each system

must implement fault-tolerant mechanisms. The fault-tolerance mechanisms for each

system are often similar, and if they are implemented once at the bus level (keep-

ing in mind that the bus itself is a distributed system), excessive redundancy of

these mechanisms may be eliminated. Furthermore, the integrated design of a con-

trol application and fault-tolerance mechanisms is difficult. In fact, fault-tolerance

mechanisms themselves have been the primary source of many design errors in con-

trol systems [41, pp. 123–135]. The ability to provide systematic fault-tolerance for

applications is a primary feature of these architectures.

3.1.3. Partitioning. Contrasting with the need to integrate control systems is the

need to partition them. There are two levels of application-level partitioning [25].

When two applications reside on the same host, they must be isolated in the sense de-

fined by the security community in the design and verification of security kernels [42].

In particular, there must not exist illicit communication channels over which infor-

mation may flow. This sort of isolation is a form of physical partitioning . However,

communicating applications cannot be completely isolated so that no information

flows between them. Another sort of partitioning is called behavioral partitioning .

For communicating applications, the faulty behavior of one control system should

not adversely affect the behavior of another other than by the loss of information

from the failed system [25]. These two notions are orthogonal: two applications may

be physically partitioned but not behaviorally partitioned, and vice versa.

3. TIME-TRIGGERED BUS ARCHITECTURES 19

A consequence of partitioning is that even if two applications reside on the same

host, it may be that the only admissible communication channel is through the bus,

so that the host broadcasts and then receives its own message. This scheme ensures

that the messages passed are subject to the same scrutiny (e.g., error-checks, fault-

tolerant voting, etc.) as all other messages passed between applications. Additionally,

it relieves the additional complexity of designing hosts with admissible channels.

Partitioning is crucial when control applications of different levels of criticality are

composed. Less critical applications may be more complex and undergo less stringent

design and testing. Design errors in such systems cannot compromise more critical

applications. Not only is this a safety issue, but it is an economic issue. For avionics,

the criticality of an application determines the level of certification required [43,44];

higher certification levels can be orders-of-magnitude more difficult to pass measured

in time and money. When two systems are composed, they must be certified according

to the highest criticality level possessed by the two systems. Partitioning must be

demonstrated to avoid having to certify each application according to the highest

criticality level of the constituent applications.

Both kinds of partitioning are difficult to specify and verify. In particular, the

statement of behavioral partitioning is qualified: a fault in one control system may

affect another, but its effect cannot be more substantial than the resulting loss of

information. Rushby asserts that no precise formal statement of this property has

been made, let alone verified [25].

3.1.4. Predictability. Finally, the bus must be predictable. It must simulate a

highly reliable time-division multi-access (TDMA) bus. That is, each application has

a globally agreed upon time at which to broadcast over the bus. In addition, the bus

must satisfy performance guarantees, particularly throughput , the rate at which data

3. TIME-TRIGGERED BUS ARCHITECTURES 20

is transmitted from application to application, and latency , the response lag between

communicating applications.

3.2. Services. Fault-tolerance, integration, partitioning, and predictability are

high-level design criteria. In satisfying these, the bus architecture provides some

specific services to the hosts and their applications.

3.2.1. Time-Reference. The bus provides a fault-tolerant time-reference to the

hosts. It is important that the hosts maintain synchronization so they agree with

respect to the global schedule, and that they stay within a linear envelope of real

time. This can be achieved by periodically executing a clock synchronization protocol

as described in Section 2.

3.2.2. Guaranteed Consensus. According to the schedule, each host broadcasts

over the bus at a scheduled time. It must be ensured that the messages received from

this source host by the other hosts are the same; this property is called a consensus or

agreement property. To ensure consensus, the bus executes a fault-tolerant interactive

consistency protocol [29] during each broadcast.

3.2.3. Reconfiguration and Diagnostic Consensus. If some FCR is determined to

have suffered a fault by the bus, the bus may reconfigure to exclude that FCR from

participating in subsequent activities. When messages are passed through the archi-

tecture during the execution of the protocols, faulty behavior may be observed by

the FCRs. For example, the message a FCR receives from another may arrive at an

unexpected time, or the message may fail a bit error detection algorithm [45]. When

one FCR has reason to believe another has behaved in a faulty manner, we say that

the FCR accuses it. The determination to exclude the faulty FCR is made by FCRs

with synchronized state delivering the system services. These FCRs are called the

4. SPIDER 21

clique. A group membership protocol ensures that the accusations made are consis-

tent among the FCRs in the clique. If agreement is reached that an FCR is faulty,

that FCR can be excluded from the clique.

If the architecture is reconfigured too many times and too many FCRs are ex-

cluded, there may not be enough remaining to tolerate subsequent faults or even to

deliver the necessary services. Transient faults cause a node to lose its volatile state,

but do not physically damage the node. In some environments, transient faults can

be the dominant kind of fault encountered [40]; in such cases, it is possible for a node

that has suffered a fault to regain the necessary system state and reintegrate with the

clique. Reintegration is another form of reconfiguration in which an FCR associated

with the transiently-faulty node is re-admitted to the clique.

3.3. Realizations. Some prominent examples of time-triggered bus architec-

tures currently in developement include FlexRay, being developed by an automotive

consortium [46], TTTech’s Time-Triggered Architecture (TTA) [47], and Honeywell’s

SAFEbus [36]. NASA Langely’s SPIDER is the focus of this work and described in

detail in the following section. The primary way in which these architectures differ

is in the level of fault-tolerance they are designed to provide. The fault-tolerance

requirements are mitigated by economic concerns. Time-triggered architectures de-

signed for the automotive industry, for example, are generally less fault-tolerant and

less costly than those for the aerospace industry (they contain less hardware and

therefore are lighter and consume less power). Rushby compares and contrasts these

time-triggered architectures [7].

4. SPIDER

The case-study in this dissertation is the Scalable Processor-Independent Design

for Enhanced Reliability (SPIDER) being designed at the NASA Langley Research

4. SPIDER 22

Processor
Elements

Middleware

OS Drivers

App. A
Software

ROBUS

PE 1 PE 2

Hardware

App. B App. B

RMU RMU RMU

Middleware

OS Drivers

Interface
PE−ROBUS

Interface
PE−ROBUS

BIU BIU BIU

Figure 2. SPIDER Architecture

Center [11,12]. SPIDER is a fault-tolerant bus architecture designed for fly-by-wire

systems in commercial aircraft. SPIDER is designed to particularly execute correctly

in the presence of electromagnetic disturbances that can lead to Byzantine faults [48].

4.1. Architecture. The SPIDER architecture can be physically divided into the

set of processor elements (PEs) and the Reliable Optical Bus (ROBUS), as shown in

Figure 2. Each PE contains a microprocessor, real-time operating system, and the

necessary middleware and drivers. Software applications, such as controllers and ac-

tuators, run the PEs. A particular application may be distributed over the PEs. The

ROBUS is a fault-tolerant virtual bus that is the backbone of the SPIDER architec-

ture. It is a complete bipartite graph of bus interface units (BIUs) and redundancy

management units (RMUs). BIU nodes are the interface between the ROBUS and

the PEs. Each BIU is connected to exactly one PE. The RMUs are the additional

nodes in the ROBUS that provide the redundancy necessary to deliver fault-tolerance

4. SPIDER 23

guarantees and in particular, Byzantine-resilience [39,48]. Each BIU shares an inter-

connect with each RMU, and no two BIUs or RMUs share interconnects. Each PE,

BIU, and RMU is designed to be a FCR.

The ROBUS is designed to be implemented by an arbitrary number of BIUs and

RMUs; the number of each need not be equal. However, the number of BIUs and PEs

is equal (for space considerations, one PE is not depicted in Figure 2). In a SPIDER

configuration with a large number of PEs, there will usually be fewer RMUs. The

number of RMUs is influenced by weighing the additional fault-tolerance provided by

additional RMUs against the additional cost and size of the system and the additional

hardware and interconnects that can suffer faults.

4.2. Operational Modes. Each node (i.e., a BIU or RMU) in the ROBUS has

the following modes of operation [11]:

• a disabled mode in which the node is inactive;

• a self-test mode in which the node performs self-diagnostics upon power-up,

restart, or if a local failure is detected;

• a clique-detection mode in which the node searches for the existence of a

clique, or a set of non-faulty nodes with coordinated activity;

• a clique initialization mode in which the node attempts to form a new clique

(if the node determines no clique to be present);

• a clique join mode in which the node attempts to join a pre-existing clique;

• a clique preservation mode in which the node is in a clique, and the clique is

delivering its services to the attached PEs.

4.3. Protocols. The ROBUS executes a number of fault-tolerant distributed

protocols to deliver the services required of the ROBUS by the attached PEs and also

to maintain its internal state [11]:

4. SPIDER 24

• an interactive consistency protocol that ensures a fault-tolerant message broad-

cast from a single source to a set of receivers;

• a distributed diagnosis protocol that ensures non-faulty nodes maintain a

consistent representation of the fault-status of the other nodes in the system;

• a schedule update protocol in which a new system schedule is loaded;

• a clock synchronization protocol that ensures the local clocks maintain accu-

racy and precision;

• startup and restart protocols that ensure nodes become synchronized and

achieve consistent state upon power-up and restart, respectively;

• a reintegration protocol that is executed during the reintegration mode (see

Section 2 in Chapter 5).

4.4. Maximum Fault Assumption. The MFA we present here is for the ROBUS

with respect to faults suffered by the BIUs and RMUs (if a communication channel

suffers a fault, we ascribe that fault to the sending node; see Section 3.3). Each

protocol that is executed in the ROBUS must execute correctly when the MFA is

satisfied. We call this MFA a Dynamic Maximum Fault Assumption (DMFA) to em-

phasize that the fault assumption is parameterized by the local diagnoses of nodes,

which change over time.

Definition 2.1 (ROBUS DMFA). Let BG, BS, and BA denote the sets of BIUs

that are good, symmetrically-faulty, and asymmetrically-faulty, respectively. Let RG,

RS, and RA represent the corresponding sets of RMUs, respectively. For good BIU b,

let Tb denote the set of RMUs b trusts called b’s trusted set . Define Tr similarly – it

is the set of BIUs that RMU r trusts. The following formulas together make up the

DMFA. For all BIUs b and RMUs r,

(1) |RG ∩ Tb| > |RS ∩ Tb|+ |RA ∩ Tb| ;

5. TIME-TRIGGERED SYSTEM VERIFICATION 25

(2) |BG ∩ Tr| > |BS ∩ Tr|+ |BA ∩ Tr| ;

(3) |RA ∩ Tb| = 0 or |BA ∩ Tr| = 0 .

The first clause ensures that a good BIU b contains strictly more good RMUs in Tb

than it does symmetrically-faulty or asymmetrically-faulty RMUs. The second clause

ensures the same holds for the good RMUs. The third clause ensures that either no

good BIU trusts an asymmetric RMU, or no good RMU trusts an asymmetric BIU.

However, this does not preclude multiple good BIUs from trusting asymmetric RMUs,

and similarly for the RMUs. Formal proofs in the mechanical theorem-prover PVS

that the SPIDER Interactive Consistency, Distributed Diagnosis, and Clock Synchro-

nization protocol tolerate all fault scenarios under the ROBUS MFA exist [27].

5. Time-Triggered System Verification

The two architectures that have undergone the most comprehensive formal veri-

fications are TTTech’s Time-Triggered Architecture (TTA) and SPIDER, described

in the subsequent sections. Other related formal verification efforts are presented in

Section 5.3.

5.1. TTTech’s Time-Triggered Architecture Verification. TTA [8] is one

of the most mature and most extensively formally-verified architectures in develop-

ment. Two sets of protocols exist for the TTA: TTP/A and TTP/C. The latter is

for safety-critical applications, whereas the former is for less critical applications [8].

The following verifications are generally with respect to the TTP/C implementation.

A number of its protocols have been formally verified. Rushby overviews the formal

verification of TTA [25]. Pfeifer and von Henke also describe the formal verification

of TTA [49–51].

Pfeifer, Schwier, and von Henke formally verify the TTA Clock Synchronization

Protocol in PVS [52]. Pfeifer’s dissertation extends this work by formally verifying

5. TIME-TRIGGERED SYSTEM VERIFICATION 26

its clock synchronization and group membership protocols and then providing an

assume-guarantee proof that each provides the requirements necessary to demonstrate

the correctness of the other [26]. This work is carried out in PVS.

Dutertre and Sorea use the k-induction proof technique, described in Section 6.2.3,

in SAL to give a real-time verification of the TTA Startup Protocol [53,54]. Dutertre

and Sorea’s work is a generalization of a discrete-time verification of the TTA Startup

Protocol [55].

Finally, Rushby verifies in PVS the timing characteristics for message passing in

TTA [56].

5.2. SPIDER Verification. Geser and Miner formally verify in PVS an early

version of the SPIDER Distributed Diagnosis Protocol [57]. Pike, Miner, and Torres-

Pomales use PVS to uncover an error in an early version of the SPIDER Interactive

Consistency Protocol and use SAL to generate a concrete counter-example to its

correctness (using symbolic and bounded model-checkers) [16]. The Unified Fault-

Tolerance Protocol generalizes the clock synchronization, interactive consistency, and

distributed diagnosis protocols implemented in SPIDER into one fault-tolerance pro-

tocol [27]. A formal verification of the protocol is presented in PVS. These proofs

are being generalized to be applicable to other time-triggered systems.

5.3. Other Verifications. Rushby describes systematic techniques for the ver-

ification of time-triggered protocols [10,58]. It is inspired by TTA, but is applicable

to other time-triggered systems. These efforts generalize earlier work by the NASA

Langley Research Group to develop the Reliable Computing Platform (RCP) [59–61].

The RCP is a fault-tolerant platform for fly-by-wire systems. Furthermore, it is able to

recover from transient faults and provides a uniprocessor system layer interface hiding

6. TOOLS 27

the distributed implementation [59]. A goal of the project is to develop methodolo-

gies to formally specify and verify the system. Many of the design and verification

principles for SPIDER were born out of the RCP project. The RCP project itself is

an outgrowth of other fault-tolerant architectures that underwent some formal veri-

fication including SIFT [62] and MAFT [63].

Complimenting these endeavors are more specific efforts. A fault-tolerant clock

synchronization protocol [35,64] is crucial to the implementation of a time-triggered

system. There have been many verifications of such protocols [34,65–67]. Interactive

consistency protocols [29] have undergone numerous verifications, too [17,68–72]. Fi-

nally, the formal verification of distributed protocols in general is motivated by noting

that although an interactive consistency protocol is one of the simplest in a time-

triggered architecture, published peer-reviewed unmechanized proofs-of-correctness

have been flawed [17].

6. Tools

The tools used in this dissertation are the mechanical theorem-prover PVS and

infinite-state bounded model-checker SAL, both of which are developed by SRI, In-

ternational. This work could be reproduced in a straightforward way using other me-

chanical theorem-provers. In particular, it would be straightforward to reproduce this

work in other higher-order logic theorem-provers such as HOL [73] or Isabelle [74],

although the use of predicate subtypes in the PVS specifications could not be directly

reproduced. Finally, PVS and SAL are used in an integrated way in Chapter 4. This

use is aided by their similar specification languages.

6.1. Prototype Verification System (PVS). The Prototype Verification Sys-

tem (PVS) is an interactive mechanical theorem-prover [23]. It belongs to the family

of higher-order logic theorem-provers, including HOL and Isabelle mentioned above.

6. TOOLS 28

Below, we briefly describe the specification language and the verification environment

of PVS. Many extensions to PVS have been developed; in particular, the verifications

herein depend on the packages Manip [75] and Field [76] for high-level arithmetic

reasoning in PVS. Results from the NASA Langley PVS Libraries are also used [77].

6.1.1. Specification Language. Specifications in PVS are in a simply-typed higher-

order logic [78]. Some base types are predefined (e.g., booleans), and uninterpreted

base types may be specified. Composite types can be constructed with function-

type, tuple-type, record-type, enumeration-type, and co-tuple-type constructors. In

addition, PVS supports predicate subtyping. A mechanism is provided for specifying

abstract datatypes that are well-founded trees.

Constants and variables can be specified, and they must be typed. Constants may

be either interpreted or uninterpreted. Because the language is higher-order, variables

may range over any type declaration, including function-types. Definitions (i.e., speci-

fied interpreted constants) conservatively extend the language: inconsistencies cannot

be introduced by definition, although they can be introduced by axiomatization.

Functions of type [D → R] are total mappings from the domain type D to the

range type R. Recursive (interpreted) functions can be specified in the language

(mutual recursion is not directly supported). Recursive function definitions gener-

ate a proof obligation that for all arguments, the recursion terminates. The proof

obligation is generated automatically by PVS, and in many cases, is also discharged

automatically.

Such proof obligations are generated by the PVS static type-checker. The type-

checker ensures type inconsistencies have not been introduced. For example, one is

obliged to demonstrate that if a constant is declared to be of type T , then T is a

nonempty type. When PVS cannot determine whether a type inconsistency has been

6. TOOLS 29

introduced, it generates an unproven type correctness condition (TCC). The user is

obliged to prove the TCC to demonstrate the typing is consistent.

Specifications are modularized by theories. A theory may contain type declara-

tions, constant declarations, and variable declarations. It may also contain proposi-

tions stated in the language of the theory. A theory may be parameterized by both

types and constants. Theories may import other theories. A theory that imports an-

other theory inherits the language of the imported theory. Furthermore, propositions

stated in an imported theory are inherited and may be used as lemmas in proving

theorems in the current theory.

Additionally, every theory automatically inherits a collection of theories referred

to as the PVS Prelude. These theories describe various foundational mathematical

facts.

6.1.2. Verification Environment. The logic of PVS is the sequent calculus . A

sequent is of the form

∧
Γ `

∨
∆ ,

where Γ, called the antecedent , and ∆, called the consequent are finite sets of propo-

sitions. A sequent asserts that the conjunction of the antecedents implies the disjunc-

tion of the consequents. Inference rules are mappings from sequents to sequents. A

sequent is manipulated with inference rules in PVS until an initial sequent is reached.

A sequent is initial when the set of antecedents contains the boolean constant F, or

the set of consequents contains the boolean constant T, or the same proposition is

both an antecedent and a consequent.

Atomic proof rules may be combined into a sequence of proof rules called proof

strategies [79]. Strategies are not guaranteed to terminate. For example, a strategy

may contain nonterminating rewrite rules.

6. TOOLS 30

6.1.3. Example: Sets. In Figure 3 is a small PVS theory of sets. The theory

reproduces part of the PVS Prelude [80], a set of theories that comes pre-installed

with PVS.

sets [T: TYPE]: THEORY

BEGIN

set: TYPE = [T -> bool]

x, y: VAR T

a, b, c: VAR set

member(x, a): bool = a(x)

emptyset: set = {x | false}

extensionality: LEMMA

(FORALL x: member(x, a) IFF member(x, b)) IMPLIES (a = b)

END sets

Figure 3. Set Definition in PVS

The identifier sets denotes the name of the theory. The theory takes one param-

eter, an arbitrary type T. The theory parameter can by instantiated by another type

value when the theory is instantiated by another theory. For example, T might be

instantiated by the type of the natural numbers in a theory describing sets of nat-

urals. The first declaration in the theory sets is a type declaration in which set is

declared to be a function type mapping elements of type T to a boolean value; thus,

sets are formulated as functions in PVS. Two identifiers x and y are declared to be

variables of the type T, and the identifiers a, b, and c are declared to be variables of

the type set. Next, the function member is defined. The function returns the value of

evaluating a at x, recalling that the set a is represented as a function. The function

a(x) is true if and only if x is a member of a. The constant emptyset is defined to

be the set of no elements, {x | false}, using set-comprehension notation.

6. TOOLS 31

The theory contains one lemma, extensionality, stating that two sets are equal

if their members are the same. Before proving the theorem in PVS, the theory must

be parsed and type-checked. PVS automatically parses and type-checks, but if a

type-correctness obligation exists that PVS cannot prove automatically, the onus is

on the user to prove it interactively. The theory above generates no type-correctness

obligations.

A fine-grained proof-sketch of extensionality that can reproduced mechanically

in the theorem-prover follows. Expanding the definition of member, we see that the

result can be proved with function extensionality ; that if two functions yield the same

value when applied to each point of their domains, then the two functions are equal.

The output of the interactive proof is presented in Figure 4 and continued in Figure 5.

In the interactive prover, PVS presents a sequent, and the user inputs an inference

rule transforming the sequent into a new sequent. In the PVS prover, the sequent

is represented with a turnstile denoted by “|-------”, where antecedents are above

the turnstile, labeled with negative integers, and consequents are below the turnstile,

labeled with positive integers. The following inference rules are used to transform the

sequents in this example:

• (skolem! 1) introduces skolem constants for the quantified variables in the

formula number 1, where the skolem constant identifiers are constructed from

the quantified variable identifiers by appending the identifier !n, where n is

a natural number.

• (flatten) performs propositional simplification.

• (apply-extensionality) introduces the function extensionality rule for the

consequent formula by introducing a new consequent a!1(x!1) = b!1(x!1),

where x!1 is an arbitrary constant in the domains of the functions a!1 and

b!1.

6. TOOLS 32

extensionality :

|-------

{1} FORALL (a, b: set):

(FORALL x: member(x, a) IFF member(x, b))

IMPLIES (a = b)

Rule? (skolem! 1)

Skolemizing,

this simplifies to:

extensionality :

|-------

{1} (FORALL x: member(x, a!1) IFF member(x, b!1))

IMPLIES (a!1 = b!1)

Rule? (flatten)

Applying disjunctive simplification to flatten sequent,

this simplifies to:

extensionality :

{-1} FORALL x: member(x, a!1) IFF member(x, b!1)

|-------

{1} (a!1 = b!1)

Rule? (apply-extensionality)

Applying extensionality,

this simplifies to:

extensionality :

[-1] FORALL x: member(x, a!1) IFF member(x, b!1)

|-------

{1} a!1(x!1) = b!1(x!1)

[2] (a!1 = b!1)

Figure 4. Interactive Proof Session in PVS (Continued in Figure 5)

• (inst -1 "x!1") instantiates the quantified variable in formula -1.

• (expand "member") expands the definition of member.

6. TOOLS 33

Rule? (inst -1 "x!1")

Instantiating the top quantifier in - with the terms:

x!1,

this simplifies to:

extensionality :

{-1} member(x!1, a!1) IFF member(x!1, b!1)

|-------

[1] a!1(x!1) = b!1(x!1)

[2] (a!1 = b!1)

Rule? (expand "member")

Expanding the definition of member,

this simplifies to:

extensionality :

{-1} a!1(x!1) IFF b!1(x!1)

|-------

[1] a!1(x!1) = b!1(x!1)

[2] (a!1 = b!1)

Rule? (iff)

Converting top level boolean equality into IFF form,

Converting equality to IFF,

this simplifies to:

extensionality :

[-1] a!1(x!1) IFF b!1(x!1)

|-------

{1} a!1(x!1) IFF b!1(x!1)

[2] (a!1 = b!1)

which is trivially true.

Q.E.D.

Figure 5. Interactive Proof Session in PVS (Continued from Figure 4)

• (iff) converts an equality operator = on boolean-typed terms to an “if and

only if” operator.

6. TOOLS 34

Other sequences of inference rules can prove this theorem. In particular, PVS has

more powerful commands that replace sequences of inference rules. For example, the

sequence of inference rules (grind), (apply-extensionality), (grind) is sufficient

to prove the same theorem. In fact, these rules can be combined into a single user-

defined proof rule. More generally, the PVS prover can be programmed with proof

strategies , programs for proving classes of theorems [79].

6.2. SRI’s Symbolic Analysis Laboratory (SAL). The Symbolic Analysis

Laboratory (SAL) is a suite of automated verification tools developed by SRI, Inter-

national [24,81]. SAL includes explicit-state, symbolic, and bounded model checkers,

an interactive simulator, as well as other tools.

6.2.1. Specification Language. A single language serves as the input to the verifi-

cation tools. The language is a simply-typed higher-order logic, just as in PVS. The

predefined interpreted base types in SAL include booleans, the natural numbers, and

the real numbers. Composite types may be built up in the same ways as in PVS.

Types built from the naturals or reals are called infinite types to distinguish them

from finite types . Both interpreted and uninterpreted constants may be specified.

Variables may range over any defined type, but quantified variables may range over

only finite types.

The language includes special constructs for building transition systems. A transi-

tion system is specified by a module. The transitions in a module are specified with a

set of guarded transitions that are enabled if the guard is true. The guard may be any

boolean combination of state variables and constants, including defined relations over

the variables. Additionally, in a synchronous composition, described below, guards

may reference next-state variable values, under certain conditions. When a guard is

executed, some subset of the writable state variables are updated. If more than one

guarded transition is enabled, exactly one is nondeterministically taken.

6. TOOLS 35

A module contains any combination of the following set of variables: input vari-

ables, output variables, global variables, and local variables. Output, global, and local

variables can be both read and written; input variables can only be read. Modules

may be composed to generate composite transition systems. Modules communicate

via shared variables. Modules can be both synchronously and asynchronously com-

posed. In a synchronous composition, each module simultaneously executes a guarded

transition. Synchronously-composed modules cannot share global variables (this pre-

vents concurrent read-write conflicts). If one module is deadlocked – i.e., no guarded

transition is enabled – then the synchronous composition of modules is deadlocked.

In an asynchronous composition, modules nondeterministically interleave their exe-

cutions. However, in an asynchronous composition, if one module is deadlocked, then

the other module must execute a transition, if it is not itself deadlocked.

Additionally, modules may be parameterized by some finite-range type, and then

instantiated for each element of the type. Variables must be renamed in this case.

6.2.2. ICS. To reason about constraints containing constants and variables over

infinite types, an automated solver is incorporated into SAL. The automated solver

employed by SAL is the Integrated Canonizer and Solver (ICS), an automated solver

for a quantifier-free, first-order theory of equality, the terms of which include uniter-

preted functions, linear arithmetic, products, arrays, and fixed-sized vectors. [82].

Other solvers, such as UCLID [83] and CVC [84], may be plugged in to SAL.

6.2.3. k-Induction. SAL combines its bounded model-checking and ICS to prove

that safety properties, stated as LTL formulas, hold in infinite-state transition sys-

tems. The invariants do not need to be strictly inductive; SAL supports k-induction,

also known as temporal induction, a generalization of the ordinary induction principle

(over transition systems) [85,86]. Let 〈S, S0, →〉 be an unlabeled transition system

where S is a set of states, S0 ⊆ S is a nonempty set of initial states, and →⊆ S × S

6. TOOLS 36

is a transition relation. For a natural number k (k ≥ 0), a k-trajectory is a sequence

of states, s0, s1, . . . , sk, such that for 0 ≤ i < k, si → si+1 (a 0-trajectory (over the

transition system) is a state s). Then the k-induction principle is as follows.

Definition 2.2 (k-Induction Principle). Let k be a natural number, and let

P : S → bool be some predicate defined over the states of S.

• Base Case: For each k-trajectory s0, s1, . . . , sk such that s0 ∈ S0, P (sk)

holds.

• Induction Step: For each k-trajectory s0, s1, . . . , sk, if for all 0 ≤ j < k

P (sj) holds, then P (sk) holds.

Property P is a k-inductive property with respect to 〈S, S0, →〉 if there exists

some k ∈ N0< such that P satisfies the k-induction principle. The ordinary induction

principle is the special case when k = 1. The benefit of k-induction is that as k

increases, weaker invariants may be provable. The problem of discovering sufficiently

strong inductive invariants can be difficult, and more often than not, a desired in-

variant is too weak to be proved with the ordinary induction principle. Discovering

sufficiently strong inductive invariants is an active area of research [87,88].

Furthermore, state invariants can be used as lemmas to support k-induction. An

invariant has the effect of strengthening the antecedents in the base case and induction

step so that only states satisfying the invariant are considered.

Definition 2.3 (k-Induction Principle with Inductive Invariants). Let Q be an

invariant over the states of S.

• Base Case: For each k-trajectory s0, s1, . . . , sk such that s0 ∈ S0 holds and

for each 0 ≤ i ≤ k, Q(si) holds, P (sk) holds.

• Induction Step: For each k-trajectory s0, s1, . . . , sk such that Q(si) holds

for each 0 ≤ i ≤ k, if for all 0 ≤ j < k P (sj) holds, then P (sk) holds.

6. TOOLS 37

6.2.4. Example: Bakery Algorithm. The SAL specification in Figure 6 is an infinite-

state specification of the Bakery Algorithm in SAL, as formulated by Rushby [1]. The

algorithm is a scheduling algorithm for asynchronous processes. It exhibits many but

not all of the syntactic elements of SAL. Its proof of correctness demonstrates the use

of SAL’s infinite-state bounded model checker to prove safety properties.

The identifier bakery names the current context (a context is similar to a PVS the-

ory). Types phase and ticket are type declarations where ticket is declared to be

the infinite type of the natural numbers. The module process contains one input vari-

able and two output variables. The output variables are initialized to constant values.

Three guarded transitions are specified in the module, and they are asynchronously

composed with the [] operator. In the first transition, if pc = idle, then my_t and

pc are both updated. To avoid name clashes, P1 is a module defined as process with

the pc renamed; P2 is likewise renamed. The module system is the asynchronous

composition of these two processes. A theorem named strong_prop is stated. It

states that in all states reachable when executing system, if pc1 = critical and

pc2 = trying, then my_t < other_t, and likewise when P2 is critical state.

The theorem strong_prop is proved by issuing the following command to SAL’s

infinite-state bounded model-checker:

sal-inf-bmc -i -d 3 bakery strong_prop

The command sal-inf-bmc calls the infinite-state bounded model-checker. The

argument -i commands a k-induction proof to be attempted, and the argument -d 3

specifies the depth at which the k-induction is attempted. The last two arguments

are the context name and theorem name, respectively.

6. TOOLS 38

bakery : CONTEXT =

BEGIN

phase : TYPE = {idle, trying, critical};

ticket: TYPE = NATURAL;

process : MODULE =

BEGIN

INPUT other_t: ticket

OUTPUT my_t: ticket

OUTPUT pc: phase

INITIALIZATION

pc = idle;

my_t = 0

TRANSITION

[pc = idle -->

my_t’ = other_t + 1;

pc’ = trying

[]

pc = trying AND (other_t = 0 OR my_t < other_t) -->

pc’ = critical

[]

pc = critical -->

my_t’ = 0;

pc’ = idle

]

END;

P1 : MODULE = RENAME pc TO pc1 IN process;

P2 : MODULE = RENAME other_t TO my_t,

my_t TO other_t,

pc TO pc2 IN process;

system : MODULE = P1 [] P2;

...

strong_prop: THEOREM system |-

G(((pc1 = critical AND pc2 = trying) => my_t < other_t) AND

((pc2 = critical AND pc1 = trying) => other_t < my_t));

END

Figure 6. Rushby’s SAL Specification of the Bakery Algorithm [1]

7. TIMING MODELS 39

7. Timing Models

We briefly describe the timing models of distributed systems used in this disser-

tation. Each chapter contains a more rigorous description of the timing model used

therein.

The untimed synchronous model is so-called to emphasize that communication and

computation are modeled as synchronous, instantaneous events. The granularity of

time is with respect to a round . A round is comprised of two phases, a communication

phase and a computation phase. In the communication phase, each node in the system

instantaneously updates its outbound channels based on its current state. In the

computation phase, each node instantaneously updates its state based on its current

state and the messages it receives over its inbound channels.

In partially-synchronous models , the rate at which nodes execute (i.e., update

their local state and send messages) may differ. However, this model is more re-

stricted than the fully asynchronous model in which the differences may be un-

bounded. The partially-synchronous model closely models the implementation of

real-time distributed protocols. In general, verifying a protocol in this model pro-

vides greater assurance of correct design than verifying it in the synchronous model

does, since the latter model may abstract away subtle timing errors. Because it is

more detailed, it is more complicated. Lynch states that our understanding of this

model is nascent in comparison to synchronous and asynchronous models, and addi-

tional research in the area is needed [29,89].

A kind of partially-synchronous model is the time-triggered model . In the time-

triggered model, we constrain some of the behaviors allowed in the more general

partially-synchronous model. The time-triggered model is an abstraction of time-

triggered implementations . The behaviors of nodes are mostly governed by the pas-

sage of time as measured by their local clocks. Each node maintains a schedule stating

8. TIMEOUT AUTOMATA: A REAL-TIME MODEL 40

when it should take certain actions. A node will perform an action when its clock

reaches the time that action is scheduled. This is opposed to event-triggered imple-

mentations in which the actions taken by nodes are determined by the occurrence of

events in its environment. For example, a node may take some action immediately

upon receiving a message from another node.

8. Timeout Automata: A Real-Time Model

The partially-synchronous model developed in Chapter 5 extends a real-time

model developed for k-induction proofs in the SAL modeling language called time-

out automata [53]. The development of timeout automata is motivated by Dutertre

and Sorea’s experiments in using timed automata [90] for proofs by k-induction in

SAL. Although they demonstrate that it is possible to specify timed automata in

SAL via a shallow embedding – i.e., a timed automata is manually translated into

a semantically-equivalent SAL specification – it proves to be unwieldy. The SAL

language is rich, but it is a general-purpose tool for specifying composed state ma-

chines; neither the syntax nor the semantics of the language match those of timed

automata well. Furthermore, the clock variables in timed automata may be updated

in arbitrarily small increments leading to infinite trajectories in which the discrete

state idles. This makes proof by k-induction difficult and sometimes impossible.

These difficulties motivated them to develop an explicit real-time model, timeout

automata. In an explicit real-time model, the current time is tracked with a variable,

and discrete events have real-time bounds on when they can occur [54, 91]. This

contrasts with implicit, or clock-based, real-time models, such as timed automata.

One attraction of explicit real-time models is the simplicity of their syntax – time

constraints are modeled as inequalities over the reals, and they require no special

semantics for verification.

8. TIMEOUT AUTOMATA: A REAL-TIME MODEL 41

The timeout automata1 model is borrowed from the model of system execution

used in discrete-event simulation [92]. The central idea behind timeout automata is

that timeouts mark the point in the future when a system event occurs, and timeouts

themselves may be nondeterministically updated. Time is always maximally updated

to when the next system event occurs. Dutertre and Sorea provide the semantics

of a timeout automaton in terms of a transition system [53,54]. Fix a set of state

variables V . An additional variable t, ranging over the nonnegative reals, records the

current time. There is also a set of timeout variables T , ranging over the nonnegative

reals. A state ρ in the transition system is a function mapping each variable to some

value from the set over which it ranges. For any initial state ρ, ρ(t) ≤ ρ(x) for all

x ∈ T . As in the definition of timed automata, there are two sorts of transitions: time

progress transitions and discrete transitions . A time progress transition is enabled in

a state if and only if for all x ∈ T , ρ(t) < ρ(x). In this case, the state changes by

updating ρ(t) to the least-valued timeout (there may be multiple timeouts that are

least-valued). Discrete transitions are enabled in a state if and only if there exists

some timeout x such that ρ(t) = ρ(x). Furthermore, the following conditions must

hold for a discrete transition from state ρ to ρ′:

• ρ′(t) = ρ(t) ;

• for all x ∈ T , ρ′(x) ≥ ρ(t) ;

• there exists y ∈ T such that ρ(y) = t and ρ′(y) > ρ(t) .

The third condition prevents infinite zero-delay state transitions. If multiple discrete

transitions are enabled in a state, exactly one is nondeterministically applied. Note,

too, that discrete transitions are instantaneous (i.e., the current time is not updated

during their application).

1We use ‘automata’ to refer to syntax, distinct from the semantics for automata.

8. TIMEOUT AUTOMATA: A REAL-TIME MODEL 42

An important distinction between timeout automata and formalisms like timed

automata is that in a timed automaton, clocks measure how much time has elapsed

since their last reset, whereas timeouts measure how much time will elapse until the

next state transition.

CHAPTER 3

Synchronous Protocol Verification

This chapter presents a set of abstractions that serves as a framework for the speci-

fication and verification of synchronous fault-tolerant distributed protocols. Although

the synchrony assumption simplifies reasoning about these protocols, modeling and

verifying them is nevertheless difficult. Modeling and reasoning about the number of

and kinds of faults, distributed control, complex fault-masking, nonfunctional behav-

ioral requirements, and intimate protocol interactions contribute to the difficulty.

Although many fault-tolerant distributed systems and algorithms have been spec-

ified and verified, the models used have often been ad-hoc. Developing models at the

appropriate level of detail is a difficult aspect of formal verification [41]. We present

a generic model of common aspects relevant to the verification of fault-tolerant dis-

tributed systems.

The abstractions presented are in same spirit as ones to model digital hardware, as

developed by Thomas Melham [93,94] insofar as they are intended to make specifica-

tions and their proofs of correctness less tedious, less error-prone, and more uniform.

Furthermore, they are formulated for easy specification in a mechanical theorem-

prover, as are Melham’s. Although the abstractions we describe are quite general, we

intend for them to be accessible to the working verification engineer.

These abstractions are largely the outcome of verifying the fault-tolerant dis-

tributed protocols of SPIDER in an synchronous model. Their development and

formulation in a mechanical theorem-prover is joint work by this author, Paul Miner,

Alfons Geser, and Jeffrey Maddalon [95]. Our work is used to specify and verify the

43

1. THE SYNCHRONOUS MODEL 44

SPIDER Distributed Diagnosis, Interactive Consistency, and Clock Synchronization

protocols [11] in PVS [27].1

We introduce four fundamental abstractions in the domain of fault-tolerant dis-

tributed systems. Message abstractions address the correctness of individual messages

sent and received. Fault abstractions address the kinds of faults possible as well as

their effects in the system. Fault-masking abstractions address the kinds of local com-

putations nodes make to mask faults. Finally, communication abstractions address

the kinds of data communicated and the properties required for communication to

succeed in the presence of faults.

These formal expressions are stated in the language of higher-order logic along

with a small algebraic datatype. The abstractions have been formulated in PVS.

They are available on-line [13]. There, some additional properties not described

herein are stated and proved.

1. The Synchronous Model

We present a generic synchronous model for modeling synchronous protocols. The

synchronous model presented is a functional model of a protocol’s behavior: a pro-

tocol’s behavior is specified as a recursive function. The abstractions described in

Sections 2 through 4 assume an underlying functional model. A relational model is a

more abstract specification of protocol behavior that simply states assumptions and

requirements. The abstractions in Section 5 are relational abstractions. The func-

tional models can then be shown to imply the relational assumptions; that is, the

relational assumptions are shown to be invariants of the functional models.

1The synchronous model formulated in PVS has minor syntactical differences with that presented

in Section 1.

1. THE SYNCHRONOUS MODEL 45

1.1. Syntax. The signature of a synchronous protocol comes from Rushby’s def-

inition [10], which adapts Lynch’s definition [29] for the purpose of formulation in a

mechanical theorem-prover.

We begin by fixing a set of messages, mess . A distinguished element null repre-

sents the absence of a message (it can also represent a “do not care” message). Let P

be a nonempty set of node identifiers. For each p ∈ P , the following total functions

are defined:

• A set of node identifiers, out nbrsp, identifying the outbound neighbors ; i.e.,

the nodes to which p is connected by outbound channels. A set of node

identifiers, in nbrsp, identifying the inbound neighbors , can be defined from

the outbound neighbors:

in nbrsp
df
= {q ∈ P | p ∈ out nbrsq} .

• A set of states, statesp. A distinguished component of the state, r, keeps

track of the current round. The set init statesp is a nonempty subset of

statesp containing the initial states .

• A message-generation function msgp : statesp × out nbrsp → mess that

returns the message p sends to each node to which it is connected by an

outbound channel; null is returned if no message is sent.

• A higher-order state-transition function

transp : statesp × IN p → statesp

that returns the new state of p based on the current state and inputs IN p

generated by its inbound neighbors.

Not every set or function needs to be interpreted in a protocol specification. For

example, some communication protocols can be used for arbitrary data values, so the

set mess need not be interpreted.

1. THE SYNCHRONOUS MODEL 46

Sometimes we omit the node-identifier subscript from a set or function to denote

a global representation of the system. For example, we define the global state to be

the function states
df
= λp. statesp.

1.2. Semantics. The semantics can be given by a transition system. A syn-

chronous protocol proceeds in rounds. In a round, nodes synchronously and instanta-

neously update their outbound channels (in the communication phase) and then their

local state (in the computation phase) [29]. The communication phase is modeled by

each node applying its msg function, and the computation phase is modeled by each

node applying its trans function.

A synchronous specification has a simple operational semantics given by a recur-

sive function. It takes the number of rounds of execution, the global initial state,

and returns the final global state. Thus, a protocol can be defined as the function

run(init rnd , init s), where

run(r, s)
df
=

if r = 0 then s

else λp. transp(runp(r − 1, s), λq. msgq(runq(r − 1, s), p))

The protocols modeled execute for only a finite number of rounds. However, a protocol

may be scheduled to execute an infinite number of times.

Proving fault-tolerance requires the specification of not only the behavior of non-

faulty nodes in the model described above but also the behavior of faulty nodes. How

to model faulty behavior is in the synchronous model addressed in Section 3.

2. ABSTRACTING MESSAGES 47

2. Abstracting Messages

2.1. Abstraction. Messages communicated in a distributed system are abstracted

according to some correctness criteria agreed upon by the nodes. We distinguish be-

tween benign messages and accepted messages . The former are messages that a non-

faulty receiving node recognizes as incorrect; the latter are messages that a non-faulty

receiving node does not recognize as incorrect. Note that an accepted message may

be incorrect: the receiving node just does not detect that the message is incorrect.

Benign messages abstract various sorts of misbehavior. A message that is suffi-

ciently garbled during transmission may be caught by an error-checking code [45] and

deemed benign. Benign messages also abstract the absence of a message: a receiver

expecting a message but detecting the absence of one takes this to be the ‘reception’

of a benign message. In synchronized systems with global communication schedules,

they abstract messages sent and received at unscheduled times.

2.2. Formulation. Let the set MSG be a set of messages of a given type.

MSG is the base set of elements over which the datatype is defined. The set of

all possible datatype elements is denoted by ABSTRACT MSG [MSG]. In specify-

ing a protocol in the synchronous model using the syntax described in Section 1.1,

ABSTRACT MSG [MSG] is an interpretation of the set of messages, mess .

The datatype has two constructors, accepted msg and benign msg. The former

takes an element m ∈ MSG and creates the datatype element accepted msg[m]. The

constructor also has an associated extractor value such that

value(accepted msg[m]) = m .

3. ABSTRACTING FAULTS 48

Constructors Extractors Recognizers

accepted msg[m] value accepted msg?

benign msg none benign msg?

Figure 1. Abstract Messages Datatype

The other constructor, benign msg, is a constant datatype element; it is a con-

structor with no arguments. All benign messages are abstracted as a single mes-

sage; thus, the abstracted incorrect message cannot be recovered, and distinct in-

bound messages considered to be benign are treated identically. Finally, we define

two recognizers, accepted msg? and benign msg? with the following definitions. Let

a ∈ ABSTRACT MSG [MSG].

accepted msg?(a)
df
= ∃m. m ∈ MSG and a = accepted msg[m] ,

and

benign msg?(a)
df
= a = benign msg .

We summarize this datatype in Fig. 1.

3. Abstracting Faults

There are two closely-related abstractions with respect to faults. The first abstrac-

tion, error types , partitions the possible locations of faults. The second abstraction,

fault types , partitions faults according to the manifestation of the errors caused by

the faults.

3.1. Abstracting Error Types. Picking the right level of abstraction and the

right components to which faults should be attributed is a modeling issue that has

been handled in a variety of ways. The choice made is a particularly good example

3. ABSTRACTING FAULTS 49

of the extent to which modeling choices can affect the ease of specification and proof

efficacy.

Both nodes and channels can suffer faults [29], but reasoning about node and

channel faults together is tedious. Such reasoning is redundant – channel faults can

be abstracted as node faults. A channel between a sending node and a receiving node

can be abstracted as being an extension either of the sender or of the receiver. For

instance, a lossy channel abstracted as an extension of the sender is modeled as a

node failing to send messages.2

Even if we abstract all faults to ones affecting nodes and not channels, we are

left with the task of abstracting how the functionality of a node – sending, receiving,

or computing – is degraded. One possibility is to consider a node as an indivisible

unit so that a fault affecting one of its functions is abstracted as affecting its other

functions, too. Another possibility is to abstract all faults to ones affecting a node’

ability to send and receive messages [10,26]. Finally, some models implicitly abstract

node faults as being ones affecting only a node’ ability to send messages [17,57]. So

even if a fault affects a node’ ability to receive messages or compute, the fault is

abstractly propagated to a fault affecting the node’ ability to send messages.

All three models above are conservative, i.e., the abstraction of a fault is at least

as severe as the fault. Conservation holds for the first model in which the whole node

is considered to be degraded by any fault, and it holds for the second model, too.

Even though it is assumed that a node can always compute correctly, its computed

values are inconsequential if it can neither receive nor send correct values. As for the

2The reader may recall that in the theory of distributed systems, an impossibility result known

as the “Coordinated Attack Problem” holds for consensus in models with faulty communication

channels that does not necessarily hold in models with node faults [29]. This abstraction does not

contradict this result. Coordinated attack is impossible in this model, too, because a node’s messages

mimic the effects of a lossy channel.

3. ABSTRACTING FAULTS 50

third model, the same reasoning applies – even if a faulty node can receive messages

and compute correctly, it cannot send its computations to other nodes.

The model we choose is one in which all faults are abstracted to be ones de-

grading send functionality, and in which channels are abstracted as belonging to the

sending node. There are two principal advantages to this model, both of which lead

to simpler specifications and proofs. First, the model allows us to disregard faults

when reasoning about the ability of nodes to receive and compute messages. Second,

whether a message is successfully communicated is determined solely by a node’ send

functionality; the faultiness of receivers need not be considered.

3.2. Abstracting Fault Types. Faults result from innumerable occurrences

including physical damage, electromagnetic interference, and “slightly-out-of-spec”

communication [48]. We collect these fault occurrences into fault types according to

their effects in the system.

We adopt the hybrid fault model of Thambidurai and Park [38]. A node is called

benign, or manifest , if it sends only benign messages, as described in Sect. 2. A node

is called symmetric if it sends every receiver the same message, but these messages

may be incorrect. A node is called asymmetric, or Byzantine [39], if it sends different

messages to different receivers. All non-faulty nodes are also said to be good .

Other fault models exist that provide more or less detail than the hybrid fault

model above. The least detailed fault model is to assume the worst case scenario,

that all faults are asymmetric. The fault model developed by Azadmanesh and Kieck-

hafer [96] is an example of a more refined model. All such fault models are consistent

with the other abstractions in this paper.

3.3. Formulation. We formulate fault types first. Let S and R be sets of nodes

sending and receiving messages, respectively, in a round of communication. Let asym,

3. ABSTRACTING FAULTS 51

sym, ben, and good be constants representing the fault types asymmetric, symmetric,

benign, and good, respectively.

As mentioned, we abstract all faults to ones that affect a node’ ability to send

messages. To model this formally, we modify the message-generation function de-

scribed in Section 1.1 according the fault-status of the sender. The range of the

function is the set of abstract messages, which are elements of the datatype defined

in Sect. 2. MSG is a set of messages, and ABSTRACT MSG [MSG] is the set of

datatype elements parameterized by MSG . Let p, q ∈ P be a sending and receiving

node, respectively, let m ∈ MSG, and let sp be p’s state. Let sender status be a

function mapping senders to their fault partition. The function outputs the abstract

message p sends to q:

msgp(sp, q)
df
=

accepted msg[m] if sender status(p) = good

benign msg if sender status(p) = ben

sym msg(sp) if sender status(p) = sym

asym msg(sp, q) if sender status(p) = asym .

If p is good, then q receives an accepted abstract message from p. If p is benign, then

q receives a benign message. In the last two cases – in which p suffers a symmetric

or asymmetric fault – uninterpreted functions are returned. Applied to their argu-

ments, sym msg and asym msg are uninterpreted constants of the abstract message

datatype. The function asym msg models a node suffering an asymmetric fault by

taking the receiver as an argument: for receivers q and r, asym msg(sp, q) is not

necessarily equal to asym msg(sp, r). On the other hand, the function sym msg

does not take a receiver as an argument, so all receivers receive the same arbitrary

abstract message from a particular sender.

4. ABSTRACTING FAULT-MASKING 52

4. Abstracting Fault-Masking

4.1. Abstraction. Some of the information a node receives in a distributed sys-

tem may be incorrect due to the existence of faults as described in Sect. 3. A node

must have a means to mask incorrect information generated by faulty nodes. Two

of the most common are (variants of) a majority vote or a middle-value selection, as

defined in the following paragraph. These functions are similar enough to abstract

them as a single fault-masking function.

A majority vote returns the majority value of some multiset (i.e., a set in which

repetition of values is allowed), and a default value if no majority exists. A middle-

value selection takes the middle value of a linearly-ordered multiset if the cardinality

of the multiset is odd. If the cardinality is an even integer n, then the natural choices

are to compute one of (1) the value at index bn/2c, (2) the value at index dn/2e, or

(3) the average of the two values from (1) and (2). Of course, these options may yield

different values; in fact, (3) may yield a value not present in the multiset.

For example, for the multiset {1, 1, 2, 2, 2, 2}, the majority value is 2, and the

middle-value selection is also 2 for any of the three ways to compute the middle-value

selection. For any multiset that can be linearly-ordered, if a majority value exists,

then the majority value is equal to the middle-value selection (for any of the three

ways to compute it mentioned above).

The benefit of this abstraction is that we can define a single fault-masking function

(we call it a fault-masking vote) that can be implemented as either a majority vote

or a middle-value selection (provided the data over which the function is applied is

linearly-ordered).

The abstraction allows us to model distinct fault-tolerant distributed algorithms

uniformly. Concretely, this abstraction, coupled with the other abstractions de-

scribed in this paper, allow certain clock synchronization algorithms (that depend

4. ABSTRACTING FAULT-MASKING 53

on a middle-value selection) and algorithms in the spirit of an Oral Messages al-

gorithm [17, 39] (that depend on a majority vote) to share the same underlying

models [27].

4.2. Formulation. The formulation we describe models a majority vote and

a middle-value selection over a multiset. A lemma stating their equivalence follows.

Definitions of standard and minor functions are omitted. The formulation is useful for

interpreting the state-transition function when specifying a protocol in the language

presented in Section 1.1. A node executing a fault-tolerant protocol may make some

fault-making computation as part of its state-transition.

Based on the NASA Langley Research Center PVS Bags Library [77], a multiset

is formulated as a function from values to the natural numbers that determines how

many times a value appears in the multiset (values not present are mapped to 0).

Thus, let V be a nonempty finite set of values,3 and let ms : V → N be a multiset.

To define a majority vote, we define the cardinality of a multiset ms to be the

summation of value-instances in it:

|ms| df
=

∑
v∈V

ms(v) .

The function maj set takes a multiset ms and returns the set of majority values

in it.

maj set(ms)
df
= {v | 2×ms(v) > |ms|} .

This set is empty if no majority value exists, or it is a singleton set. Thus, we define

majority to be a function returning the special constant no majority if no majority

3If V is finite, then multisets are finite. Fault-masking votes can only be taken over finite

multisets.

4. ABSTRACTING FAULT-MASKING 54

value exists and the single majority value otherwise.

majority(ms)
df
=

 no majority : maj set(ms) = ∅

ε(maj set(ms)) : otherwise .

The function ε is the choice operator that takes a set and returns an arbitrary value

in the set if the set is nonempty. Otherwise, an arbitrary value of the same type as

the elements in the set is returned [93].

Now we formulate a middle-value selection. Let V have the linear order � defined

on it. The function mid val set takes a multiset and returns the set of values at index

dn/2e when the values are ordered from least to greatest (the ordering is arbitrary).

The set is always a singleton set.

mid val set(ms)
df
=v

∣∣∣∣ 2× |lower filter(ms, v)| > |ms|

and 2× |upper filter(ms, v)| ≥ |ms|

 .

The function lower filter filters out all of the values of ms that are less than or equal

to v, and upper filter filters out the values greater than or equal to v. The function

lower filter is defined as follows:

lower filter(ms, v)
df
= λi.

 ms(i) : i � v

0 : otherwise .

Similarly,

upper filter(ms, v)
df
= λi.

 ms(i) : v � i

0 : otherwise .

The relation mid val set(ms) is guaranteed to be a singleton set, so using the

function ε mentioned above, we can define middle value to return the middle value

of a multiset:

middle value(ms)
df
= ε(mid val set(ms)) .

5. ABSTRACTING COMMUNICATION 55

The following theorem results.

Theorem 3.1 (Middle Value is Majority).

majority(ms) 6= no majority

implies middle value(ms) = majority(ms) .

5. Abstracting Communication

We identify two abstractions with respect to communication. First, we abstract

the kinds of data communicated. Second, we identify the fundamental conditions

that must hold for communication to succeed.

We distinguish between a functional model and a relational model of communica-

tion. In the former, communication is modeled computationally (e.g., using functions

like send from Sect. 3). In the latter more abstract model, conditions on communica-

tion are stated such that if they hold, communication succeeds. This section presents

a relational model of communication.

5.1. Abstracting Kinds of Communication. Some kinds of information can

be modelled by real valued, uniformly continuous functions. Informally, a function

is uniformly continuous if small changes in its argument produce small changes in

its result; see e.g., Rosenlicht [97]. For example, the values of analog clocks and of

thermometers vary with time, and the rate of change is bounded. In a distributed

system, a node may sample such a function, i.e., determine an approximation of the

function’s value for a given input. We call such functions inexact functions and the

communication of their values inexact communication. We call discrete functions,

such as an array sorting algorithm, exact functions and communication involving

them exact communication.

5. ABSTRACTING COMMUNICATION 56

5.2. Abstracting Communication Conditions. Communication in a fault-

tolerant distributed system is successful if validity and agreement hold. For exact

communication, their general forms are:

Exact Validity : A good receiver’s fault-masking vote is equal to the value of

the function good nodes compute.

Exact Agreement : All good nodes have equal fault-masking votes.

For inexact communication we have similar conditions:

Inexact Validity : A good receiver’s fault-masking vote is bounded above and

below by the samples from good nodes, up to a small error margin.

Inexact Agreement : All good nodes differ in their fault-masking votes by at

most a small margin of error.

A validity property can thus be understood as an agreement between senders and

receivers, whereas an agreement property is an agreement between the receivers. We

limit our presentation to guaranteeing validity. Agreement is treated similarly, and

complete PVS formulations and proofs for both are located on-line [13].

We specifically present conditions that guarantee validity holds after a single

broadcast communication round in which each node in a set of senders sends mes-

sages to each node in a set of receivers (a degenerate case is when these are singleton

sets modeling point-to-point communication between a single sender and receiver). A

functional model of a specific communication protocol can then be shown to satisfy

these conditions.

First we describe how a single round of exact communication satisfies exact valid-

ity, provided that the three conditions Majority Good , Exact Function, and Function

Agreement hold. The three conditions state, respectively, that the majority of the

values over which a vote is taken come from good senders, that good senders compute

5. ABSTRACTING COMMUNICATION 57

εl εu − ε lf

+ ε uf

f

Figure 2. The Inexact Function Condition for Inexact Communication

functions exactly (i.e., there is no approximation in sampling an exact function), and

that every good sender computes the same function.

For a single round of inexact communication, we have inexact validity if the two

conditions Majority Good and Inexact Function hold. Majority Good is the same

as above. The Inexact Function condition bounds the variance allowed between the

sample of an inexact function computed by a good node for a given input and the

actual value of the function for that input. That is, let el and eu be small positive

constants representing the lower and upper variation, respectively, allowed between

an inexact function f and potential samples of it as depicted in Fig. 2. The sample

computed by a good node is bounded by f−el and f+eu . We do not present an analog

to the Function Agreement condition in the inexact case since nodes often compute

and vote over possibly different functions. For example, each node might possess a

distinct local sensor that it samples. It is assumed, however, that the functions are

related, e.g., each sensor measures the same aspect of the environment.

5. ABSTRACTING COMMUNICATION 58

Clock synchronization [29] is an important case of inexact communication. Clocks

distributed in the system need to be synchronized in order to avoid drifting too far

apart. In this case, sampling a local clock yields an approximation of time.

5.3. Formulation for Exact Communication. First we present the model

of a round of exact communication. For a single round of communication, let S

be the set of senders sending in that round. Let good senders ⊆ S be a subset of

senders that are good. This set can change as nodes become faulty and are repaired,

so we treat it as a variable rather than a constant. For an arbitrary receiver,4 let

eligible senders ⊆ S be the set of senders trusted by the receiver (we assume that

receivers trust all good senders). Then the condition Majority Good is defined

majority good(good senders, eligible senders)
df
=

2× |good senders| > |eligible senders|

and good senders ⊆ eligible senders .

The condition stipulates that a majority of the senders in eligible senders are in

good senders.

Next we describe the values sent and received. Let MSG be the range of the

function computed – these are the messages communicated. The variable ideal :

S → MSG maps a sender to the exact value of a function to be computed by the

sender, for a given input. Doing so frees us from representing the particular function

computed. Similarly, actual : S → MSG maps a sender to the value that sender

computes for the same function and input. Good senders compute exact functions

exactly:

exact function(good senders, ideal, actual)
df
=

∀s. s ∈ good senders implies ideal(s) = actual(s) .

4The receiver can be any receiver, good or faulty. The abstractions described in Sect. 3 allow

us to ignore the fault status of receivers in formal analysis.

5. ABSTRACTING COMMUNICATION 59

Function Agreement states that the functions computed by any two good senders is

the same (i.e., they send the same messages).

function agreement(good senders, ideal)
df
=

∀s1, s2. s1 ∈ good senders and s2 ∈ good senders

implies ideal(s1) = ideal(s2) .

Before stating the validity result, we must take care of a technical detail with

respect to forming the multiset of messages over which a receiver takes a fault-

masking vote. For an arbitrary receiver, let the function make bag take as argu-

ments a nonempty set eligible senders and a function mapping senders to the mes-

sage the receiver gets. It returns a multiset of received messages from senders in

eligible senders.

make bag(eligible senders, actual)
df
=

λv.
∣∣ {s | s ∈ eligible senders and actual(s) = v}

∣∣ .

For exact messages, validity is the proposition that for any good sender, the exact

value of the function it is to compute is the value computed by the receiver’s fault-

masking vote. The proposition is defined as follows:

exact validity(eligible senders, good senders, ideal, actual)
df
=

∀s. s ∈ good senders

implies ideal(s) = majority(make bag(eligible senders, actual)) .

We use majority for the fault-masking vote, but middle-value selection is acceptable

given Thm. 3.1 (provided the data is ordered). Using majority, the Exact Validity

Theorem reads:

5. ABSTRACTING COMMUNICATION 60

Theorem 3.2 (Exact Validity).

majority good(good senders, eligible senders)

and exact function(good senders, ideal, actual)

and function agreement(good senders, ideal)

implies exact validity(eligible senders, good senders, ideal, actual) .

5.4. Formulation for Inexact Communication. Next we model a round of

inexact communication. The Majority Good condition is formulated in the same way

as for exact communication. To define Inexact Function, we now assume that the

elements of MSG have at least the structure of an additive group linearly ordered by

�. Inexact Function is defined as the conjunction of two conditions, Lower Function

Error and Upper Function Error . These two conditions specify, respectively, the

maximal negative and positive error between the exact value of an inexact function

and a good sender’s approximation of the inexact function, for a given input.

lower function error(good senders, ideal, actual)
df
=

∀s. s ∈ good sendersimplies ideal(s)− el � actual(s) ;

upper function error(good senders, ideal, actual)
df
=

∀s. s ∈ good senders implies actual(s) � ideal(s) + eu ;

inexact function(good senders, ideal, actual)
df
=

lower function error(good senders, ideal, actual)

and upper function error(good senders, ideal, actual) .

For inexact communication, validity is the proposition that for a fixed receiver,

the value determined by a fault-masking vote is bounded both above and below by

the messages received from good senders, modulo error values el and eu . Each sender

5. ABSTRACTING COMMUNICATION 61

vote window

ε l εu

1)ideal(s 2
)ideal(s

Figure 3. Inexact Validity

may be computing a different inexact function, so the vote window depends on both

the functions computed as well as the errors in approximating them. Inexact validity

is illustrated in Fig. 3, where s1 and s2 are good senders.

inexact validity(eligible senders, good senders, ideal, actual)
df
=

∃s1. s1 ∈ good senders

and ideal(s1)− el

� middle value(make bag(eligible senders, actual))

and ∃s2. s2 ∈ good senders

and middle value(make bag(eligible senders, actual))

� ideal(s2) + eu .

The Inexact Validity Theorem then reads:

Theorem 3.3 (Inexact Validity).

majority good(good senders, eligible senders)

and inexact function(good senders, ideal, actual)

implies inexact validity(eligible senders, good senders, ideal, actual) .

6. SUMMARY 62

6. Summary

The abstractions, in the language of higher-order logic, pertain to messages, faults,

fault-masking, and communication in the formal specification and verification of fault-

tolerant distributed protocols.

These abstractions describe a means by which to systematically specify and verify

synchronous protocols using a mechanical theorem-prover. Because these abstractions

model synchronous protocols, timing abstractions have been ignored. 5 In the next

chapter, we describe how temporal abstractions for a class of partially-synchronous

protocols called time-triggered protocols.

5They have not been completely ignored, however. For example, the abstractions of faults

described in Section 3 pertain to timing faults as well as data faults.

CHAPTER 4

Time-Triggered Protocol Verification

In the previous chapter, a set of abstractions for the specification and verification

of synchronous distributed protocols was described. These abstractions form the

basis for verifying the time-triggered protocols implemented in SPIDER [27]. The

synchrony assumption makes the verification feasible, but not trivial.

As shown by Rushby [10], the class of time-triggered protocols can be system-

atically shown to implement their synchronous specifications. Rushby develops a

particular timed model called the time-triggered model. It is a restriction of the

partially-synchronous model in which there are lower and upper bounds on the dura-

tion of communication and computation. The essential feature of this model is that

while the local clocks of individual nodes may not be perfectly synchronized, their

disharmony is bounded. Good reasons exist for why safety-critical real-time protocols

should satisfy these constraints, as described in Section 2.2, and many do, including

those implemented in TTA and SPIDER [7,11].

Rushby’s presentation suffers two shortcomings. First, despite his formal verifica-

tion of the time-triggered model in the mechanical theorem-prover PVS, three of the

four system assumptions (or axioms) not only fail to model the actual behavior of

time-triggered systems, but are in fact inconsistent [28]. We mend these assumptions

as well as remove redundant axioms in the theory in Appendix A.

Second, the model is too constrained to model many protocol implementations

of time-triggered systems. We generalize the theory for the specification and veri-

fication of implemented time-triggered systems. The generalization aims to give a

63

4. TIME-TRIGGERED PROTOCOL VERIFICATION 64

concrete answer to the question, “What are the most general constraints under which

the synchrony assumption is satisfied?” The theory is extended along the following

dimensions:

• event-triggered behavior,

• communication delays,

• reception windows,

• non-static clock skew, and

• pipelined rounds.

Some protocols occasionally manifest event-triggered behavior. A typical example

is a clock synchronization protocol such as Davies and Wakerly’s protocol [98] or

Srikanth and Toueg’s protocol [99]. Some of the messages sent in the protocol may

be determined by the global schedule, but others are event-triggered: when a node

receives some number of messages over its inbound channels, it sends a synchroniza-

tion (or echo) message. Our theory should be rich enough to model this behavior; see

Section 3.2 for an application.

Provisions for reasoning about non-static clock skew have two benefits. First, they

allow protocols that satisfy the assumptions of the time-triggered model but never-

theless directly affect the system’s timing characteristics (e.g. clock synchronization,

self-stabilization, and startup protocols) to be specified in a synchronous model. Sec-

ond, they allow for formal reasoning about schedule optimizations. Time-triggered

system schedules (also known as task-descriptor lists [8]) are usually designed with

respect to the maximum possible clock skew during the normal operation of the sys-

tem. When clocks are not resynchronized, the maximum possible clock skew increases

as a function of time. If the difference between possible clock skew at different points

in the system’s execution is significant, then a schedule can be tightened at those

points that the clock skew is small.

4. TIME-TRIGGERED PROTOCOL VERIFICATION 65

It is possible to pipeline the communication and computation rounds of a single

protocol or of multiple protocols for better throughput; we call pipelining of this

sort round-based pipelining . Embedded control systems often have hard real-time

deadlines that may require aggressive schedules. Extensions to reason about pipelined

communication allows these sort of designs to be modeled and explored for non-

pipelined systems.

In the second half of this chapter, we demonstrate how to formally verify that an

implemented protocol schedule for a realized system satisfies the constraints necessary

to abstract the protocol synchronously. The verification is highly automated using

SAL. Verifying that a schedule satisfies the constraints is accomplished by the k-

induction proof technique. This methodology allows one to mechanically check that

a schedule satisfies the time-triggered model constraints and to optimize the schedule.

Not only does this provide for the possibility of implementing a tighter schedule, but

in a fault-tolerant system, a tighter schedule can increase a system’s ability to detect

timing faults [48].

In Section 1, we revise the formal theory of time-triggered systems developed by

Rushby [10]. In Section 2, extensions are given to the theory as well as proofs that the

extended theory satisfies the synchrony assumption. The modeling and verification

of an implementation schedule in SAL is described in Section 3. Two case-studies

applying these techniques are described. In the first case-study, a schedule for the

SPIDER Distributed Diagnosis Protocol is verified; in the second, a schedule for the

SPIDER Clock Synchronization Protocol is verified. The specifications and proofs in

PVS and SAL associated with this chapter can be found on-line [13].

1. THE TIME-TRIGGERED MODEL 66

1. The Time-Triggered Model

We review Rushby’s model [10]. In this presentation, we have mended the in-

consistent axioms and modified the proofs accordingly, removed redundant axioms,

and formalized the presentation slightly (by clearly distinguishing the syntax and the

semantics of the model). Theorem 4.15 demonstrates that a simulation relation exists

between this time-triggered model and an untimed synchronous model.

This theory of time-triggered systems does not describe the effects of faulty nodes

and communication channels. Abstractions for modeling these in the synchronous

model are described in Chapter 3. The intention of this theory is to demonstrate

the schedule constraints nonfaulty nodes must satisfy – indeed, these constraints

characterize nonfaulty temporal behavior in the time-triggered model. The theory is

not used to verify the correctness of protocols specified in the theory. Therefore, in

the remainder of this chapter, all nodes and communication channels are considered

to be nonfaulty.

1.1. Syntax. The signature of a time-triggered protocol extends the signature

for a protocol specification in the synchronous model from Section 3.1. We define real

time to be the set of real numbers R and clock-time to be the set of integers Z. Real

time is measured in some arbitrary unit of time (e.g. milliseconds), and clock-time is

measured in ticks, where one tick is one unit on the integral number line.

The synchronous model in Section 1 is augmented with the following declarations:

• An inverse clock function Cp : R → Z that takes a real time as an input and

returns a clock-time, for each node p.

• A schedule function sched : N → Z from rounds to clock-time. It determines

the clock-time at which nodes should execute some instruction.

1. THE TIME-TRIGGERED MODEL 67

• A communication offset function D : N → Z from rounds to a clock-time

offset. It determines the clock-time at which nodes send messages in each

round.

• A computation offset function P : N → Z from rounds to a clock-time

offset. It determines the clock-time at which nodes begin computation in

each round.

• A clock drift rate ρ ∈ R such that 0 < ρ < 1 . This is the maximum rate at

which a clock may drift.

• A maximum clock skew Σ ∈ N that is a nonnegative clock-time denoting

the maximum difference between the clocks of individual nodes (described

below).

• A maximum communication delay δ ∈ R0≤ denoting a nonnegative real num-

ber that is the maximum communication delay between when messages are

sent and received by nodes.

We constrain the interpretations that can be given to the syntax when defining a

time-triggered system with the following axioms. These axioms are divided into two

groups, system assumptions and schedule constraints (or simply constraints). The

system assumptions describe the assumed behavior of the underlying system, most

notably, the behavior of the local clocks. The schedule constraints ensure the schedule

of time-triggered events, given the system assumptions, gives rise to a time-triggered

realization.

1.1.1. System Assumptions. Axiom 4.1 states the maximum clock drift as a func-

tion of the maximum drift rate, ρ. Axiom 4.2 ensures the skew between clocks is

no greater than the maximum clock skew, Σ. Axiom 4.3 ensures that messages are

received within the communication delay of when they are sent and that messages

received were not “spontaneously generated.”

1. THE TIME-TRIGGERED MODEL 68

Axiom 4.1 (Clock Drift Rate). Let t1 ≥ t2. Then b(1− ρ) · (t1 − t2)c ≤ Cp(t1)−

Cp(t2) ≤ d(1 + ρ) · (t1 − t2)e .

Axiom 4.2 (Clock Synchronization). |Cq(t)− Cp(t)| ≤ Σ .

Axiom 4.3 (Maximum Communication Delay). There exists some 0 ≤ d ≤ δ such

that sentp(q, m, t) implies recv q(p, m, t + d), and there exists some 0 ≤ d′ ≤ δ such

that recv q(p, m, t) implies sentp(q, m, t− d′) .

Lemma 4.4. t1 < t2 implies Cp(t1) ≤ Cp(t2) .

Proof. By Axiom 4.1, Cp(t2) ≥ Cp(t1) + b(1− ρ)(t2 − t1)c . �

1.1.2. Schedule Constraints. Axiom 4.5 orders the communication phase and the

computation phase for each round. Axiom 4.6 ensures that the communication offset

is strictly greater than the maximum skew. Axiom 4.7 ensures that the computation

phase is sufficiently greater than the communication offset.

Axiom 4.5 (Offset Constraint). Let dur(r)
df
= sched(r + 1) − sched(r) . Then

0 < D(r) < P (r) < dur(r) .

This axiom is illustrated in Figure 1.

clock-time

sched(r) sched(r + 1)+D(r) +P (r)

communication phase computation phase

Figure 1. Axiom 4.5

Axiom 4.6 (Communication Constraint). D(r) ≥ Σ .

Axiom 4.7 (Computation Offset Constraint). P (r) > D(r) + Σ + d1 + ρe · δ .

1. THE TIME-TRIGGERED MODEL 69

1.2. Semantics. The semantics for the time-triggered model is a transition sys-

tem in which states are pairs of the form 〈s, t〉, where s is a global state of the system

together with the current real time, t. The transitions between states are determined

by an axiomatization. First, some uninterpreted functions and relations are stated to

aid in this axiomatization. Although these functions and relations are uninterpreted,

we state their intended meaning that is provided by the axiomatization that follows.

• A relation sentp ⊆ out nbrsp × mess × R, the tuples of which consist of a

node q (that is an outbound neighbor of p), a message m, and a real time t

and holds if p sent message m to q at real time t.

• A relation recv p ⊆ out nbrsp × mess × R, the tuples of which consist of a

node q (that is an inbound neighbor of p), a message m, and a real time t

and holds if p received message m from q at real time t.

• A function sendtimep : N → R from rounds to real times denoting the real

time p broadcast messages in each round.

• A time-triggered system state function ttssp(init s)(T) that takes a global

initial state init s , a clock-time T , and returns node p’s state after executing

for T clock ticks from the initial state.

• A time-triggered inbound messages function ttinp : Z × out nbrsp → mess

that maps a clock-time T and an inbound neighbor q to the message p receives

from q at T .

• A time-slice function gs : N → R from rounds to real times. Its purpose is to

provide real times at which the system state of the time-triggered model of

a protocol is the same as the untimed model of the protocol, for each round.

Axiom 4.8 constrains the sendtimep function by ensuring that at the real time

that p broadcasts its message in round r, its clock-time is at the communication offset

into that round. Axioms 4.9 and 4.10 primarily constrain the behavior of the sentp

1. THE TIME-TRIGGERED MODEL 70

function by first stating the sufficient conditions for it to hold and then the necessary

conditions for it to hold. Axiom 4.9 ensures that the message p sends to q at the

real time sendtimep(r) is the message generated by its message-generation function

using its time-triggered state at the beginning of round r. Axiom 4.10 ensures that if

the sendtimep relation is satisfied, then it is satisfied by a message generated by the

message-generation function in some round and by the real time at the communication

delay into the round. Axiom 4.11 constrains the behavior of the ttinp function by

ensuring that for any clock-time T in a computation phase of round r, ttinp(T, q)

is the message p receives from q in round r before the computation phase begins (if

a message is in fact received). Axioms 4.12 and 4.13 constrain the ttssp function.

Axiom 4.12 determines p’s time-triggered state at the clock-time sched(r), for each

round r to be either the initial state for round 0, or by the state-transition function

being applied to p’s time-triggered state in the previous round and the time-triggered

inbound messages it received during the communication phase in the previous round.

Axiom 4.13 ensures that outside of the computation phase, p’s time-triggered state

does not spontaneously change. Finally, Axiom 4.14 constrains the real time gs(r) to

be the real time at which the process with the slowest clock has reached sched(r).

In the following, let the pre-computation phase relation take a real time and a

round such that pre comp phasep(t, r) if and only if sched(r) ≤ Cp(t) < sched(r) +

P (r) . Intuitively, the pre comp phase relation holds for a real time t and round r if

t is in the round, but before the computation phase begins.

Axiom 4.8. Cp(sendtimep(r)) = sched(r) + D(r) .

Axiom 4.9. sentp(q, msgp(ttssp(init s)(sched(r)), q), sendtimep(r)) .

Axiom 4.10. sentp(q, m, t) implies there exists a round r such that t = sendtimep(r)

and m = msgp(ttssp(init s)(sched(r)) .

2. EXTENDING THE AXIOMATIZATION 71

Axiom 4.11. sched(r) + P (r) ≤ T < sched(r + 1) implies

ttinp(T, q) = ε(
{
m ∈ mess | ∃t ∈ R. pre comp phasep(t, r) and recv p(q, m, t)

}
) .1

Axiom 4.12. Let T = sched(r − 1) + P (r − 1) . Then

ttssp(init s)(sched(r)) =

if r = 0 then init sp

else transp(ttssp(init s)(T), λq. ttinp(T, q)) .

Axiom 4.13. sched(r) ≤ T ≤ sched(r) + P (r) implies

ttssp(init s)(T) = ttssp(init s)(sched(r)) .

Axiom 4.14.

∀q : Cq(gs(r)) ≥ sched(r))

and ∃p : Cp(gs(r)) = sched(r)) .

The transition relation over the states satisfies these axioms.

This axiomatization ensures a simulation relation exists between a synchronous

protocol and its time-triggered implementation, as stated in Theorem 4.15.

Theorem 4.15. ttssp(init s)(Cp(gs(r))) = runp(r, init s) .

Proof. See [10] for a proof sketch and [13] for a mechanized proof in PVS. �

2. Extending The Axiomatization

The goal in extending the axiomatization is to generalize the class of time-triggered

implementations that can be faithfully abstracted to the synchronous model. Syntax

and constraints are added to model the following:

1The function ε is the choice operator that takes a set and returns an arbitrary value in the set

if the set is nonempty. Otherwise, an arbitrary value of the same type as the elements in the set is

returned [93].

2. EXTENDING THE AXIOMATIZATION 72

• event-triggered behavior where the time at which some action is taken varies

between nodes;

• the nominal expected communication delay, as well as lower and upper

bounds on the difference between the nominal delay and the actual delays in

communication;

• the existence of a reception window during which nodes accept incoming

messages;

• changes in clock skew over time (the maximum possible skew increases when

clocks continue to drift after some initial synchronization, and it may decrease

after a resynchronization protocol is executed);

• the pipelining of communication and computation phases.

2.1. Generalized Syntax. The following generalizes the syntax for specifying

a time-triggered protocol.

Event Triggering: Rather than a global schedule that marks the beginning

of each round, the schedule schedp : N → Z is a function from rounds

to clock-times, for each node p. It parameterizes the communication and

computation phase schedules, defined as offsets from the beginning of the

round. We take a more general view of the schedule function now: the

schedule function may determine the time at which some event occurs, for

a time-triggered action, or it may simply denote the clock-time at which an

event occurs for an event-triggered action. An application is the SPIDER

Clock Synchronization Protocol in Section 3.2. The uninterpreted function

Λ : N → Z is a function from rounds to clock-times denoting the maximum

clock-time discrepancy between the schedule functions for that round.

2. EXTENDING THE AXIOMATIZATION 73

Communication Delay: The real-time constant δnom > 0 denotes the ex-

pected nominal delay between when a message is sent and when it is re-

ceived. The small real-time constants el > 0 and eu > 0 denote the max-

imum delays such that a receiver may receive a message at time t, where

δnom − el ≤ t ≤ δnom + eu . We require el < δnom and eu < δnom .

Reception Window: The function R : N → Z is a function from rounds to

a reception window offset . It marks the clock-time at which a node accepts

inbound messages. In round r, the reception window closes at P (r).

Dynamic Skew: In the execution of a time-triggered system, the maximum

skew varies. For example, a clock synchronization protocol resynchronizes

clocks and reduces the skew. A small skew is preferable as it allows for a

tighter schedule. In the original analysis, a single constant skew is assumed,

and this must be set to the largest possible skew.

This can be generalized. In each round Σ(r) ≥ 0 is the greatest clock-

time skew occurring between a sender and receiver during the duration of

round r.

Pipelined Rounds: In some rounds, the messages sent depends on new state

computed in the previous round. In these rounds, no node should send its

messages until it completes its computation from the previous round. In

rounds where this dependency does not hold, the communication phase of

round r can begin before the computation phase of round r + 1 ends. We

call this round-based pipelining , or simply pipelining, since this is the only

sort of pipelining addressed.

A binary relation, independent , over rounds holds if messages to be sent

in r + 1 do not depend on the computation that occurs during round r. We

leave the relation uninterpreted, but constrain its behavior with Axiom 4.22.

2. EXTENDING THE AXIOMATIZATION 74

The following axioms relax those from Section 1 as well as constrain the possible

interpretations of the additional syntax described above. Axioms 4.16 and 4.17 in

Section 2.1.1 are generalized system assumptions. Axiom 4.22 is an axiom in the

untimed model that describes pipelined behavior. Axioms 4.19 through 4.21 in Sec-

tion 2.1.3 are generalized schedule constraints, Axiom 4.18 in Section 2.1.2 is a new

system assumption, and Axioms 4.23 through 4.25 in Section 2.1.4 are new sched-

ule constraints. The clock drift rate axiom (Axioms 4.1) from Section 1.1 is not

generalized below but is assumed to hold.

2.1.1. Generalized System Assumptions. Axiom 4.16 generalizes Axiom 4.2. For

nodes p and q and real time t, if the node with the faster clock at time t has reached

clock-time min(schedp(r), sched q(r)) + D(r) and the node with the slower clock has

not surpassed the clock-time max(schedp(r), sched q(r))+P (r), then their clocks differ

by at most Σ(r). Clock-time schedp(r) + D(r) is the clock-time at which p sends its

messages in round r, and schedp(r) + P (r) is the clock-time at which it begins the

computation phase of round r. Thus, the clock synchronization assumption ensures

that if any clock is in the communication phase of round r, all of the clocks are

synchronized within the skew of that round. Because clock synchronization affects

only inter-node communication, the computation phase does not need to be similarly

constrained. Depending on the schedule, the clocks may be constrained by the skew

values for multiple rounds.

Axiom 4.16 (Clock Synchronization).

(max(Cp(t), Cq(t)) ≥ min(schedp(r), sched q(r)) + D(r)

and min(Cp(t), Cq(t)) ≤ max(schedp(r), sched q(r)) + P (r))

implies |Cq(t)− Cp(t)| ≤ Σ(r) .

2.1.2. New System Assumptions. Axiom 4.17 is a straightforward generalization

of Axiom 4.3 that takes into account communication delay.

2. EXTENDING THE AXIOMATIZATION 75

Axiom 4.17 (Maximum Communication Delay). There exists some δnom − el ≤

d ≤ δnom +eu such that sentp(q, m, t) if and only if recv q(p, m, t+d), and there exists

some δnom −el ≤ d′ ≤ δnom +eu such that recv q(p, m, t) if and only if sentp(q, m, t−

d′) .

Axiom 4.18 constrains the maximum discrepancy permitted between the schedule

functions of two nodes for a given round with respect to the value of the uninterpreted

function Λ. For a particular implementation, whether this constraint is met depends

on the constraints for the event-triggered behavior of the individual nodes.

Axiom 4.18. 0 ≤ |schedp(r)− sched q(r)| ≤ Λ(r) .

2.1.3. Generalized Schedule Constraints. Axiom 4.5 is weakened by 4.19. Notice

that D(r) no longer needs to be positive, so nodes may send messages for round r

before that round begins.

Axiom 4.19 (Offset Constraint). 0 < P (r) < dur(r).

Axiom 4.20 weakens Axiom 4.6 insofar as (1) D(r) may be negative, and (2) if the

nominal delay is substantially greater than the skew, the skew has little bearing on

when messages must be sent (this is often the case in time-triggered systems, which

are generally highly-synchronized).

Axiom 4.20 (Communication Constraint).

D(r) ≥ Σ(r) + Λ(r)− b(1− ρ) · (δnom − el)c .

Axiom 4.21 generalizes Axiom 4.7 by taking into account the nominal communi-

cation delay and upper error bound on communication delay.

Axiom 4.21 (Computation Offset Constraint).

P (r) > D(r) + Σ(r) + Λ(r) + d(1 + ρ) · (δnom + eu)e .

2. EXTENDING THE AXIOMATIZATION 76

2.1.4. New Schedule Constraints. First, we state an axiom in the synchronous

model (Section 3.1) that describes the effects of pipelining. The schedule constraints

follow.

Axiom 4.22 describes the behavior of pipelined communication and computation

phases by stating that in the synchronous model, the execution of rounds r + 1 and

r can be transposed. Formally,

Axiom 4.22 (Pipelining).

¬independent(0)

and (independent(r)

implies (∀q ∈ out nbrsp :

msgp(runp(r, init s), q)

= msgp(runp(r − 1, init s), q))) .

The following are new schedule constraints that ensure pipelining works correctly.

Axiom 4.23 ensures that pipelining only occurs when the messages to be sent do not

depend on the computations from the previous round. Axiom 4.24 restricts pipelining

to consecutive rounds. The effect of pipelining is illustrated in Figure 2.

Axiom 4.23. ¬independent(r) implies D(r) ≥ 0 .

Axiom 4.24. r > 0 implies D(r) ≥ P (r − 1)− dur(r − 1) .

clock-time

P (r) +P (r + 1)+D(r) schedp(r + 1)

communication phase (r + 1)

computation phase (r)

Figure 2. Pipelined Communication Phase (Axiom 4.24)

2. EXTENDING THE AXIOMATIZATION 77

We consider only the case in which the communication phase in a round may begin

during the computation phase of the immediately preceding round. More aggressive

pipelining is possible. For example, if multiple communication phases overlap, mes-

sages sent in the communication phase of one round may arrive after the messages

sent in a succeeding phase arrive. In this case, messages should be tagged with their

round number, or some other mechanism should be provided to discriminate these

inbound messages. Inbound messages also need to be buffered.

Axiom 4.25 constrains the scheduling for when the reception window is opened.

The axiom is illustrated in Figure 3. The reception window must be opened soon

enough so that any message sent by a node is received within the window. The

formula b(1−ρ) · (δnom−el)c gives a lower bound on the minimum message delay. We

add D(r) to take into account the clock-time offset at which the message is sent. The

skew for the round, Σ(r), is subtracted to account for the case where the receiver’s

clock is maximally faster than the sender’s. A constant of one tick is added to the

upper bound on R(r) because the reception window is opened on a clock edge, but

messages arrive asynchronously. A message that arrives strictly less than one clock

tick before the reception window is opened will be latched on the clock edge when the

window is opened. In defining the semantics below, an axiom ensures that messages

received during this window are latched appropriately.

Axiom 4.25 (Reception Window Constraint).

0 ≤ R(r) ≤ D(r) + b(1− ρ) · (δnom − el)c − Σ(r)− Λ(r) + 1 .

2.2. Generalized Semantics. The semantics are generally the same as those

given in Section 1.2, once the corresponding axioms are generalized. Axiom 4.8 is

generalized by Axiom 4.26 in which the schedule function is parameterized:

2. EXTENDING THE AXIOMATIZATION 78

clock-time

schedp(r) +P (r)− 1+D(r) +R(r)− 1 +R(r)

≤ b(1− ρ) · (δnom − el)c − Σ(r)− Λ(r) + 1

reception window

Figure 3. The Reception Window (Axiom 4.25)

Axiom 4.26. Cp(sendtimep(r)) = schedp(r) + D(r) .

Axioms 4.9 and 4.10 are generalized by Axioms 4.27 and 4.28, respectively, to

take into account the communication offset:

Axiom 4.27. sentp(q, msgp(ttssp(gs)(schedp(r) + D(r)), q), sendtimep(r)) .

Axiom 4.28. sentp(q, m, t) implies there exists a round r such that t = sendtimep(r)

and m = msgp(ttssp(init s)(schedp(r) + D(r)) .

The relation recv win openp takes a real time t and a round r and is true if the

real time falls within p’s reception window for round r.

Definition 4.1 (Reception Window Open).

recv win openp(t, r)
df
= schedp(r) + Rp(r)− 1 ≤ Cp(t) < schedp(r) + P (r) .

Recall that the constraint Axiom 4.25 places on Rp(r) is weak enough so that

messages from senders may arrive strictly less than one clock tick before Rp(r) is

reached, but these messags are latched at Rp(r). Therefore, recv win openp(t, r) holds

for any real time t that is mapped to a clock-time strictly greater than Rp(r)−1 (and

strictly less than the beginning of the computation phase).

Axiom 4.29. schedp(r) + P (r) ≤ T < schedp(r + 1) implies

ttinp(T, q) = ε(
{
m ∈ mess | ∃t ∈ R. recv win openp(t, r) and recv p(q, m, t)

}
) .

2. EXTENDING THE AXIOMATIZATION 79

Axiom 4.29 restricts Axiom 4.11 insofar as the time-triggered message received

must be received within the reception window.

Axioms 4.12 through 4.14 are generalized by Axioms 4.30 through 4.32, respec-

tively, by parameterizing the schedule functions:

Axiom 4.30. Let T = schedp(r − 1) + P (r − 1) . Then

ttssp(init s)(schedp(r)) =

if r = 0 then init sp

else transp(ttssp(init s)(T), λq. ttinp(T, q)) .

Axiom 4.31. schedp(r) ≤ T ≤ schedp(r) + P (r) implies

ttssp(init s)(T) = ttssp(init s)(schedp(r)) .

Axiom 4.32. For all nodes l,

∀q : Cq(gs(r)) ≥ sched l(r))

and ∃p : Cp(gs(r)) ≥ sched l(r)) .

Furthermore, an additional axiom constrains the effects of pipelining. Axiom 4.33

ensures that while a node is in its computation phase, its state is either the state

it has before applying its state-transition function in that round or the updated

state resulting from its application (in this model, the state is updated at some

nondeterministic time during the computation phase, but the entire state is updated

instantaneously).

Axiom 4.33. schedp(r)+P (r) ≤ T < schedp(r+1) implies either ttssp(init s)(T) =

ttssp(init s)(schedp(r)) or ttss(init s)(T) = ttss(init s)(schedp(r + 1)) .

The transition system is constructed according to these axioms.

2. EXTENDING THE AXIOMATIZATION 80

2.3. Simulation Proof. To demonstrate an equivalence between the time-triggered

and untimed models, a simulation relation is shown to hold between the transition

systems constructed for each model. There are two possible simulations that can be

demonstrated, a real-time simulation or a clock-time simulation. A real-time sim-

ulation is one such that for each round, there exists a real time where the state of

each node in the time-triggered model is the same as the states of the nodes in the

synchronous model. A clock-time simulation is one in such that for each round, there

exists a clock-time where the state of each node in the time-triggered model is the

same as the states of the nodes in the synchronous model. In a synchronized system,

such as a time-triggered system, a clock-time simulation implies a real-time simula-

tion. We therefore prove a clock-time simulation exists first, and then we use this to

demonstrate the existence of a real-time simulation.

A primary characteristic of a time-triggered system – and one upon which the

simulation proof depends – is that messages sent by nodes are received at the appro-

priate time. Our first obligation is to show the schedule constraints are sufficient to

ensure that if p is a node that sends a message to node q at real time t, then

Cp(t) = schedp(r) + D(r)

implies recv win open(sendtimeq(r) + d, r)

where δnom − el ≤ d ≤ δnom + eu . By the definition of recv win open (Definition 4.1),

this expands into two inequalities. The first inequality is proved in Lemma 4.35 and

the second is proved in Lemma 4.36. First, we prove a small supporting result in

Lemma 4.34.

Lemma 4.34. Let Cp(t) = schedp(r) + D(r), and let δnom − el ≤ d ≤ δnom + eu .

Then

min(Cp(t + d), Cq(t + d)) ≤ max(schedp(r), schedp(r)) + P (r) .

2. EXTENDING THE AXIOMATIZATION 81

Proof. By Axiom 4.1,

(1) Cp(t + d)− Cp(t) ≤ d(1 + ρ) · de ,

so

Cp(t + d) ≤ schedp(r) + D(r) + d(1 + ρ) · de .

The result follows from the preceding inequality and by Axiom 4.21. �

Lemma 4.35. Let Cp(t) = schedp(r)+D(r). Then sched q(r)+R(r)−1 < Cq(t+d).

Proof. By the hypothesis, Axiom 4.16 and Lemma 4.34,

|Cq(t + d)− Cp(t + d)| ≤ Σ(r) ,

which implies that

(2) Cp(t + d) ≤ Cq(t + d) + Σ(r) .

By Axiom 4.1,

(3) b(1− ρ) · dc+ Cp(t) ≤ Cp(t + d) .

Inequalities 2 and 3 imply

b(1− ρ) · dc+ Cp(t) ≤ Cq(t + d) + Σ(r) ,

and since Cp(t) = schedp(r) + D(r) by assumption,

b(1− ρ) · dc+ schedp(r) + D(r) ≤ Cq(t + d) + Σ(r) .

By Axiom 4.25 and since

b(1− ρ) · (δnom − el)c ≤ d ,

it follows that

(4) schedp(r) + R(r) + Λ(r)− 1 < Cq(t + d) .

The result follows from Equation 4 and Axiom 4.18.

�

2. EXTENDING THE AXIOMATIZATION 82

Lemma 4.36. Let Cp(t) = schedp(r) + D(r). Then Cq(t + d) < sched q(r) + P (r).

Proof. By Axiom 4.16 and Lemma 4.34,

|Cq(t + d)− Cp(t + d)| ≤ Σ(r) ,

which implies

(5) Cq(t + d) ≤ Cp(t + d) + Σ(r) .

From inequality 1 of Lemma 4.34 and our assumption that Cp(t) = sched(r) + D(r),

(6) Cp(t + d) ≤ schedp(r) + D(r) + d(1 + ρ) · de .

From Inequalities 5 and 6,

Cq(t + d) ≤ schedp(r) + D(r) + Σ(r) + d(1 + ρ) · de .

The result follows from the preceding inequality and Axiom 4.21. �

Lemma 4.37 ensures p’s time-triggered state at schedp(r)+D(r) , when p generates

its message for round r, is equal to its untimed state in round r if r is not pipelined;

otherwise, it is equal to either its untimed state in round r or r − 1.

Lemma 4.37. Suppose that for all rounds j ≤ r,

(7) ttssp(init s)(schedp(j)) = runp(j, init s) .

Let s = ttssp(init s)(schedp(r) + D(r)) . Then if independent(r) , then either s =

runp(r, init s) or s = runp(r − 1, init s) ; otherwise, s = runp(r, init s) .

Proof. We consider the cases of whether independent(r) holds.

(1) If independent(r) is false, then by Axiom 4.23, D(r) ≥ 0 . By Axiom 4.21,

D(r) < P (r) , and so by Axiom 4.31, s = ttssp(init s)(schedp(r)) . Thus, by

Equation 7, s = runp(r, init s) .

2. EXTENDING THE AXIOMATIZATION 83

(2) If independent(r) holds, and D(r) ≥ 0 , then the result holds by the above

argument. Otherwise, by Axiom 4.24,

D(r) + schedp(r) ≥ P (r − 1) + schedp(r − 1) .

The result follows immediately from Axiom 4.33.

�

Lemma 4.38 shows that if each node’s time-triggered state is the same as its

untimed state, then in the time-triggered model, the messages a node p has received

when it begins its computation phase in round r are the messages sent to p by the

other nodes in round r, generated from their time-triggered states at the beginning

of that round.

Lemma 4.38. Suppose that for all processes q ∈ in nbrsp and all rounds j ≤ r,

(8) ttssq(init s)(sched q(j)) = runq(j, init s) .

Then

(9) ttinp(schedp(r) + P (r), q) = msgq(ttssq(init s)(sched q(r)), p) .

Proof. By Axiom 4.29, ttinp(schedp(r)+P (r), q) is the message p receives from

q in the communication phase of round r, if a message is in fact received. First we

show a message is received (Item 1), and then we show that Equation 9 holds, so the

message sent is the message received (Item 2).

(1) Axioms 4.26 and 4.27 ensure that q sends p a message at clock-time sched q(r)+

D(r) . Axiom 4.17 ensures this message is received by p at real time sendtimeq(r)+

d, where δnom − el ≤ d ≤ δnom + eu . Lemmas 4.35 and 4.36 ensure that the

reception window is open at this time.

2. EXTENDING THE AXIOMATIZATION 84

(2) We must show that the message generated by q from its state at this clock-

time is the same as the message generated by q at sched q(r). Consider the

cases of whether r is independent or not.

• If r is not independent, then by Axiom 4.23, the communication offset

is nonnegative. By Axiom 4.31, q’s state is invariant during its commu-

nication phase, so q’s state at clock-time sched q(r) + D(r) is the same

as its state at clock-time sched q(r). Thus, q’s message is generated from

its state, ttssq(init s)(sched q(r)) , and the result follows immediately.

• If r is independent, then by Lemma 4.37, q’s time-triggered state at

sched q(r) + D(r) is equal to either its untimed state in round r − 1 or

round r. In the first case, the message generated is the same as the

one generated by q’s untimed state in round r by Axiom 4.22 which, by

assumption (Equation 8), is the same message as that generated by q’s

time-triggered state at sched q(r). The second case holds by the same

reasoning as when r is not independent, described above.

�

Lemma 4.39 demonstrates that for node p, when its clock-time is schedp(r), its

time-triggered state is the same as its untimed state in round r.

Lemma 4.39 (Clock-Time Simulation). ttssp(init s)(schedp(r))) = runp(r, init s) .

Proof. By induction on the rounds.

Base Case: : In the base case, r = 0, and both the time-triggered system and

the untimed system are in their initial states, init s .

Induction Step: : The induction hypothesis is

ttssp(init s)(schedp(r)) = runp(r, init s) ,

3. SCHEDULE VERIFICATION 85

and we show that

ttssp(init s)(schedp(r + 1)) = runp(r + 1, init s)(r + 1) .

Unfolding ttssp and runp gives us

transp(ttssp(init s)(T), λq. ttinp(T, q))

= transp(runp(r, init s), λq. msgq(runq(r, init s), p))

where T = schedp(r − 1) + P (r − 1) . Substituting the induction hypothesis

gives us

transp(runp(r, init s), λq. ttinp(T, q))

= transp(runp(r, init s), λq. msgq(runq(r, init s), p)) .

Thus, we must show that

ttinp(T, q) = msgq(runq(r, init s), p)

which holds immediately from the induction hypothesis and Lemma 4.38.

�

Theorem 4.40 (Real-Time Simulation). ttssp(init s)(Cp(gs(r))) = runp(r, init s) .

Proof. First, we know that for all nodes p, pre comp phasep(gs(r), r). This

follows from the clock synchronization axiom, Axiom 4.16, and the communication

and computation offset constraints, Axioms 4.20 and 4.21.

Second, by Axiom 4.31 and Lemma 4.39, ttssp(init s)(Cp(t)) = runp(r, init s) for

any real time t such that pre comp phasep(gs(r), r) .

The theorem follows immediately from these two results. �

3. Schedule Verification

To verify the schedules for time-triggered protocol implementations, we show its

schedule satisfies the six schedule constraints, Axioms 4.19 through 4.21 and Ax-

ioms 4.23 through 4.25.

3. SCHEDULE VERIFICATION 86

The system assumptions and the axiomatization of the transition system must

also be satisfied to ensure that a time-triggered protocol implements its synchronous

specification. We assume the system parameters are fixed, and that the system as-

sumptions hold for the physical system. The axioms of the transition system are

used to provide a semantics to the formalism and are not “satisfied” by the physical

implementation.

This verification is carried out in SAL using its infinite-state bounded model

checker. Because the languages of PVS and SAL are similar, the schedule constraints

have nearly identical formulations in the respective languages. In particular, PVS and

SAL share the same type theory. By ensuring the variables and constants specified in

SAL have the same type declarations as the corresponding ones in PVS, we implicitly

rely on the PVS typechecker to ensure their type-correctness.

The technique is demonstrated by verifying the schedules in the following three

Sections. The schedules verified are taken from the VHDL coded by Wilfredo Torres-

Pomales and Mahyar Malekpour of the NASA Langley Research Center, the imple-

mentors of the latest prototype [11]. The VHDL is being used to generate a FPGA-

based implementation of SPIDER. The schedules were generated using Matlab R© ac-

cording to the analysis of the timing requirements [11]. These verifications provide

an independent check that the by-hand analysis and the scripts generating the VHDL

schedules are error-free. Some low-quality bugs (i.e., “typos”) were found in the gen-

erated schedules. More importantly, the verification provides a formal mapping from

the synchronous specification of these protocols [27] to the time-triggered implemen-

tation.

3.1. Distributed Diagnosis Protocol Schedule Verification. The SPIDER

Distributed Diagnosis Protocol ensures nodes maintain a consistent assignment of the

faultiness of the other nodes. Nodes may individually accuse one another of being

3. SCHEDULE VERIFICATION 87

faulty. During the diagnosis protocol, if enough nodes accuse a node, the accusations

are promoted to an agreed-upon conviction. When a node has been convicted, the

other nonfaulty nodes ignore the convicted node until it proves itself to be nonfaulty.2

The protocol is described in detail by Torres-Pomales et. al. [11], and a formal

verification of an early version of the protocol is described by Geser and Miner [57].

The verification of this protocol’s schedule is straightforward. The protocol has

four rounds. The schedule offsets D, P , and R do not vary from round to round.

We verify the protocol with respect to the maximum possible skew for the duration

of the protocol. Furthermore, none of the rounds are pipelined, and there are no

event-triggered actions.

3.1.1. Type and Constant Declarations. The type and constant declarations are

straightforward in SAL. All system constants are interpreted to be concrete values

taken from the system parameters for the targeted prototype. The SAL specification

of the declarations are given in Figure 4. The schedule constraints require taking the

floor and ceiling of the minimum and maximum communication delay, respectively;

we do this by hand and set them equal to constants.

3.1.2. Variables. In the axiomatization of time-triggered systems described in Sec-

tion 2.1, the following are functions, the domains of which are the set of rounds: sched ,

D, P , R, Λ, Σ, independent , and R. In the SAL model, we replace these functions

with state variables that range over their respective ranges (e.g., a state variable re-

places D that ranges over the integers). Then, in the state machine model described,

these state variables are updated in each state according to which round is current in

that state. This gives us a “state machine perspective” of each function’s behavior.

2The mechanism for doing involves executing a reintegration protocol; please see Section 5.2.

3. SCHEDULE VERIFICATION 88

REALTIME : TYPE = REAL;

CLOCKTIME : TYPE = INTEGER;

OFFSET : TYPE = {T: CLOCKTIME | T >= 0};

RND : TYPE = NATURAL;

rho : REALTIME = 1/10000;

d_nom : {t: REALTIME | t >= 0} = 5;

ERROR : TYPE = {t: REALTIME | t >= 0

AND t < d_nom};

e_l : ERROR = 5/10000;

e_u : ERROR = 5/10000;

% floor((1 - rho) * (d_nom - e_l))

fl_d_min : CLOCKTIME = 4;

% ceiling((1 + rho) * (d_nom + e_u))

cd_d_max : CLOCKTIME = 6;

Figure 4. Type and Constant Declarations

The state variables Σ and Λ are special cases. The other state variables are sched-

ule constraints chosen by the implementer. However, the values of these variables are

determined by the behavior of the system and the time that has elapsed.

3.1.3. Schedule Constraint Specification. The schedule constraints stated in Sec-

tion 2.1 are stated in SAL as shown in Figure 5. Some of these constraints compare the

schedule between successive rounds (e.g., Axiom 4.19). Because we have transcribed

the functions over the rounds to variables that are updated in the state machine

at each round, these relations may take as arguments the values of these variables

in a round and compare them to the values in the next round (e.g., constraint1

takes pre_sched and sched as arguments, denoting the values for sched(r − 1) and

sched(r), respectively). The SPIDER Distributed Diagnosis Protocol is completely

time-triggered; therefore, for all rounds, the schedule skew Λ is zero. We therefore

omit it from the constraints and the state-machine model described below.

3.1.4. Specifying a Round-Based Schedule. We create a state machine representa-

tion of how the schedule constraints evolve through the rounds of execution as shown

3. SCHEDULE VERIFICATION 89

constraint1(P: OFFSET, pre_sched: CLOCKTIME,

sched: CLOCKTIME): BOOLEAN =

0 < P AND P < sched - pre_sched;

constraint2(D: CLOCKTIME, S: OFFSET): BOOLEAN =

D >= S - fl_d_min;

constraint3(P: OFFSET, D: CLOCKTIME, S: OFFSET): BOOLEAN =

P > D + S + cd_d_max;

constraint4(r: RND, D: CLOCKTIME): BOOLEAN =

(NOT independent?(r)) => D >= 0;

constraint5(pre_P: OFFSET, D: CLOCKTIME, pre_sched: CLOCKTIME,

sched: CLOCKTIME): BOOLEAN =

D >= pre_P - sched + pre_sched;

constraint6(D: CLOCKTIME, R: CLOCKTIME, S: OFFSET): BOOLEAN =

R - 1 <= D + fl_d_min - S;

Figure 5. SAL Specification of the Generalized System Assumptions

in Figure 6. The state machine is specified with a single module. Because the mod-

ule does not need to communicate with other modules via shared variables, all the

state variables are declared to be local. In addition to schedule variables, for each

constraint, a boolean variable is declared. The value of the variable is determined

by whether its associated schedule constraint is satisfied in the present round. The

state machine includes a counter r that records the current round in the synchronous

abstraction of the protocol. In each initial state, this counter is set to 0. Each tran-

sition from a state in round r is to a state in round r + 1. In general, we check the

schedule constraints for the next-state values of the variables. For constraints that

compare the values between rounds, the current-state variable values and the next-

state variable values are compared in the constraint. Because there are no previous

3. SCHEDULE VERIFICATION 90

state assignments in round 0, those state variables associated with constraints that

compare values between rounds are declared to be true upon initialization.

Not every state variable needs to be updated in each transition. If a state variable

is not reassigned in a guarded transition, its value remains the same in the next state.

In the schedule verified for the SPIDER Distributed Diagnosis Protocol, the offsets

do not change through the execution of the protocol. Thus, in the guarded transition

shown in Figure 6, only the rnd and sched variables are updated, and the values of

the other variables remain the same.

3.1.5. Verification. The property stating that in all reachable states, each con-

straint holds can then be specified by the following state invariant (the G operator

is a temporal logic operator denoting that the property is global; i.e., it holds in all

reachable states [100]).

The property is verified by executing SAL’s infinite-state bounded model checker.

The lemma constraints is verified when k = 2.

sal-inf-bmc -i -d 2 spider_diag_sched.sal constraints

The SAL language is typed, which can lead to deadlocked state machines. For exam-

ple, a variable x of type [0..2] can be assigned the values 0, 1, and 2. If a transition

in a state machine assigns x the value 3, for example, the state machine deadlocks.

In a deadlocked state machine, state invariants hold vacuously. Therefore, it is a

good idea to state and prove a “poor man’s liveness condition.” In an infinite-state

system in SAL, only state invariants may be stated and proved. Therefore, to check

for deadlock, one can express a state invariant that should be false in the model and

3. SCHEDULE VERIFICATION 91

SYSTEM: MODULE =

BEGIN

LOCAL

r : RND,

sched, D : CLOCKTIME,

P, S, R : OFFSET,

ind : BOOLEAN,

c1, c2, c3, c4, c5, c6 : BOOLEAN

INITIALIZATION

r = 0;

sched = 2;

D = 1;

P = 13;

S = 4;

R = 2;

c1 = TRUE;

c2 = constraint2(D, S);

c3 = constraint3(P, D, S);

c4 = constraint4(r, D);

c5 = TRUE;

c6 = constraint6(D, R, S) % no "pre" here

TRANSITION

[

TRUE

-->

r’ = IF r = 3 THEN 0 ELSE r + 1 ENDIF;

sched’ = sched+14;

c1’ = constraint1(P’, sched, sched’);

c2’ = constraint2(D’, S’);

c3’ = constraint3(P’, D’, S’);

c4’ = constraint4(r’, D’);

c5’ = constraint5(P, D’, sched, sched’);

c6’ = constraint6(D’, R’, S’)

]

END;

Figure 6. A Round-Based State Machine

attempt to prove it by k-induction. This is only a positive test for deadlock, how-

ever. If the invariant proves, then a deadlock exists. If the invariant fails to prove,

3. SCHEDULE VERIFICATION 92

constraints: LEMMA SYSTEM |-

G(c1 AND c2 AND c3 AND c4 AND c5 AND c6);

a deadlock may nevertheless exist; it may be the case that k is not sufficiently large

for the deadlock to be discovered. Furthermore, state invariants taken together may

produce a deadlocked system (often times, numerous invariants are proved about a

single system).

In any event, proving the model is deadlock-free is relatively straightforward in

this case because the state machine is constructed by a single SAL module and there

is only one invariant to prove. The SPIDER Distributed Diagnosis Protocol is a four-

round protocol. In the possible final states, the round counter r = 3 (assuming the

initial state models a round, and the round counter is initialized to 0). Therefore, the

following invariant should be false:

liveness: LEMMA SYSTEM |- G(r <= 2);

An attempted proof for it should fail, as does the following (for k = 4):

sal-inf-bmc -i -d 4 spider_diag_sched.sal liveness

This ensures the system is not deadlocked through the last round of the protocol.

3.2. Clock Synchronization Protocol Schedule Verification. The SPIDER

Clock Synchronization Protocol ensures the local clocks of the nodes remained syn-

chronized within a small skew and within a linear envelope of real time [11]. It is

executed periodically to resynchronize the clocks due to drift. The protocol is de-

signed to be fault-tolerant to ensure correct behavior in the presence of faulty nodes

and clocks.

3. SCHEDULE VERIFICATION 93

The verification of the protocol is described by Miner et. al. [27]. Therein, the

protocol is abstracted synchronously. That this abstraction is justified is not alto-

gether obvious. The protocol both adjusts the local clocks of the nodes (which in

turn adjusts the skew of these clocks), and as well, it contains event-triggered ac-

tions. Initial synchronization messages are sent at a prescribed clock-time. Receivers

actively monitor for these messages, and when they receive a sufficient number of

them, they broadcast a message in return. The broadcast of these echo messages is

time-triggered.

Much of the SAL model for the SPIDER Clock Synchronization Protocol is the

same as for the SPIDER Distributed Diagnosis Protocol described above. The main

differences are that the skew changes between rounds and that we must now model

the event-triggered behavior of the protocol. The event-triggered behavior may cause

Λ to be nonzero, and is therefore included as an argument to the schedule constraints

specified in SAL. Furthermore, in the second through forth rounds of the protocol,

the behavior of the nodes is event-triggered. The event is the reception of a certain

number of messages during a node’s reception window. A node begins the next round

a constant clock-time duration from this occurrence.

We therefore cannot assume that the nodes begin rounds two through four at the

same clock-time. Therefore, the sched variable is parameterized by the nodes, and

is declared to be an array with possibly different clock-time readings for each node.

It is of type SCHEDS:

SCHEDS: TYPE = ARRAY NODES OF CLOCKTIME;

3. SCHEDULE VERIFICATION 94

where the type NODES is a finite set of indices of nodes. In event-triggered rounds, the

schedules are updated nondeterministically; for example, in one round, the following

update may occur:

scheds’ IN {s: SCHEDS | scheds_update(s, scheds,

S’, R, P, 70)};

The relation scheds_update takes as arguments an updated schedule array s, the

previous schedule array scheds, the updated clock skew, the reception window and

computation phase offsets, and another nonnegative constant C. In the protocol, a

sufficient number of messages may be received at any time within a node’s reception

window, so the updated schedule time may be a constant offset from any clocktime

therein. Furthermore, the difference between the triggering events for each node is

bounded by the maximum skew (in the succeeding round). The relation is as follows

and its effect for the schedule update of a single node is illustrated in Figure 7.

scheds_update(s: SCHEDS, scheds: SCHEDS, S: OFFSET,

R: OFFSET, P: OFFSET, C: OFFSET): BOOLEAN =

FORALL (i: NODES):

s[i] >= scheds[i] + R + C

AND s[i] < scheds[i] + P + C

AND FORALL (j: NODES): s[i] - s[j] <= S;

clock-time

sched +P + C+R +P +R + C

sched’ range

Figure 7. Clock Synchronization Event-Triggered Schedule Update

3. SCHEDULE VERIFICATION 95

3.3. Schedule Optimization. This methodology provides a “push-button” means

for ensuring that modifications to a schedule still satisfy the schedule constraints.

First, we explore the use of this technology to verify a schedule that pipelines the

rounds of two protocols. In particular, we pipeline the SPIDER Interactive Consis-

tency Protocol with the SPIDER Distributed Diagnosis Protocol [11]. The latter

protocol was briefly described in Section 3, the former protocol is a fault-tolerant

protocol to reliably pass data from a single source BIU to the other BIUs (and ul-

timately, from a source PE to the other PEs). This is the protocol that provides

the bus capabilities of the ROBUS. The other protocols, including the distributed

diagnosis and clock synchronization protocols, are periodically executed to maintain

the health of the ROBUS. The time required to execute these protocols can reduce

the throughput of interactive consistency messages.

The SPIDER Interactive Consistency Protocol is a two-round protocol, whereas

the SPIDER Distributed Diagnosis Protocol is a four-round protocol. The pipelined

schedule will therefore contain six rounds. We alternate rounds between the two pro-

tocols, so the interactive consistency protocol is executed twice for every one time the

distributed diagnosis protocol is executed. Therefore, in the SAL model, the commu-

nication and computation of each round is independent of the preceding round:

independent?(r: RND): BOOLEAN = r > 0;

We can then assign a negative value to the communication offset, so that messages

are sent before the computations of the previous round are complete.

Not only can optimizations such as pipelining be explored, but we can also do pa-

rameterized verification. Suppose, for example, that the time at which the pipelined

protocols are scheduled to execute is event-triggered, so we cannot exactly fix the

4. SUMMARY 96

maximum clock skew (i.e., we cannot fix how much time has elapsed since the clocks

were last synchronized). Thus, we may initialize the maximum skew variable nonde-

terministically:

S IN {T: OFFSET | T <= 3};

Both system parameters and schedule offsets can be similarly parameterized.

4. Summary

The first part of this chapter reviews and extends a formal theory of time-triggered

protocols. In particular, the theory describes a set of system assumptions and a

set of schedule constraints such that if they are met by a time-triggered protocol,

the protocol faithfully implements its synchronous specification. The second half of

this chapter describes a methodology to prove that an implementation satisfies the

schedule constraints. The methodology is demonstrated by verifying schedules of

the SPIDER Distributed Diagnosis Protocol and the SPIDER Clock Synchronization

Protocol taken directly from a current VHDL implementation. We also describe how

this method can be used to optimize the scheduling of protocols.

Most protocols can be specified and verified in the synchronous model, and then

their time-triggered implementation can be proved to meet the synchronous specifi-

cation. Nevertheless, some protocols execute when the system is unsynchronized, and

cannot be modeled by the time-triggered model presented here. A strategy for spec-

ifying and verifying unsynchronized protocols is developed in the following chapter.

CHAPTER 5

Partially-Synchronous Protocol Verification

Time-triggered systems – and their protocols – are designed to satisfy the syn-

chrony assumption the majority of the time during which the system executes. Never-

theless, sometimes they do not satisfy this assumption. For instance, in a distributed

system in which nodes are independently-clocked, synchronization must be achieved

upon power-up by executing a startup protocol . A startup protocol takes the nodes

from an unsynchronized state to a synchronized one. A similar protocol may be

executed if the system must be reset.

The probability of the system failing to satisfy the synchrony assumption increases

if it must execute in the presence of faults. For example, during a massive failure

in the system, the individual nodes undergo a self-test and then execute a restart

protocol to regain consistent state with one another. The synchrony assumption may

not be satisfied in this case. Another example is when a single node suffers a transient

fault causing it to lose its volatile state but suffer no permanent damage. In this case,

the node executes a reintegration protocol .

Although the specification and verification strategy described in Chapters 3 and 4

is suitable for time-triggered protocols, it is not suitable for the protocols that exe-

cute in the boundary-cases described above. A verification of these sort of protocols

requires their real-time behavior to be modeled. One very recent strategy for these

sort of real-time verifications are by infinite-state bounded model checking as imple-

mented in SAL [101]. We develop the use of this technique for easy verification of

real-time fault-tolerant protocols.

97

1. SYNCHRONIZING TIMEOUT AUTOMATA (STA) 98

1. Synchronizing Timeout Automata (STA)

The following definitions build upon the timeout automata semantics described in

Section 8, Chapter 2. We call this the Synchronizing Timeout Automata (STA) model.

The STA model provides a succinct specification and simple semantics for systems

that synchronize both with respect to events (e.g., message passing) and with respect

to time. For example, the train-gate-controller (TGC), is a standard example of such

a real-time system [90]. In a timeout automata model, the TGC is modeled as the

asynchronous composition of timeout automata in which synchronous communication

is modeled by the sequential application of transitions [53]. We provide a simpler

timeout automata model.

As noted, timeout automata were motivated by Dutertre and Sorea’s desire to

specify timed systems amenable to k-induction in SAL. Proofs by k-induction have a

complexity that is exponential with respect to k, by solving the equivalent boolean

satisfaction problem. The initial timeout automata models of the SPIDER Reinte-

gration Protocol required k-induction at infeasible depths: proofs by k-induction for

k > 4 were often infeasible for even a small number of modeled nodes. By allowing

both synchronous and asynchronous composition, the depth required for proofs by

k-induction can be reduced since in a synchronous composition, multiple transitions

may be applied simultaneously.

We use the train-gate-controller (TGC) to illustrate this. Dutertre and Sorea

prove a simple safety property using k-induction, for k = 14, when the TGC is mod-

eled with the (asynchronous) timeout automata semantics described in Section 8,

Chapter 2 [53]. In Section 1.4, we prove the same property with k = 9 in a synchro-

nous timeout automata model described below. When the optimization in Sec 1.5

is also applied, the property is provable for k = 5. The optimization allows more

1. SYNCHRONIZING TIMEOUT AUTOMATA (STA) 99

complex systems to be verified via k-induction without having to strengthen the in-

variant, and it is necessary to complete the verification of the reintegration protocol

described in Section 2.

1.1. Syntax.

Definition 5.1 (STA Syntax). A synchronizing timeout automaton STA is a

tuple 〈V, M, I , E 〉, where

• V is a nonempty finite set of state variables. fV is the set of all possible total

assignment functions that assign values from the respective sets over which

the variables range to these variables. These functions are called states. We

use variables f, g, h, and i to denote states.

• M ⊆ 2V is a nonempty set of subsets of state variables that cover V (i.e.,

for each v ∈ V , there exists m ∈ M such that v ∈ m). For m ∈ M , the set

fVm = {f � m | f ∈ fV } is the set of states restricted to variables in m. An

element fm ∈ fVm is the m timeout component or m-component of state f .

• I is a set of initial states and associated timeouts. A timeout is associ-

ated with each m ∈ M . A timeout ranges over the set of nonnegative

reals, denoted by R0≤. The set of all possible timeout vectors is TO ={
α | α : M → R0≤}

(we use lowercase Greek letters to denote timeout vec-

tor variables). The relation I ⊆ fV × TO relates initial states to initial

timeout vectors.

• E is a set of edges for each timeout component. For m ∈ M , let TOm ={
α � m | α : M → R0≤}

be the set of possible timeout vectors restricted to

subsets of m (we use subscripted lowercase Greek letters to denote restricted

timeout vector variables). An element αm ∈ TOm is an m-timeout vector.

1. SYNCHRONIZING TIMEOUT AUTOMATA (STA) 100

For each m ∈ M , Em ⊆ fVm × TOm × fVm × TOm is an edge relation.

Em relates a current m-component and m-timeout vector to an updated m-

component and m-timeout vector. An edge 〈fm, αm, gm, βm〉 is called an

m-edge or an edge for m.

Remark 5.1 (Timeouts and Timeout Components). A timeout component rep-

resents a portion of the state that updates synchronously. The notion of a timeout

component is independent of a single state machine in a composition. For example,

if two composed machines are synchronized and share a time-triggered schedule (see

Chapter 4), the state variables of the two machines are in a shared timeout compo-

nent. A completely synchronous distributed system can be represented by letting M

be a singleton set containing V .

Remark 5.2 (Edges). In general, if an edge updates a timeout nondeterminis-

tically, it is updated to some value over a continuous interval on the nonnegative

reals.

1.2. Semantics. We require that a STA satisfy the following property to provide

a semantics. It ensures that if edges for different timeout components are simultane-

ously applied, they agree on how to update shared variables.

Definition 5.2 (Synchronous Update Property). For all m, n ∈ M where m 6= n

and m∩ n 6= ∅, if there exist edges Em(fm, αm, gm, βm) and En(fn, αn, hn, γn), then

gm � n = hn � m, and βm � n = γn � m.

Definition 5.3 (STA Semantics). Let STA = 〈V, M, I , E 〉 be a timeout automa-

ton that satisfies the Synchronous Update Property. Its semantics is an unlabeled

transition system SSTA. The context distinguishes whether we speak of the states

in fV or the constructed states of the transition system. A state of SSTA is a tuple

1. SYNCHRONIZING TIMEOUT AUTOMATA (STA) 101

〈f, α, t〉 consisting of a state f ∈ fV , a timeout vector α ∈ TO , and a clock, t ∈ R0≤.

The tuple 〈f, α, t〉 is an initial state of SSTA if and only if 〈f, α〉 ∈ I and t = 0.

Let 〈f, α, t〉 and 〈g, β, t′〉 be states. There is a time progress transition 〈f, α, t〉 t→

〈g, β, t′〉 if and only if t < min(α), t′ = min(β), g = f , and β = α.

The following terminology is useful for describing discrete transitions . In the

state 〈f, α, t〉, Em(hm, γm, im, δm) is an enabled edge if and only if hm = f � m,

γm = α � m, and α(m) = t. An m-component is an enabled timeout component

in 〈f, α, t〉 if and only if there exists an m-edge enabled in that state. If 〈f, α, t〉

and 〈g, β, t′〉 are states, then Em(hm, γm, im, δm) is applied in the discrete transition

〈f, α, t〉 E→ 〈g, β, t′〉 if and only it is an enabled edge in 〈f, α, t〉, im = g � m, and

δm = β � m.

The discrete transition 〈f, α, t〉 E→ 〈g, β, t′〉 holds if and only if for every m ∈ M

such that m is an enabled m-component in 〈f, α, t〉, there exists some m-edge that

is applied, and t′ = t.

Remark 5.3 (Minimum Timeouts). An edge Em(fm, αm, gm, βm) will never be

applied if αm(m) 6= min(αm).

Remark 5.4 (Nonzeroness and NonZenoness). Additional properties are required

for executability. The Nonzero Property ensures that timeouts are never updated to

values in the past, and at least one timeout is updated to some time in the future.

This prevents infinite discrete state transitions with no time progress. For all edges

Em(fm, αm, gm, βm), min(βm) ≥ min(αm), and there exists n ∈ M such that βm(n) >

min(αm). Note that this does not prevent an edge from updating a timeout to some

time sooner that its current value.

1. SYNCHRONIZING TIMEOUT AUTOMATA (STA) 102

The nonZeno Property [102] ensures that an infinite number of transitions are

not enabled within a finite interval of time. This property must be satisfied for a

specification to be implementable.

1.3. Composition. Two STA are composed by taking the union of their state

variables, timeout components, and edges. The initial states of the composition is

defined as the set of states satisfying the initial conditions of each automata.

Definition 5.4 (Composition). Let STA1 = 〈V 1, M1, I 1, E 1〉 and

STA2 = 〈V 2, M2, I 2, E 2〉. Their composition, denoted STA1 ‖ STA2, is the STA

〈V 1∪V 2, M1∪M2, I , E 1∪E 2〉, where 〈f, α〉 ∈ I if and only if 〈f � V 1, α � M1〉 ∈ I 1,

and 〈f � V 2, α � M2〉 ∈ I 2.

Remark 5.5 (Compositional Specifications). The specification of a STA is in-

dependent of the notion of composed state machines. Because timeout components

include state variables from communicating state machines, in practice, state ma-

chines are not specified separately as STAs and then composed.

1.4. Example: STA Model of the Train-Gate-Controller. The train-gate-

controller (TGC) models the interaction of a train, a gate, and a gate controller at a

railroad crossing. Assume there is one train on a circular track that may repeatedly

approach the crossing. Initially, the train is out of the crossing, and the gate is up.

The train signals its approach to the controller, and after a delay of exactly one unit

of time, the controller signals the gate to lower. Once the gate has been signaled, it

takes no more than 1 unit of time to lower. It takes from three to five units of time

from the time the train signals its approach until it enters the crossing. Furthermore,

it must exit the crossing within 5 units of time from when it signals its approach.

When the train signals its exit to the controller within one unit of time of receiving

1. SYNCHRONIZING TIMEOUT AUTOMATA (STA) 103

this signal, the controller signals the gate to raise. The gate takes at least one and

no more than two units of time from when it is signaled to raise until it is completely

up. As soon as the train has exited, it may approach the crossing again.

This behavior is modeled as composed timed automata by Alur [90] and is shown

in Figure 1. The train, gate, and controller state machines each begin in states

t0, g0, and c0, respectively. Their clock variables are x, y, and z, respectively, and

they are assumed to be synchronous. Clock constraints at the verticies denote the

time by which the state must be left. Clock constraints at the edges constrain when

the edge is enabled, and clocks may also be reset when a transition is taken. A

transition is nondeterministically taken at some time satisfying the constraints. Edges

are labeled. If edges from distinct state machines share a label, transitions on these

edges must be synchronized. For example, when the train state machine is in state t0

and the controller state machine is in state c0, they must transition to states t1 and

c1, respectively, simultaneously.

Train

t0
t1

x ≤ 5

t2
x ≤ 5

t3
x ≤ 5

approach

x := 0

in
x > 2

out

exit Gate

g0
g1

y ≤ 1

g2
g3

y ≤ 2

lower

y := 0

down

raise

y := 0

up
y ≥ 1

Controller

c0
c1

z ≤ 1

c2
c3

z ≤ 1

approach

z := 0

lower
z = 1

exit

z := 0

raise

Figure 1. The Train-Gate-Controller

1. SYNCHRONIZING TIMEOUT AUTOMATA (STA) 104

1.4.1. STA Model of the TGC. Following Definition 5.1, the TGC is modeled as

a STA 〈V, M, I , E 〉, informally described as follows. A presentation in the language

of SAL can be found on-line [13].

• V : There are five main state variables. The variable st ranges over the state

labels for the train (t0, t1, etc.); variables sg and sc similarly range over the

labels for the gate and controller, respectively. The variable msg t ranges

over {approach, exit , null}, the messages the train sends to the controller

(the null message denotes the lack of a message being sent). Likewise, the

variable msgg ranges over {lower , raise, null}, the messages the controller

sends the gate. All of the messages that are not sent between machines are

irrelevant in the STA model).

• M : The set M contains three elements, mt, mc, and mg. Each of these sets

contain the state-label variables and message variables for a machine, and

if that machine outputs messages to another one, it contains the state-label

variables for that machine, too. Thus, mt = {st, msg t, sc}, mg = {sg}, and

mc = {sc, msgc, sg}.

• I : The state-label variables are initially set to t0, g0, and c0, respectively.

The messages variables are initially set to null . Initially, timeouts may have

any value, but note that some initial states lead to deadlock (e.g., if mg

initially has the strictly least-valued timeout).

• E : For each timeout component, the edges update the state labels and time-

outs in that component according to the constraints described. Consider, for

example, an edge for the mt-component in which the train and controller syn-

chronize on the approach message. For such an edge Emt(fmt , αmt , gmt , βmt),

fmt(st) = t0 and fmt(sc) = c0 (msg t may have any value). In the updated

state, gmt(st) = t1, gmt(sc) = c1, and gmt(msg t) = approach. The updated

1. SYNCHRONIZING TIMEOUT AUTOMATA (STA) 105

timeouts are those associated with mt and mc; they are nondeterministically

updated to satisfy the constraints αmt(mt)+2 < βmt(mt) ≤ αmt(mt)+5 and

βmt(mc) = αmt(mc) + 1, respectively.

Remark 5.6 (Timeout Vs. Timed Automata). Unlike in the timed automata

formalization, clocks are not reset. Timeouts continue to increase indefinitely, but

they are required to satisfy the constrains given the current time. For example, if t is

the current time, upon entering state t1, the timeout for mtc is nondeterministically

updated to some value greater than t + 2 and less than or equal to t + 5.

1.5. Clockless STA Semantics. The clock in an STA can be conservatively

removed. By applying this optimization, we are able to reduce the depth at which

k-induction must be applied to prove safety properties about timeout automata. For

example, for the TGC, a basic safety property of the model is that whenever the

train is in the railroad crossing, the gate is down. In the original timeout automaton

model, this is proved in SAL by k-induction at depth 14 [53]. After applying the

optimization described here, this depth is reduced to k = 5. The STA model of the

TGC applying the optimization is available on-line [13]. This optimization helped to

complete the verification of the reintegration protocol.

In a timeout automaton, the purpose of the clock is to record the least-valued

timeouts of the automata. That is, the clock is either equal to the least-valued

timeout(s), or it is equal to the least-valued timeout(s) in the next state. However,

this information can be obtained from the timeouts themselves; the clock variable

is unnecessary. Removing the clock variable reduces the state space. Each time

the timeouts are updated so that no timeout is equal to the current clock time, a

transition is taken in which only the clock variable is updated. In the worst case, this

can double the value of k required to prove a safety property via k-induction.

1. SYNCHRONIZING TIMEOUT AUTOMATA (STA) 106

Finally, removing the time transitions simplifies the semantics insofar as only one

kind of transition need be considered. In most formalisms for specifying real-time

systems, the semantics included both time and state transitions.

Definition 5.5 (Clockless STA Semantics). Let STA = 〈V, M, I , E 〉 be a time-

out automaton that satisfies the Synchronous Update Property. Its semantics is an

unlabeled transition system S¬cl
STA. A state of SSTA is a pair 〈f, α〉 consisting of a

state f ∈ fV and a timeout vector α ∈ TO . A state 〈f, α〉 is an initial state of S¬cl
STA

if and only if 〈f, α〉 ∈ I .

In the state 〈f, α〉, the edge Em(hm, γm, im, δm) is an enabled edge if and only

hm = f � m, γm = α � m, and α(m) = min(α). An m-component is an enabled

timeout component in 〈f, α〉 if and only if there exists an m-edge enabled in the

state. Furthermore, if 〈f, α〉 and 〈g, β〉 are states, the edge Em(hm, γm, im, δm) is

applied in the transition 〈f, α〉 → 〈g, β〉 if and only it is an enabled edge in 〈f, α〉,

im = g � m, and δm = β � m.

The transition 〈f, α〉 → 〈g, β〉 holds if and only if for every m ∈ M such that m

is an enabled m-component in 〈f, α〉, there exists some m-edge that is applied in the

transition.

The following proposition asserts that the same states are reachable under both

semantics, modulo the clock variable values.

Proposition 5.1 (Clockless Simulation). Fix a STA 〈V, M, I , E 〉. Let its se-

mantics from Definition 5.3 be the transition system SSTA, and let its clockless se-

mantics be the transition system S¬cl
STA. If 〈f, α, t〉 is a reachable state of Scl

STA, then

〈f, α〉 is a reachable state of S¬cl
STA, and if 〈f, α〉 is a reachable state of S¬cl

STA, then

there exists a t such that 〈f, α, t〉 is a reachable state of Scl
STA.

1. SYNCHRONIZING TIMEOUT AUTOMATA (STA) 107

Proof. We prove both conjuncts by induction. To prove the first conjunct,

assume 〈f, α, t〉 is an initial state. Then 〈f, α〉 is an initial state of S¬cl
STA, by definition.

For the induction step, suppose that if 〈f, α, t〉 is a reachable state in Scl
STA, then

〈f, α〉 is a reachable state in S¬cl
STA. In Scl

STA, there are two kinds of transitions, time

progress transitions and discrete transitions. In a time progress transition, only the

clock variable updates. By definition, a discrete transition 〈f, α, t〉 E→ 〈g, β, t′〉 holds

in Scl
STA exactly when the transition 〈f, α〉 → 〈g, β〉 holds in S¬cl

STA.

To prove the other conjunct, suppose that 〈f, α〉 is an initial state of S¬cl
STA. Then

〈f, α, 0〉 is an initial state of Scl
STA. For the induction step, suppose that if 〈f, α〉 is a

reachable state in S¬cl
STA, then there exists a t such that 〈f, α, t〉 is a reachable state

in Scl
STA. Suppose there is a transition 〈f, α〉 → 〈g, β〉 in S¬cl

STA. Then by definition,

there is a discrete transition 〈f, α, t〉 E→ 〈g, β, t′〉 in Scl
STA, such that t′ = t.

�

Corollary 5.2. If P is a safety property that does not mention the clock variable,

then P holds in Scl
STA if and only if P holds in S¬cl

STA.

Example 5.1 (TGC with Clockless STA Semantics). Removing the clock is

straightforward. In SAL, this amounts to removing the module that specifies the

global clock, as described in Section 1.4. The specifications of the train, gate and

controller must then be modified: rather than comparing timeouts against the global

clock to determine whether an edge is enabled, timeouts are explicitly compared with

one another. The SAL specification is available on-line [13].

Remark 5.7 (k-Induction in Clockless Semantics). By removing the global clock,

we are able to decrease the depth of k-induction to prove the safety property described

in Section 1.4 from 14 under the original timeout automata semantics to k = 9 in the

STA semantics to k = 5 in the clockless STA semantics.

2. CASE-STUDY: THE SPIDER REINTEGRATION PROTOCOL 108

1.6. Timeout Automata Specification and Verification in SAL. Because

SAL is a general-purpose specification and verification environment, it does not auto-

matically generate the semantics of an STA from its syntax. Therefore, we describe

a shallow embedding of the STA semantics in the language of SAL.

Consider the TGC example described in Section 1.4. Modules are specified for

the train, gate, and controller. Each of these contains output variables for their state

labels and outgoing messages, and if a module receives messages from another, those

are specified as input variables. Each module also has an output timeout variable

against which the other modules can compare their own timeouts. Because edges

may simultaneously update variables from multiple modules (e.g., in a synchronized

transition between the train and controller), the train, gate, and controller are syn-

chronously composed. In each of the guards for the transitions in the train, gate, and

controller modules is a condition that the relevant timeout is equal to the current

time. If two machines synchronize on a message, the sender’s timeout is a guard for

both the sender and receiver. For example, the train sends the controller an exit

message. When this message is sent is guarded by the train’s timeout in the train

module. In the gate module, its action that depends on receiving the message is

guarded by the train’s timeout and the reception of the message.

2. Case-Study: The SPIDER Reintegration Protocol

Distributed fault-tolerant systems such as SPIDER and TTA are designed to with-

stand both permanent faults and transient faults , two means by which to classify fault

persistence [8,40]. A permanent fault is caused by physical disruptions that damage

the system and affect the system until it is repaired or replaced off-line. A transient

fault affecting a node may cause it to lose its volatile state but suffer no permanent

damage. This can be caused by high-intensity radiation, for example. Although a

2. CASE-STUDY: THE SPIDER REINTEGRATION PROTOCOL 109

transiently-faulty node may be fault-free, its state no longer is coordinated with that

of the operational clique, the set of fault-free nodes with coordinated states allowing

them to provide the requested services of the system. The operational clique and the

set of non-faulty nodes are not necessarily equivalent: for example, a reintegrator is

a non-faulty node not in the operational clique. This distinction can be subtle and

in fact, a misunderstanding of it was partially responsible for a subtle error in the

previous design of another SPIDER protocol [16]. Nodes in the operational clique

are called operational nodes .

If too many nodes become uncoordinated with the operational clique, the system

degrades and becomes more susceptible to new faults. Too many simultaneous faults

will lead the system to violate its maximum fault assumption (MFA), the maximum

kind and number of faults the system is designed to withstand yet maintain correct

operation. If the MFA is violated, no guarantees can be made about the system’s

behavior.

The reliability requirements for these busses coupled with the potential for a high

number of transient faults in the environments in which they operate have led to the

development of reintegration mechanisms for these systems. For a transiently-faulty

node to regain correct state, it may execute a reintegration protocol. In a synchronized

fault-tolerant distributed system, the reintegrating node (called the reintegrator) ex-

ecutes the protocol to resynchronize its local clock with those of the nodes in the

operational clique. As well, it may need to regain diagnostic data consistent with

the operational clique. A node’s diagnostic data are its view of which other nodes

are faulty (messages from faulty nodes should be ignored). Other state may also be

regained via the protocol; for example, if the system supports dynamic scheduling,

this needs to be obtained, too.

2. CASE-STUDY: THE SPIDER REINTEGRATION PROTOCOL 110

We present the first formal verification of a reintegration protocol. Rushby and

Pfeifer respectively describe the formal verification of TTA, one of the most mature

and formally-verified busses in development, and therein state that the formal analy-

sis of reintegration remains important future work [25,26]. The work presented here

should be extensible to other fault-tolerant systems that employ reintegration proto-

cols, especially given that this verification is architecture-independent, as elaborated

in Section 3.

The protocol described here abstracts the reintegration protocol being designed

for the latest SPIDER prototype [11]. The most significant abstraction is that we

model only the portion of the protocol in which the reintegrator resynchronizes its

local clock with the clocks of the nodes in the clique. We omit that portion of

the protocol in which the reintegrator regains diagnostic data consistent with the

operational clique. This portion of the protocol is a slight modification of the SPIDER

Distributed Diagnosis Protocol. The main difference is that the reintegrator simply

listens but does not broadcast messages as in the full distributed diagnosis protocol.

The Distributed Diagnosis Protocol has been formally verified in PVS [27].

From a pragmatic standpoint, resynchronization during reintegration is the most

complex portion of the protocol and stands to benefit the most from formal analy-

sis. Once reintegration is achieved, the remainder of the protocol can be modeled

synchronously, substantially easing its analysis.

Other minor simplifications include, for example, not modeling timers signaling

massive failure (e,g., where there is no clique with which to reintegrate) that triggers

the reintegrator to stop executing the reintegration protocol and begin executing a

reset protocol. The protocol, as it is described in the remainder of this section, is

fully modeled and verified using SAL.

2. CASE-STUDY: THE SPIDER REINTEGRATION PROTOCOL 111

During the reintegration protocol, the reintegrator monitors its communication

links for echo messages (or simply echos) sent by the other nodes. Echos are mes-

sages sent by nodes during the SPIDER Clock Synchronization Protocol. The clock

synchronization protocol must be executed periodically by all operational nodes be-

cause clock drift is inevitable, even in operational nodes. The period beginning at

the conclusion of one execution of the synchronization protocol lasting until its next

execution is called a resynchronization frame or simply a frame.

We verify the correctness of the reintegration protocol with respect to a single

reintegrating node. During the reintegration protocol, the reintegrator sends no mes-

sages. If multiple reintegrators are executing the protocol, they receive no messages

from each other, assuming they are non-faulty. Although a reintegrating node may

be non-faulty, it will be considered faulty by other nodes simultaneously reintegrat-

ing. In particular, a reintegrating node will diagnose another as suffering a fail-silent

fault, since it receives no messages from it. This issue is discussed in more detail in

Section 3.

The reintegrator is designed to tolerate the full range of faulty behaviors, includ-

ing Byzantine faults [39], manifested as arbitrary behavior to respective observers.

However, because the reintegration protocol is not a distributed protocol (i.e., only a

single node executes it), the only fault manifestations detectable by the reintegrator

are benign faults , detectable in point-to-point communication [95].

Finally, note that the ability of the reintegrator to reintegrate successfully with the

operational clique depends on the behavior of the nodes in the operational clique as

well. In particular, the reintegrator executes the reintegration protocol after suffering

a transient fault and reseting. During this period, the operational nodes have likely

determined the reintegrator to be faulty. So long as the operational nodes believe

the reintegrator to be faulty, they will ignore it, even if it resynchronizes and regains

2. CASE-STUDY: THE SPIDER REINTEGRATION PROTOCOL 112

correct local state. Thus, to allow for reintegration, the operational nodes must

periodically purge their diagnostic data to allow nodes a chance to reintegrate. In

the current SPIDER prototype, the non-faulty nodes purge their diagnostic data at

the end of each resynchronization frame. This allows a node that has suffered a fault

in one resynchronization frame to successfully reintegrate in another.

2.1. System Assumptions. Before describing the behavior of the protocol, a

preliminary understanding of the system assumptions is required. The system as-

sumptions are invariants assumed to hold to demonstrate the correctness of the pro-

tocol. These properties are stated in terms of accusations made by the reintegrator.

The reintegrator accuses a node when it believes the communication from the node

is inappropriate (e.g., the reintegrator does not receive an echo message when one is

expected or it receives one unexpectedly).

The first property constrains the behavior of the operational nodes during each

resynchronization frame. It is guaranteed by the correctness of the clock resynchro-

nization protocol [27] and the high-level scheduling of the protocols. It is illustrated

in Figure 2.

time

P
good
echos

tn tn+1tn − π

Figure 2. The Frame Property

Definition 5.6 (Frame Property). Let {tn}∞0 be a sequence of nonnegative reals

(denoting real time) assumed to have the following properties: for all n ∈ N, tn+1 > tn

and tn+1 − tn = P . The constant P is called the frame length, and for each n, the

interval [tn, tn+1), closed on the left and open on the right, is the nth frame. P

is constrained as follows: let l be the number of faulty nodes not accused by the

2. CASE-STUDY: THE SPIDER REINTEGRATION PROTOCOL 113

reintegrator during the preliminary diagnosis and frame synchronization modes (to

be described shortly). Then P > lπ+2π. The constant π ∈ R0< and is called the skew

constant . The reintegrator receives exactly one echo message from each operational

node during each open interval (tn−π, tn) (in this model, we include communication

error in the skew) and no more than one echo message in each frame.

The next property ensures that enough of the monitored nodes that have not been

accused are non-faulty for the protocol to work.

Definition 5.7 (Majority Property). Of the nodes that have not been accused

by the reintegrator during the entire protocol, the majority are operational.

2.2. Protocol Description. The reintegration protocol is comprised of three

modes of operation: preliminary diagnosis , frame synchronization, and synchroniza-

tion capture. These modes are executed sequentially in as shown in Figure 3. We

itemize the global and local state variables of the modes, and then we describe the

behavior of the protocol during each mode.

P.D. F.S. S.C.

Figure 3. State Machine Model of the Protocol Mode Control

2.2.1. State Description. The following state variables of the reintegrator deter-

mine the state of the reintegrator during the execution of the protocol. In the follow-

ing, let i range over the indices of the nodes the reintegrator monitors.

• accs is an array of boolean values such that for each node i, accs [i] is true if

the reintegrator accuses node i of being faulty and it is false otherwise. The

reintegrator ignores echos from nodes it has accused.

• clock is the current time of the reintegrator’s local clock.

2. CASE-STUDY: THE SPIDER REINTEGRATION PROTOCOL 114

• fs finish ranges over the nonnegative reals and is a timer variable used in the

frame synchronization mode.

• mode records the current mode being executed. It ranges over the set

{prelim diag , frame synch, synch capture}, denoting the three modes, re-

spectively.

• pd finish ranges over the nonnegative reals and denotes the time at which

the preliminary diagnosis mode completes.

• seen is an array of natural numbers such that for each node i, seen[i] records

the number of times a message has been received from i.

The following state variables are initialized at the beginning of the reintegration

protocol.

for each i, accs [i] := false;

mode := prelim diag;
for each i, seen[i] := 0;

2.2.2. Protocol Behavior. When the reintegrator begins executing the reintegra-

tion protocol, it has no diagnostic data to use in deciding which nodes are faulty and

which are not. Trusting too many faulty nodes may lower the probability that it will

successfully reintegrate with the operational clique. The purpose of preliminary diag-

nosis is to acquire preliminary diagnostic data to attempt to recognize faulty nodes

early in the protocol. This is achieved by monitoring echo messages for the duration

P + π. The reintegrator expects to receive at least one and no more than two echo

messages from i.

In the following pseudo code, a when statement is a guarded action. The guard

echo(i) is true precisely when the reintegrator receives an echo message from node i.

2. CASE-STUDY: THE SPIDER REINTEGRATION PROTOCOL 115

pd finish := clock + P + π;
while clock < pd finish do {

for each i, when echo(i) do {
if (seen[i] < 2 and not accs [i])
then seen[i] := seen[i] + 1
else accs [i] := true;

};
};
for each i, if seen[i] = 0 then accs [i];
mode := trans;

The purpose of the frame synchronization mode is to determine a time such that all

operational nodes have already issued an echo message in some frame and before any

operational node issues an echo in the next frame. An interval satisfying this property

is referred to as a frame gap. This provides the reintegrator with a coarse-grained

synchronization with the operational clique: a reintegrator is assumed to separate

echo messages (from operational nodes) arriving in different resynchronization frames.

The mode relies on echo messages from operational nodes being separated by no

more than π units of time. Therefore, the mode begins monitoring for echos, and it

exits when π units of time have elapsed such that no echo is observed from a node

that has not yet been accused. If an echo is observed within that time from a node

that has not be accused, then the timer is reset.

Acquiring this course-grained level of synchronization is a precondition for the

actual resynchronization that occurs in the next mode.

2. CASE-STUDY: THE SPIDER REINTEGRATION PROTOCOL 116

for each i, seen[i] := 0;
fs finish := clock;
while clock − fs finish < π do {

for each i, when echo(i) do {
if (seen[i] = 0 and not accs [i])
then {

fs finish := clock;
seen[i] := seen[i] + 1;

};
else accs [i] := true;

};
};
mode := synch capture;

The synchronization capture mode is the final mode of the reintegration proto-

col. Its purpose is to allow the reintegrator to determine a time during which some

operational node issues an echo message. It does so by synchronizing when it has

received echos from at least half of the nodes it has not accused (or has not already

seen in this mode). To ensure that it is synchronizing with an operational node, the

Majority Property (Definition 5.7) must hold. If so, the reintegrator will have become

resynchronized with the operational clique, within the accepted skew, π.

Let trusted be the total number of nodes the reintegrator has not accused: trusted=

|{i | not accs [i]}|. Let seen cnt be the number of nodes seen (that have not been ac-

cused in previous frames): seen cnt := |{i | seen[i] > 0}|.

for each i, seen[i] := 0;
while seen cnt ≤ trusted/2 do {

for each i, when echo(i) do {
if (seen[i] = 0 and not accs [i])
then seen[i] := seen[i] + 1;

};
};
clock := 0;

2.3. Modeling. We now describe the modeling of the reintegration protocol as

a STA with clockless semantics. We describe the model in the language of SAL. The

2. CASE-STUDY: THE SPIDER REINTEGRATION PROTOCOL 117

shallow embedding of the semantics of the reintegration protocol’s STA model in SAL

is similar to the TGC example described in Section 1.6. The full model can be found

on-line [13].

2.3.1. Timeouts. The model contains the following timeout variables: reint_to,

which is primarily associated with the reintegrator; frame_to, which is primarily

associated with the operational nodes; and each faulty node has its own timeout. The

timeouts for the operational and faulty nodes essentially exist for modeling purposes.

In modeling the reintegrator’s execution of the protocol, we require a model of the

entire system’s behavior. A näıve model would fix the behavior of the monitored nodes

over multiple resynchronization frames a priori. However, the state space required

to do so makes this infeasible. Rather, we model the behavior of the monitored

nodes one frame at a time. The frame in which the reintegrator is presently in is

modeled, and if the reintegrator passes into another frame by updating reint_to,

then the monitored nodes simultaneously change to the same frame (of course, the

reintegrator is modeled to have no knowledge of which frame in which it actually

resides).

This model admits a few simplifications. The behavior of the reintegration proto-

col depends on that of the observed nodes, but not vice versa. Thus, the model can

be constructed so that reint_to is always the minimum of the other timeouts, which

is proved by k-induction. This ensures the issuing of echo messages are always future

events observable by the timeout model of the reintegrator.

2.3.2. Monitored Nodes. To verify the correctness of the protocol, we must model

both the reintegrator and the monitored nodes. In the model, we distinguish between

nodes in the operational clique and faulty nodes (as discussed in Section 2, non-faulty

nodes not in the operational clique are considered faulty by the reintegrator, and their

2. CASE-STUDY: THE SPIDER REINTEGRATION PROTOCOL 118

behaviors are subsumed by the modeled behavior of the faulty nodes). We describe

the model of the two kinds of nodes in turn.

To model the operational nodes, we begin by defining a module that keeps track of

the resynchronization frames, as presented in Figure 4. The timeout frame_to serves

as an abstract global clock shared by the synchronized operational nodes. The timeout

keeps track of the values of tn marking the end of a frame, as described in Section 2.1.

There is a single transition, updating the timeout frame_to on transitions when the

timeout reint_to has been updated so that its value is in the next resynchronization

frame. This can be determined by comparing the next state’s value of reint_to

(denoted by reint_to’) to the end of the current resynchronization frame. The

variable new_frame is a boolean value that is true if and only if the transition just

taken was one in which the frame has been updated.

P_update: MODULE =
...

TRANSITION

[

frame_to <= reint_to’

-->

frame_to’ = frame_to + P;

new_frame’ = TRUE

[]

ELSE -->

new_frame’ = FALSE

]

Figure 4. Synchronization Frame Module

The operational nodes themselves are specified by an op_node module, parame-

terized by the indices of operational nodes, presented in Figure 5. The timeout for an

operational node is frame_to. Whenever the frame updates, it nondeterministically

updates its echo variable, op_echo (ranging over the nonnegative reals), to a new

2. CASE-STUDY: THE SPIDER REINTEGRATION PROTOCOL 119

value satisfying the Frame Property (Definition 5.6). This is a conservative model

insofar as an operational node may update its echo to any time satisfying the con-

straints, so the difference between the echos it issues in adjoining frames may be up

to P +π. In reality, the clock of an operational node would not drift so dramatically.

To ensure the correctness of the model, when the reintegrator moves from one

frame to the next, its timeout reint_to’ must never be updated so far into the

future that it is beyond when operational nodes issue echos in the next frame. An

invariant is proved about the model that demonstrates that this does not occur.

op_node[i: OP_IDS]: MODULE =
...

TRANSITION

[

frame_to <= reint_to’

-->

op_echo’ IN {t: TIME | frame_to’ > t

AND t > frame_to’ - pi}

[]

ELSE -->

]

Figure 5. Operational Node Module

Finally, the instances of op_node are synchronously composed, and this composi-

tion is synchronously composed with the P_update module as shown in Fig 6.

op_nodes: MODULE =

WITH OUTPUT op_echos: OP_ECHOS

(|| (i: OP_IDS): RENAME op_echo TO op_echos[i]

IN op_node[i]);

clique: MODULE = op_nodes || P_update;

Figure 6. Operational Clique Module

2. CASE-STUDY: THE SPIDER REINTEGRATION PROTOCOL 120

Faulty nodes are also specified by a module parameterized by the indices of nodes

that may exhibit faulty behavior. The model is slightly more complicated so that

all possible faulty behaviors are modeled, yet k-induction proofs are feasible over the

transition system. In a näıve model of the entire system, the reintegrator would make

a transition whenever it receives an echo from a node it is actively monitoring. This

would amount to updating its timeout to be equal to the timeout of the first echo

it receives and updating its state accordingly. It would then reset its timeout to the

next echo and so on. In this model, the reintegrator’s transitions are event-triggered;

they depend on echo events. However, because a faulty node may issue multiple echos

before being ignored by the reintegrator, this model can quickly lead the reintegrator

to make a large number of transitions for even a relatively small number of faulty

nodes. For k-induction to succeed, a more sophisticated model is required.

A preferable model is one in which the reintegrator’s transitions are essentially

time-triggered. This amounts to the reintegrator updating its timeout irrespective of

the states and timeouts of the monitored nodes. Ideally, a time-triggered model of

the reintegrator would make a small number of time-triggered transitions at regular

intervals and update its state based on all of the echos received during the intervals

rather than updating its state upon receiving each echo.

Care must be taken to make a time-triggered model conservative. Because time-

outs record when future events occur, when the reintegrator makes a state transition,

it can only “observe” those echos that come after its current timeout and no later than

the time at which it sets its next timeout. For example, in a näıve model, suppose

the reintegrator were to update its state in a time-triggered fashion as illustrated in

Figure 7. Suppose reint_to denotes the reintegrator’s current timeout, which is also

the least of all timeouts. Suppose that for some monitored node, it issues an echo

message at time echo. The reintegrator observes this echo message, and updates its

2. CASE-STUDY: THE SPIDER REINTEGRATION PROTOCOL 121

timeout to reint_to’. Once the current time reaches echo, however, that node could

issue another echo message at echo’, which will go undetected by the model of the

reintegrator.

time
echoreint to reint to’echo’

undetected

Figure 7. The Reintegrator TA Misses Echo Messages

Therefore, we allow the reintegrator to behave in a time-triggered fashion (in part),

but faulty nodes are able to issue multiple echo messages in a single transition. The

model of a faulty node contains a state variable bad_echo, as shown in Figure 8, that

is an array of echos (nonnegative reals). The array has three indices. This is because

the greatest number of echos that must be observed from any node in a mode is three

before the node is accused. The echo in the first index also serves as the timeout

for a faulty node, and the remaining echos in the array are guaranteed to always be

greater than the timeout by the ascending? predicate. If the reintegrator updates

its timeout in a time-triggered manner, there is the possibility it will observe all three

echos during the update.

Nevertheless, there is no upper bound on how large any of the values in the array

may be. If the echos are too far ahead of the reintegrator’s timeout, they will be

beyond the time to which it updates its timeout in a time-triggered transition and will

never be observed. Thus, the module also models faulty nodes that are fail-silent. As

well, note that the behavior of a faulty node so modeled may also be indistinguishable

from that of an operational one. A faulty node may issue echos such that the first

echo in the array consistently satisfies the Frame Property (Definition 5.7), and the

other echos are beyond the observation window of the reintegrator.

2. CASE-STUDY: THE SPIDER REINTEGRATION PROTOCOL 122

bad_node[i: BAD_IDS]: MODULE =
...

TRANSITION

[

bad_echo[1] <= reint_to’

-->

bad_echo’ IN {be: BAD_ECHO_ARRAY

| ascending?(be, reint_to’)}

[]

ELSE -->

]

Figure 8. Faulty Node Module

The precondition for the transition to update the echos is similar to that described

for the frame synchronization module described in Section 2.3.2. Here, if the next

state’s value of reint_to ever surpasses the first echo from a faulty node, all of

the faulty nodes echos are updated. Thus, all of the faulty node’s echos are always

observed by the reintegrator (i.e., the values of each echo is greater than reint_to).

This is also provable in the model by k-induction.

Each of the three modes of the reintegration protocol is specified as a separate

module. Additionally, another module handles mode control, which we describe first.

Each mode has a binary control signal to determine whether it is active. Only one

mode may be active at any time. The module specified in Figure 9 ensures the correct

flow of control through the modes. It is synchronously composed with the modules

specifying the modes themselves.

We specify mode control for a number of reasons. Making mode control explicit

simplifies the analysis of counterexamples generated by SAL when attempting to

verify properties of the formal model; knowing in which mode the counterexample

occurs simplifies the search for the error. The mode control is part of the protocol

as it was designed. Mode exit points mark locations in the execution of the protocol

2. CASE-STUDY: THE SPIDER REINTEGRATION PROTOCOL 123

modes: MODULE =
...

TRANSITION

[

mode = pd_mode

-->

mode’ = IF pd_cntrl=active

THEN mode ELSE fs_mode

ENDIF

[]

mode = fs_mode

-->

mode’ = IF fs_cntrl=active

THEN mode ELSE sc_mode

ENDIF

[]

ELSE -->

]

Figure 9. Mode Control Module

where certain invariants are supposed to be reached. An invariant guaranteed upon

the completion of a mode serves as an assumption in demonstrating the succeeding

mode behaves correctly. Demonstrating that each mode guarantees the appropriate

invariants is sufficient to demonstrate the entire protocol behaves correctly. Thus,

modes serve as both a conceptual and formal decomposition to model and verify the

protocol. Because the module is synchronously composed with the mode modules, it

does not affect the trajectory-length required for k-induction proofs.

The three modes of the reintegration protocol are specified by separate SAL mod-

ules. Because of the distinct way in which operational and faulty nodes are modeled,

it is simpler to specify distinct accs and seen variables for each kind. For example, in

the SAL model, the reintegrator contains variables op_accs and bad_accs to record

accusations. Nevertheless, care is taken to ensure that the reintegrator has no a priori

knowledge about which nodes are in fact operational and which are faulty.

2. CASE-STUDY: THE SPIDER REINTEGRATION PROTOCOL 124

In addition, in proving invariants, we found it simpler to specify separate seen

variables for each mode rather than reseting the seen variable at the conclusion of

each mode.

In the preliminary diagnosis mode, there are two principle transitions, as shown in

Figure 10. The first transition models the behavior during the mode, and the second

models exiting the mode. Our model of the reintegrator during the preliminary

diagnosis mode is essentially time-triggered. The variable pd_finish marks the time

at which the mode exits. The effect of a transition is to move the reintegrator’s

timeout from the beginning of frame n to the beginning of frame n+1. As it does so, it

records the echos observed in that frame and updates its state variables recording how

many echos are seen from each node and whether they should be accused, respectively.

When the reintegrator’s timeout is updated to the beginning of the next frame, the

P_update module simultaneously updates frame_to to prepare the reintegrator to

observe the echos in the next frame. If the mode should exit before the termination

of the frame, the reintegrator’s timeout is updated to the time at which the mode

should end, and only those echos in the interium are recorded by the reintegrator.

The purpose of the frame synchronization mode is to allow the reintegrator to

discover some time during which no echos have been observed for π units of time

(from nodes it does not know to be faulty). Thus, as shown in Figure 11, we define

the relation none_in_pi? that determines whether this holds. If the relation is not

satisfied, the reintegrator’s timeout is updated to the greatest echo not known to

be from a faulty node within π units of time of the reintegrator’s current timeout

within the current frame. If no such echo exists within the current frame, reint_to

is updated to the beginning of the next frame, allowing the operational echos to be

updated (see Section 2.3.2). When the relation does hold, the reintegrator’s timeout

is simply updated to be π units of time greater than its current value.

2. CASE-STUDY: THE SPIDER REINTEGRATION PROTOCOL 125

preliminary_diagnosis_mode: MODULE =
...

TRANSITION

[

mode’ = pd_mode

AND frame_to < pd_finish

-->

reint_to’ = frame_to;
...

[]

mode’ = pd_mode

AND frame_to >= pd_finish

-->

pd_cntrl’ = deactive;

reint_to’ = pd_finish;
...

]

Figure 10. Preliminary Diagnosis Module

In the last mode, shown in Figure 12, we allow the reintegrator to behave in an

event-triggered fashion. The reintegrator’s timeout is updated from its current value

to the time at which the soonest echo message occurs (that does not come from a

node known to be faulty), or if no such echo exists in the current frame, it updates

to the beginning of the next frame. The function sc_seen_total records how many

echo messages have been seen so far. The mode exits when more than half of the

nodes that have not been accused have been observed – that is, when

sc_seen_total(sc_op_seen, sc_bad_seen)

> not_accd(op_accs, bad_accs)/2 .

This also marks the termination of the reintegration protocol.

The three mode modules are composed asynchronously, in the base_modes mod-

ule:

2. CASE-STUDY: THE SPIDER REINTEGRATION PROTOCOL 126

frame_synchronization_mode: MODULE =
...

TRANSITION

[

mode’ = fs_mode

AND NOT none_in_pi?(reint_to, op_echos, bad_echos,

fs_op_seen, fs_bad_seen,

op_accs, bad_accs)

-->

fs_cntrl’ = active;

reint_to’ IN {t: TIME

| last_in_pi?(t, reint_to,

op_echos, bad_echos,

op_accs, bad_accs,

fs_op_seen,

fs_bad_seen,

reint_to)};
...

[]

mode’ = fs_mode

AND none_in_pi?(reint_to, op_echos, bad_echos,

op_accs, bad_accs,

fs_op_seen, fs_bad_seen)

-->

fs_cntrl’ = deactive;

reint_to’ = reint_to + pi;
...

Figure 11. Frame Synchronization Module

No two modes should be active simultaneously. This is enforced by ensuring that

if one mode is active, the others are deadlocked. The reintegrator is then defined as

the synchronous composition of the base_modes module and the modes module:

The entire system is the synchronous composition of the reintegrator module, the

clique module, and the module of the composition of the faulty nodes:

2. CASE-STUDY: THE SPIDER REINTEGRATION PROTOCOL 127

synch_capture_mode: MODULE =
...

TRANSITION

[

mode’ = sc_mode

AND sc_seen_total(sc_op_seen, sc_bad_seen)

<= not_accd(op_accs, bad_accs)/2

-->

sc_cntrl’ = active;

reint_to’ IN {t: TIME

| next?(t, reint_to,

op_echos, bad_echos,

op_accs, bad_accs,

sc_op_seen,

sc_bad_seen, frame_to)};
...

[]

mode’ = sc_mode

AND sc_seen_total(sc_op_seen, sc_bad_seen)

> not_accd(op_accs, bad_accs)/2

-->

sc_cntrl’ = deactive;
...

]

Figure 12. Synchronization Capture Module

base_modes: MODULE =

preliminary_diagnosis_mode

[]

frame_synchronization_mode

[]

synch_capture_mode;

Figure 13. The Composition of the Reintegrator’s Modes

2.4. Verification. There are two main theorems to prove. First, we wish to

show that the reintegrator accuses no operational nodes during the execution of the

2. CASE-STUDY: THE SPIDER REINTEGRATION PROTOCOL 128

reintegrator: MODULE = base_modes || modes;

Figure 14. Reintegrator Module

system: MODULE = reintegrator || clique || bad_nodes;

Figure 15. Full System Composition

reintegration protocol. Second, we wish to show that the reintegrator has success-

fully resynchronized with the operational nodes upon completion of the reintegration

protocol.

Theorem 5.3 (No Operational Accusations). For all operational nodes i, accs [i]

does not hold during the reintegration protocol.

Theorem 5.4 (Synchronization Acquisition). For all operational nodes i, |clock−

echo(i)| < π upon termination of the reintegration protocol.

The proofs of these theorems via k-induction requires a number of supporting

lemmas. Our strategy is to decompose the protocol verification into a verification

of its constituent modes. Each mode should guarantee certain postconditions. The

postconditions for a mode then serve as preconditions for succeeding modes. This

strategy can be followed through the entire protocol making the proof of the above

theorems straightforward.

This proof strategy is similar to the proof by abstraction technique used by

Dutertre and Sorea [53, 54] and is a form of disjunctive invariants , an invariant

composed from a set of disjuncts rather than the usual conjunctive form [88,103].

Dutertre and Sorea manually construct the abstraction over the transition system to

2. CASE-STUDY: THE SPIDER REINTEGRATION PROTOCOL 129

be verified. Its construction appears to require a good of understanding of the pro-

tocol. While their abstraction technique is powerful, its construction is complicated;

the mode abstraction used here is simply adopted from the protocol specification.

The proof of Thm 5.3 requires showing that no accusations are issued in any of

the modes; accusations are not issued in the synchronization capture mode, so we

need only be concerned with the first two modes. One challenge in doing so is that

the reintegrator is unsynchronized with the operational nodes in these modes, so it

may begin listening for echos at any time during a frame. In particular, it may begin

listening for echos after some operational nodes have issued them and before others

have done so. Thus, for example, in the preliminary diagnosis mode, we cannot state

precisely how many echos messages the reintegrator should receive from operational

node. Rather, the reintegrator should receive at least one and no more than two

echos. Proving that this in fact happens requires some additional lemmas regarding

the maximum and minimum length of time the mode is active, and the effects of the

mode initializing at different points in a frame.

The proof of Thm 5.4 relies principally on two supporting lemmas, each of which

provides preconditions for the mode. The first precondition is that no operational

nodes have been accused (Thm 5.3). The second is that the time at which the syn-

chronization capture mode initializes and the reintegrator begins listening for echos is

such that either all operational nodes in that frame have already issued echo messages

or no operational node in the frame has issued one; that is, the frame synchronization

mode has successfully located a frame gap.

2.4.1. Architectures Verified. In the prototypical design of SPIDER, the reinte-

grator monitors no more than three nodes. The architecture of the SPIDER bus is

a bipartite graph of six nodes (i.e., there are two disjoint sets of nodes, and any two

nodes from distinct sets have interconnects and no two nodes from the same set have

2. CASE-STUDY: THE SPIDER REINTEGRATION PROTOCOL 130

interconnects) [104], and this architecture with six nodes is designed to tolerate up

to two simultaneous value faults.

The protocol has been verified for up to four monitored nodes, where one node may

be faulty, (without increasing the number of non-faulty nodes, a greater number of

faulty nodes would violate the Definition 5.7, the Majority Property). The proofs took

on the order of seconds (and occasionally minutes) to complete on a typical modern

desktop CPU with a gigabyte of memory. Although we did not attempt it, it may be

possible to verify these properties for models containing a greater number of monitored

nodes if proofs are allowed to run on the order of hours or on a more powerful

machine. Furthermore, strengthening the invariants would allow larger architectures

to be verified.

Because of the way in which we have modeled the protocol, for most lemmas, the

size of k required to prove a lemma is invariant to the number of monitored nodes

modeled. The size of k is dependent upon the duration of a mode (i.e., for how many

resynchronization frames it is active) rather than on how many echos are received in

the mode. For the architectures verified, all lemmas are proved by k-induction for

k ≤ 4.

SAL has the capacity to assist the user in discovering required lemmas. It has an

option such that when enabled, SAL will return a counterexample to a failed proof

by k-induction. Because the model is infinite, the counterexample is often symbolic.

It shows a k-trajectory over which the constraints of the infinitely-typed variables do

not satisfy the induction step (rarely does the base case fail). The onus is on the user

to interpret how the constraints lead to a counterexample.

Clique avoidance is the property that there exists exactly one operational clique

in the system [7,105]. If more than one clique exists, the nodes in one clique will

consider the nodes in the other to be either faulty or recovering, and the members

2. CASE-STUDY: THE SPIDER REINTEGRATION PROTOCOL 131

of each clique disregard the nodes in the other. This decreases the survivability

of the system, since each clique is smaller than it would be if all the nodes were

in the same clique. Worse though is that multiple cliques may lead the processors

connected to the bus architecture to lose agreement about the status of the bus.

The bus interface unit serving as the interface between a processor and the other

nodes in the bus architecture can only communicate within the clique in which it is

a member. Consequently, multiple cliques can violate processor-level fault-tolerance

requirements the bus is supposed to guarantee for the attached processors.

The SPIDER architecture does not have a protocol to guarantee clique avoidance,

unlike, e.g., TTP/C [26,105]. However, the architecture is designed with the intent

that if during the course of its operation the MFA (Section 1) is not violated, clique

avoidance is guaranteed. The analysis of the reintegration protocol supports this

claim by demonstrating that a necessary condition for clique avoidance is met.

Suppose the MFA is not violated and the protocols executed by the non-faulty

nodes during startup and normal operation guarantee clique avoidance. Then the

only opportunity for clique avoidance to be violated is after multiple nodes suffer

transient faults and attempt to find a clique with which to reintegrate. If we assume

clique avoidance holds while a node begins to reintegrate, it has only one clique

to observe. By Theorem 5.3, such a node will not accuse the nodes in the single

clique during reintegration and will therefore reintegrate into it by executing the

reintegration protocol.

The two assumptions to the above argument are essential. First, it is necessary

to assume the MFA is not violated. If the architecture suffers a massive failure that

triggers a bus restart, scenarios exist in which clique avoidance is violated, although

these scenarios have a low probability [11]. Although the essential protocols that

3. SUMMARY 132

execute during startup and normal operation have been formally verified individu-

ally [27], there does not yet exist a cohesive argument to demonstrate formally that

clique avoidance is preserved.

3. Summary

We have described a formal proof of the correctness of the SPIDER Reintegration

Protocol in the SAL tool using k-induction. We have described improvements to a

novel formalism for real-time system. Finally, we have described a means by which

event-triggered behavior can be modeled as time-triggered behavior. The essential

means by which we achieved our results were by introducing synchrony into the for-

malism and by (conservatively) modeling event-triggered actions with time-triggered

behavior.

Modeling the reintegration protocol revealed two distinctions between this proto-

col and the other fault-tolerant protocols designed for SPIDER and similar systems.

First, although the ROBUS is designed to withstand Byzantine faults, these sort of

faults do not warrant special consideration when reasoning about reintegration. A

node that suffers a Byzantine fault can send arbitrary messages to other nodes. The

difficulty in designing distributed protocols to tolerate Byzantine faults is that dif-

ferent nodes may receive different messages from the same node. The reintegration

protocol is not a distributed protocol; only the reintegrator executes a reintegration

protocol, so only the messages the reintegrator receives are relevant when reasoning

about the correctness of the protocol.

Second, the topology of the system does not need to be modeled. The verification

is with respect to a single node, the reintegrator. The topology can be abstracted

away so that only the reception of messages by the reintegrator from the other nodes

in the system is modeled. If a communication link does not exist that allows a node

3. SUMMARY 133

to send messages to the reintegrator, then that node is simply ignored in the formal

model.

The formal specification and verification of the reintegration protocol reveals no

flaws in the protocol. Nevertheless, it is of value since no hand proofs existed to

demonstrate its correctness. Furthermore, the protocol was significantly different from

the other SPIDER protocols and many other fault-tolerant distributed protocols [29].

As well, the formal verification not only demonstrates the correctness of reintegration

but it strongly suggests that clique avoidance is preserved.

The formal verification does reveal that a more general assumption can be used

to prove correctness: we require only that P > lπ + 2π, where P is the duration

of a resynchronization frame, π is the skew, and l is the number of faulty nodes

not accused by the reintegrator during the first two modes. In the originally-stated

assumption, the requirement was that P > mπ + π, where m is the total number of

monitored nodes. This latter requirement implies the former since Definition 5.7, the

Majority Property, ensures there is at least one operational node. In the worst case

– i.e., if the reintegrator trusts as many faulty nodes as possible for the protocol to

work – they are equivalent.

A difficulty with k-induction is that properties can be proved vacuously if the

system is deadlocked. Checking for deadlocks in a infinite-state systems is a difficult

problem. This is exacerbated by the fact that SAL’s language is typed, and violat-

ing typing constraints can cause deadlocks as well. The heuristic used to check for

deadlocks, just as described in Chapter 4, is to specify properties known to be false

and attempt to prove them by k-induction. This is only a positive test for deadlock;

a counterexample does not imply the system is not deadlocked.

Proving safety properties of parameterized real-time systems models using infinite-

state bounded model-checking is promising. This technique has been used in other

3. SUMMARY 134

real-time domains too, with much success. Parameterized models of two physical

layer communication protocols – 8N1 (used in UARTS) and the Biphase Mark Pro-

tocol – have been verified [19, 106]. The verification of the former physical layer

protocol reveals a significant error in a published technical note, and the verification

of the latter is orders of magnitude easier than previous approaches using mechanical

theorem-proving.

CHAPTER 6

Conclusion

A methodology for the formal verification of time-triggered systems is developed

in the preceding chapters. For these kinds of systems, a variety of timing models are

used to specify their protocols, and the ability to reason within and between these

timing models is essential for their verification.

1. Limitations

A complete formal verification methodology for time-triggered systems has not be

provided. The development of safety-critical systems is recent and formal verification

research in this domain is less mature than in others such as hardware. Many open

problems in time-triggered system verification described by Rushby and Pfeifer have

not been addressed herein including, for example, formal analyses of application-level

fault-tolerance, and never-give-up strategies [25,26].

The following are limitations specific to the work presented in each of the technical

chapters (Chapter 3 through 5).

1.1. Chapter 3. A set of abstractions for the formal verification of synchronous

fault-tolerant distributed protocols is presented. Like any set of abstractions, model-

ing a system using them requires the system to satisfy various constraints, notably,

they require the abstracted protocols to implement synchronous behavior. Although

the abstractions have proved useful in the specification and verification of the SPI-

DER protocols, it remains to be seen how they extend to similar systems. Preliminary

135

1. LIMITATIONS 136

work by the NASA Langley SPIDER Group and Holger Pfeifer to extend the specifi-

cations presented by Miner et. al. [27] to the specification of TTA, which are founded

upon these abstractions, has been promising.

1.2. Chapter 4. One limitation we find with the approach outlined to verify

implemented protocol schedules is that the timing analysis developed in the formal

theory does not correspond exactly with that developed by the SPIDER engineers

who produced the protocol schedules [11]. For example, offsets for the communication

phase, computation phase, reception window, etc. are offsets from the beginning of

the current round. In the engineers’ specifications of the SPIDER prototypes, these

offsets are calculated with respect to the scheduled start of the entire protocol. An-

other difference is that the analyses carried out by the engineers uses clock functions

from clock-time to real-time whereas we use inverse clock functions, which are func-

tions from real-time to clock-time. There are other minor differences. The differences

require an informal mapping from the variables and constants in the VHDL schedules

developed by the engineers to those of the formal theory. This is a result, in part,

of beginning with Rushby’s existing theory and formalized specifications. Ideally,

the formal theory is developed in conjunction with the engineers’ analysis (or even

replaces that analysis) to ensure a simple mapping.

1.3. Chapter 5. Beyond the standard limitation of bounded model-checking –

that the propositional satisfaction problem is exponential in the size of the formula –

infinite-state bounded model-checking depends on powerful combinations of theory-

specific SMT solvers. At the time of this writing, this is an active area of research.

In fact, the model reported in Chapter 5 provided many of the benchmarks for the

first SMT competition [107]. The use of this technique depends on the development

of more powerful and better integrated solvers.

2. FUTURE WORK 137

2. Future Work

The following describes natural extensions of the work presented in this disserta-

tion.

2.1. Emergent Properties. As described in Chapter 1, some of the most diffi-

cult yet important challenges facing the formal verification of time-triggered systems

are the specification and verification of system-level “emergent properties” [25]. This

work addresses this challenge indirectly. In particular, one of the difficult aspects in

verifying emergent properties is that separate protocols tend to be specified and veri-

fied in different timing models (see Pfeifer [26]). A systematic means for abstracting

a wide range of protocols to the synchronous model (Chapter 4) and a systematic

means for specification in this model (Chapter 3) should ease this challenge.

2.2. Design Derivation. In general, the level of abstraction this dissertation

deals with is the protocol level. These specifications are of the global system behav-

ior and the properties the distributed protocols must satisfy. A gap exists between

this level of abstraction and the implementation, in either hardware or software. One

of the greatest differences is that a protocol specification describes the coordinated

behavior of some subset of the node operations. A specification of a single node

describes its sequential behavior over all the protocols in which it plays some role.

Roughly, the two aspects of specification are orthogonal: a protocol specification

“cuts” the system temporally, and the node specification “cuts” the system spatially.

A protocol specification describes the global system over some time interval, whereas

a node specification describes the entire behavior over time of a single node. There are

additional differences: a protocol-level specification models the environment, which

2. FUTURE WORK 138

may include the effects of faults, timing assumptions, and so on. A protocol specifi-

cation is necessary to verify the protocols behave correctly, but it is from a node-level

specification from which an implementation can be built.

There are two possibilities for creating a formal connection between a protocol-

level specification and a node-level specification. The first is to use a verification tech-

nology such as mechanical theorem-proving or model checking. For example, Bevier

and Young use the ACL2 theorem-prover to verify a hardware realization of the Oral

Messages protocol [108]. The drawbacks of using mechanical theorem-proving is that

it is time-intensive, requires substantial expertise, and formulations and proofs are not

easily modified in the face of changes to the specification or realization. Furthermore,

many of the refinements made to obtain the realization from the specification may be

routine, but each instance of the refinement requires a separate proof of correctness.

More preferable would be a form of interactive synthesis or interactive compilation.

Results reported demonstrate techniques for deriving hardware specifications from

high-level functional specifications, and it may be possible to extend these to the

derivation of hardware realizations of time-triggered systems [18,109–111]. Another

approach from the synchronous languages perspective [112] for generating a TTA

implementation from Lustre [113] specifications is described by Caspi et. al. [114].

2.3. Verification Libraries. The success of modern programming languages is

due in part to the vast libraries available to the programmer. No large-scale pro-

gramming effort would be attempted in a language without good library support.

Not only does the existence of libraries reduce the development time, but it also re-

duces programming bugs. Libraries have often been carefully designed by experts in

the language, and they have undergone extensive testing.

Despite current practice, these remarks hold for formal specification and verifica-

tion projects, too. A main criticism of formal methods, and particularly mechanical

2. FUTURE WORK 139

theorem-proving, is that it is very time-intensive. Significant effort is required to for-

mulate and prove background results needed in a mechanical-theorem-prover. Basic

mathematical results are proved repeatedly in verification endeavors.

One approach is to provide domain-centric libraries. A set of specifications and

mechanical proofs have been developed for SPIDER in PVS [27,95]. Libraries gen-

eralizing these results are being developed. They are being generalized for the spec-

ification and verification of time-triggered systems other than SPIDER, such as the

TTA. These compliment the NASA Langley PVS libraries [77]. In general, better

libraries are needed, and libraries need to be integrated, both within a mechanical

theorem-prover and between theorem provers [115].

2.4. Real-Time Verification by k-Induction. The k-induction verification

technique for infinite-state systems used Chapter 5 is promising, and preliminary

results suggest larger models can be verified using it than using timed-automata

based verification for some problems [54]. More generally, a direct comparison be-

tween the specification and verification of real-time systems in SAL and in other

tools specifically designed for real-time system verification (e.g., HyTech [116], Kro-

nos [117], Uppaal [118], etc.) would be useful, although results reported by Brown

and Pike suggest real-time verification by k-induction compares favorably [19]. More

case-studies are needed to determine its how to use the technology effectively. The

development of automated solvers is a very active area of research, being shaped by

case-studies like the one from Chapter 5 [107]. The k-induction proof technique is

sensitive to the maximum length of a trajectory in a transition system over which the

induction step does not hold. Other methods to “flatten” the transition system, like

the ones developed in Chapter 5, makes the technique more powerful.

3. CONCLUDING REMARKS 140

2.5. Tool Integration. A thesis of this dissertation is that the economic appli-

cation of formal methods to this domain requires the use of multiple tools. We use

two tools, PVS and SAL, that are developed by a single laboratory, SRI, Interna-

tional. These tools are designed to be integrated in a future release [119]. Although

they are stand-alone tools at this point, we are able to take advantage of their similar

language constructs, particularly in Chapter 4.

In general, an industrial-sized formal verification endeavor requires a range of tools

including mechanical theorem-proving, model-checking, and automated and interac-

tive synthesis [66,120,121].

3. Concluding Remarks

Embedded digital systems are at once becoming more complex and more inte-

grated into safety-critical systems. Assurance that their designs are error-free is

essential. For systems with high reliability requirements, formal methods are rec-

ognized to provide the highest level of assurance of correctness. The feasibility of

acquiring this level of assurance requires techniques, like the ones presented herein,

for the systematic and economic formal verification of time-triggered systems.

Bibliography

[1] John Rushby. Tutorial introduction to mechanized formal analysis using theorem proving,

model checking and abstraction. Presentation Slides, May 2003. Available at http://www.

csl.sri.com/users/rushby/abstracts/fm-tut.

[2] M. Baleani, A. Ferrari, L. Mangeruca, A. Sangiovanni-Vincentelli, Maurizio Peri, and Saverio

Pezzini. Fault-tolerant platforms for automotive safety-critical applications. In CASES ’03:

Proceedings of the 2003 international conference on Compilers, architecture and synthesis for

embedded systems, pages 170–177, 2003.

[3] Philip Koopman, editor. Critical Embedded Automotive Networks, volume 22–4 of IEEE Micro.

IEEE Computer Society, July/August 2002.

[4] Pascal Traverse, Isabelle Lacaze, and Jean Souyris. Airbus fly-by-wire - a total approach to

dependability. In IFIP Congress Topical Sessions, pages 191–212, 2004.

[5] Ying C. (Bob) Yeh. Unique dependability issues for commercial airplane fly by wire systems.

In IFIP Congress Topical Sessions, pages 213–220, 2004.

[6] Markus Krug, Hermann Kopetz, Elmar Dilger, Lars-Ake Johansson, U. Panizza, Peter Lidn,

G. McCall, P. Mortara, Bernd Mller, Stefan Poledna, Anton Schedl, J. Sderberg, M. Strmberg,

and Thomas Thurner. Towards an architecture for safety related fault tolerant systems in

vehicles. ESREL ’97, June 1997, Portugal, Jun. 1997.

[7] John Rushby. Bus architectures for safety-critical embedded systems. In Tom Henzinger and

Christoph Kirsch, editors, EMSOFT 2001: Proceedings of the First Workshop on Embedded

Software, volume 2211 of Lecture Notes in Computer Science, pages 306–323, Lake Tahoe, CA,

October 2001. Springer-Verlag.

[8] Hermann Kopetz. Real-Time Systems. Kluwer Academic Publishers, 1997.

[9] Ricky W. Butler and George B. Finelli. The infeasibility of quantifying the reliability of

life-critical real-time software. Software Engineering, 19(1):3–12, 1993. Available at http:

//citeseer.nj.nec.com/butler93infeasibility.html.

141

http://www.csl.sri.com/users/rushby/abstracts/fm-tut
http://www.csl.sri.com/users/rushby/abstracts/fm-tut
http://citeseer.nj.nec.com/butler93infeasibility.html
http://citeseer.nj.nec.com/butler93infeasibility.html

BIBLIOGRAPHY 142

[10] John Rushby. Systematic formal verification for fault-tolerant time-triggered algorithms. IEEE

Transactions on Software Engineering, 25(5):651–660, September 1999.

[11] Wilfredo Torres-Pomales, Mahyar R. Malekpour, and Paul Miner. ROBUS-2: A fault-tolerant

broadcast communication system. Technical Report NASA/TM-2005-213540, NASA Langley

Research Center, 2005.

[12] NASA Formal Methods Group. SPIDER homepage. Website, 2004. Available at http:

//shemesh.larc.nasa.gov/fm/spider/.

[13] Lee Pike. Dissertation artifacts: PVS and SAL specifications and proofs. Website, 2005. Avail-

able at http://www.cs.indiana.edu/∼lepike/phd.html.

[14] Tony Hoare. The verifying compiler: A grand challenge for computing research. J. ACM,

50(1):63–69, 2003.

[15] J. Strother Moore. A grand challenge proposal for formal methods: A verified stack. In Bern-

hard K. Aichernig and Tom Maibaum, editors, Formal Methods at the Crossroads. From

Panacea to Foundational Support, volume 2757 of LNCS, pages 161–172. Springer, 2003.

[16] Lee Pike, Paul Miner, and Wilfredo Torres. Model checking failed conjectures in theorem prov-

ing: a case study. Technical Report NASA/TM–2004–213278, NASA Langley Research Center,

November 2004. Available at http://www.cs.indiana.edu/∼lepike/pub pages/unproven.

html.

[17] Patrick Lincoln and John Rushby. The formal verification of an algorithm for interactive

consistency under a hybrid fault model. In Costas Courcoubetis, editor, Computer-Aided

Verification, CAV ’93, volume 697 of Lecture Notes in Computer Science, pages 292–304,

Elounda, Greece, June/July 1993. Springer-Verlag. Available at http://www.csl.sri.com/

papers/cav93-hybrid/.

[18] Steven D. Johnson. View from the fringe of the fringe. In Tiziana Margaria and Thomas

Melham, editors, 11th Advanced Research Working Conference on Correct Hardware Design

and Verification Methods, volume 2144 of Lecture Notes in Computer Science, pages 1–12.

Springer-Verlag, 2001.

http://shemesh.larc.nasa.gov/fm/spider/
http://shemesh.larc.nasa.gov/fm/spider/
http://www.cs.indiana.edu/~lepike/phd.html
http://www.cs.indiana.edu/~lepike/pub_pages/unproven.html
http://www.cs.indiana.edu/~lepike/pub_pages/unproven.html
http://www.csl.sri.com/papers/cav93-hybrid/
http://www.csl.sri.com/papers/cav93-hybrid/

BIBLIOGRAPHY 143

[19] Geoffrey M. Brown and Lee Pike. Easy parameterized verification of biphase mark and 8N1

protocols. In The Proceedings of the 12th International Conference on Tools and the Construc-

tion of Algorithms (TACAS’06), pages 58–72, 2006. Available at http://www.cs.indiana.

edu/∼lepike/pub pages/bmp.html.

[20] Steven D. Johnson and Paul S. Miner. Integrated reasoning support in system design: Design

derivation and theorem proving. In Hon F. li and David K. Probst, editors, Advances in Hard-

ware Design and Verification: IFIP WG10.5 International Conference on Correct Hardware

Design and Verification Methods (CHARME), pages 255–272, October 1997.

[21] Leonardo de Moura, Sam Owre, Harald Ruess, John Rushby, and Natarajan Shankar. Inte-

grating verification components. In Verified Software: Theories, Tools, Experiments, October

2005.

[22] Carl-Johan H. Seger, Robert B. Jones, John W. O’Leary, Tom Melham, Mark D. Aagaard,

Clark Barrett, and Don Syme. An industrially effective environment for formal hardware ver-

ification. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,

24(9):1381–1405, September 2005.

[23] Sam Owre, John Rusby, Natarajan Shankar, and Friedrich von Henke. Formal verification for

fault-tolerant architectures: Prolegomena to the design of pvs. IEEE Transactions on Software

Engineering, 21(2):107–125, February 1995.

[24] Saddek Bensalem, Vijay Ganesh, Yassine Lakhnech, César Mu noz, Sam Owre, Harald Rueß,

John Rushby, Vlad Rusu, Hassen Säıdi, N. Shankar, Eli Singerman, and Ashish Tiwari. An

overview of SAL. In C. Michael Holloway, editor, LFM 2000: Fifth NASA Langley Formal

Methods Workshop, pages 187–196, Hampton, VA, jun 2000. NASA Langley Research Center.

Available at http://www.csl.sri.com/papers/lfm2000/.

[25] John Rushby. An overview of formal verification for the time-triggered architecture. In Werner

Damm and Ernst-Rüdiger Olderog, editors, Formal Techniques in Real-Time and Fault-

Tolerant Systems, volume 2469 of Lecture Notes in Computer Science, pages 83–105, Old-

enburg, Germany, September 2002. Springer-Verlag.

[26] Holger Pfeifer. Formal Analysis of Fault-Tolerant Algorithms in the Time-Triggered Architec-

ture. PhD thesis, Universität Ulm, 2003. Available at http://www.informatik.uni-ulm.de/

ki/Papers/pfeifer-phd.html.

http://www.cs.indiana.edu/~lepike/pub_pages/bmp.html
http://www.cs.indiana.edu/~lepike/pub_pages/bmp.html
http://www.csl.sri.com/papers/lfm2000/
http://www.informatik.uni-ulm.de/ki/Papers/pfeifer-phd.html
http://www.informatik.uni-ulm.de/ki/Papers/pfeifer-phd.html

BIBLIOGRAPHY 144

[27] Paul Miner, Alfons Geser, Lee Pike, and Jeffery Maddalon. A unified fault-tolerance protocol.

In Yassine Lakhnech and Sergio Yovine, editors, Formal Techniques, Modeling and Analysis

of Timed and Fault-Tolerant Systems (FORMATS-FTRTFT), volume 3253 of Lecture Notes

in Computer Science, pages 167–182. Springer, 2004. Available at http://www.cs.indiana.

edu/∼lepike/pub pages/unified.html.

[28] Lee Pike. A note on inconsistent axioms in Rushby’s Systematic Formal Verification for Fault-

Tolerant Time-Triggered Algorithms. IEEE Transactions on Software Engineering, 2006. To

appear. Available at http://www.cs.indiana.edu/∼lepike/pub pages/time triggered.

html.

[29] Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.

[30] Flaviu Cristian. Understanding fault-tolerant distributed systems. Communications of the

ACM, 34(2), February 1991.

[31] Miguel Castro and Barbara Liskov. Practical Byzantine fault tolerance. In ACM Proceedings:

Operating Systems Design and Implementation (OSDI), pages 173–186, February 1999.

[32] Jean-Claude Laprie. Dependability—its attributes, impairments and means. In B. Randell,

J.-C. Laprie, H. Kopetz, and B. Littlewood, editors, Predictability Dependable Computing

Systems, ESPRIT Basic Research Series, pages 3–24. Springer, 1995.

[33] Paul Miner. Private communication, 2005.

[34] Paul S. Miner. Verification of fault-tolerant clock synchronization systems. Technical report,

NASA Langley Research Center, 1993. Available at http://techreports.larc.nasa.gov/

ltrs/refer/1993/rdp3349.tex.refer.html.

[35] Ricky W. Butler. A survey of provably correct fault-tolerant clock synchronization techniques.

Technical Report NASA-TM-100553, NASA Langley Research Center, February 1988.

[36] Kenneth Hoyme and Kevin Driscoll. SAFEbus. In 11th AIAA/IEEE Digital Avionics Systems

Conference (DASC), pages 68–73, October 1992.

[37] Jaynarayan H. Lala, Richard E. Harper, and Linda S. Alger. A design approach for ultrareliable

real-time systems. Computer, 24(5):12–22, 1991.

[38] Philip Thambidurai and You-Keun Park. Interactive consistency with multiple failure modes.

In 7th Reliable Distributed Systems Symposium, pages 93–100, October 1988.

http://www.cs.indiana.edu/~lepike/pub_pages/unified.html
http://www.cs.indiana.edu/~lepike/pub_pages/unified.html
http://www.cs.indiana.edu/~lepike/pub_pages/time_triggered.html
http://www.cs.indiana.edu/~lepike/pub_pages/time_triggered.html
http://techreports.larc.nasa.gov/ltrs/refer/1993/rdp3349.tex.refer.html
http://techreports.larc.nasa.gov/ltrs/refer/1993/rdp3349.tex.refer.html

BIBLIOGRAPHY 145

[39] Lamport, Shostak, and Pease. The Byzantine generals problem. ACM Transactions on Pro-

gramming Languages and Systems, 4:382–401, July 1982. Available at http://citeseer.nj.

nec.com/lamport82byzantine.html.

[40] Elizabeth Ann Latronico. Reliability Validation of Group Membership Services for X-by-Wire

Protocols. PhD thesis, Carnegie Mellon University, May 2005. Available at http://www.ece.

cmu.edu/∼Ekoopman/thesis/latronico.pdf.

[41] John Rushby. Formal methods and digital systems validation for airborne systems. Technical

Report CR–4551, NASA, December 1993.

[42] John Rushby. Proof of Separability—A verification technique for a class of security kernels. In

Proc. 5th International Symposium on Programming, volume 137 of Lecture Notes in Computer

Science, pages 352–367, Turin, Italy, April 1982. Springer-Verlag.

[43] Radio Technical Commission for Aeronautics (RTCA). DO-178b: Software considerations in

airborne systems and equipment certification, December 1992.

[44] Radio Technical Commission for Aeronautics (RTCA). DO-254: Design assurance guidance

for airborne electronic hardware, April 2000.

[45] Gerard J. Holzmann. Design and Validation of Computer Protocols. Prentice Hall, 1991.

[46] G. Leen and D. Heffernan. Expanding automotive electronic systems. IEEE Computer, 0018-

9162/02:88–93, Jan 2002.

[47] Hermann Kopetz. TTP—a protocol for fault-tolerant real-time systems. IEEE Computer,

27(1):14–23, January 1994.

[48] Kevin Driscoll, Brendan Hall, H̊akan Sivencrona, and Phil Zumsteg. Byzantine fault tolerance,

from theory to reality. In G. Goos, J. Hartmanis, and J. van Leeuwen, editors, Computer

Safety, Reliability, and Security, Lecture Notes in Computer Science, pages 235–248. The

22nd International Conference on Computer Safety, Reliability and Security SAFECOMP,

Springer-Verlag Heidelberg, September 2003.

[49] Holger Pfeifer and Friedrich W. von Henke. Formal modelling and analysis of fault tolerance

properties in the time-triggered architecture. In E. Schnieder and G. Tarnai, editors, Proc. of

the 5th Symposium on Formal Methods for Automation and Safety in Railway and Automotive

Systems (FORMS/FORMAT 2004), pages 230–240. Technical University of Braunschweig,

Institute for Traffic Safety and Automation Engineering, November 2004.

http://citeseer.nj.nec.com/lamport82byzantine.html
http://citeseer.nj.nec.com/lamport82byzantine.html
http://www.ece.cmu.edu/~Ekoopman/thesis/latronico.pdf
http://www.ece.cmu.edu/~Ekoopman/thesis/latronico.pdf

BIBLIOGRAPHY 146

[50] Holger Pfeifer and Friedrich W. von Henke. Modular formal analysis of the central guardian in

the time-triggered architecture. In Maritta Heisel, Peter Liggesmeyer, and Stefan Wittmann,

editors, Proc. of the 23rd International Conference on Computer Safety, Reliability, and Se-

curity (SAFECOMP), volume 3219 of Lecture Notes in Computer Science, pages 240–253,

Potsdam, Germany, September 2004. Springer-Verlag.

[51] Holger Pfeifer and Friedrich W. von Henke. Formal Analysis for Dependability Properties: the

Time-Triggered Architecture Example. In 8th IEEE International Conference on Emerging

Technologies and Factory Automation (ETFA 2001), pages 343–352, Antibes Juan-les-Pins,

October 2001. IEEE.

[52] Holger Pfeifer, Detlef Schwier, and Friedrich W. von Henke. Formal verification for time-

triggered clock synchronization. In Charles B. Weinstock and John Rushby, editors, Depend-

able Computing for Critical Applications – 7, volume 12 of Dependable Computing and Fault

Tolerant Systems, pages 207–226. IEEE Computer Society, January 1999.

[53] Bruno Dutertre and Maria Sorea. Timed systems in SAL. Technical Report SRI-SDL-04-03,

SRI, International, July 2004. Available at http://www.sdl.sri.com/users/bruno/publis.

html.

[54] Bruno Dutertre and Maria Sorea. Modeling and verification of a fault-tolerant real-time

startup protocol using calendar automata. In Formal Techniques in Real-Time and Fault-

Tolerant Systems, volume 3253 of Lecture Notes in Computer Science, pages 199–214, Greno-

ble, France, September 2004. Springer-Verlag. Available at http://fm.csl.sri.com/doc/

abstracts/ftrtft04.

[55] Wilfried Steiner, John Rushby, Maria Sorea, and Holger Pfeifer. Model Checking a Fault-

Tolerant Startup Algorithm: From Design Exploration To Exhaustive Fault Simulation. In

Proc. of the 2004 International Conference on Dependable Systems and Networks, pages 189–

198, Florence, Italy, June 2004. IEEE Computer Society.

[56] John Rushby. Formal verification of transmission window timing for the time-triggered archi-

tecture. Technical report, SRI, International, March 2001.

[57] Alfons Geser and Paul Miner. A formal correctness proof of the SPIDER diagnosis proto-

col. Technical Report NASA/CP-2002-211736, NASA Langley Research Center, Hampton,

http://www.sdl.sri.com/users/bruno/publis.html
http://www.sdl.sri.com/users/bruno/publis.html
http://fm.csl.sri.com/doc/abstracts/ftrtft04
http://fm.csl.sri.com/doc/abstracts/ftrtft04

BIBLIOGRAPHY 147

Virginia, August 2002. Technical Report contains the Track B proceedings from Theorem

Proving in Higher Order Logics (TPHOLSs).

[58] John Rushby. Systematic formal verification for fault-tolerant time-triggered algorithms. In

Dependable Computing for Critical Applications—6, volume 11, pages 203–222. IEEE Com-

puter Society, March 1997.

[59] Ben L. Di Vito and Ricky W. Butler. Formal techniques for synchronized fault-tolerant systems.

In C. E. Landwehr, B. Randell, and L. Simoncini, editors, Dependable Computing for Crit-

ical Applications—3, volume 8 of Dependable Computing and Fault-Tolerant Systems, pages

85–97, Vienna, Australia, September 1992. Third IFIP International Working Conference on

Dependable Computing for Critical Applications, Springer-Verlag.

[60] Ricky Butler, James L. Caldwell, and Ben L. Di Vito. Design strategy for a formally verified

reliable computing platform. In Compass ’91: 6th Annual Conference on Computer Assurance,

pages 125–134, Gaithersburg, Maryland, 1991. National Institute of Standards and Technology.

[61] Ricky Butler and Ben Di Vito. Formal design and verification of a reliable computing platform

for real-time control (phase 2 results). Technical Report NASA/TM-104196, NASA Langley

Research Center, January 1992.

[62] Jack Goldberg et. al. Development and analysis of the software implemented fault-tolerance

(SIFT) computer. CR 172146, NASA, 1984.

[63] C. J. Walter, R. M. Kieckhafer, and A. M. Finn. MAFT: A multicomputer architecture for

fault-tolerance in real-time control systems. In IEEE Real-Time Systems Symposium, 1985.

[64] Fred B. Schneider. Understanding protocols for Byzantine clock synchronization. Technical

Report 87-859, Department of Computer Science, Cornell University, August 1987.

[65] Natarajan Shankar. Mechanical verification of a generalized protocol for Byzantine fault-

tolerant clock synchronization. In J. Vytopil, editor, Formal Techniques in Real-Time and

Fault-Tolerant Systems, volume 571 of Lecture Notes in Computer Science, pages 217–236.

Springer-Verlag, 1992.

[66] Paul S. Miner and Steven D. Johnson. Verification of an optimized fault-tolerant clock syn-

chronization circuit. In Mary Sheeran and Satnam Singh, editors, Designing Correct Circuits.

Electronic Workshops in Computing, Springer, September 1996.

BIBLIOGRAPHY 148

[67] D. Schwier and F. von Henke. Mechanical verification of clock synchronization algorithms.

In Formal Techniques in Real-Time and Fault-Tolerant Systems (FTRTFT), volume 1486 of

Lecture Notes in Computer Science, pages 262–271. Springer-Verlag, 1998.

[68] Shmuel Katz, Pat Lincoln, and John Rushby. Low-overhead time-triggered group membership.

In Marios Mavronicolas and Philippas Tsigas, editors, 11th International Workshop on Dis-

tributed Algorithms (WDAG ’97), volume 1320 of Lecture Notes in Computer Science, pages

155–169. Springer-Verlag, September 1997. Available at http://www.csl.sri.com/papers/

wdag97/.

[69] John Rushby. SAL tutorial: Analyzing the fault-tolerant algorithm OM(1). Technical Report

CSL Technical Note, SRI International, 2004. Available at http://www.csl.sri.com/users/

rushby/abstracts/om1.

[70] Patrick Lincoln and John Rushby. Formal verification of an interactive consistency algorithm

for the Draper FTP architecture under a hybrid fault model. In Compass ’94 (Proceedings

of the Ninth Annual Conference on Computer Assurance), pages 107–120, Gaithersburg,

MD, June 1994. IEEE Washington Section. Available at http://www.csl.sri.com/papers/

compass94/.

[71] William D. Young. Comparing verification systems: Interactive consistency in ACL2. IEEE

Transactions on Software Engineering, 23(4):214–223, April 1997.

[72] Patrick Lincoln and John Rushby. A formally verified algorithm for interactive consistency un-

der a hybrid fault model. Technical Report SRI-CSL-93-2, Computer Science Laboratory, SRI

International, mar 1993. Available at http://www.csl.sri.com/papers/csl-93-2/. Also

available as NASA Contractor Report 4527, July 1993.

[73] Gordon M.J.C. HOL: A proof generating system for higher-order logic. In G. BirtWistle and

P.A. Subramanyam, editors, VLSI Specification, Verification and Synthesis, pages 73–128.

Kluwer, 1988.

[74] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL — A Proof Assistant

for Higher-Order Logic, volume 2283 of LNCS. Springer, 2002.

[75] Ben L. Di Vito. A PVS prover strategy package for common manipulations. Technical Report

NASA/TM-2002-211647, NASA Langley Research Center, April 2002.

http://www.csl.sri.com/papers/wdag97/
http://www.csl.sri.com/papers/wdag97/
http://www.csl.sri.com/users/rushby/abstracts/om1
http://www.csl.sri.com/users/rushby/abstracts/om1
http://www.csl.sri.com/papers/compass94/
http://www.csl.sri.com/papers/compass94/
http://www.csl.sri.com/papers/csl-93-2/

BIBLIOGRAPHY 149

[76] C. Muñoz and M. Mayero. Real automation in the field. Technical Report NASA/CR-2001-

211271 Interim ICASE Report No. 39, ICASE-NASA Langley, ICASE Mail Stop 132C, NASA

Langley Research Center, Hampton VA 23681-2199, USA, December 2001.

[77] NASA Langley Formal Methods Group. NASA Langley PVS libraries. Website. Available

at http://shemesh.larc.nasa.gov/fm/ftp/larc/PVS-library/pvslib.html.

[78] S. Owre, N. Shankar, J. M. Rushby, and D. W. J. Stringer-Calvert. PVS Language Reference.

SRI International, version 2.4 edition, December 2001. Available at http://pvs.csl.sri.

com/manuals.html.

[79] M. Archer, B. Di Vito, and C. Munoz, editors. Proceedings of Design and Application of

Strategies/Tactics in Higher Order Logics (STRATA 2003). NASA Technical Report CP-2003-

212448, 2003.

[80] S. Owre and N. Shankar. The PVS prelude library. Technical Report SRI-CSL-03-01, SRI,

International, March 2003. Available at http://pvs.csl.sri.com/documentation.shtml.

[81] SRI International. Symbolic analysis laboratory SAL, 2004. Available at http://sal.csl.

sri.com/.

[82] Leonardo de Moura, Sam Owre, Harald Ruess, John Rushby, and N. Shankar. The ICS decision

procedures for embedded deduction. In 2nd International Joint Conference on Automated

Reasoning (IJCAR), volume 3097 of Lecture Notes in Computer Science, pages 218–222, Cork,

Ireland, July 2004. Springer-Verlag.

[83] Shuvendu K. Lahiri and Sanjit A. Seshia. The UCLID decision procedure. In CAV’04: Pro-

ceedings of the 16th International Conference on Computer Aided Verification, pages 475–478,

2004.

[84] Aaron Stump, Clark W. Barrett, and David L. Dill. CVC: A cooperating validity checker. In

CAV ’02: Proceedings of the 14th International Conference on Computer Aided Verification,

pages 500–504, London, UK, 2002. Springer-Verlag.

[85] Mary Sheeran, Satnam Singh, and Gunnar St̊almarck. Checking safety properties using induc-

tion and a SAT-solver. In FMCAD ’00: Proceedings of the Third International Conference on

Formal Methods in Computer-Aided Design, pages 108–125. Springer-Verlag, 2000. Available

at http://www.cs.chalmers.se/∼ms/.

http://shemesh.larc.nasa.gov/fm/ftp/larc/PVS-library/pvslib.html
http://pvs.csl.sri.com/manuals.html
http://pvs.csl.sri.com/manuals.html
http://pvs.csl.sri.com/documentation.shtml
http://sal.csl.sri.com/
http://sal.csl.sri.com/
http://www.cs.chalmers.se/~ms/

BIBLIOGRAPHY 150

[86] Niklas Eén and Niklas Sörensson. Temporal induction by incremental SAT solving. Electronic

Notes in Theoretical Computer Science, 89(4), 2003.

[87] Klaus Havelund and Natarajan Shankar. Experiements in theorem proving and model checking

for protocol verification. In Proceedings of Formal Methods Europe FME’96, Lecture Notes in

Computer Science. Springer, 1996.

[88] John Rushby. Verification diagrams revisited: Disjunctive invariants for easy verification. In

E. A. Emerson and A. P. Sistla, editors, Computer-Aided Verification, CAV ’2000, volume 1855

of Lecture Notes in Computer Science, pages 508–520, Chicago, IL, July 2000. Springer-Verlag.

Available at http://www.csl.sri.com/users/rushby/abstracts/cav00.

[89] Dilsun K. Kaynar, Nancy Lynch, Roberto Segala, and Frits Vaandrager. Synthesis Lectures on

Computer Science, chapter The Theory of Timed I/O Automata. Morgan Claypool Publishers,

2005. Available at http://theory.lcs.mit.edu/tds/lynch-pubs.html.

[90] Rajeev Alur. Timed automata. In 11th International Conference on Computer-Aided Verifi-

cation, Lecture Notes in Computer Science, pages 8–22. Springer-Verlag, 1999. Available at

http://www.cis.upenn.edu/∼alur/onlinepub.html.

[91] Leslie Lamport. Real time is really simple. Technical Report MSR-TR-2005-30, Mi-

crosoft Research, March 2005. Available at ftp://ftp.research.microsoft.com/pub/tr/

TR-2005-30.pdf.

[92] Jerry Banks and John S. Carson II. Discrete-Event Simulation. Prentice-Hall, 1984.

[93] T. Melham. Higher Order Logic and Hardware Verification, volume 31 of Cambridge Tracts in

Theoretical Computer Science. Cambridge University Press, 1993.

[94] T. F. Melham. Abstraction mechanisms for hardware verification. In G. Birtwistle and

P.A. Subrahmanyam, editors, VLSI Specification, Verification, and Synthesis, pages 129–

157, Boston, 1988. Kluwer Academic Publishers. Available at http://citeseer.nj.nec.com/

melham87abstraction.html.

[95] Lee Pike, Jeffery Maddalon, Paul Miner, and Alfons Geser. Abstractions for fault-tolerant dis-

tributed system verification. In Konrad Slind, Annette Bunker, and Ganesh Gopalakrishnan,

editors, Theorem Proving in Higher Order Logics (TPHOLs), volume 3223 of Lecture Notes

in Computer Science, pages 257–270. Springer, 2004. Available at http://www.cs.indiana.

edu/∼lepike/pub pages/abstractions.html.

http://www.csl.sri.com/users/rushby/abstracts/cav00
http://theory.lcs.mit.edu/tds/lynch-pubs.html
http://www.cis.upenn.edu/~alur/onlinepub.html
ftp://ftp.research.microsoft.com/pub/tr/TR-2005-30.pdf
ftp://ftp.research.microsoft.com/pub/tr/TR-2005-30.pdf
http://citeseer.nj.nec.com/melham87abstraction.html
http://citeseer.nj.nec.com/melham87abstraction.html
http://www.cs.indiana.edu/~lepike/pub_pages/abstractions.html
http://www.cs.indiana.edu/~lepike/pub_pages/abstractions.html

BIBLIOGRAPHY 151

[96] Mohammad H. Azadmanesh and Roger M. Kieckhafer. Exploiting omissive faults in synchro-

nous approximate agreement. IEEE Transactions on Computers, 49(10):1031–1042, 2000.

[97] Maxwell Rosenlicht. Introduction to Analysis. Dover Publications, Inc., 1968.

[98] Daniel Davies and John F. Wakerly. Synchronization and matching in redundant systems.

IEEE Transactions on Computers, 27(6):531–539, June 1978.

[99] T. K. Srikanth and S. Toueg. Optimal clock synchronization. Journal of the ACM, 34(3):626–

645, July 1987.

[100] Michael R. Huth and Mark D. Ryan. Logic in Computer Science: Modelling and Reasoning

about Systems. Cambridge University Press, 2000.

[101] Leonardo de Moura, Harald Rueß, and Maria Sorea. Bounded model checking and induction:

From refutation to verification. In Andrei Voronkov, editor, Computer-Aided Verification, CAV

2003, volume 2725 of Lecture Notes in Computer Science, pages 14–26. Springer-Verlag, 2003.

[102] Mart́ın Abadi and Leslie Lamport. An old-fashioned recipe for real time. ACM Transactions

on Programming Languages and Systems, 16(5):1543–1571, September 1994.

[103] Zohar Manna and Amir Pnueli. Temporal verification diagrams. In TACS ’94: Proceedings

of the International Conference on Theoretical Aspects of Computer Software, pages 726–765.

Springer-Verlag, 1994.

[104] Paul S. Miner, Mahyar Malekpour, and Wilfredo Torres. Conceptual design of a reliable optical

bus (ROBUS). In 21st AIAA/IEEE Digital Avionics Systems Conference DASC, Irvine, CA,

October, 2002.

[105] Günther Bauer and Michael Paulitsch. An investigation of membership and clique avoidance

in TTP/C. In 19th IEEE Symposium on Reliable Distributed Systems, pages 118–124, 2000.

[106] Geoffrey M. Brown and Lee Pike. ”easy” parameterized verificaton of cross domain clock

protocols. In Seventh International Workshop on Designing Correct Circuits DCC: Partici-

pants’ Proceedings, 2006. Satellite Event of ETAPS. To appear. Available at http://www.cs.

indiana.edu/∼lepike/pub pages/dcc.html.

[107] C. Barrett, L. de Moura, and A. Stump. SMT-COMP: Satisfiability Modulo Theories Compe-

tition. In K. Etessami and S. Rajamani, editors, 17th International Conference on Computer

Aided Verification, pages 20–23. Springer, 2005.

http://www.cs.indiana.edu/~lepike/pub_pages/dcc.html
http://www.cs.indiana.edu/~lepike/pub_pages/dcc.html

BIBLIOGRAPHY 152

[108] W. Bevier and W. Young. The proof of correctness of a fault-tolerant circuit design. In Second

IFIP Conference on Dependable Computing For Critical Applications, 1991. Available at http:

//citeseer.ist.psu.edu/bevier91proof.html.

[109] Steven D. Johnson. Synthesis of Digital Designs from Recursion Equations. ACM Distinguished

Dissertations. MIT Press, 1983.

[110] Bhaskar Bose. DDD-FM9001: Derivation of a Verified Microprocessor. PhD thesis, Indiana

University, December 1994.

[111] Kamlesh Rath and Steven D. Johnson. Toward a basis for protocol specification and process

decomposition. In D. Agnew, L. Claesen, and R. Camposano, editors, Computer Hardware

Description Languages and their Applications (CHDL’93), April 1993.

[112] A. Benveniste, P. Caspi, S.A. Edwards, N. Halbwachs, and P. Le Guernic andR. de Simone.

The synchronous languages 12 years later. Proceedings of the IEEE, 2003.

[113] N. Halbwachs, F. Lagnier, and C. Ratel. Programming and verifying real-time systems by

means of the synchronous data-flow programming language Lustre. IEEE Transactions on

Software Engineering, Special Issue on the Specification and Analysis of Real-Time Systems,

page September, 1992.

[114] Paul Caspi, Adrian Curic, Aude Maignan, Christos Sofronis, Stavros Tripakis, and Peter

Niebert. From simulink to SCADE/lustre to TTA: a layered approach for distributed embedded

applications. In Proceedings of the 2003 ACM SIGPLAN conference on Language, compiler,

and tool for embedded systems, pages 153–162. ACM Press, 2003.

[115] Jason Hickey. NuPRL-Light: An implementation framework for higher-order logics. In William

McCune, editor, Proceedings of the 14th International Conference on Automated Deduction,

volume 1249, pages 395–399. Springer, July 1997.

[116] Thomas A. Henzinger, Pei-Hsin Ho, and Howard Wong-Toi. HYTECH: A model checker for

hybrid systems. International Journal on Software Tools for Technology Transfer, 1(1–2):110–

122, 1997. Available at http://citeseer.ist.psu.edu/henzinger97hytech.html.

[117] Conrado Daws, Alfredo Olivero, Stavros Tripakis, and Sergio Yovine. The tool KRONOS. In

Hybrid Systems, pages 208–219, 1995.

[118] Kim Guldstrand Larsen, Paul Pettersson, and Wang Yi. UPPAAL in a nutshell. STTT, 1(1-

2):134–152, 1997.

http://citeseer.ist.psu.edu/bevier91proof.html
http://citeseer.ist.psu.edu/bevier91proof.html
http://citeseer.ist.psu.edu/henzinger97hytech.html

BIBLIOGRAPHY 153

[119] SRI Computer Science Laboratory. Formal methods roadmap: PVS, ICS, and SAL. Technical

Report SRI-CSL-03-05, SRI International, Menlo Park, CA 94025, November 2003.

[120] R. Jones, J. O’Leary, C. Seger, M. Aagaard, and T. Melham. Practical formal verification in

microprocessor design. IEEE Design and Test, pages 16–25, July 2001.

[121] Paul S. Miner. Hardware Verification using Coinductive Assertions. PhD thesis, Indiana Uni-

versity, Bloomington, 1998.

[122] Sam Owre and N. Shankar. Theory interpretations in PVS. Technical Report SRI-CSL-01-

01, SRI, International, April 2001. Available at http://pvs.csl.sri.com/documentation.

shtml.

http://pvs.csl.sri.com/documentation.shtml
http://pvs.csl.sri.com/documentation.shtml

Index

0-trajectory, 34

Cp, 65, 159, 160

D, 66

P , 66

R, 72

Λ, 71

Σ, 66

δ, 66

el , 72

eu , 72

gs, 68

independent , 72

δnom , 72

ρ, 66

sched , 65

schedp, 71

sendtimep, 68

α, 98

ttinp, 68

k-induction, 34

k-inductive property, 35

k-trajectory, 34

accepted messages, 46

accuracy, 12

accusations, 111

accuse, 85, 112

accuses, 19

agreement, 19, 54

antecedent, 28

application level, 14

architecture, 3

assignment functions, 98

asymmetric, 16, 49

asynchronous composition, 34

behavior, 3

behavioral partitioning, 17

benign, 15, 49

benign faults, 110

benign messages, 15, 46

BIU, 13

broadcast communication round, 55

bus, 13

bus architecture, 13

bus interface unit, 130

154

INDEX 155

bus interface units, 13, 21

bus level, 14

Byzantine, 16, 49

channels, 10

choice operator, 70

clique, 19, 22

clique avoidance, 129

clique initialization mode, 22

clique join mode, 22

clique preservation mode, 22

clique-detection mode, 22

clock, 100

clock drift rate, 66

clock function, 135

clock skew, 66

clock synchronization protocol, 5, 22

clock-time, 65

clock-time simulation, 79

communication abstractions, 43

communication channels, 10

communication delay, 66

communication offset, 66

communication phase, 38, 45

computation offset, 66

computation phase, 38, 45

consensus, 19

consequent, 28

conservatively extend, 27

control applications, 13

conviction, 86

coordination, 3

data, 3

diagnostic correctness, 8

diagnostic data, 108

disabled mode, 22

discrete transitions, 40, 100

disjunctive invariants, 127

distributed diagnosis protocol, 5, 22

distributed system, 10

DMFA, 23

Dynamic Maximum Fault Assumption, 23

dynamic schedule, 12

echo, 63, 110

echo messages, 110

edge, 99

emergent properties, 136

enabled edge, 100, 105

enabled timeout component, 100, 105

error, 10

error types, 47

event-triggered, 63, 119

event-triggered implementations, 39

event-triggering, 11

exact agreement, 54

exact communication, 54

exact function, 55

exact functions, 54

exact validity, 54

INDEX 156

fail-silent, 110

failure, 10

fault, 10

fault abstractions, 43

fault containment region, 15

fault persistence, 107

fault types, 47, 49

fault-masking abstractions, 43

fault-masking vote, 51

fault-tolerant, 14

fault-tolerant distributed system, 11

fault-tolerant system, 10

FCR, 15

finite types, 33

formalization, 5

formulation, 5

frame, 110, 111

frame gap, 114

frame length, 111

frame synchronization, 112

function agreement, 55, 57

function extensionality, 30

functional model, 43, 54

functions, 16

global state, 45

good, 15, 49

group membership, 19

hosts, 13

hybrid fault model, 15, 49

ICS, 34

inbound neighbors, 44

inexact agreement, 55

inexact communication, 54

inexact function, 55, 56, 58

inexact functions, 54

inexact validity, 54

inference rule, 31

inference rules, 28

infinite types, 33

initial sequent, 28

initial states, 44

Integrated Canonizer and Solver, 34

integration, 14

interactive compilation, 137

interactive consistency protocol, 5, 22

interactive synthesis, 137

interconnect, 13

inverse clock, 65

inverse clock function, 135

isolation, 17

latency, 18

lower function error, 58

MAFT, 25

majority good, 55, 57, 58

manifest, 15, 49

maximum fault assumption, 16, 108

message abstractions, 43

message-generation function, 44

INDEX 157

MFA, 16

module, 33

node-level specification, 137

nodes, 10

nonZeno Property, 101

null, 103

operational clique, 108

operational nodes, 108

outbound neighbors, 44

partially-synchronous model, 2, 62

partition, 17

partitioning, 14

performance guarantees, 18

permanent faults, 107

physical partitioning, 17

physical plants, 13

power-up, 12

pre-computation phase, 69

precision, 12

predictability, 14

preliminary diagnosis, 112

processes, 10

processor elements, 20

proof strategies, 28, 32

protocol-level specification, 136

Prototype Verification System, 26

PVS, 5, 6, 8, 24–28, 33, 43, 52, 55, 62, 85,

138, 139

PVS Prelude, 28

RCP, 25

real time, 11, 65

real-time simulation, 79

realization, 2

receiver, 10

receiving node, 10

reception window, 71

reception window offset, 72

Reception Window Open, 77

reconfigure, 19

redundancy management units, 21

reintegrate, 13, 20

reintegration protocol, 5, 23, 86, 96, 108

reintegrator, 108

relational model, 43, 54

Reliable Computing Platform, 25

Reliable Optical Bus, 20

restart, 12

resynchronization frame, 110

RMU, 21

ROBUS, 20

round, 38

round-based pipelining, 64, 72

SAL, 7, 24, 25, 33, 34, 39, 64, 85–87, 89, 91,

92, 94–97, 104, 106, 107, 115, 116, 121,

122, 129, 131–133, 138, 139

sample, 54

schedule, 65

INDEX 158

schedule constraints, 66

schedule update protocol, 22

security kernels, 17

self-test mode, 22

sender, 10

sending node, 10

sequent, 28

sequent calculus, 28

shallow embedding, 107

SIFT, 25

single point of failure, 10

skew constant, 112

skolem constants, 32

source host, 19

SPIDER, 13, 20, 21, 25, 62, 85, 86, 107–109,

111, 128, 130–132, 134, 135, 138

SPIDER Clock Synchronization Protocol, 43

SPIDER Clock Synchronization Protocol, 24,

64, 71, 91, 92, 95, 110

SPIDER Distributed Diagnosis Protocol, 43

SPIDER Distributed Diagnosis Protocol, 24,

25, 64, 85, 87, 89, 91, 92, 94, 95, 109

SPIDER Interactive Consistency Protocol,

24, 43

SPIDER Interactive Consistency Protocol,

25, 94

SPIDER Reintegration Protocol, 97

STA, 97, 99, 101, 103–107, 115, 116

startup protocol, 96

state-transition function, 44

static schedule, 12

Symbolic Analysis Laboratory, 33

symmetric, 16, 49

synchronization capture, 112

synchronizing timeout automaton, 98

synchronous composition, 33

synchronous model, 2

system assumptions, 66

TDMA, 18

temporal induction, 34

throughput, 18

ticks, 65

time progress transition, 100

time progress transitions, 40

time-division multi-access, 18

time-slice, 68

time-triggered bus architecture, 14

time-triggered implementations, 38

time-triggered inbound messages, 68

time-triggered model, 2, 38, 62

time-triggered system state, 68

time-triggered systems, 1

time-triggering, 11

timed automata, 39

timeout, 98

timeout automata, 39

timeout component, 98

timeout variables, 40

timeout vectors, 98

INDEX 159

TOm, 98

transient fault, 19, 25, 96

triggers, 11

trusted set, 23

TTA, 7, 20, 24, 25, 107, 109, 135, 137

turnstile, 31

type declaration, 28

type-correctness condition, 27

uniprocessor system layer, 25

unlabeled transition system, 34

untimed model, 2

untimed synchronous model, 38

upper function error, 58

validity, 54

APPENDIX A

Inconsistent Axioms in Rushby’s Specification

Rushby presents four principle assumptions (or axioms) about the behavior of

time-triggered systems [10]. He describes his use of these axioms in the system-

atic formal specification and verification of time-triggered systems in the mechanical

theorem-prover PVS [23]. Two of these four axioms are inconsistent; in fact, one is

inconsistent in three separate ways. Once the axioms are made consistent, one axiom

is redundant; it is a corollary of the other. Finally, a contradiction can be derived from

another of the four axioms and some other minor axioms in the formal specification.

These inconsistencies appear in both the printed paper and the PVS specifications,

but when the printed axioms are ambiguous due to being more informally stated, we

assume the PVS specifications to be definitive.

These errors were discovered while attempting to interpret these axioms by for-

mally providing a model using theory interpretations in PVS [122]. When the “canon-

ical model” did not satisfy the axioms,1 These axioms not only fail to model the

domain but are in fact inconsistent. Once the errors were discovered, it is straight-

forward to mend them.2

We begin by stating Rushby’s definition of inverse clocks and Clock Drift Rate

Axiom.

1The author thanks Paul Miner of the NASA Langley Formal Methods Group for suggesting

Axioms A.3 and A.5 are necessary to axiomatize a canonical clock. He also pointed out that these

changes imply that Theorem A.10 holds.
2This appendix is a preliminary version of a short comment [28]. The mended formal specifica-

tions, along with a formal theory interpretation, can be found on-line [13].

160

A. INCONSISTENT AXIOMS IN RUSHBY’S SPECIFICATION 161

Definition A.1 (Inverse Clock). An inverse clock for node p is a total function

Cp : R → N.

The domain of an inverse clock is called realtime and the range is called clocktime.

The drift of nonfaulty clocks is bounded by a realtime constant 0 < ρ < 1:

Axiom A.1 (Clock Drift Rate). (1−ρ)(t1−t2) ≤ Cp(t1)−Cp(t2) ≤ (1+ρ)(t1−t2).

Theorem A.2. Axiom A.1 is inconsistent.

Proof. Let t2 > t1. Then (1− ρ)(t1 − t2) > (1 + ρ)(t1 − t2). �

Axiom A.1 can be revised as follows:

Axiom A.3 (Clock Drift Rate (First Revision)). Let t1 ≥ t2. Then (1−ρ)(t1−t2) ≤

Cp(t1)− Cp(t2) ≤ (1 + ρ)(t1 − t2).

However, even this is unsatisfiable:

Theorem A.4. Axiom A.3 is inconsistent.

Proof. Let t1 > t2 such that (1 + ρ)(t1 − t2) − (1 − ρ)(t1 − t2) < 1 and there

exists no n ∈ N such that (1− ρ)(t1 − t2) ≤ n ≤ (1 + ρ)(t1 − t2). �

The inequality is weakened by taking the floor and ceiling of the drifts:

Axiom A.5 (Clock Drift Rate (Second Revision)). Let t1 ≥ t2. Then b(1−ρ)(t1−

t2)c ≤ Cp(t1)− Cp(t2) ≤ d(1 + ρ)(t1 − t2)e .

Even with these revisions, no function satisfying Axiom A.5 is an inverse clock,

as defined by Definition A.1.3

3It should already be intuitive that Definition A.1 is incorrect, since, e.g., a canonical inverse

clock function like the floor function does not satisfy Axiom A.5.

A. INCONSISTENT AXIOMS IN RUSHBY’S SPECIFICATION 162

Theorem A.6. No inverse clock satisfies Axiom A.5.

Proof. By contradiction. The set N is totally ordered with a least element, so

there exists some t ∈ R such that Cp(t) ≤ Cp(t
′) for all t′ ∈ R. Let t′′ ∈ R, where

t′′ < t, such that b(1 − ρ)(t − t′′)c > 0. By Axiom A.5, b(1 − ρ)(t − t′′)c + Cp(t
′′) ≤

Cp(t). However, because b(1− ρ)(t− t′′)c is assumed to be strictly greater than zero,

Cp(t
′′) < Cp(t), contradicting our assumption that Cp(t) is least. �

We therefore extend the range of an inverse clock from N to Z.

Definition A.2 (Revised Inverse Clock). An inverse clock for node p is a total

function Cp : R → Z.

Note that the inconsistencies in Axioms A.1 and A.3 hold regardless of whether

an inverse clock is defined by Definition A.1 or Definition A.2.

A second inconsistent axiom is the Monotonicity Axiom. Nonfaulty clocks are

monotonic:

Axiom A.7 (Monotonicity). t1 < t2 implies Cp(t1) < Cp(t2).

Theorem A.8. Axiom A.7 is inconsistent (with respect to either Definition A.1

or Definition A.2).

Proof. Because < is a total order over R, Axiom A.7 implies that Cp is an

injective function, but there exists no injection from the reals into the natural numbers

(or integers). �

A satisfiable revision of monotonicity weakens the consequent:

Axiom A.9 (Revised Monotonicity). t1 < t2 implies Cp(t1) ≤ Cp(t2).

Axiom A.9 now becomes a corollary of Axiom A.5:

A. INCONSISTENT AXIOMS IN RUSHBY’S SPECIFICATION 163

Corollary A.10. Let Axiom A.5 hold. Prove Axiom A.9.

Proof. By Axiom A.5, Cp(t2) ≥ Cp(t1) + b(1− ρ)(t2 − t1)c. �

The third inconsistency can be derived from the axiomatization of when messages

are sent and received by nonfaulty nodes. Let sentp(q, m, t) be a relation that holds

if node p sends message m to node q at realtime t. Similarly, let recv q(p, m, t) be

a relation that holds if node q receives message m from node p at realtime t. The

following axiom relates the delay between when a nonfaulty node sends a message and

when a nonfaulty node receives it. Let the maximum delay be a realtime constant

such that δ ≥ 0.

Axiom A.11 (Maximum Delay). sentp(q, m, t) if and only if there exists some

realtime delay 0 ≤ d ≤ δ such that recv q(p, m, t + d).

Theorem A.12. If δ > 0, then Axiom A.11, together with other minor axioms

and constraints in the formal specification, is inconsistent.

Proof. (Sketch.) The essential problem is that the existential quantifier is within

the scope of the biconditional operator in Axiom A.11. As stated, Axiom A.11 implies

that for all realtimes t, if there exists a 0 ≤ d ≤ δ such that recv q(p, m, t + d), then

sentp(q, m, t). It can be shown that there exists some t such that recv q(p, m, t + d).

Because d ranges over the interval [0, δ], there exists a realtime t′ and realtime delay

0 ≤ d′ ≤ δ such that d′ 6= d and t′ + d′ = t + d, implying that sentp(q, m, t) and

sentp(q, m, t′), where the distance between t and t′ is less than δ. However, by other

constraints, no two separate realtimes within δ of each other satisfy sent . �

A possible consistent revision is as follows:

A. INCONSISTENT AXIOMS IN RUSHBY’S SPECIFICATION 164

Axiom A.13 (Revised Maximum Delay). There exists some 0 ≤ d ≤ δ such that

sentp(q, m, t) implies recv q(p, m, t + d), and there exists some 0 ≤ d′ ≤ δ such that

recv q(p, m, t) implies sentp(q, m, t− d′).

Finally, the following axiom is unnecessary:

Axiom A.14 (Monotone Schedule). r1 < r2 implies sched(r1) < sched(r2) .

The axiom can be replaced with the following corollary.

Corollary A.15 (Monotone Schedule). sched(r) < sched(r + 1) .

Proof. Immediate from Axiom 4.5. �

	List of Figures
	Chapter 1. Introduction
	1. Motivation and Approach
	2. Outline

	Chapter 2. Preliminaries & Related Work
	1. Fault-Tolerant Distributed Systems
	2. Time-Triggered Systems
	3. Time-Triggered Bus Architectures
	4. SPIDER
	5. Time-Triggered System Verification
	6. Tools
	7. Timing Models
	8. Timeout Automata: A Real-Time Model

	Chapter 3. Synchronous Protocol Verification
	1. The Synchronous Model
	2. Abstracting Messages
	3. Abstracting Faults
	4. Abstracting Fault-Masking
	5. Abstracting Communication
	6. Summary

	Chapter 4. Time-Triggered Protocol Verification
	1. The Time-Triggered Model
	2. Extending The Axiomatization
	3. Schedule Verification
	4. Summary

	Chapter 5. Partially-Synchronous Protocol Verification
	1. Synchronizing Timeout Automata (STA)
	2. Case-Study: The SPIDER Reintegration Protocol
	3. Summary

	Chapter 6. Conclusion
	1. Limitations
	2. Future Work
	3. Concluding Remarks

	Bibliography
	Index
	Appendix A. Inconsistent Axioms in Rushby's Specification

