
A Rigorous Generic Branch and Bound Solver for Nonlinear Problems

Andrew P. Smith
National Institute of Aerospace

Hampton, Virginia
Email: andrew.smith@nianet.org

César A. Muñoz and Anthony J. Narkawicz
NASA Langley Research Center

Hampton, Virginia
Email: {cesar.a.munoz,anthony.narkawicz}@nasa.gov

Mantas Markevicius
University of York,

York, UK
Email: mm1080@york.ac.uk

Abstract—Recursive branch and bound algorithms are of-
ten used, either rigorously or non-rigorously, to refine and
isolate solutions to global optimization problems or systems
of equations and inequalities involving nonlinear functions.
The presented software library, Kodiak, integrates numeric
and symbolic computation into a generic framework for the
solution of such problems over hyper-rectangular variable and
parameter domains. The correctness of both the generic branch
and bound algorithm and the self-validating enclosure methods
used, namely interval arithmetic and, for polynomials and
rational functions, Bernstein expansion, has been formally veri-
fied. The algorithm has three main instantiations, for systems of
equations and inequalities, for constrained global optimization,
and for the computation of equilibria and bifurcation sets for
systems of ordinary differential equations. Advantage is taken
of the partial derivatives of the constraint functions, which are
symbolically manipulated. Pavings (unions of box subsets) for
a continuum of solutions to underdetermined systems may also
be produced. The capabilities of the software tool are outlined,
and computational examples are presented.

Keywords-branch and bound; nonlinear problems; formal
verification; interval arithmetic; software tool;

I. INTRODUCTION

Many categories of problems involving nonlinear func-
tions prove to be intractable for algebraic techniques, due
to the number of variables involved or the complexity and
unsuitability of constraint functions. Numerical methods
may be widely applied to these problems, but in general only
compute an approximation to the solution. Self-validated nu-
merical methods typically compute a safe interval enclosure
for intermediate values at each step, and thus produce a
guaranteed result, albeit at the cost of extra computational
effort and possible loss of precision. Where the ranges for
variables and parameters are too wide to obtain meaningful
results in a single step, it is necessary to partition the
search space. Branch and bound is a method for recursively
partitioning the starting space into sub-domains, over which
local solutions can be more tightly enclosed, allowing for
successive refinement of the overall solution set.

The most common type of branch and bound solvers
are designed for constrained global optimization; for an
overview of interval approaches, see [1]. These include
commercial solvers, e.g., [2], and rigorous interval solvers,
e.g., [3]. There also exist branch and bound approaches for
systems of equations or inequalities, e.g., [4], [5].

This paper summarizes a software development in C++,
called Kodiak1, and associated research. The core algorithm
closely follows the formally verified depth-first branch and
bound algorithm with generic types for problem domains
and solution types is described in [6]. That algorithm is
the basis of a family of proof-producing strategies for the
PVS theorem prover [7] that automatically discharge simply
quantified Boolean expressions over real numbers.

The following notation is used: IR denotes the set of
closed non-empty intervals with real endpoints. A member
of this set is written as x = [x, x] ∈ IR. A Cartesian
product of n intervals, a hyper-rectangle or box, is written as
X = [x1, x1]× . . .× [xn, xn] ∈ IRn. A set of nearly-disjoint
boxes of the same dimension, where any two different boxes
may intersect only at their boundaries, is termed a paving.
A valid paving for a set S ∈ Rn is such that the union of
all its members is a superset of S. Henceforth, it is assumed
that S is specified by a set of equalities and inequalities
involving real-valued functions and variables ranging over a
box X ∈ IRn, where n is the number of variables.

II. ENCLOSURE METHODS

It is necessary to compute guaranteed upper and lower
bounds for a family of functions f : Rn → R over a box X.
An interval extension for f is an interval-valued function,
f : IRn → IR, s.t. ∀X ∈ IRn : x ∈ X =⇒ f(x) ∈ f(X).

The most straightforward way of performing arithmetic
with intervals on a computer is to use the natural interval
extension for each real-valued function, although numer-
ous enclosure methods exist. There are standard interval
definitions for logarithmic and trigonometric functions, ex-
ponentiation, square root, etc., as well as for relational
operators. For an introduction to interval arithmetic, see [8];
a comprehensive list of interval operations may be found
in [9]. Kodiak utilizes the C++ library filib++ [9], which
efficiently implements these operations, using direct floating-
point rounding modes to assure soundness.

The usual arithmetic laws for real numbers must be
relaxed whenever an independent variable appears more than
once in an interval expression, a phenomenon known as

1Kodiak is released under NASA’s Open Source Agreement. It is
electronically available from http://github.com/nasa/Kodiak.



the dependency problem. For example, the distributive law
becomes: x · (y + z) ⊆ x · y + x · z for x,y, z ∈ IR. As
a consequence of the dependency problem, natural interval
extensions for functions with long expressions can exhibit
a significant amount of overestimation, which must be
overcome with repeated subdivision of variable ranges.

If the set of constraints defining S involve only polyno-
mial or rational functions, there is available in Kodiak the
option to use the Bernstein enclosure in place of interval
arithmetic. This exhibits second-order convergence to the
true range as interval widths tend to zero, as opposed to
first-order convergence for interval arithmetic. A univariate
polynomial p of degree d is typically presented in power
form as a sum of terms p(x) =

∑d
i=0 aix

i, where the ai,
i = 0, . . . , d, are the usual power-form coefficients. The
same polynomial may be rewritten in Bernstein form, i.e.,
p(x) =

∑d
i=0 biBi(x), where the Bi(x), i = 0, . . . , d are the

set of d + 1 Bernstein basis polynomials, forming a basis
for the vector space of polynomials of degree d, and where
the bi are the Bernstein coefficients.

For function approximation, a key attribute of the Bern-
stein expansion is the range enclosing property, namely that
the range of p over the unit interval is contained within the
interval hull of the Bernstein coefficients. For other inter-
vals, the polynomial (and the Bernstein basis polynomials)
can be affinely transformed, and the formulae can readily
extended to the multivariate case, cf. [10]. Therefore the
rigorous evaluator in Kodiak for p over an interval or box
consists of a computation of all the Bernstein coefficients
and determination of their minimum and maximum.

Kodiak makes use of an efficient implicit representation
for the Bernstein coefficients, whereby it is often possible to
avoid computing many of the explicit coefficients by use of
monotonicity properties; for further details and references,
see [10]. A description of the computation of the Bernstein
enclosure for rational functions is given in [11].

III. BRANCH AND BOUND

The objective of the method is to compute a paving for a
set S that is guaranteed to be valid and close to S up to a
given accuracy. There are two key steps:

• A branching step, which partitions the current sub-box
into two or more smaller sub-boxes.

• A bounding (or pruning) step, where sub-boxes are
either safely discarded, when they are proven not to
contain a solution, or retained, when they may either
possibly or definitely contain a solution.

This yields a search space structured in the form of a
tree, which is traversed according to a recursive depth-first
strategy. For most instantiations where the entire tree must be
traversed, this is memory-efficient. This does not necessarily
hold where boxes may additionally be pruned according
to optimality, e.g., for global optimization. After sufficient
branching, many of the sub-boxes can typically be excluded

Algorithm 1 Generic depth-first branch and bound algorithm
Input: expression, box Global: exit
Output: answer
1: answer := bound(expression, box)
2: exit := exit or global_exit(answer)
3: if box is empty or maximum depth reached or exit or prune(answer) then
4: return
5: end if
6: direction := select(expression, box)
7: (box1, box2) := split(direction, box)
8: expression1 := branch(direction, expression, box1)
9: answer1 := first recursive call with arguments expression1 and box1

10: if exit then
11: answer := combine(answer, answer1)
12: return
13: end if
14: expression2 := branch(direction, expression, box2)
15: answer2 := second recursive call arguments expression2 and box2
16: answer := combine(answer1, answer2)
17: return

from the search, until a satisfactory paving, possibly empty,
is obtained. If it is empty, it holds that S is empty.

A subdivision strategy specifies the variable(s) in which
a sub-box is to be subdivided and whether this subdivision
results in sub-boxes of the same size or not. By default,
a round-robin strategy may be used. Heuristics based upon
enclosures for the partial derivatives of the constraint func-
tions [5] can be used to somewhat reduce the size of the
search tree.

Termination criteria are generally required, which stip-
ulate when sub-boxes become satisfactorily small, or the
computed paving is close to S for a given accuracy such that
no further subdivision is required. Additionally, a maximum
search depth may be specified. The output of the method
can be computed from the final paving.

IV. DESIGN AND USE OF KODIAK

The pseudo-code of the main generic branch and bound
procedure is listed in Algorithm 1. It takes as input an
expression, which is a symbolic representation of a problem
such as a system of inequalities, and a box, which is a list
of intervals, each one representing the range of a variable.
The algorithm produces an answer of generic type. An over-
approximation to the solution of the input problem, possibly
crude, is firstly computed by calling the function bound.
Some instantiations of the branch and bound method require
an early termination condition, which is facilitated by the
global variable exit and the function global_exit.
Pruning at every recursive step is achieved by the function
prune. If none of the conditions for blocking the recursive
call are satisfied, a variable direction is chosen by the func-
tion select and corresponding sub-boxes are computed
by the function split. The function branch adjusts the
input expression to each one of the sub-boxes according
to the variable direction. Finally, the function combine
accumulates the answers computed at each recursive call
into the return value.



There are currently available three instantiations of the
core algorithm. The first is for paving the solution set of a
system of equations and inequalities. A system of relations
is a collection of j formulas of the form fi(x) Ri 0, where
0 ≤ i ≤ j, fi : Rn → R, and Ri is a real-order relation
in {<,≤, >,≥,=}. The solution set S consists of all points
in Rn that simultaneously satisfy all constraints. In non-
degenerate cases, it exhibits n−l degrees of freedom, where l
is the number of equalities in the system. In general, where
S lacks an algebraic description, it is desired to compute
reliable over- and under-approximations of S over a box X.

The first output paving is a guaranteed inner approxima-
tion of S, where every point in each member box definitely
satisfies all constraints. The second consists of candidate
solution boxes in which it is possible that some points satisfy
all constraints, and it is possible that some points violate at
least one constraint. Together, these comprise a guaranteed
outer approximation of S. If desired, a third output paving
for the complement of S can be produced, where every point
in each box definitely violates at least one constraint.

Generally, if the system of relations has equalities, the first
paving is empty. In non-degenerate cases where l = n, zero
or more point solutions may exist, and the solution paving
consists of one or more boxes of terminal width, some of
which enclose each individual solution. Where l < n, i.e.,
for underdetermined systems, there is a (possibly empty)
continuum of solutions, with n− l degrees of freedom. Only
in the latter case does the number of boxes in the solution
paving increase with search depth.

The second instantiation is for the bifurcation analysis of a
system of parameterized ordinary differential equations. One
may first compute a guaranteed paving for the set of state-
parameter combinations corresponding to an equilibrium,
either stable or unstable. Here, the procedure is the same as
for a system of equations, where variables and parameters
are treated equally with respect to bisection. Variations in
the parameter vector may effect quantitative and qualitative
changes in the equilibrium points. A local bifurcation is
a point in the state-parameter space at which a transition
in the number or type of equilibria occurs. Knowledge
of their location is important for the stability analysis of
nonlinear dynamic systems . Sufficient tests for the existence
of two types of local bifurcation are implemented; in either
case, the existing system of equations is augmented with
additional automatically-derived constraints, which remove
one degree of freedom, and the same core paving procedure
is performed.

Steady-state bifurcations correspond to state-parameter
values where the Jacobian matrix of the system is singular.
Its determinant is symbolically computed and the system is
augmented with the associated constraint. Hopf bifurcations,
which originate limit cycles, occur where the characteristic
polynomial associated with the aforementioned Jacobian
matrix has a conjugate pair of complex solutions with

zero real part and all other roots have a negative real
part. The coefficients of the characteristic polynomial, as
symbolic expressions, are assembled by Kodiak into a so-
called Hurwitz matrix, and boolean combinations of sign
conditions on the determinants of its minors are used as
sufficient conditions for a Hopf bifurcation. Further details
and references may be found in [12].

The third instantiation is for constrained global optimiza-
tion problems, in which an objective function f : Rn → R is
added to the above system of relations. It is often desired to
compute both an interval enclosure for the minimum value
and a paving for the minimizers of f , i.e., the points in S∩X
at which the minimum is attained.

In Kodiak, the constrained global optimization problem
is solved by adding a local exit condition to the pruning
strategy, i.e., boxes are pruned with respect to optimality,
based upon a computed enclosure for the objective function,
as well as feasibility. This requires an upper bound for the
minimum to be stored and updated during the recursion.

V. SUMMARY OF FEATURES

Kodiak provides a concrete representation of real number
expressions; it supports numerical literals, which can be
either rational, decimal, or machine floating-point numbers,
symbolic variables, symbolic parameters, user-defined con-
stants, the mathematical constants π and e, the four basic
arithmetic operations, the power operator, and a collection
of real-valued functions such as absolute value, square root,
trigonometric functions and their inverses, exponential, and
natural logarithm. Inexact values (floating-point numbers)
are input and stored as safe intervals. When constructing a
symbolic expression, Kodiak automatically performs basic
arithmetic simplifications. Datatypes for relations and sys-
tems of relations are also included.

Guaranteed (sound) results are obtained by the exclusive
use of interval arithmetic and interval variables in place
of floating-point, throughout the branching and bounding
steps. This claim relies upon sound hardware and component
libraries that are bug-free. Polynomials (in power form)
and rational functions are detected automatically, and such
expressions can be rewritten into Bernstein form using
an implicit representation of Bernstein coefficients. The
partial derivatives of constraint functions are symbolically
computed, with basic simplification. Their enclosures enable
the tightening of intervals for constraint functions, where
monotonicity with respect to one or more variables is proven.
Furthermore, for global optimization problems, in the case of
boxes that are feasible everywhere, monotonicity allows the
box to be reduced in dimension, or, if a previous subdivision
assures the existence of a suitable neighbor, eliminated
entirely. The heuristic for the choice of subdivision variable
assigns weight in proportion to normalized (with respect
to the starting box) box width in each variable and to an
estimate of normalized change in each involved function



-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

x
2

x1

Figure 1. Output pavings for Example 1: boxes that are certainly feasible
(green), possibly feasible (orange), and certainly infeasible (red)

over the box with respect to that variable. Solution sets
for underdetermined systems with one or more degree of
freedom may be paved.

VI. EXAMPLES

Example 1. The safe domain for a certain control system
is given by a small system of two polynomial inequalities
in two variables [13]:

x21x
4
2 + x41x

2
2 − 3x21x

2
2 − x1x2 +

x61 + x62
200

− 7

100
≤ 0

−x
2
1x

4
2

2
− x41x22 + 3x21x

2
2 +

x51x
3
2

10
− 9

10
≤ 0

The starting box is [−2, 2]× [−2, 2] and the maximum depth
is set to 20. On a 3 GHz Intel Xeon PC, using interval
arithmetic, the three output pavings, depicted in Figure 1,
consisting of a few thousand boxes each, are computed in 3
s. Approximately 78000 bisections are required overall; use
of Bernstein enclosure reduces this by a factor of three but
increases the total computation time to 13 s.

Example 2. Kodiak has been successfully applied to the
bifurcation analysis of a detailed model for the longitudinal
dynamics of a jet airliner [12]. There are highly non-trivial
functions in four variables and five parameters; the longest
symbolic expressions for the coefficients of the characteristic
polynomial and the Hurwitz determinants occupy several
lines and about a page, respectively. In the studied test case
where two parameters are free, the bifurcation set has one
degree of freedom in 6D space; good-quality pavings for
both bifurcation categories are computed in about two hours,
requiring seven million bisections. In the 9D case where all
five parameters are allowed to vary simultaneously, a sizable
guaranteed exclusion box can be computed.

ACKNOWLEDGMENT

Funding of the first author’s research under NASA Co-
operative Agreement NNL09AA00A is gratefully acknowl-
edged.

REFERENCES

[1] E. R. Hansen and G. W. Walster, Global Optimization Using
Interval Analysis, 2nd ed. New York, Basel: Marcel Dekker,
Inc., 2004.

[2] N. V. Sahinidis, “BARON: A general purpose global opti-
mization software package,” J. Global Optimization, vol. 8,
no. 2, pp. 201–205, 1996.

[3] R. B. Kearfott, “GlobSol user guide,” Optimization Methods
and Software, vol. 24, no. 4-5, pp. 687–708, August 2009.

[4] L. Granvilliers and F. Benhamou, “Algorithm 852: RealPaver:
An interval solver using constraint satisfaction techniques,”
ACM Trans. on Mathematical Software, vol. 32, no. 1, pp.
138–156, 2006.

[5] J. Garloff and A. P. Smith, “Investigation of a subdivision
based algorithm for solving systems of polynomial equa-
tions,” J. of Nonlinear Analysis: Series A Theory and Meth-
ods, vol. 47, no. 1, pp. 167–178, 2001.

[6] A. Narkawicz and C. Muñoz, “A formally verified generic
branching algorithm for global optimization,” in Fifth Working
Conference on Verified Software: Theories, Tools and Exper-
iments (VSTTE), ser. Lecture Notes in Computer Science,
E. Cohen and A. Rybalchenko, Eds., vol. 8164, 2014, pp.
326–343.

[7] S. Owre, J. Rushby, and N. Shankar, “PVS: A prototype
verification system,” in Proceedings of the 11th International
Conference on Automated Deduction — CADE-11, ser. Lec-
ture Notes in Artificial Intelligence, D. Kapur, Ed., vol. 607.
Springer, June 1992, pp. 748–752.

[8] R. E. Moore, R. B. Kearfott, and M. J. Cloud, Introduction
to Interval Analysis. Philadelphia: SIAM, 2009.

[9] M. Lerch, G. Tischler, J. Wolff von Gudenberg, W. Hofschus-
ter, and W. Krämer, “filib++, a fast interval library supporting
containment computations,” ACM Trans. on Mathematical
Software, vol. 32, no. 2, pp. 299–324, 2006.

[10] A. P. Smith, “Fast construction of constant bound functions
for sparse polynomials,” J. Global Optimization, vol. 43, no.
2–3, pp. 445–458, 2009.

[11] A. Narkawicz, J. Garloff, A. P. Smith, and C. A. Muñoz,
“Bounding the range of a rational function over a box,”
Reliable Computing, vol. 17, pp. 34–39, 2012.

[12] A. P. Smith, L. G. Crespo, C. A. Muñoz, and M. H. Lowen-
berg, “Bifurcation analysis using rigorous branch and bound
methods,” in 2014 IEEE International Conference on Control
Applications (CCA), ser. Part of 2014 IEEE Multi-conference
on Systems and Control, Antibes, France, October 2014, pp.
2095–2100.

[13] L. G. Crespo, C. A. Muñoz, A. J. Narkawicz, S. P. Kenny,
and D. P. Giesy, “Uncertainty analysis via failure domain
characterization: Polynomial requirement functions,” in Pro-
ceedings of European Safety and Reliability Conference,
Troyes, France, September 2011.


