
Software Safety Analysis of a Flight Guidance System Page i

Software Safety Analysis of a
Flight Guidance System

Alan C. Tribble, Steven P. Miller, and David L. Lempia

{actribbl, spmiller, dllempia}@rockwellcollins.com

Rockwell Collins, Inc., 400 Collins Rd, NE

Cedar Rapids, IA 52402 USA

Abstract

This document summarizes the safety analysis performed on a Flight Guidance System
(FGS) requirements model. In particular, the safety properties desired of the FGS model are
identified and the presence of the safety properties in the model is formally verified. Chapter 1
provides an introduction to the entire project, while Chapter 2 gives a brief overview of the
problem domain, the nature of accidents, model based development, and the four-variable model.
Chapter 3 outlines the approach, both for the traditional safety analysis techniques used in the
early stages of the process and for the formal methods techniques used in the latter stages.
Chapter 4 presents the results of the traditional safety analysis techniques, (Functional Hazard
Assessment, Fault Tree Analysis, …), and illustrates how the hazardous conditions associated
with the system trace into specific safety properties. Chapter 5 presents the results of the formal
methods analysis technique – model checking – that was used to verify the presence of the safety
properties in the requirements model. Finally, Chapter 6 summarizes the main conclusions of the
study, first and foremost that model checking is a very effective verification technique to use on
discrete models with reasonable state spaces. Additional supporting details are provided in the
appendices.

Acknowledgements

This work was supported, in part, by the NASA Aviation Safety Program under contract
NCC01-001 with the NASA Langley Research Center.

Software Safety Analysis of a Flight Guidance System Page ii

Software Safety Analysis of a Flight Guidance System Page iii

Table of Contents

1 INTRODUCTION ...1

2 BACKGROUND ..3
2.1 THE PROBLEM DOMAIN ... 3

2.1.1 FGS Functional Requirements..4
2.1.2 FGS Modes ...5
2.1.3 FGS Interfaces ...7

2.2 THE NATURE OF ACCIDENTS... 11
2.3 MODEL BASED DEVELOPMENT (MBD)... 12
2.4 THE FOUR-VARIABLE MODEL .. 14
2.5 FORMAL METHODS TOOLS.. 17

2.5.1 The RSML-e Specification Language..17
2.5.2 The NuSMV Model Checking System...18
2.5.3 The PVS Theorem Proving System...18

3 APPROACH..19
3.1 TRADITIONAL SAFETY ANALYSIS TECHNIQUES... 19

3.1.1 Functional Hazard Assessment (FHA) ..19
3.1.2 Fault Tree Analysis (FTA) ...21
3.1.3 Failure Mode Effects Analysis (FMEA) ..22
3.1.4 Safety Properties..22

3.2 FORMAL METHODS ANALYSIS.. 22
3.2.1 Modeling the Requirements...23
3.2.2 Defining the Safety Properties..23
3.2.3 Translating the Requirements Model and Safety Properties into Analysis Tools......................................23
3.2.4 Conducting the Analysis...24

4 TRADITIONAL SAFETY ANALYSIS RESULTS ...25
4.1 FUNCTIONAL HAZARD ASSESSMENT (FHA) .. 25
4.2 FAULT TREE ANALYSIS (FTA) ... 30
4.3 FAILURE MODE EFFECTS ANALYSIS (FMEA).. 34
4.4 SAFETY PROPERTIES... 37
4.5 LESSONS LEARNED... 38

5 FORMAL METHODS ANALYSIS RESULTS ..40
5.1 TRANSLATION OF SAFETY PROPERTIES INTO SMV... 41
5.2 RUNNING THE PROOFS... 44
5.3 LESSONS LEARNED... 44

6 SUMMARY AND CONCLUSIONS ...49

APPENDIX A - BIBLIOGRAPHY ...50

APPENDIX B - ACRONYMS ...52

APPENDIX C - DEFINITIONS ...53

APPENDIX D - FAULT TREE ANALYSIS RESULTS ...54

APPENDIX E - FGS REQUIREMENTS / PROPERTIES ...58

Software Safety Analysis of a Flight Guidance System Page iv

Software Safety Analysis of a Flight Guidance System Page v

List of Figures

Figure 1. The High Level Architecture of an Avionics System. ... 3
Figure 2. An Intermediate Level View of the Flight Guidance System (FGS). 7
Figure 3. Overview of a Flight Guidance System and its Interfaces. .. 8
Figure 4. The Flight Control Panel (FCP) is Used to Select FGS Modes. 8
Figure 5. An Example Primary Flight Display (PFD), Used to Display Active Modes and

Reference Values in Addition to Basic Flight Data. .. 10
Figure 6. The Accident Model. .. 11
Figure 7. The Traditional Life Cycle Development Process. .. 13
Figure 8. The Model Based Development Life Cycle Process. ... 14
Figure 9. The Four-Variable Model... 15
Figure 10. The Extended Four-Variable Model... 16
Figure 11. An Example of the Symbology Used in a Fault Tree Analysis (FTA). 21
Figure 12. The Formal Methods Approach to Safety Analysis. .. 23
Figure 13. The Fault Tree for the Hazard – Incorrect Guidance: Part 1. 31
Figure 14. The Fault Tree for the Hazard – Incorrect Guidance: Part 2. 31
Figure 15. DOORS was Used to Capture the Requirements in Both English and SMV............. 42
Figure 16. The Partial Ordering of Event Priorities... 48
Figure 17. The Fault Tree for the Hazard – Incorrect Mode Indication: Part 1.......................... 55
Figure 18. The Fault Tree for the Hazard – Incorrect Mode Indication: Part 2.......................... 55
Figure 19. The Fault Tree for the Hazard – Incorrect Transfer State Indication: Part 1. 56
Figure 20. The Fault Tree for the Hazard – Incorrect Transfer State Indication: Part 2. 56
Figure 21. The Fault Tree for the Hazard – Incorrect AP Engagement Indication: Part 1. 57
Figure 22. The Fault Tree for the Hazard – Incorrect AP Engagement Indication: Part 2. 57

Software Safety Analysis of a Flight Guidance System Page vi

Software Safety Analysis of a Flight Guidance System Page vii

List of Tables

Table 1. Typical FGS Functions. ... 4
Table 2. Lateral Modes. ... 6
Table 3. Vertical Modes... 6
Table 4. Hazard (Failure) Criticality Levels as Applied to Aircraft Design................................ 20
Table 5. Functional Hazard Assessment for Requirement: Compute Flight Guidance Steering

Commands.. 25
Table 6. Functional Hazard Assessment for Requirement: Select and Indicate Flight Guidance

Mode... 26
Table 7. Functional Hazard Assessment for Requirement: Control FD - Control Display of

Flight Guidance Cues. .. 26
Table 8. Functional Hazard Assessment for Requirement: Control AP - Control and Indicate

Transfer of Flight Guidance Commands to AP.. 27
Table 9. Functional Hazard Assessment for Requirement: Control AP - Control AP

Engagement. ... 28
Table 10. Summary of Hazards Identified in the Functional Hazard Assessment. 29
Table 11. The FGS Model Functional Categories. .. 30
Table 12. The Non-FGS Software Base Events Identified in the Fault Tree Analysis. 33
Table 13. The FGS Software Base Events Identified in the Fault Tree Analysis........................ 33
Table 14. The FMEA for the Failure Mode: Error in Annunciation Logic. 34
Table 15. The FMEA for the Failure Mode: Error in FD Selection Logic. 34
Table 16. The FMEA for the Failure Mode: Error in Pilot Flying Transfer State Logic. 35
Table 17. The FMEA for the Failure Mode: Error in Independent / Active Logic. 35
Table 18. The FMEA for the Failure Mode: Error in AP Engagement Logic. 35
Table 19. The FMEA for the Failure Mode: Error in Mode Selection Logic.............................. 36
Table 20. The FMEA for the Failure Mode: Error in Cross Channel Synchronization Logic. ... 36
Table 21. A Summary of the Safety Properties Identified for the FGS Model. 37
Table 22. Incremental Approach to Model Checking.. 41

Software Safety Analysis of a Flight Guidance System Page viii

Software Safety Analysis of a Flight Guidance System Page 1

1 Introduction

Air traffic is predicted to increase ten-fold by the year 2016. Along with the increase in traffic
will be a proportionate increase in accidents, [1]. Unless we can reduce the accident rate from its
current level, the increase in air traffic alone will account for a major hull loss every week to ten
days, somewhere in the world.

Reducing the current aviation accident rate is a daunting task that will require a concerted effort
on many fronts. It is virtually guaranteed that the development of new computer systems will
play a key role in meeting this goal. Many of these systems will be more complex than any built
to date. Just as mechanical engineering has invested in computer aided design tools to build
today’s skyscrapers and airframes, systems and software engineering will need to invest in new
tools to meet the challenge of building the next generation of avionics systems. The goal of the
“Methods and Tools for Flight Critical Systems” project, a cost-sharing effort jointly funded by
the NASA Langley Research Center and Rockwell Collins, Inc. is to extend our software
engineering infrastructure so that we will be able to safely deploy the avionics systems of the
future with confidence.

The problem domain chosen for the study was a Flight Guidance System (FGS). The FGS is
software centric function responsible for generating roll and pitch guidance values used by the
Flight Control System (FCS). As such, it is an excellent candidate for an in depth study. In
order to move the analysis as far upstream in the life cycle as possible our analysis used a Model
Based Development (MBD) approach. In MBD, a model of the system requirements is one of
the first products generated early in the life cycle of a system. The starting point for our safety
analysis is therefore a requirements model for the FGS.

Most software engineering curriculums emphasize the techniques used to design and develop
systems to meet certain functional requirements. Very little emphasis is placed on examining the
possible consequences of failure. However, when dealing with safety-critical systems, such as
those used in the aviation industry, having a firm understanding of these possib le failure modes
is essential. Traditional safety analysis techniques such as Functional Hazard Assessment
(FHA), Fault Tree Analysis (FTA), and Failure Mode Effects Analysis (FMEA) have a long
track record of being applied successfully to hardware intensive systems. It is therefore logical
to extend these proven methods to software intensive systems. However, given the differences
between hardware and software it is also appropriate to investigate new methods that may be
required to analyze more complex, safety-critical systems. Consequently, this study has
investigated the use of formal methods, model checking and theorem proving, in addition to the
traditional safety analysis techniques.

One of the key benefits to this approach is that it moves some of the testing upstream from
finished code to the actual requirements themselves. That is, we have used formal methods
techniques to validate the requirements themselves and not just the code that is generated from
the requirements. As such, we believe that the use of formal methods can increase confidence in
the safety of the final product.

Software Safety Analysis of a Flight Guidance System Page 2

The chapters that follow outline our efforts to perform a comprehensive safety analysis on the
requirements model of a FGS. Chapter 2 provides background information, including a
description of the problem domain, the nature of accidents, model based development, and the
four-variable model. Chapter 3 outlines the approach used, both for the traditional safety
analysis techniques and the formal methods techniques. Chapter 4 summarizes the results of the
traditional safety analysis, which is a listing of the properties of the FGS requirements model that
relate to safety. Chapter 5 summarizes the results of the formal methods analysis, and illustrates
how model checking has been used to verify the presence of all of the safety properties in the
requirements model. Finally, Chapter 6 summarizes the main conclusions and identifies possible
future directions.

Software Safety Analysis of a Flight Guidance System Page 3

2 Background

This chapter provides a brief overview of the problem domain, the nature of accidents, model
based development, and the four-variable model paradigm.

2.1 The Problem Domain

One of the objectives of this project is to perform an extensive analysis of a safety critical system
that reflects the complexity of an actual product. The aviation domain provides a number of
excellent candidates and the avionics system of a typical regional jet aircraft was chosen because
of its safety critical nature and its inherent complexity. As shown in Figure 1, the avionics
architecture is comprised of many individual subsystems. Featured in this diagram are the Flight
Control System (FCS) and Flight Management System (FMS). The FCS in turn is composed of
a Flight Guidance System (FGS), Flight Director (FD), Auto-Pilot (AP), and Auto-Throttle (AT).

DISPLAYS
& PANELS

CONTROL
YOKES

THROTTLES AIRCRAFT
STATE

SENSORS

RADIO/
NAV

SENSORS

OTHER
SENSORS

FCSFMS

Logic

Control Laws

FGS

Mode Logic

Control Laws

FD

ATFlight Plan
ENGINES

CONTROL
SURFACES

AP

DISPLAYS
& PANELS

CONTROL
YOKES

THROTTLES AIRCRAFT
STATE

SENSORS

RADIO/
NAV

SENSORS

OTHER
SENSORS

FCSFMS

Logic

Control Laws

FGS

Mode Logic

Control Laws

FD

ATFlight Plan
ENGINES

CONTROL
SURFACES

AP

Figure 1. The High Level Architecture of an Avionics System.

The FGS is decomposed into discrete and continuous elements called the mode logic and the
flight control laws. The flight control laws are continuous functions that compare the measured
state of the aircraft (position, speed, attitude, altitude, …) to the desired state and generate
guidance commands to minimize the difference between the two. Most systems generate only
roll and pitch attitude commands, but some also generate throttle (speed) commands. The mode
logic is a set of discrete algorithms that select the appropriate flight control laws for use any time
the system is active. The FGS mode logic was targeted as the problem of interest for this project
due to its discrete nature, and the fact that it is mainly implemented in software.

Software Safety Analysis of a Flight Guidance System Page 4

The FGS guidance values are passed to the FD, AP, and AT. The FD converts the FGS guidance
values into visual cues that are shown to the flight crew via the displays in the cockpit. In most
systems, the FD is a notional entity whose functionality is contained within the FGS and the
Displays & Panels subsystem. The AP converts the FGS guidance values into commands used to
control the movement of the actual flight control surfaces. Similarly, the AT converts the FGS
guidance values into commands used to control the setting of the aircraft thrusters. Both the AP
and AT are separate, standalone elements with dedicated hardware.

2.1.1 FGS Functional Requirements

The FGS is a software function assigned responsibility for four main areas as shown in Table 1.
The first function, compute flight guidance steering commands, is performed by the flight
control laws. The second function, select and indicate flight guidance mode, is the responsibility
of the mode logic. The third and fourth functions, control the FD and AP, are a combination of
discrete logic and hardware functionality. A fifth function, control the AT, is considered outside
the scope of this project. Each of the functions identified in Table 1 is elaborated on in the
following paragraphs. In a later section, the functional requirements will be the starting point for
the safety analysis that will follow.

Table 1. Typical FGS Functions.

Ref. Function
1 Compute Flight Guidance Steering Commands

1.1 Compute Roll and Pitch Guidance Values
2 Select and Indicate Flight Guidance Mode

2.1 Select Flight Guidance Mode
2.2 Indicate Flight Guidance Mode

3 Control FD
3.1 Control Display of FD Guidance Cues

4 Control AP
4.1 Control Transfer of Flight Guidance Values to AP
4.2 Indicate Transfer of Flight Guidance Values to AP
4.3 Control AP Engagement / Disengagement
4.4 Indicate AP Engagement / Disengagement

Compute Flight Guidance Steering Commands

The FGS must correctly compute the roll and pitch steering commands for all flight modes. That
is, the continuous flight control laws must generate the correct numerical values that will be used
by the FD, AP, and AT. The flight control laws themselves will not be considered in scope for
this analysis. That is, it will be assumed that the flight control laws always generate the correct
numerical values.

Software Safety Analysis of a Flight Guidance System Page 5

Select and Indicate Flight Guidance Mode

The FGS must correctly select the active and armed modes of operation and must correctly
identify these modes to the flight crew. This is entirely the responsibility of the software and is
the focus of the majority of the safety analysis for this project. The modes are selected by
Boolean logic based on inputs received from other systems. As will be seen, the modes are
identified to the flight crew via outputs to the Displays and Panels subsystem. The primary
effort of the safety analysis will be to ensure that the correct mode is selected based on the
inputs, and that the correct mode is indicated based on the outputs.

Control FD

It must be possible to turn the FD on when off, and vice versa. Because the FD is a notional
entity the responsibility for activating / de-activating it is assigned to software. The safety
analysis must also address the possibility of incorrectly activating, or de-activating, the FD.

Control AP

Like the FD, it must be possible to turn the AP on when off, and vice versa. Unlike the FD,
much of the responsibility for engaging / disengaging the AP is assigned to hardware and not
software. Nevertheless, the software does have some responsibility for verifying that conditions
are valid for engaging the AP and for initiating AP disengagement in certain circumstances. The
safety analysis must therefore address the possibility of incorrectly allowing AP engagement, or
of incorrectly commanding AP disengagement. Similarly, the AP must be aware of which side is
the pilot flying side so it knows which FGS is the master. This will also be addressed in the
safety analysis.

2.1.2 FGS Modes

FGS modes are usually segregated into two categories: lateral and vertical. The lateral modes of
operation control the horizontal motion of the aircraft by adjusting the aircraft roll (the angle of
rotation about the axis from the aircraft's nose to its tail.) The vertical modes of operation
control the vertical motion of the aircraft by adjusting the aircraft pitch (the angle of rotation
about the axis parallel to the aircraft's wings.) The third axis of rotation is called yaw (the angle
of rotation about the axis perpendicular to both roll and pitch.) Yaw is used mainly to adjust the
orientation of the aircraft to ensure smooth flight. Although yaw damping is a part of many AP's
it is independent of the mode of operation and is not addressed in this analysis. Typical lateral
and vertical modes of operation for a regional jet aircraft are shown in Table 2 and Table 3,
respectively. Note that if a lateral mode is active a vertical mode must also be active, and vice
versa.

Software Safety Analysis of a Flight Guidance System Page 6

Table 2. Lateral Modes.

Mode Description
Roll

(ROLL)
The default mode of operation where the aircraft will hold a fixed roll
angle. This is the default lateral mode and is always active when the
FGS is on and no other lateral mode is active.

Approach
(APPR)

Used for precision approaches when the aircraft is attempting to
capture, or has captured, the specified navigation source - either LOC,
VOR, or NAV (FMS). This mode is selected manually by pressing
the APPR button on the FCP.

Go Around
(GA)

The aircraft will hold a pre-set reference heading. Manually selected
by the flight crew by pressing the GA button on the control yokes.

Heading
(HDG)

The aircraft will track the heading displayed on the PFD. This mode
is selected manually when the HDG button on the FCP is pressed.

Navigation
(NAV)

Used for en route and non-precision approaches. The aircraft will
acquire and track the navigation source displayed on the PFD. This
mode is selected manually when the NAV button on the FCP is
pressed.

Table 3. Vertical Modes.

Mode Description
Pitch

(PTCH)
The default mode of operation where the aircraft will maintain a fixed
pitch angle. This is the default vertical mode and is always active
when the FGS is on and no other vertical mode is active.

Altitude Hold
(ALT)

The aircraft will maintain the pressure altitude. This mode is activated
manually when the ALT button on the FCP is pressed.

Altitude Select
(ALTS)

The aircraft will capture the PreSelect Altitude set by the preselect dial
on the FCP, and will then track that altitude using the Barometric
Altitude. Altitude select mode is normally armed when other modes
are active. However, it is cleared by the selection of Altitude Hold,
Approach, or Go Around.

Approach
(APPR)

Used for precision approaches. The aircraft will acquire and track the
Glide Slope (GS). This mode is selected manually by pressing the
APPR button on the FCP.

Flight Level Change
(FLC)

The aircraft will acquire and track an Indicated Air Speed (IAS) or
Mach reference speed by adjusting the aircraft pitch and will ascend or
descend as throttles are increased or decreased.

Go Around
(GA)

The aircraft will hold a pre-set reference pitch angle. Manually
selected by flight crew by pressing the GA button on the control
yokes.

Vertical Speed
(VS)

The aircraft will maintain the specified vertical speed (climb or
descent) reference, defined by the vertical speed dial on the FCP.

Software Safety Analysis of a Flight Guidance System Page 8

FCP

Mode
Logic

Flight
Control

Laws

Yokes

Throttles

Aircraft
State

Sensors

NAV /
Radio

Sensors

FCP

PFD

FD

AP

FGS

Button Pushes

Knob Settings

SYNC Switch

AP Disengage

GA Switch

Air Data

Nav Data

Lamp Illuminations

Mode Annunciations

FD On / Off

AP Eng. / Diseng.

AP Guidance

FD Guidance

Inputs Outputs

Figure 3. Overview of a Flight Guidance System and its Interfaces.

Flight Control Panel (FCP)

The FCP is used to select modes of operation for the FGS, to turn the FD on or off, to engage or
disengage the Autopilot AP, and to input certain reference values. An example FCP is shown in
Figure 4.

FD VS FLC NAV HDG APPR AP ENG FD

ALT AP DISC

ALT

HDGSPEEDCRS1 CRS2

DOWN

UP

VNAV

Figure 4. The Flight Control Panel (FCP) is Used to Select FGS Modes.

From left to right the FCP switches are:

• The pilot's button for turning the FD on and off and a knob for adjusting the reference
heading.

• A button for selecting the vertical speed (VS) mode and a wheel for increasing / decreasing
the value of vertical speed desired. Note that the wheel can also be used for increasing /
decreasing the pitch of the aircraft when in PTCH mode.

• A button for selecting the Flight Level Change (FLC) mode and a knob for selecting the
desired airspeed.

Software Safety Analysis of a Flight Guidance System Page 9

• Buttons for selecting lateral navigation (NAV), heading hold (HDG), approach (APPR), and
vertical navigation (VNAV) modes and a knob for selecting the heading desired.

• A button for selecting altitude (ALT) mode and a knob for selecting the desired (preselect)
altitude.

• A button to engage the AP and a toggle switch to disengage the AP.

• The co-pilot’s button for turning the FD on and off and a knob for adjusting the heading.

In some cases, the FCP also supplies feedback to the crew, indicating selected modes by lighting
lamps located on either side of a selected mode’s button. These are not shown in Figure 4, but
will be addressed in the analysis.

Primary Flight Display (PFD)

As its name implies, the PFD is the most important device for relaying information to the flight
crew. As shown in Figure 5, the PFD displays information on the FGS modes of operation, FD
guidance cues, and AP engagement.

Annunciations

The FGS lateral and vertical mode annunciations are displayed at the top of the PFD. In this
example, "ROLL" is the active lateral mode and "PTCH" is the active vertical model. The armed
modes, the ones that will be activated in the near future once certain criteria are met, are
annunciated below the active modes. In this example, "ALTS" is the armed vertical mode and
there is no armed la teral mode.

Flight Director (FD)

The FD is the colored wedge "^" shown above the aircraft position "^". The position of the FD
guidance cues above or below the aircraft position indicates the pitch correction recommended
by the FGS, while the angle of the guidance cues indicates the roll correction recommended. In
this example, the FD is recommending a 7.5 degree wings level climb. The aircraft itself is
flying level, 0 degrees pitch and 0 degrees roll.

Pilot Flying Indicator

The transfer switch indicates which side is responsible for flying the aircraft. When in a
dependent mode, (all modes except Approach and Go Around), the FGS on the Pilot Flying (PF)
side is the master and the FGS on the Pilot Not Flying (PNF) side is the slave.

Autopilot (AP)

When the AP is on the letters "AP" appear directly above the pilot flying indicator as shown.
Note that when the AP is engaged the AP flies the aircraft to the roll and pitch values displayed

Software Safety Analysis of a Flight Guidance System Page 10

by the FD and the aircraft position "^" would fit snugly into the FD "^", (in Figure 5 the AP has
just been engaged and has not yet had time to fly the aircraft into its desired orientation.)

Vertical Mode
Annunciations

Flight
Director (FD)

Lateral Mode
Annunciations

AP Engagement
Indicator

2 200

2 000

1 400

1 800

1 600

2 400

130

160

140

120

100

80

60

115

M 0.535

ROLL PTCH
ALTS

2 300

1 950

29.92 IN.

10

20

10

20

3 6N

E33

12
30

030
CRS 095
ADF 06
HDG 30
TCN 352
WIND 020/40

0 0.0
.5

.5

1

1

AP Pilot Flying
Indicator

Vertical Mode
Annunciations

Flight
Director (FD)

Lateral Mode
Annunciations

AP Engagement
Indicator

2 200

2 000

1 400

1 800

1 600

2 400

130

160

140

120

100

80

60

115

M 0.535

ROLL PTCH
ALTS

2 300

1 950

29.92 IN.

10

20

10

20

3 6N

E33

12
30

030
CRS 095
ADF 06
HDG 30
TCN 352
WIND 020/40

0 0.0
.5

.5

1

1

2 200

2 000

1 400

1 800

1 600

2 400

130

160

140

120

100

80

60

115

M 0.535

ROLL PTCH
ALTS

2 300

1 950

29.92 IN.

10

20

10

20

10

20

10

20

10

20

10

20

3 6N

E33

12
30

3 6N

E33

12
30

3 6N

E33

12
30

3 6N

E33

12
30

030
CRS 095
ADF 06
HDG 30
TCN 352
WIND 020/40

0 0.0
.5

.5

1

1

AP Pilot Flying
Indicator

Figure 5. An Example Primary Flight Display (PFD), Used to Display Active Modes and
Reference Values in Addition to Basic Flight Data.

Software Safety Analysis of a Flight Guidance System Page 11

2.2 The Nature of Accidents

Although thorough knowledge of the nature of accidents is not necessary in order to appreciate
the value of our results, a high level understanding is helpful in order to see how this same
approach could be applied in a larger context. Underlying our analysis is an assumption about
the nature of accidents as shown in Figure 6. The definitions used in this accident model are in
general agreement with IEEE standards, [2].

Figure 6. The Accident Model.

As shown, errors – mistakes in requirements, design, development, or test – can be the root cause
of an accident. These errors may arise anywhere in the project life cycle. Ideally, all errors will
be detected and corrected before the system is placed in operation. In reality, some errors will
escape detection (and the corrective measures used to fix some others may actually introduce
new errors) and make it into the final product as defects. It is important to note that even if
designed, manufactured, and tested to excruciating standards a perfectly functioning system may
still contain logic errors if the requirements used to develop the system are incorrect. Regardless
of the source, some of these errors may propagate to the next stage and be manifested during
operation as faults. Other faults may arise due to transient events, such as single event upset, or
physical failures of correctly designed components. Fault tolerance design techniques may be
used to contain the faults, but some faults may propagate to the next stage and result in system
level failures – a loss of functionality. At this stage fail-safe design techniques may again halt the
process, but some failures may not be contained and will place the system in a hazardous
condition – a state that has the potential to result in an accident. The final factor that determines
whether or not an accident occurs is the condition of the surrounding environment, (local terrain,
other aircraft, weather, …). A hazardous condition coupled with "good" environmental
conditions may not result in an accident, and is only an incident. If "bad" conditions are present
the result will be an accident. Thus, an error may be manifested as a fault, a fault may result in a
failure, a failure may place the system in a hazardous condition, and a hazardous condition may
result in an accident.

Error

Fault
Failure

Hazard
Accident

Error
Detection

and
Correction

Fault
Tolerance

Fail
Safe

Environment

Error

Fault
Failure

Hazard
Accident

Error
Detection

and
Correction

Fault
Tolerance

Fail
Safe

Environment

Software Safety Analysis of a Flight Guidance System Page 12

Our safety analysis therefore focuses on defining the hazards, failures, faults, and errors that
could lead to accidents. As shown in later sections, our analysis will use a combination of
standard techniques, (e.g., Fault Tree Analysis and Failure Mode Effects Analysis), in
combination with non-traditional, yet very powerful, formal methods techniques.

It is difficult to separate safety requirements from functional requirements. Similarly, it is
difficult to separate software from hardware or data issues. Much of the complexity of the real
system is related to the interaction between safety and functional requirements, and between
software, hardware, and data. As a result, a comprehensive safety analysis must address these
system level interactions. That is, an analysis of the mode logic of a single FGS must examine
the properties of the mode logic in the context of the overall system.

Subsystem analysis must examine both the hardware and software aspects of the design, as well
as possible interactions between the hardware and software. For the system examined here
numerous failures may occur. For example, lights may burn out on the FCP. The result would
be an inconsistent annunciation to the flight crew as the PFD would indicate one mode of
operation, but the corresponding mode lights on the FCP would fail to illuminate. However, the
same inconsistent annunciation may result from the FGS mode logic failing to command
illumination of the lamp. There is no way for the flight crew to tell the difference between these
two failures simply by looking at the displays. More complex failures, involving strings of
hardware-software failures, are also possible. For example, if the mode logic commands an
incorrect FCP lamp illumination AND the FCP lamp is burned out no indication to the flight
crew will be made and the system may appear to be working perfectly when two simultaneous
failures have occurred. It is important to emphasize that the analysis performed here focuses on
software failures. Consequently, the results obtained in the remainder of this study should
dovetail nicely with traditional hardware-centric safety analysis performed on similar systems
and should pave the way for validating the formal methods techniques utilized in the later
sections.

2.3 Model Based Development (MBD)

The process followed to develop the FGS model is often referred to as Model Based
Development (MBD). MBD can best be understood by contrasting it with a traditional
development process. The traditional life cycle process for product development follows a “V”
shape as shown in Figure 7. First, requirements for the system are solicited, usually in the form
of imprecise English statements. Based on the understanding of the requirements a design, or
architecture, capable of meeting the requirements is created. Following the design, code is then
developed that – it is hoped – is capable of delivering the functionality desired. Subsections of
code are then integrated together and extensively tested, at the unit, subsystem, and system level,
to verify that the required functionality is indeed present and that no unexpected behavior is
manifested. Finally, the system is placed in operation and maintained throughout its operational
life.

Software Safety Analysis of a Flight Guidance System Page 13

Requirements
Definition

Design

Development

Integration

Test

Operation

Maintenance
Traditional
“V” Curve

Requirements
Definition

Design

Development

Integration

Test

Operation

Maintenance
Traditional
“V” Curve

Figure 7. The Traditional Life Cycle Development Process.

While this approach is capable of developing very complex, safety-critical systems, it leaves
much to be desired. Much of the time, and cost, of development is incurred in the middle stages
of the process. As a result, most of the errors that are discovered are found after the design is
chosen and code has been developed when it is difficult, and time consuming, to correct them
without introducing new errors.

MBD attempts to address these concerns by shifting much of the validation work to the
requirements definition and design stages while at the same time automating the transition from
design to operation. As the name implies, the first step in MBD is the construction of a model
which accurately reflects the required behavior of the system. Preferably, this is a requirements
(black box functional) model that is independent of the system architecture. This omits
implementation bias and makes the model more widely applicable. Once the functional behavior
has been modeled it can be analyzed for the correct behavior and then used as the launch point
for future stages. In particular, the model can be automatically translated into code, minimizing
the possibility that errors are introduced and eliminating the time required for hand coding. The
model can also be used to automatically generate the required test cases, again minimizing the
possibility that errors are introduced and eliminating the time required for manual generation.
This shifts the life cycle curve from the traditional “V” shape to a streamlined “Y” shape by
replacing the labor intensive design – integration – test portions with automated generation of
code and test cases, Figure 8.

Software Safety Analysis of a Flight Guidance System Page 14

Requirements
Definition

Design

Auto-Code

Auto-Integration

Auto-Test

Operation

Maintenance
Streamlined
“Y” Curve

Requirements
Definition

Design

Auto-Code

Auto-Integration

Auto-Test

Operation

Maintenance
Streamlined
“Y” Curve

Figure 8. The Model Based Development Life Cycle Process.

We have followed a MBD paradigm for this project by creating a requirements model for the
FGS in the Requirements State Machine Language without Events (RSML-e). Details on the
RSML-e notation are provided in Section 2.5. One unique aspect of this project is that the safety
analysis will be performed not on the software, or hardware, but on the requirements themselves.

2.4 The Four-Variable Model

The FGS model was structured after the original four-variable model proposed by Parnas and
Madey, [3]. As shown in Figure 9, the variables in this model are continuous functions of time
and consist of:

• Monitored variables (MON) in the environment that the system observes and responds to;
• Controlled variables (CON) in the environment that the system is to control;
• Input variables (INPUT) through which the system senses the monitored variables; and
• Output variables (OUTPUT) through which the system changes the controlled variables.

For example, monitored values might be the actual altitude of an aircraft and its airspeed while
controlled variables might be the position of a control surface such as an aileron or the displayed
value of the altitude on the primary flight display. The corresponding input and output values
would be the ARINC-429 bus words that the software reads, or writes, to sense these quantities.

Software Safety Analysis of a Flight Guidance System Page 15

MON CON

INPUT OUTPUTSOFT

REQ

NAT

IN OUT

MON CON

INPUT OUTPUTSOFT

REQ

NAT

IN OUT

Figure 9. The Four-Variable Model

To complete the specification, four mathematical relations are defined between the variables:

• NAT defines the natural constraints imposed by the environment, such as the maximum rate of
climb of an aircraft;

• REQ defines the system requirements, specifying how the controlled variables are to respond to
changes in the monitored variables;

• IN defines the relationship of the monitored variables to the input variables; and
• OUT defines relationship of the output variables to the controlled variables.

NAT and REQ describe how the controlled variables should change in response to changes in
the monitored variables and define the subsystem view of the specification. NAT describes how
the environment (the monitored and controlled variables) behaves in the absence of the system to
be built, while REQ describes how the environment (the controlled variables) is to be
constrained by the system. These relationships can be specified with mathematical precision,
making them ideal for specifying safety-critical systems. The hardware interfaces surrounding
the software are modeled by the IN and OUT relations that define how the input and output
variables the software interacts with are related to the monitored and controlled environmental
variables. Specification of the NAT, REQ, IN, and OUT relations implicitly bounds the
allowed behavior of the software, shown in Figure 9 as SOFT, without specifying its design.

One of the great advantages of this model is that it explicitly defines the system boundary
through the identification of the monitored and controlled variables. If MON and CON are
chosen correctly, IN and OUT will change only as the underlying hardware changes. At the
same time, REQ changes only in response to changes in the system requirements. Since
customer driven changes and hardware driven changes often arise for different reasons, this helps
to make the system more robust in the face of change.

Much additional work has been done to support the use of the four-variable model in real
applications. For example, the Naval Research Lab has worked to formalize the four-variable

Software Safety Analysis of a Flight Guidance System Page 16

model in SCR and to provide supporting tools, [4]. Also, Rockwell Collins has described an
extension to the four-variabi4.5 0 TD TD 0 Tc 0 6atrting tos g

Software Safety Analysis of a Flight Guidance System Page 17

the controlled variables, CON’. This shift in perspective is possible only because of the tacit
assumption that REQ and REQ’ are identical. In verifying the properties of the FGS mode logic,
we also verified that the MON’ variables were correctly constructed from the input variables and
that the output variables were correctly constructed from the CON’ variables.

2.5 Formal Methods Tools

The term Formal Methods refers to a variety of mathematical modeling techniques that are
applicable to computer system (software and hardware) design. In much the same way that
aeronautical engineers may make use of computational fluid dynamics (CFD) to predict how a
particular airframe design will behave in flight, computer scientists use formal methods to
predict the behavior of software or hardware. Two common formal methods tools are model
checkers and theorem provers, [6 - 11].

Model checking is a technique that examines each and every possible state of the system to
verify that a desired property, (e.g., safety, liveness, functional, …), holds in the model. The
state space search is guaranteed to terminate if the model is finite and if a counterexample is
found, it is known that the property does not hold. Theorem proving is a technique in which
properties of the model are derived using the rules of mathematical logic. That is, proving a
theorem is the process of verifying the existence of a property from the specification by
repeatedly applying transformations known to preserve correctness until the theorem is derived.

2.5.1 The RSML-e Specification Language

The starting point for formal analysis is a formal specification language. RSML (Requirements
State Machine Language) is a state-based specification language for modeling the behavior of
process control systems that was developed by Nancy Leveson's group at the University of
California at Irvine, [12]. One of the main design goals of RSML was readability and
understandability by non-computer professionals such as end-users, engineers in the application
domain, managers, and representatives from regulatory agencies. RSML was used to specify
TCAS-II and this specification was ultimately adopted by the FAA as the official specification
for TCAS-II. RSML was heavily influenced by Statecharts, [13], and uses a similar notion of
explicit event propagation. In the course of developing the TCAS-II specification and the
subsequent independent verification and validation effort, it became clear that the most common
source of errors was this dependence on explicit events, [14]. To eliminate this problem, the
Critical Systems group at the University of Minnesota developed RSML-e (RSML without
Events), [15]. As its name implies, RSML-e eliminates the use explicit events and is a
synchronous language. Other examples of synchronized languages include SCR, LUSTRE, (the
kernel language for SCADE), and Esterel, [16 – 21]. RSML-e is similar to another derivative of
RSML, SpecTRM-RL, developed by the Safeware Engineering Corporation, but has a slightly
different syntax and semantics and differs in the underlying modeling philosophy. RSML-e runs
in the "Nimbus" environment also developed at the University of Minnesota. This environment
provides a framework simulating, visualizing, and analyzing RSML-e specifications.

Software Safety Analysis of a Flight Guidance System Page 18

2.5.2 The NuSMV Model Checking System

Model checking is a formal verification technique that allows one to check for properties of a
model through exhaustive exploration of the state space. This makes verification of properties
highly automated and straightforward. However, state space explosion limits the size of the
models that can be analyzed. Explicit state model checkers, such as SPIN, explicitly represent
the states visited in a form that grows in proportion to the number of states being modeled.
Symbolic model checkers represent the state space symbolically, often using Binary Decision
Diagrams (BDDs). Both approaches are ultimately limited by the size of the state space, but
symbolic model checkers can usually explore larger state spaces than explicit state model
checkers, [6].

NuSMV is a symbolic model checker developed as a joint project between the Formal Methods
group in the Automated Reasoning System Division at the Instituto Trintino di Cultura (ITC) -
Center for Scientific and Technological Research (IRST), the Mechanized Reasoning Groups at
the University of Genova and the University of Trento in Italy, and the Model Checking group at
Carnegie Mellon University in the United States. NuSMV is a re- implementation and extension
of SMV, [7], the first model checker based on BDDs. NuSMV has been designed to be an open
architecture for model checking, which can be reliably used for the verification of industrial
designs, as a core for custom verification tools, as a testbed for formal verification techniques,
and applied to other research areas, [8].

2.5.3 The PVS Theorem Proving System

In contrast to model checkers, theorem provers apply rules of inference to a specification in order
to derive new properties of interest. Theorem provers are generally harder to use than model
checkers, requiring considerable technical expertise and understanding of the specification.
However, theorem provers are not limited by the size of the state space. Also, some properties
that cannot be easily specified using model checkers, such as comparing properties of two
arbitrary states that are not temporally related, can be easily specified in the languages of most
theorem provers.

PVS is an environment for specification and verification that has been developed at SRI
International’s Computer Science Laboratory. In comparison to other widely used verification
systems such as HOL and the Boyer-Moore Prove, the distinguishing characteristic of PVS is
that it supports a highly expressive specification language with a highly effective interactive
theorem prover in which most of the lower-level proof steps are automated. The system consists
of a specification language, a parser, a type checker, and an interactive proof checker. The PVS
specification language is based on higher-order logic with a richly expressive type system so that
a number of semantic errors in specification can be caught during type checking. The PVS
prover consists of a powerful collection of inference steps that can be used to reduce a proof goal
to simpler subgoals that can be discharged automatically by the primitive proof steps of the
prover. The primitive proof steps involve, among other things, the use of arithmetic and equality
decision procedure, automatic rewriting, and BDD-based Boolean simplification, [9 - 11].

Software Safety Analysis of a Flight Guidance System Page 19

3 Approach

This chapter provides an overview of the processes used to conduct the safety analysis on the
FGS requirements model. The results from the traditional safety analysis techniques are
presented in Chapter 4, while the results from the formal methods analysis techniques are
presented in Chapter 5.

3.1 Traditional Safety Analysis Techniques

As shown in Figure 6, a necessary precursor to an accident is a hazardous condition. Traditional
safety analysis therefore begins by defining the hazards associated with a system, determines
their severity, and then attempts to identify the factors that can initiate the hazards.

3.1.1 Functional Hazard Assessment (FHA)

By definition, hazards are conditions that the system should avoid. Once the hazards are known
it becomes possible to trace backwards from the hazards into the events that can cause them.
Hazards are derived from functional failures, consequently the initial safety analysis efforts
concentrate on defining the functionality required and analyzing the consequences of failure.
This is accomplished in the Functional Hazard Assessment (FHA). The FHA is an informal
process that is used to document hazards and determine their severity. The output of an FHA is a
tabular listing of the hazards and their level of severity.

Safety is a system level problem. As a result, aviation safety standards ARP 4754 and ARP 4761
specify that safety analysis be performed both at the aircraft, or system, level and at the
subsystem level, [22, 23]. The aircraft level hazards are generally very few, such as:

• Loss of Control (LOC)

When the LOC hazard is examined at the aircraft level, it will be found that a number of
subsystem failures could give rise to it, such as hydraulic lines failures, control yoke failures,
flight control surface failures, and so on. For the purposes of this study we will be concerned
only with the failures of the FGS that can lead to aircraft level hazards.

It is important to note that not every hazard will be the result of hardware, or software, failures.
Some can simply be the result of misuse. For example, two possible hazards associated with the
AP are: i) Pilot initiated AP engagement into an uncertified condition; and ii) Failure to
disengage the AP when entering an uncertified condition. To prevent this type of hazard, the AP
hardware is designed such that it will not engage in an uncertified condition and will “cutout” if
forced into an uncertified condition.

As stated before, we are interested in defining the hazards for the FGS itself. These hazards will
derive from the functional requirements previously defined for the FGS. Based on the
terminology defined by DO-178B and MIL STD 882, the FGS is categorized as a Level C

Software Safety Analysis of a Flight Guidance System Page 20

(Major) system, Table 4, [24, 25]. Although FGS failures that result in incorrect guidance may
appear to be of a higher level of criticality, in reality a complete Flight Control System has
enough checks and balances built in that the resulting effect on the flight crew is at most
"significant" and not "extreme". It is routinely verified in flight tests that even torque-limited
hardovers due to mechanical failure do not cause "hazardous" conditions. In comparison, the
worst that a FGS mode logic failure could do would be to select the wrong flight control law,
which in turn would cause deviation from the intended flight plan. The flight crew would sense
this departure as part of their normal monitoring routine and would be able to correct for it with
minimal effort.

Table 4. Hazard (Failure) Criticality Levels as Applied to Aircraft Design.

DO-178B Level E Level D Level C Level B Level A
MIL STD 882 NA Category IV Category III Category II Category I
Classification

Of Failure

None

Minor

Major

Hazardous

Catastrophic
Effect on
Aircraft

No effect on
operational

capabilities or
safety margin

Slight reduction
in operational
capabilities or
safety margin

Significant
reduction in
operational

capabilities or
safety margin

Large reduction in
operational

capabilities or
safety margin

Safe flight and
landing

prevented,
usually with

loss of aircraft
Effect on

Passengers
Inconvenience Physical

discomfort
Physical distress,
possibly including

injuries

Serious or fatal
injury to a small

number of
occupants

Multiple
fatalities

Effect on Flight
Crew

None Slight increase
in workload or

use of
emergency
procedures

Physical
discomfort or a

significant increase
in workload

Physical distress
or excessive

workload
impairing ability
to perform tasks

Fatalities or
incapacitation

Interpreted
Qualitative
Probability

NA Probable Remote Extremely Remote Extremely
Improbable

Interpreted
Quantitative
Probability

NA 10-3 per flight
hour

10-5 per flight hour 10-7 per flight
hour

10-9 per flight
hour

Software Safety Analysis of a Flight Guidance System Page 21

3.1.2 Fault Tree Analysis (FTA)

Once the hazards have been identified it is necessary to trace backwards through the accident
model to the failures / faults / errors that could initiate them. Fault Tree Analysis (FTA) is a top-
down analysis technique that is used to identify the contributing elements (errors / faults /
failures) that could precipitate the system level hazards identified, [26]. FTA is a feed-back
technique in that one starts with the system level hazards and attempts to work backward by
identifying all possible causes of the hazards. Although the name implies that the technique is
limited only to “faults”, it should be emphasized that FTA is a general, visual technique that is
used to trace higher level events (such as hazards) down to their contributing events. These
contributing events could be failures, or errors, in addition to faults.

The FTA is presented as a visual, tree- like structure where the various factors that contribute to a
high level event are linked together. Typical FTA symbology is defined in Figure 11. As
shown, the highest level event (hazard) is traced backward through various contributing events
until the base event – the most fundamental thing that can go wrong – is identified. In an actual
aircraft program, the FTA would start with the system level hazard, for example, Loss of
Control, and include all aircraft systems (including the flight crew) that could potentially
contribute to such a hazard. The objective for our project will be to identify all of the base
events (errors) that could precipitate FGS functional failures, and hence hazardous conditions.
These base events will form the general categories of the specific safety properties required of
the FGS.

Description

Description

Ref. #

Description

Description

Description

Page #

Page #

Base Event

AND Gate

OR Gate

Tree Continued
On Page #

Tree Referenced
On Page #

Ref. #Ref. #

Ref. #Ref. #

Figure 11. An Example of the Symbology Used in a Fault Tree Analysis (FTA).

Software Safety Analysis of a Flight Guidance System Page 22

3.1.3 Failure Mode Effects Analysis (FMEA)

Because the FTA is a top-down analysis technique it does not (directly) consider the possibility
that errors could generate more than one hazard. For this reason a bi-directional approach, that
utilizes both top-down and bottoms-up analysis, is often preferred. Failure Mode Effects
Analysis (FMEA) is an bottom-up analysis procedure which documents all probable failures of a
system, determines the effect of each failure on system operation, and ranks each failure
according to severity, [26]. FMEA is a feed-forward technique in that the starting points for the
analysis are possible failures, (or faults or errors), which are then traced forward to see if they
have any impact on system safety (i.e., if they lead to potential hazards). The output of a FMEA
is a tabular presentation that lists: a) failure mode; b) effects; and c) analysis. As with the FTA,
the term FMEA should not imply that the results are limited to “failures”. FMEA is a general
analysis method that flows errors (or faults or failures) forward to hazardous conditions.

3.1.4 Safety Properties

From the FHA, FTA, and FMEA we will obtain a listing of base events that can contribute to
hazardous conditions. This list of events is in essence a listing of the general categories of safety
properties required of the FGS requirements model. The final step in the traditional safety
analysis process is to articulate the specific manifestations of the general safe ty categories based
on the capability of the FGS model. That is, rather than attempt to prove general properties such
as “no errors in mode selection logic” the properties must be made very specific to the
architecture of the system, such as “ALT mode is always activated when the ALT button is
pressed”. The next challenge is then to find some way of verifying that the requirements model
does indeed manifest each of the safety properties. For this, we use formal methods.

3.2 Formal Methods Analysis

The use of formal methods in assessing safety involves four steps as shown in Figure 12. First,
the system itself must be specified, or modeled, in a formal language. Second, the safety
properties must also be defined formally. Third, since specifications are written in a notation
designed for humans rather than formal analysis tools, both the specification and the safety
properties must usually be translated into the notation of the formal methods tools. Finally, the
analysis itself is conducted. A top- level overview of each of these steps is provided in the
sections that follow.

Software Safety Analysis of a Flight Guidance System Page 23

Model Checker

Perform
Analysis

Formal Model

Requirements

Formal Model

Theorem Prover

Requirements

Safety
PropertiesSafety

Properties

Figure 12. The Formal Methods Approach to Safety Analysis.

3.2.1 Modeling the Requirements

Since the first step in the use of formal methods is the development of a model there is a natural
correlation between MBD and the use of formal methods. As was previously mentioned, the
FGS requirements model has been generated in a formal language, RSML-e. The FGS model is
described in detail in a separate report and will not be discussed further here, [27].

3.2.2 Defining the Safety Properties

The next step in the safety analysis process is to formally define those properties of the software
associated with safety. The safety properties themselves are identified by the traditional safety
analysis techniques previously discussed. It should be noted that in most cases the "safety"
requirements are simply the "functional" requirements that trace directly to hazards. As a result,
our approach has focused on verifying requirements in general, without regard to their criticality.

3.2.3 Translating the Requirements Model and Safety Properties into Analysis Tools

The third step in the safety analysis process is to ensure that the requirements model and safety
properties are both expressed in the same formal language. It is certainly possible to define the
requirements and safety properties in the same language initially, but given the current state of
the art this will rarely be the case. The requirements model will probably be developed in tools
that are popular with developers such as RSML-e, Esterel, SCADE, or Matlab. Safety properties
will probably be defined in English prose. Even if the properties were defined in the
requirements modeling tool, the modeling tool itself would probably lack the analysis capability
and would require translation to a theorem prover or model checker to perform the actual
analysis.

Software Safety Analysis of a Flight Guidance System Page 24

As part of this project, the University of Minnesota automated the translation of the model from
RSML-e to the notations of the NuSMV model checker, [16 - 18], and the PVS theorem prover,
[19 - 21]. Building the translation capability is possible since both the origin and destination
languages have a well defined semantics. The details on this translation are discussed separately
in a companion report, [28]. The translation of the safety properties from English prose into
SMV and PVS was done manually.

3.2.4 Conducting the Analysis

The process of verifying that the model possesses the desired properties proceeds differently
depending on the tool selected. As will be discussed in Chapter 5, the use of a model checker is
highly automated. Once the model and properties are defined the tool automatically performs a
state space search to verify that each property is met. If a false counter-example is found it is
then up to the user to determine why the failure occurred, and to then modify the requirements
model, or property, accordingly. Additional work, such as ordering the state variables in the
binary decision diagram, may be necessary for the verification to complete in a reasonable time.

As is discussed in a companion report, [29], the use of a theorem prover is not as highly
automated and may require much more interactive guidance from their user. Nevertheless, once
a proof is found, it can easily be re-verified if the model is updated and it can also be used as a
starting point for more complicated proofs. The main advantage of theorem provers is that they
are not sensitive to the size of the model and may often succeed where a model checker would
fail due to the explosion of the state space. A wider variety of properties can also be specified
with a theorem prover than with a model checker.

Software Safety Analysis of a Flight Guidance System Page 25

4 Traditional Safety Analysis Results

This chapter presents the results from the traditional safety analysis techniques used to generate
the safety properties for the FGS requirements model.

4.1 Functional Hazard Assessment (FHA)

The FHA for the FGS requirements model is based on the FGS functional requirements shown in
Table 1. The FHA for the failure to “compute flight guidance steering commands” is shown in
Table 5. Note that the two functional failures are very similar, yet distinct. In general, failing to
perform a function (loss of a capability) is less severe than incorrectly performing the function.
Loss of guidance values would be minor in that the AP, or FD, should sense the absence of data
and signal a disconnect of those systems. Incorrect guidance values is a major hazard in that it
may cause the aircraft to drift from its intended flight plan producing a “significant reduction in
safety margin”. This could also require a “significant increase in workload” on the part of the
flight crew to return the aircraft to its intended flight plan.

Table 5. Functional Hazard Assessment for Requirement:
Compute Flight Guidance Steering Commands.

Ref. Functional
Failure

(Hazard)

Critical
Operational

Phase

Aircraft Manifestation Criticality Comment

1.1.1 Loss of
Guidance

Values

Approach Presence of No Computed
Data (NCD) should signal

FD and AP disconnect.

Minor Becomes major
hazard, equivalent

to incorrect
guidance, if

disconnect fails.
1.1.2 Incorrect

Guidance
Values

Approach Gradual departure from
references until detected by
flight crew during check of
primary flight data resulting
in manual disconnect and

manual flying.

Major No difference to
the AP between
loss of guidance

and incorrect
guidance.

The FHA for the failure to “select and indicate flight guidance mode” is shown in Table 6. The
first two hazards, failure to select mode or incorrect mode selection, is minor in that the guidance
values would either not be present, (loss of guidance), or correct for the active mode. The third
hazard, loss of mode indication, is minor in that the flight crew would immediately notice the
loss and disconnect the system. The second hazard, incorrect mode indication, is major because
it could result in the aircraft deviating from its intended flight plan.

Software Safety Analysis of a Flight Guidance System Page 26

Table 6. Functional Hazard Assessment for Requirement:
Select and Indicate Flight Guidance Mode .

Ref. Functional
Failure

(Hazard)

Critical
Operational

Phase

Aircraft Manifestation Criticality Comment

2.1.1 Failure to
Select
Mode

All If no mode is selected no
data is generated, signaling

disconnect.

Minor Becomes Major
Hazard if

Disconnect Fails.

2.1.2 Incorrect
Mode

Selection

All Flight guidance mode other
than the one desired by the

flight crew is armed or
activated.

Minor Assumes
Guidance Values

and Indications are
Correct.

2.2.1 Loss of
Mode

Indication

Approach Flight crew unable to
determine mode and state
of flight guidance resulting
in manual disconnect and

manual flying.

Minor Loss of Mode
Indication Less
Serious Because
Flight Crew Can
Tell There is No

Indication.
2.2.2 Incorrect

Mode
Indication

Approach Gradual departure from
references until detected by
flight crew during check of
primary flight data resulting
in manual disconnect and

manual flying.

Major Assumes
Guidance Values

are Correct.

The FHA for the failure to “control the FD” is shown in Table 7. All of these hazards are minor
in that they would be at most minor nuisances to the flight crew.

Table 7. Functional Hazard Assessment for Requirement:
Control FD - Control Display of Flight Guidance Cues.

Ref. Functional
Failure

(Hazard)

Critical
Operational

Phase

Aircraft Manifestation Criticality Comment

3.1.1 Unable to
Activate FD

Approach No FD guidance available.
Manual flying.

Minor -

3.1.2 Inadvertent
FD

Activation

All FD guidance cues displayed
without request.

Minor -

3.1.3 Unable to
Deactivate

FD

All FD guidance cues always
displayed.

Minor -

3.1.4 Inadvertent
FD De-

Activation

Approach Absence of FD guidance
cues noticed during check

of primary flight data,
manual flying.

Minor -

Software Safety Analysis of a Flight Guidance System Page 27

The FHA for the failure to “control the AP” is shown in Table 8 and Table 9. As seen in Table
8, failure to “control and indicate transfer of flight guidance commands to AP” could result in the
major hazard ”incorrect indication of flight guidance transfer state”. Similarly, failure to
“control and indicate AP engagement” could result in the major hazard “incorrect AP
engagement indication”, Table 9.

It should be noted that we have implicitly assumed the FGS will be used in a Category II system,
(one where precision approach and landing operations are conducted with a decision height of
less than 200 feet, but more than 100 feet, and a runway visual range of less than 1200 feet). If
the FGS were used in a Category III system, with smaller permissible values for the decision
height and runway visual range, several failures could rise to “Hazardous” or “Level B”
criticality. For a Category II system they are at most “Major”.

Table 8. Functional Hazard Assessment for Requirement:
Control AP - Control and Indicate Transfer of Flight Guidance Commands to AP.

Ref. Functional
Failure

(Hazard)

Critical
Operational

Phase

Aircraft Manifestation Criticality Comment

4.1.1 Loss of
Transfer

Control of
Flight

Guidance
Data to AP

All Flight crew unable to
change "Pilot Flying" side
FGS. Manual disconnect

and manual flying.

Minor -

4.1.2 Inadvertent
Transfer of

Flight
Guidance

Data to AP

Approach Possible gradual departure
from references until

detected by flight crew
during check of primary
flight data resulting in
manual disconnect and

manual flying.

Minor -

4.2.1 Loss of
Flight

Guidance
Transfer

State

All Flight crew unable to
determine "Pilot Flying"
side. Manual disconnect

and manual flying.

Minor -

4.2.2 Incorrect
Indication
of Flight
Guidance
Transfer

State

All Incorrect "Pilot Flying" side
indicated. Possible gradual
departure from references

until detected by flight crew
during check of primary
flight data resulting in
manual disconnect and

manual flying.

Major Departure from
references occurs
only if pilot flying

and pilot not
flying have

selected different
navigation
sources.

Software Safety Analysis of a Flight Guidance System Page 28

Table 9. Functional Hazard Assessment for Requirement:
Control AP - Control AP Engagement.

Ref. Functional
Failure

(Hazard)

Critical
Operational

Phase

Aircraft Manifestation Criticality Comment

4.3.1 Unable to
Engage AP

All AP unavailable.
Manual flying.

Minor -

4.3.2 Unable to
Disengage

AP

All Flight crew detects AP
engagement by either AP
annunciation on PFD or

resistance to control
column / wheel inputs.

Manual hardware
disconnect of AP and

manual flying.

Minor The AP system
provides

independent
disengagement
mechanisms.

4.3.3 Inadvertent
AP

Engage-
ment

Approach Flight crew detects AP
engagement by either AP
annunciation on PFD or

resistance to control
column / wheel inputs.

Manual hardware
disconnect of AP and

manual flying.

Minor -

4.3.4 Inadvertent
AP

Disengage-
ment

Approach Disconnect should sound
aural and visua l alarms,

alerting flight crew of the
need for manual flying.

Minor If no warning is
provided, the

criticality becomes
Major.

4.4.1 Loss of AP
Engage-

ment
Indication

All If engaged, engagement
noticed by resistance to
control column / wheel
inputs. If disengaged,

departure from references
noticed during check of

primary flight data. Result
is manual disconnect and

manual flying.

Major Engagement is
indicated both on
the PFD and FCP.

Failure to send
indication upon
activation would
be immediately

recognized and is a
Minor hazard.

4.4.2 Incorrect
AP

Engage-
ment

Indication

Approach If engaged, engagement
noticed by resistance to
control column / wheel
inputs. If disengaged,

departure from references
noticed during check of

primary flight data. Result
is manual disconnect and

manual flying.

Major -

Software Safety Analysis of a Flight Guidance System Page 29

The FHA identified five major hazards and fifteen minor hazards as shown in Table 10. The
FHA has therefore confirmed that the FGS is a Level C (Major) system. Upon further analysis it
can be seen that the major hazards Loss of AP Engagement Indication and Incorrect AP
Engagement Indication are functionally equivalent. Loss of AP Engagement Indication is really
a subset of Incorrect AP Engagement Indication, the case where the AP is engaged and
annunciated as disengaged, so it may be dropped from further consideration. The remaining four
major hazards will be examined further in the next sections.

Table 10. Summary of Hazards Identified in the Functional Hazard Assessment.

Functional
Requirement

Ref

Hazard

Criticality

1.1.1 Loss of Guidance Minor Compute Roll and
Pitch Guidance

Values
1.1.2 Incorrect Guidance Major

2.1.1 Failure to Select Mode Minor Select Flight
Guidance Mode 2.1.2 Incorrect Mode Selection Minor

2.2.1 Loss of Mode Indication Minor Indicate Flight
Guidance Mode 2.2.2 Incorrect Mode Indication Major

3.1.1 Unable to Activate FD Minor
3.1.2 Inadvertent FD Activation Minor
3.1.3 Unable to De-Activate FD Minor

Control Display of
FD Guidance Cues

3.1.4 Inadvertent FD De-Activation Minor
4.1.1 Loss of Transfer Control of Guidance Data to AP Minor Control Transfer of

Flight Guidance
Values to AP

4.1.2 Inadvertent Transfer of Guidance Data to AP Minor

4.2.1 Loss of Transfer State Indication Minor Indicate Transfer of
Flight Guidance

Values to AP
4.2.2 Incorrect Transfer State Indication Major

4.3.1 Unable to Engage AP Minor
4.3.2 Unable to Disengage AP Minor
4.3.3 Inadvertent AP Engagement Minor

Control AP
Engagement /

Disengagement
4.3.4 Inadvertent AP Disengagement Minor
4.4.1 Loss of AP Engagement Indication* Major Indicate AP

Engagement /
Disengagement

4.4.2 Incorrect AP Engagement Indication Major

*Loss of AP Engagement Indication and Incorrect AP Engagement Indication are functionally equivalent.

Software Safety Analysis of a Flight Guidance System Page 30

4.2 Fault Tree Analysis (FTA)

The FTA uses as its starting point each of the major hazards identified by the FHA. On an actual
system all of the hazards would be included, but on this proof of concept study only the major
hazards will be addressed. Because our ultimate objective is to map each hazard to “specific”
safety properties associated with the FGS it is necessary to have a greater level of insight into the
construction of FGS model itself. The specification for the FGS model is organized into the
eight functional categories shown in Table 11. Such functional decomposition is a natural
byproduct of systems engineering and breaks the full “system” level requirements into
manageable “subsystem” sized piece. The FTA will therefore map each hazard into finer and
finer levels of contributing events until one of the functional categories identified in Table 11, or
its equivalent in a non-FGS element, has been reached.

Table 11. The FGS Model Functional Categories.

Category Description
Annunciation Monitors and controls the PFD mode annunciations and FCP

lamp illuminations.
FD Selection Monitors and controls the FD selection state.

Pilot Flying Transfer Monitors and controls the PF and PNF status of the FGS.
Independent / Active Monitors and controls the independent / dependent (master-

slave), and active / inactive (standby) status of the FGS.
AP Engagement Monitors and controls the AP engagement state.
Mode Selection Monitors and controls the lateral and vertical mode selection.
 Synchronization Synchronizes the inactive FGS to active FGS.

The top levels of the FTA for the hazard Incorrect Guidance are shown in Figure 13. The fault
tree first splits into “Incorrect AP Guidance” and “Incorrect FD Guidance” because the AP and
the FD both receive guidance values from the FGS, but are implemented independently of one
another. At the next level, the “Internal Error” event acknowledges the fact that the AP, or FD,
themselves may corrupt correct data values provided to them by the FGS. The event “Incorrect
Guidance Values Received From FGS” addresses the possib ility that the FGS may pass incorrect
values. These incorrect guidance values may in turn be due to “Communications Channel” or
“Output Overwhelms” hardware failures, in addition to the FGS internal event, “FGS Sends
Incorrect Guidance Values”.

The lower levels of the FTA are shown in Figure 14. Recall that in the actual system two
identical FGS units are in operation at any time, Section 2.1.3. In most cases, one FGS is active
and the second operates as an inactive, hot spare. For some modes, Approach and Go Around,
each FGS is considered active. As a result, the primary concern is that the active FGS could
provide incorrect guidance values. However, if the inactive FGS outputs guidance data it could
overwrite the guidance data from the active FGS. Therefore, the FTA must consider the
possibility that incorrect FGS guidance values could originate from either the active or inactive
FGS.

Software Safety Analysis of a Flight Guidance System Page 31

Incorrect Guidance

A421

Incorrect AP Guidance

A554

Incorrect AP Guidance
Values Received From

FGS

A500

FGS-AP Communications
Channel Failure

A363

FGS Sends Incorrect
Guidance Values

A429
Page 1

Active FGS Sends
Incorrect Guidance

Values

A431

Page 2

Inactive FGS Sends
Incorrect Guidance

Values

A432

Page 2

FGS Output Overwhelms
AP

A561

Internal AP Error

A428

Incorrect FD Guidance

A558

Internal FD Error

A524

Incorrect FD Guidance
Values Received From

FGS

A562

FGS-FD Communications
Channel Failure

A564

FGS Sends Incorrect
Guidance Values

A429

Page 1

FGS Output Overwhelms
F D

A565

Figure 13. The Fault Tree for the Hazard – Incorrect Guidance: Part 1.

Active FGS Sends
Incorrect Guidance

Values

A431
Page 1

FCL Generates
Incorrect Guidance

Values

A509
Page 2

Error in FCL
Algorithm

A511

Error in FCL Inputs

A548

Error in FCL
Selection Logic

A527

Inactive FGS Sends
Incorrect Guidance

Values

A432
Page 1

Inactive FGS Believes
it is Active FGS

A394

Error in FGS Inputs

A378

Error in "Independent
/ Active" Logic

A459

Inactive FGS
Generates Incorrect

Guidance Values

A438

FCL Generates
Incorrect Guidance

Values

A509

Page 2

Figure 14. The Fault Tree for the Hazard – Incorrect Guidance: Part 2.

Software Safety Analysis of a Flight Guidance System Page 32

The active FGS could send incorrect guidance values due to: “Error in the FCL Algorithm” – a
mistake in the mathematical relation; “Error in FCL Inputs” – incorrect input produces incorrect
output; or “Error in FCL Selection Logic” – data was sent to (received from) the wrong FCL.

Any of these preceding events could cause the inactive FGS to generate the incorrect values as
well, but the inactive FGS would not send these values unless it also believed it was active. This
could occur due to: “Error in FGS Inputs” – misleading the FGS into believing it was active; or
“Error in Independent / Active Logic” – where the wrong side is activated. For completeness,
the remaining FTA’s are shown in Appendix D.

As is summarized in Table 12 and Table 13, the FTA has identified twenty-three (23) separate
base events that could generate one of the four major hazards associated with FGS functional
failures. Upon inspection, it is seen that many of the base events that could initiate these hazards
are due to failures outside of the FGS software itself. For example, the FGS output may be
faulty because it stemmed from input that was corrupted before it entered the FGS, (e.g., Error in
FGS Inputs). Alternatively, the FGS output may have been correct when it left the FGS but was
corrupted before it was received by another entity, (e.g., FGS-FCP Communications Channel
Failure). On an actual program all events are addressed by the comprehensive system level
safety analysis. However for our purposes we will drop from future consideration the sixteen
(16) base events that are clearly associated with functional failures outside of the FGS, Table 12.
We will carry the seven (7) remaining FGS centric base events forward into the next stage of the
analysis, Table 13.

It should be noted that one category of events noted in Table 11 was not seen to trace to a major
level hazard in the FTA’s. In particular, the category ”Error in FD Selection Logic” was not
identified in any of the four FTA’s. This is an indication that a fa ilure in that area would trace to
at most a Minor level hazard.

Software Safety Analysis of a Flight Guidance System Page 33

Table 12. The Non-FGS Software Base Events Identified in the Fault Tree Analysis.

 Hazard

Ref.

Base Event

Guid.
Mode
Ind.

Txfr
State

AP
Eng.

A428 Internal AP Error Yes - - -
A361 Internal FCP Error - Yes - -
A524 Internal FD Error Yes - - -
A362 Internal PFD Error - Yes Yes Yes

A561 FGS Overwhelms AP Yes - - -
A366 FGS Overwhelms FCP - Yes - -
A565 FGS Overwhelms FD Yes - - -
A367 FGS Overwhelms PFD - Yes Yes Yes

A363 FGS-AP Communications Channel Failure Yes - - -
A456 FGS-FCP Communications Channel Failure - Yes - -
A564 FGS-FD Communications Channel Failure Yes - - -
A546 FGS-PFD Communications Channel Failure - Yes Yes Yes

A378 Error in FGS Inputs Yes Yes Yes Yes

A511 Error in FCL Algorithm Yes - - -
A548 Error in FCL Inputs Yes - - -
A527 Error in FCL Selection Yes - - -

Table 13. The FGS Software Base Events Identified in the Fault Tree Analysis.

 Hazard

Ref.

Base Event

Guid.
Mode
Ind.

Txfr
State

AP
Eng.

A556 Error in Annunciation Logic - Yes - -
- Error in FD Selection Logic - - - -

A571 Error in Pilot Flying Transfer Logic - - Yes -
A459 Error in Independent / Active Logic Yes Yes - -
A567 Error in AP Engagement Logic - - - Yes
A569 Error in Mode Selection Logic - Yes - -
A521 Error in Synchronization Logic - Yes - -

Software Safety Analysis of a Flight Guidance System Page 34

4.3 Failure Mode Effects Analysis (FMEA)

The first step in the FMEA is to develop a listing of the possible failure modes. These failure
modes are not simply the top level FGS functional failures identified by the FHA, but rather the
specific subsystem level failures identified in Table 11. Each of these subsystem failures are the
modes through which the functional failures may arise. Each of these failure modes is mapped
into its worse case effect (hazard), as shown in the tables that follow.

Table 14 presents the FMEA for the failure mode – error in annunciation logic. This is a failure
in the determination of when the PFD mode annunciation values, or FCP lamp illumination
commands, should be output. As is seen, this failure mode could result in the loss of mode
indication or an incorrect mode indication..

Table 14. The FMEA for the Failure Mode:
Error in Annunciation Logic.

Effect Analysis
Loss of Mode Indication Failing to map mode indication data to output.

Incorrect Mode Indication Mapping mode indication data improperly.

Table 15 presents the FMEA for the failure mode – error in FD selection logic. If the FD
selection logic were faulty it could make it impossible to activate or deactivate the FD, two
minor hazards. Similarly, the logic may recognize the wrong data values as commands to
activate or de-activate the FD. However, these are also minor hazards.

Table 15. The FMEA for the Failure Mode:
Error in FD Selection Logic.

Effect Analysis
Unable to Activate FD Possible if logic never recognizes request.

Inadvertent FD Activation Possible if logic recognizes spurious request as activation
command.

Unable to De-Activate FD Possible of logic never recognizes request.
Inadvertent FD De-Activation Possible if logic recognizes spurious request as de-

activation command.

Table 16 presents the FMEA for the failure mode – error in pilot flying transfer state logic. If the
transfer state logic were faulty the FGS could recognize the incorrect side as the PF side, which
could in turn reverse the active / inactive sides. This could possibly result in guidance or mode
indications other than were anticipated if NAV mode were active and the two flight crew
members had selected different navigation sources. However, if this is annunciated clearly to the
flight crew it is not a hazard. The only major hazard resulting from this failure mode is the
incorrect transfer state indication, which could occur if the logic reversed the proper designation
of the PF and PNF sides.

Software Safety Analysis of a Flight Guidance System Page 35

Table 16. The FMEA for the Failure Mode:
Error in Pilot Flying Transfer State Logic.

Effect Analysis
Loss of Transfer Control of

Guidance Data to AP
Failure to recognize PF transfer command.

Inadvertent Transfer of Guidance
Data to AP

Possible if logic recognizes spurious commands.

Table 17 presents the FMEA for the failure mode – error in independent / active logic. This is
the logic element that determines whether the FGS is active or inactive. Were this logic faulty, it
could result in a scenario where the FGS was inactive when it should have been active or vice
versa. As with the previous FMEA, this could create a condition where the active FGS did not
respond to FCP commands to change modes because it believes it is inactive. This could in turn
give rise to incorrect guidance or an incorrect mode indication.

Table 17. The FMEA for the Failure Mode:
Error in Independent / Active Logic.

Effect Analysis
Loss of Guidance Possible if both FGS’ believe they are inactive.

Incorrect Guidance Possible if both FGS’ believe they are active, and in
NAV mode and have different navigation sources.

Loss of Mode Indication Possible if both FGS’ believe they are inactive.
Incorrect Mode Indication Possible if both FGS’ believe they are inactive.

Table 18 presents the FMEA for the failure mode – error in AP engagement logic. If the AP
engagement logic were faulty it could make it impossible to engage or disengage the AP, or it
could inadvertently engage or disengage the AP. All of these are minor hazards. The two
possible major hazards that could result are the loss of AP engagement indication, which could
occur if the logic fails to generate an engagement indication or stops generating an engagement
indication due to a spurious command. The hazard incorrect AP engagement indication is more
likely, if the logic reversed the definition of engaged and disengaged.

Table 18. The FMEA for the Failure Mode:
Error in AP Engagement Logic.

Effect Analysis
Unable to Engage AP Possible if software never recognizes validity or request.

Unable to Disengage AP Possible if software never recognizes request, but
hardware backups provide override ability.

Inadvertent AP Engagement Possible if logic recognizes spurious command as
request, and also valid.

Inadvertent AP Disengagement Possible if logic recognizes spurious command as
request, or invalid.

Software Safety Analysis of a Flight Guidance System Page 36

Table 19 presents the FMEA for the failure mode – error in mode selection logic. Were the
mode selection logic faulty the FGS could fail to select a mode, which could also result in loss of
guidance, or could select the incorrect mode under the circumstances. The hazard incorrect
guidance assumes a mismatch between the active mode and the mode that is annunciated. It
should be noted that the majority of the FGS specification is the definition of the mode selection
logic itself. That is, the mode selection logic is the primary functional responsibility of the FGS.
As a result, the error in mode selection logic failure mode is seen to generate only three minor
level hazards. This confirms two important points. First, not every functional requirement maps
directly into a corresponding safety requirement, and second, choosing the system architecture
properly can simplify the resulting safety analysis.

Table 19. The FMEA for the Failure Mode:
Error in Mode Selection Logic.

Effect Analysis
Loss of Guidance Possible if no mode is selected.

Failure to Select Mode Possible if no mode is selected.
Incorrect Mode Selection Possible if incorrect mode is selected.

Table 20 presents the FMEA for the failure mode – error in cross channel synchronization logic.
This is the logic element that synchronizes the mode of the inactive (slave) FGS to the mode of
the active (master) FGS. Were this logic faulty, it could synchronize the active FGS to the
inactive side and possibly create a condition where the active FGS did not respond to FCP
commands to change modes because it believes it is inactive. This could in turn give rise to
incorrect guidance or an incorrect mode indication.

Table 20. The FMEA for the Failure Mode:
Error in Cross Channel Synchronization Logic.

Effect Analysis
Loss of Guidance Possible if both FGS’ believe they are inactive.

Incorrect Guidance Possible if both FGS’ believe they are active, and in
NAV mode and have different navigation sources.

Loss of Mode Indication Possible if both FGS’ believe they are inactive.
Incorrect Mode Indication Possible if both FGS’ believe they are inactive.

As a final check, we compared the results of the FMEA to the results of the FTA to determine if
they were self-consistent. Upon the first pass we identified a few inconsistencies, which forced
us to re-examine our assumptions and analysis. After a few iterations the results were consistent
and we were confident that we could proceed to the next stage of the analysis.

Software Safety Analysis of a Flight Guidance System Page 37

4.4 Safety Properties

Once the FTA and the FMEA had been completed, we used the listing of base events / failure
modes as the general categories of safety properties that were associated with the FGS. As the
FHA showed, some categories were more safety critical than others, with four categories being
associated with both major and minor level hazards while the remaining four categories being
associated with only minor level hazards. Regardless, we examined the FGS requirements
model for the specific instances of those properties that should be present in the model. As
summarized in Table 21, we have identified 293 specific safety properties that - if violated -
could contribute to one of the hazards identified FHA. Also, note that not every property can
contribute to a major level hazard, while other properties may contribute to more than one major
hazard. These safety properties, (examples of which are provided in Appendix E), form the
starting point for the formal methods analysis that is the subject of Chapter 5.

Table 21. A Summary of the Safety Properties Identified for the FGS Model.

 # of Properties Contributing to a
Major Hazard

of
 S

af
et

y
Pr

op
er

tie
s

In
co

rr
ec

t
G

ui
da

nc
e

In
co

rr
ec

t M
od

e
In

di
ca

tio
n

In
co

rr
ec

t
In

di
ca

tio
n

of

Fl
ig

ht
 T

ra
ns

fe
r

In
co

rr
ec

t A
P

En
ga

ge
m

en
t

In
di

ca
tio

n

Error in Annunciation Logic 41 - 9 - -

Error in FD Selection Logic 13 - - - -

Error in Pilot Flying Transfer Logic 8 - - 4 -

Error in Independent / Active Logic 5 5 5 - -

Error in AP Engagement Logic 10 - - - 4

Error in Mode Selection Logic 166 - 104 - -

Sa
fe

ty
 P

ro
pe

rt
y

C
at

eg
or

y

Error in Synchronization Logic 50 - 23 - -

 Total # of Properties 293 5 141 4 10

Software Safety Analysis of a Flight Guidance System Page 38

4.5 Lessons Learned
Functional Hazard Assessment (FHA)

We confirmed that a safety analysis should start with the system level hazards, which in turn
stem from functional failures. Without a firm understanding of what the system is supposed to
do, its functional requirements, it is impossible to fully understand the implications of the
functional failures. These failures determine what hazardous conditions, if any, arise when the
failure occurs. The severity of the most critical functional failure in turn determines the level of
criticality for the system. The challenge to this stage was to clearly articulate the general
functions required of the FGS and to understand how failure to provide this functionality would
manifest itself.

Fault Tree Analysis (FTA)

We came to appreciate that a meaningful FTA must begin with a thorough understanding of the
system architecture and must factor in both hardware and software issues. On the hardware side,
there are two FGS units in operation at any time. Each of these may send data to one or both FD,
one or both PFD’s, and / or the AP, and either one may be active or inactive depending on the
location of pilot flying transfer switch and the mode of operation. On the software side, the FGS
logic is functionally decomposed into different elements having unique responsibilities.
Understanding the functional abilities, and limitations, of both the hardware and software
elements is necessary in order to develop a meaningful FTA. In other words, doing a FTA
correctly is a bit of an art form. A pencil in the hands of a an experienced artist may produce a
masterpiece, while the same pencil in the hands of a 5-year old would surely not. The FTA is a
tool. In the hands of an experienced user the FTA may add value, while the FTA generated by a
disconnected or inexperienced user could generate worthless, or misleading, information. For
this reason it is important that the FTA efforts be verified by an ongoing review of the results,
both with people who are familiar with the system and those who are familiar with the process.
These may be very distinct sets of individuals.

Having said this, we were impressed with the power of a simple technique like FTA. Once
completed, the FTA provides an easy means of illustrating the effect of errors / faults / failures
and to identify whether these events are single point failures or require additional events to occur
before progressing into hazards. In traditional hardware analysis a FTA would include failure
probabilities so that the reliability of the entire system could be quantified. Because software
does not fail like hardware we feel that including reliability numbers are not appropriate for an
analysis of this nature. Software will generate the same output every time, given the same initial
state and input values. However, it can fail to perform as intended if it is not properly designed.
Consequently, our analysis was focused on identifying the properties of the system that relate to
safety. We felt that the FTA was very effective at identifying the base events (errors) that could
initiate hazards.

Software Safety Analysis of a Flight Guidance System Page 39

Failure Mode Effects Analysis (FMEA)

The FMEA is an appropriate tool for documenting the effects of failures. It is a bottom-up
approach that is designed to articulate the effect of some function not being provided. We found
the FMEA to be an easier tool to use than FTA, because in this situation the failure was already
known. Once the initiating event was defined it was straightforward to guess at what the
consequences of that failure could be.

One important point is that we feel it is necessary to close the loop, by comparing the results of
the FTA to those of the FMEA and ensuring that they are self-consistent. This is often termed a
Bi-Directional Analysis (BDA). Even if BDA does not identify any elements that have been
overlooked, it is quite valuable in that it forces consistency. As such, it did give a much higher
level of confidence in the final results. It was helpful to walk through the entire loop several
times to make certain that nothing had been over looked.

Safety Properties

Once the base events were identified it was necessary to articulate the specific instances of these
events that should be manifested in our requirements model. In most cases, these were simply
the individual requirements statements themselves. That is, the requirements that trace directly
to safety became the individual safety properties for the model. At this point it was clear that an
in depth understanding of the system was required in order to ensure that all properties had been
identified. That is, it is important to ensure that all the properties are complete and consistent.
As will be seen in the next chapter, the formal methods analysis tools can provide this assurance.

Software Safety Analysis of a Flight Guidance System Page 40

5 Formal Methods Analysis Results

In the initial stages of our formal analysis we examined the use of both the NuSMV model
checker and the PVS theorem prover for verifying the safety properties identified in the last
chapter. It became evident early on that the model checker would be capable of verifying all of
the safety and functional properties identified. At the same time, early experiments suggested
that analyzing the FGS models for potential sources of mode confusion would require the
flexibility of a theorem prover such as PVS. As a result, we made a decision to focus our model
checking analysis on the FGS safety properties and use the PVS theorem prover to search for
potential sources of mode confusion. This chapter will summarize the results of our analysis
using the NuSMV model checker. The results with the PVS theorem are discussed in a
companion paper, [29].

To optimize our progress, we approached the use of formal methods in an incremental fashion.
The full model of the FGS has five lateral modes and seven vertical modes, plus a flight director,
Auto-Pilot, cross-channel mode synchronization logic, and so on. We felt it would be more
productive to develop techniques and strategies on smaller models and gradually build up to the
full FGS. Consequently, we defined a series of models ranging in complexity from only a Flight
Director and two lateral modes to the full FGS model, Table 22.

We began by translating the Level 0 model into SMV, along with a subset of the properties
associated with it, and modified the model or proofs as necessary until all properties were
verified as true. Once the entire subset of proofs had been completed we moved to the next
model, Level 1, which added two vertical modes. We then re-ran the entire subset of proofs for
the Level 0 model, before adding the additional properties associated with the two vertical
modes. In this manner, we worked up to the complexity of the full FGS at Level 5. In the next
phase of the project, we will extend the model even further to integrate with the FMS VNAV
model being developed separately.

Because the translation of the FGS requirements model into SMV had been automated by the
University of Minnesota, the only remaining challenge to the use of the model checker was the
translation of the safety properties into the SMV language. Once this was completed the model
checker could verify the presence of the properties in the model. Each of these stages is
examined in the sections that follow, while the lessons learned from conducting the analysis are
summarized in the final section.

Software Safety Analysis of a Flight Guidance System Page 41

Table 22. Incremental Approach to Model Checking.

Model

Lateral Modes
Added

Vertical Modes
Added

Other Capability
Added

Properties
Verified

Level 0 Roll Hold
Heading Select

- Flight Director 29

Level 1 - Pitch Hold
Vertical Speed

- 47

Level 2 - Altitude Hold Auto-Pilot
Pilot Flying

76

Level 3 - - Cross-Channel Mode
Synchronization

122

Level 4 Navigation Altitude Select
Flight Level Change

Air Data Computer
Navigation References

181

Level 5
(Full Model)

Approach
Go Around

Approach
Go Around

Independent Operation 281

5.1 Translation of Safety Properties into SMV

The output from the traditional safety analysis was a listing of specific safety properties required
of the FGS. These properties were generated as English prose and had to be translated manually
into the SMV language in order for the model checker to perform its analysis. As a check on the
accuracy of the translation, two investigators translated each property independently and then
compared results. The translation is straightforward, but requires some knowledge of temporal
logic. We briefly experimented with the possibility of expressing these properties in the
language of the requirements model itself, so that the properties would be translated along with
the model, but it became apparent that without extensions to the RSML-e language this would
involve more effort than simply translating the properties manually into SMV.

To ensure traceability of requirements and to facilitate technology transfer to the Rockwell
Collins product areas we utilized the Rockwell Collins standard requirements management tool,
the Dynamic Object Oriented Requirements System (DOORS), as the repository for the original
English prose statements of the FGS requirements. DOORS, by Telelogic, is a popular
commercial tool for managing requirements. It is currently used by more than 50,000 users at
over 1,000 companies around the world and provides a variety of capabilities to capture and link
information to ensure compliance with specified requirements.

As a first step, we created a requirements document in DOORS for the English statements of the
FGS requirements. We then added within DOORS a corresponding statement in the syntax of
SMV, Figure 15. This provided complete traceability for all requirements. While most of these
requirements related to safety, some were purely functional in nature. That is, some of the

Software Safety Analysis of a Flight Guidance System Page 42

properties did not trace directly to a base event identified in the traditional safety analysis.
However, model checking worked equally well for verifying that both functional and safety
properties were met.

Figure 15. DOORS was Used to Capture the Requirements in Both English and SMV

Once the properties, in both English and SMV, were captured in DOORS we created a simple
script to generate a text file that listed the English statement, (preceded by the SMV comment
delimiter so that it did not interfere with the operation of the tool), followed by the SMV
equivalent. In this way, the properties could be exported directly into the SMV model from
DOORS within a few seconds.

All of the requirements could be translated into one of two formats. The first format was simply
a constraint that had to be maintained on all reachable states. For example, the requirement

If this side is active, the mode annunciations shall be on if and only if the onside FD
cues are displayed, or the offside FD cues are displayed, or the AP is engaged.

Software Safety Analysis of a Flight Guidance System Page 43

was translated into the SMV property

SPEC AG(Is_This_Side_Active = 1 ->
(Mode_Annunciations_On <->
(Onside_FD_On | Offside_FD_On = TRUE | Is_AP_Engaged)))

where the AG operator states that the property must hold for all globally reachable states and the
operators -> and <-> have their usual meaning of “implies” and “iff”.

The second format was a constraint over a state and all possible next states. For example, the
requirement

If the onside FD cues are off and the AP is not engaged, the onside FD cues shall be
displayed when the AP is engaged.

was translated into the SMV property

SPEC AG((!Onside_FD_On & !Is_AP_Engaged) -> AX(Is_AP_Engaged ->
Onside_FD_On))

Where the AX operator states the enclosed property must hold for all states reachable in the next
step.

These two formats were sufficient because RSML-e is a synchronous language in which the
transition from each state to the next state is computed in a single atomic transition. If portions of
the model had been allowed to evolve asynchronously, then other temporal logic operators such
as eventually (F), until (U), or release (R) would have been required, [16].

Whenever possible, we tried to formulate the SMV properties in terms of the monitored (MON’)
and controlled (CON’) variables identified in the RSML-e specification (see the discussion of the
four-variable model in Section 2.4). In other words, the properties verified that the model
correctly implemented the REQ’ relation. This made the properties more independent of the
internal organization of the model and a verification of the “end-to-end” behavior of the model.
Sometimes, this proved impractical and properties were stated in terms of macros or internal
state variables of the model. For example, for some properties, it was necessary to refer to the
RSML-e macro When Lateral Mode Manually Selected, which was in turn defined in terms of the
monitored variables. Stating each property in term of the expansion of this macro would have
been tedious and prone to error. However, this required a separate set of properties to ensure the
macro itself was correctly defined.

It would have been possible to define properties in terms of the input and output fields defined in
the RSML-e interfaces rather than the monitored and controlled variables. In terms of the four
variable model, the properties would have verified the composition of the IN’, REQ’, and OUT’
relations as discussed in Section 2.4. However, this would have made the properties dependent
on the input and output fields in the interfaces. We felt this was undesirable because we were
most interested in verifying that REQ was correctly specified. It also would have made the
properties more fragile in that the input and output variables were more likely to change than the
monitored and controlled variables.

Software Safety Analysis of a Flight Guidance System Page 44

For this reason, we broke the properties down into three sets. The first set verified the REQ
relation as described above. The second set verified the IN’ relation described in the model, i.e.,
they verified that the monitored variables were correctly constructed from the input variables.
The third set verified the OUT’ relation, i.e., they verified that the output variables were
correctly constructed from the controlled variables.

While the SMV translations may appear somewhat arcane, the process quickly became routine
and straightforward. Representative examples of the requirements document, in both English
prose and SMV syntax, are included in Appendix E.

5.2 Running the Proofs

Once the SMV model had been generated from the requirements model, and the properties were
available in a text file, running the proofs was simply a matter of inserting the properties into the
SMV model and executing the state space search. Originally, the proofs for the Level 0, 1, and 2
models executed in a matter of seconds, while the proofs for the Level 3 model executed in a
little more than a minute. However, the total state space of the Level 4 model was large enough
that the proofs ran for several hours. Since it was clear that the limits of the NuSMV model
checker would be reached before the Level 5 model was completed, the University of Minnesota
improved the RSML-e to SMV translator to optimize the proof process. These changes included
improvements to the translation of RSML-e macros to avoid the introduction of redundant state
information into the SMV model and the implementation of interface abstraction that enables
selective translation of the input and output interfaces. These enhancements, especially the
improvements to the translation of RSML-e macros, enabled the model checker to verify the 181
properties for the Level 4 model in about four minutes. The 293 properties for the Level 5 model
required about an hour to verify.

While a turn around time of a few hours is reasonable for a completed product, it is still too long
to enable efficient debugging of prototypes. As a result, we used a variety of simple techniques
to reduce the size of the model during the initial stages of verification. For example, it was easy
to separate the lateral modes from the vertical modes and verify their properties separately. In a
similar fashion, eliminating the low level inputs and outputs from the model (i.e., those portions
of the model corresponding to the IN and OUT relations of the four-variable model described in
Section 2.4), also speeded up the process. We found that for the initial stages of the model
checking, when most of the counter-examples were found, it was most useful to reduce the
model in this way so that the errors could be found in seconds rather than minutes or hours. Of
course, all properties were later verified in the full model to ensure that no unforeseen
interactions between these components had been introduced.

5.3 Lessons Learned

Model Based Development Enables Formal Methods Analysis

A significant issue in transferring formal methods into practice is the fact that most practicing
engineers will not be trained in the use of formal methods tools and techniques. As such, it will
be difficult to discuss results with them unless some common notation for discussing the problem

Software Safety Analysis of a Flight Guidance System Page 45

domain can be found. We were pleased to see that the RSML-e language seems to offer such a
common ground. With only a few minutes of training, we found that most systems designers
could understand the RSML-e models. The most difficult part of the formal verification was
manually translating the English requirements into SMV properties, and even this could be easily
mastered by most practitioners. An even better approach would be to extend the RSML-e
language so that properties could be specified in RSML-e and automatically translated into SMV
along with the model itself. However properties are specified, the selection of a domain specific
language that practitioners will use and that has a well defined, formal semantics appears to be a
prerequisite for the industrial use of formal methods.

Model Checking is Ready for Industrial Use

Although there are some limitations to the use of model checking that are discussed in the
following pages, we were very impressed by both the ease of use of this technology and its
ability to generate meaningful results when applied to the FGS mode logic. Admittedly, the FGS
mode logic is admirably suited to verification through model checking. It consists of a large
number of small, tightly synchronized, finite-state machines with few integer or real variables.
Model checking would probably not have been as successful if the problem domain had included
more real-valued variables or functions. However, there are many such applications in industrial
systems that can be modeled as finite-state systems, or reduced to a finite-state system through
simple abstraction techniques. Even in the FGS mode logic, we replaced some real variables and
the comparisons based on them (e.g., Altitude > 18,000 ft) with a simple Boolean input.
Certainly, model-checking can be recommended for problems of this nature without reservation.

Verifying properties of a requirements model was also an advantage. Requirements models tend
to be smaller than design models or code. At the same time, there is considerable evidence that
the most common and most serious errors in system development are requirements errors, so
verification of properties of these models is likely to provide the greatest return. If code is
automatically generated from the models, it becomes even more important to verify that the
model exhibits the required behavior.

We did see clear evidence that the state space problem is real and limits the size of the models
that can be verified through model-checking. However, there are a variety of abstraction
techniques under development that should enable the verification of larger models. Other
techniques, such as compositional reasoning, may make it possible to verify components of a
system and then verify properties of assemblies of these components. Until these techniques are
perfected, practitioners can still improve their confidence in their systems by verifying properties
of the most difficult parts of their models.

Restating the Requirements in SMV Improves the Requirements

In an earlier section we discussed how the process of creating a model from the English prose
requirements caused us to go back and clarify the English statement of the requirements. In the
same way, translating the English statements into SMV also prompted us to go back and clarify
the English statement. For example, in trying to prove the requirement

Software Safety Analysis of a Flight Guidance System Page 46

If Heading Select mode is not selected, Heading Select mode shall be selected when the
HDG switch is pressed on the FCP

We discovered two ways in which this property might not be true. First, if a higher priority
event arrives at the same time as the HDG switch is pressed, that event may preempt the HDG
switch pressed event. Second, if this side of the FGS is not active and the active side fails to
receive or process the HDG switch pressed event, the inactive side will not respond to the event.
This led us to modify the requirement to state

If this side is active and Heading Select mode is not selected, Heading Select mode shall
be selected when the HDG switch is pressed on the FCP (providing no higher priority
event occurs at the same time)

While this requirement is longer and more difficult to read than the original statement, it has the
advantage of being an accurate description of the system’s behavior.

We found that the process of proving the properties forced us to go back and modify virtually all
of our original English requirements. At the conclusion of this process, we were far more
satisfied that our English requirements were as complete and consistent as English prose could
be.

Desired Improvements to the NuSMV Tool

Two aspects of the NuSMV tool made it difficult to use. The first was that the properties had to
be embedded in the model itself or fed in using a batch file while in interactive mode.
Embedding the properties in the models indirectly requires the user to modify the model file any
time the properties were changed, which was frequent in the early stages of verification. Adding
a simple “include filename” statement to the NuSMV language would solve this problem. This
same construct could be used to organize large models into separate files.

The second issue, which was far more time consuming, is that the counter-examples are
generated in a format that is difficult to read. The counter-examples are output as a text file that
lists all state variables in the initial state, and then lists all variables that have changed in each
subsequent state. In an automatically generated model with several hundred variables, each with
a lengthy name generated by the translator from the original RSML-e name, it was almost
impossible to decipher even a short counter-example. We found it most useful to reformat the
information so that the initial value of all of the variables were listed in the first vertical column,
and their value in each subsequent state was presented in each following vertical column. This
made it much easier to understand which variables were changing values from state to state.

Care Must be Taken to Write Meaningful Properties

Care does need to be taken when formulating SMV properties to ensure that their proofs are
meaningful. For example, we previously discussed how RSML-e macros such as When Lateral
Mode Manually Selected were occasionally used in stating the SMV properties. In most cases,
this macro was used as the antecedent of an implication, for example,

Software Safety Analysis of a Flight Guidance System Page 47

SPEC AG(m_When_Lateral_Mode_Manually_Selected.result -> Onside_FD_On)

However, if the macro When Lateral Mode Manually Selected had the value false, this proof
would always succeed, rendering the proof meaningless. To be meaningful, the properties
should also verify that the macro itself is correctly defined. Similar issues can arise if the
individual specifying the properties is unfamiliar with logic or temporal logic. For example,
many software and system engineers might not fully appreciate the difference between
implication (IMPLIES) and equivalence (IFF).

Model Checking Found Several Important Errors

The most important lesson learned, other than the fact that this approach is ready for industrial
use, was that it is capable of identifying errors in requirements models that might have otherwise
escaped detection until far later in the product life cycle. Model checking found many errors in
the original English statement of the requirements and several errors in the model itself. Many
of the errors in the model were minor and probably would have been found during design or
implementation. However, we did discover errors that could have escaped detection until quite
late in the design cycle.

One of the most common errors was failing to define the behavior of the system when more than
one input event occurred at the same time. This could occur for a variety of reasons. For
example, the pilot might press a switch at the same as the copilot selects a different switch. Or
the pilot might press a switch at the same time as the capture of the lateral navigation source
occurs. Frequently, these interactions could drive the FGS model into an unsafe state in which
more than one mode was active at the same time or in which no mode was active.

Rather than trying to fix this problem by modifying the specification to handle simultaneous
input events, we elected to assign a priority to the input events and only use the highest priority
event in each cycle, ignoring the lower priority events. While this prioritization obviously needs
to be reviewed by the domain experts for its safety implications, this has the advantage of
isolating the prioritization to one location in the specification.

An added benefit was that the model-checker allowed us to confirm that partial order, rather than
a total order, of the input events was acceptable, Figure 16. That is, it was acceptable for some
combinations of events to occur at the same time. Without the power of formal verification, we
would never have been able to convince ourselves that this was safe and would have definitely
opted for only allowing one event to be processed during each cycle.

Software Safety Analysis of a Flight Guidance System Page 48

FD_Switch

PF_Txfr_Switch

AP_Engage

AP_Disconnect ALT_Switch

ALTSEL_Target_Changed

VS_Wheel

VS_Switch

FLC_Switch

GA_Switch

SYNC_Switch

NAV_Switch

HDG_Switch

APPR_Switch

ALTSEL_Capture_Cond ALTSEL_Track_Cond NAV_Capture_Cond

LAPPR_Capture_Cond VAPPR_Capture_CondFD_Switch

PF_Txfr_Switch

AP_Engage

AP_Disconnect ALT_Switch

ALTSEL_Target_Changed

VS_Wheel

VS_Switch

FLC_Switch

GA_Switch

SYNC_Switch

NAV_Switch

HDG_Switch

APPR_Switch

ALTSEL_Capture_Cond ALTSEL_Track_Cond NAV_Capture_Cond

LAPPR_Capture_Cond VAPPR_Capture_Cond

Figure 16. The Partial Ordering of Event Priorities.

Software Safety Analysis of a Flight Guidance System Page 49

6 Summary and Conclusions

We have developed a methodology for dove-tailing traditional safety analysis techniques such as
Functional Hazard Assessment (FHA), Fault Tree Analysis (FTA), and Failure Mode Effects
Analysis (FMEA), with formal methods to conduct a comprehensive safety analysis of a
software centric avionics function, a Flight Guidance System (FGS). By using a Model Based
Development (MBD) approach, we built a requirements model for the FGS in the RSML-e
language. We then conducted a FHA to map the FGS functional failures into system level
hazards. Using a FTA we then performed a top-down analysis of the hazards to identify the
events (errors / faults / failure) that could initiate them. These event categories were compared
against the requirements model in order to develop a complete listing of safety properties for the
requirements model. As a check, we also conducted a Failure Mode Effects Analysis (FMEA) in
order to verify that our results were self-consistent.

We then translated the requirements model into the NuSMV model checker and used this formal
methods tool to verify the presence of the safety properties in the requirements model itself. In
particular, we have verified 293 properties of the full FGS model. Specific safety milestones that
have been completed include:

• Functional Hazard Assessment (FHA);

• Fault Tree Analysis (FTA);

• Failure Mode Effects Analysis (FMEA);

• Definition of FGS Safety Properties;

• Translation of the FGS Model and all Safety Properties into the SMV Model Checker;

• Translation of the FGS Model and some Safety Properties into the PVS Theorem Prover;

• All Safety Properties Verified with the NuSMV Model Checker;

• Some Safety Properties Verified with the PVS Theorem Prover;

Our main conclusion is that model checking is ready for industrial use and can greatly augment
the safety analysis for some classes of problems, specifically those with reasonable (< 1020) state
spaces. The formal methods analyses conducted to date has not only had the benefit of providing
a higher level of confidence in the final model, but may ultimately prove to be an additional
means of helping to certify the system. This lends credence to the belief that such approaches
may become an integral part of future model based development efforts, [30].

Software Safety Analysis of a Flight Guidance System Page 50

Appendix A - Bibliography

[1] Jacobsen, R., NASA Airspace Systems Program, Virtual Airspace Modeling and
Simulation Project, Technical Interchange Meeting #1, 21 May 2000.

[2] IEEE Std. 610.12-1990, Standard Glossary of Software Engineering Terminology.
[3] Parnas, D. L. and J. Madey, "Functional Documentation for Computer Systems

Engineering, Vol. 2," McMaster University, Hamilton, Ontario, Technical Report CRL
237, September 1991.

[4] Heitmeyer, C. L., J. Kirby, and B. G. Labaw, "Automated Consistency Checking of
Requirements Specification," ACM Transactions on Software Engineering and
Methodology (TOSEM), Vol. 5, No. 3, pp. 231-261, July 1996.

[5] Miller, S. P. and A. C Tribble, "Extending the Four Variable Model to Bridge the System
Software Gap," 20th AIAA / IEEE Digital Avionics Systems Conference, Daytona Beach,
FL, October 2001.

[6] Clarke, E. O., O. Grumberg and D. Peled, Model Checking, (Cambridge, MA: MIT Press,
2000).

[7] www-2.cs.cmu.edu/~modelcheck/smv.html
[8] www.nusmv.irst.itc.it
[9] Owre, S., J. Rushby, N. Shankar, and F. Henke, “Formal Verification for Fault-Tolerant

Architectures: Prolegomena to the Design of PVS,” IEEE Transactions on Software
Engineering, Vol. 21, No. 2, pp. 107-125, February 1995.

[10] Butler, R. W., "An Elementary Tutorial on Formal Specification and Verification Using
PVS, NASA TM 108991, September 1993.

[11] www.pvs.csl.sri.com
[12] Leveson, N., M. Heimdahl, H. Hildreth, and J. Reese, “Requirements Specifications for

Process-Control Systems,” IEEE Transactions on Software Engineering, Vol. 20, No. 9,
pp. 684-707, September 1994.

[13] Harel, D., and A. Naamad, The STATEMATE Semantics of Statecharts, ACM
Transactions on Software Engineering and Methodology, Vol 5., No. 4, pp. 293-333,
October, 1996.

[14] Leveson, N., et al., Safety Analysis of Air Traffic Control Upgrades, NASA TR, September
1997.

[15] Thompson, J. M., M.. P.E. Heimdahl, and S. P. Miller, “Specification Based Prototyping
for Embedded Systems,” 7th ACM Symposium on the Foundations on Software
Engineering, September 1999.

[16] Heitmeyer, C. L., "Software Cost Reduction," in Encyclopedia of Software Engineering, J.
J. Marciniak, (Ed.), January 2002.

Software Safety Analysis of a Flight Guidance System Page 51

[17] Bharadwaj, R. and C. Heitmeyer, "Developing High Assurance Avionics Systems with the
SCR Requirements Method," 19th AIAA / IEEE Digital Avionics Systems Conference,
Philadelphia, PA, October 2000.

[18] Caspi, P., D. Pilaud, N. Halbwachs, and J. A. Plaice, “LUSTRE: A Declarative Language
for Programming Synchronous Systems,” 14th ACM Symposium on Principles of
Programming Languages (POPL), pp. 178 – 188, 21 – 23 January 1987.

[19] Halbwachs, N., P. Caspi, P. Raymond, and D. Pilaud, “The Synchronous Dataflow
Programming Language LUSTRE,” Proc. IEEE, Vol. 79, No. 9, pp.1305 - 1320, 1991.

[20] Berry, G. and G. Gonthier, “The Synchronous Programming Language ESTEREL: Design,
Semantics, and Implementation,” Science of Computer Programming, Vol. 19, pp. 87-152,
1992.

[21] Boussinot, F. and R. De Simone, “The ESTEREL Language,” Proc. IEEE, Vol. 79, No. 9,
pp. 1293 - 1304, 1991.

[22] ARP 4754, "Certification Considerations for Highly-Integrated or Complex Aircraft
Systems," SAE Interna tional, November 1996.

[23] ARP 4761, "Guidelines and Methods for Conducting the Safety Assessment Process on
Civil Airborne Systems and Equipment," SAE International, December 1996.

[24] RTCA DO-178B, Software Considerations in Airborne Systems and Equipment
Certification, 01 DEC 1992.

[25] MIL STD 882C, System Safety Program Requirements, 19 January 1993.
[26] System Safety Analysis Handbook, 2nd Ed., System Safety Society, July 1997.
[27] Miller, S. P., "FGS Final Report," Delivered to NASA LaRC as Part of NCC-01-001 on 30

November 2001.
[28] Heimdahl, M. P. E., "Proof and Model Checking Tools Final Report," Delivered to NASA

LaRC as Part of NCC-01-001 on 30 November 2002.
[29] Miller, S. P., “FGS Mode Confusion Final Report,” Delivered to NASA LaRC as Part of

NCC-01-001 on 30 November 2002.
[30] Tribble, A. C., “Software Safety,” IEEE Software, pp. 84 - 85, June – July, 2002.

Software Safety Analysis of a Flight Guidance System Page 52

Appendix B - Acronyms

 ADS Air Data System
 AHRS Attitude, Heading, and Reference System
 ALT Altitude
 ALTS Altitude Select
 AP Auto-Pilot
 APPR Approach
 AT Auto-Throttle

 BDD Binary Decision Diagram

 DCP Display Control Panel

 FCS Flight Control System
 FD Flight Director
 FCP Flight Control Panel
 FGS Flight Guidance System
 FHA Functional Hazard Assessment
 FLC Flight Level Change
 FMEA Failure Modes Effects Analysis
 FMS Flight Management System
 FTA Fault Tree Analysis

 GA Go Around
 GS Glide Slope

 HDG Heading

 IAS Indicated Air Speed

 LOC Localizer

 MBD Model Based Development

 NAV Navigation

 PF Pilot Flying
 PFD Primary Flight Display
 PNF Pilot Not Flying
 PSA PreSelect Altitude
 PTCH Pitch

 ROLL Roll

 SYNC Synchronize

 VOR VHF Omnidirectional Ranging
 VNAV Vertical Navigation
 VS Vertical Speed

Software Safety Analysis of a Flight Guidance System Page 53

Appendix C - Definitions

 Accident An unplanned event, or series of events, that results in death, injury, illness,
environmental damage, or damage to or loss of equipment or property.

 Defect An error that makes it into operation.

 Error A mistake in requirements, design, or implementation. (Before Operation)

 Error Detection The processes used to find and fix errors.
 and Correction

 Fail-Safe The design features that ensures a system remains safe, or in the event of

failure, will cause the system to revert to a state that will not cause an
accident.

 Failure The inability of a system or component to perform its required functions

within specified performance requirements.

 Fault The manifestation of an error, or defect, during operation.

 Fault Tolerance The ability of a system or component to continue normal operation despite the

presence of hardware or software faults.

 Hazard Any real or potential condition of a system that, together with other conditions

in the environment of the system, will lead to an accident.

 Incident The occurrence of a hazardous condition.

 Reliability The ability of a system or component to perfo rm its required functions under

stated conditions for a specified period of time.

 Safety Freedom from the conditions that cause accidents.

Software Safety Analysis of a Flight Guidance System Page 54

Appendix D - Fault Tree Analysis Results

The FTA for the hazard, Incorrect Mode Indication, is shown in Figure 17 and Figure 18. Note
that the FCP receives lamp illumination commands separately from each FGS, so there is no
dependence on whether the FGS is active or inactive. In contrast, each PFD receives the same
mode command from the active FGS so its fault tree must address the possibility of the inactive
FGS sending incorrect mode annunciations. The event “Error in Annunciation Logic” is
included in each tree. Other contributing factors include “Error in Synchronization Logic”,
“Error in Mode Selection Logic”, and “Error in Independent / Active Logic”.

The FTA for the hazard, Incorrect Transfer State Indication, is shown in Figure 19 and Figure
20. Here the contributing factors include “Error in Annunciation Logic”, “Error in Pilot Flying
Transfer Logic”, “Error in Independent / Active Logic”, and “Error in FGS Inputs”.

The FTA for the hazard, Incorrect AP Engagement State Indication, is shown in Figure 21 and
Figure 22. As with the preceding fault trees, contributions are seen to “Error in Annunciation
Logic”, “Error in Independent / Active Logic”, “Error in AP Engagement Logic”, and “Error in
FGS Inputs”.

Software Safety Analysis of a Flight Guidance System Page 55

Incorrect Mode
Indication

A354

Incorrect FCP Lamp
Illumination

A357

Incorrect FCP Lamp
Illumination Command
Received From FGS

A359

FGS Output Overwhelms
FCP

A366

FGS Sends Incorrect
FCP Lamp Illumination

Command

A365

Error in Annunciation
Logic

A556

FGS-FCP
Communications
Channel Failure

A456

Internal FCP Error

A361

Incorrect PFD Mode
Annunciation

A358

Internal PFD Error

A362

Incorrect PFD Mode
Annunciation Command
Received From FGS

A364

FGS Output Overwhelms
PFD

A367

 FGS Sends Incorrect
PFD Mode Annunciation

Command

A368

Page 2

FGS-PFD
Communications
Channel Failure

A546

Figure 17. The Fault Tree for the Hazard – Incorrect Mode Indication: Part 1.

 FGS Sends Incorrect
PFD Mode Annunciation

Command

A368
Page 1

Active FGS Sends
Incorrect PFD Mode

Annunciation Command

A403

Error in Annunciation
Logic

A556

Error in
Synchronization Logic

A521

Error in Mode
Selection Logic

A569

Inactive FGS Sends
Incorrect PFD Mode

Annunciation Command

A387

Inactive FGS Believes
it is Active FGS

A394

Error in FGS Inputs

A378

Error in "Independent
/ Active" Logic

A459

Inactive FGS
Generates Incorrect

PFD Mode Annunciation
Command

A502

Error in Annunciation
Logic

A556

Figure 18. The Fault Tree for the Hazard – Incorrect Mode Indication: Part 2.

Software Safety Analysis of a Flight Guidance System Page 56

Incorrect Indication
of Flight Guidance

Transfer State

A526

Incorrect PFD
Transfer State
Annunciation

A549

Internal PFD Error

A362

Incorrect PFD
Transfer State

Annunciation Received
From FGS

A530

FGS Output Overwhelms
PFD

A367

FGS Sends Incorrect
PFD Transfer State

Annunciation

A532

Active FGS Sends
Incorrect PFD
Transfer State
Annunciation

A536

Page 2

Inactive FGS Sends
Incorrect PFD
Transfer State
Annunciation

A537

Page 2

FGS-PFD
Communications
Channel Failure

A546

Figure 19. The Fault Tree for the Hazard – Incorrect Transfer State Indication: Part 1.

Active FGS Sends
Incorrect PFD
Transfer State
Annunciation

A536
Page 1

Error in PF Transfer
Logic

A571

Inactive FGS Sends
Incorrect PFD
Transfer State
Annunciation

A537
Page 1

Inactive FGS Believes
it is Active FGS

A394

Error in "Independent
/ Active" Logic

A459

Error in FGS Inputs

A378

Inactive FGS
Generates Incorrect
PFD Transfer State

Annunciation

A544

Error in PF Transfer
Logic

A571

Figure 20. The Fault Tree for the Hazard – Incorrect Transfer State Indication: Part 2.

Software Safety Analysis of a Flight Guidance System Page 57

Incorrect AP
Engagement Indication

A480

Incorrect PFD AP
Engagement State

Annunciation

A545

Internal PFD Error

A362

 Incorrect PFD AP
Engagement

Annunciation Received
From FGS

A481

FGS Output Overwhelms
PFD

A367

FGS Sends Incorrect
PFD AP Engagement

Annunciation

A483

Active FGS Sends
Incorrect PFD AP

Engagement
Annunciation

A485

Page 2

Inactive FGS Sends
Incorrect PFD AP

Engagement
Annunciation

A486

Page 2

FGS-PFD
Communications
Channel Failure

A546

Figure 21. The Fault Tree for the Hazard – Incorrect AP Engagement Indication: Part 1.

Inactive FGS Sends
Incorrect PFD AP

Engagement
Annunciation

A486
Page 1

Inactive FGS Believes
it is Active FGS

A489

Error in FGS Inputs

A378

Error in "Independent
/ Active" Logic

A459

Inactive FGS
Generates Incorrect

AP Engagement
Annunciation

A490

Error in AP Engage
Logic

A567

Active FGS Sends
Incorrect PFD AP

Engagement
Annunciation

A485
Page 1

Error in AP Engage
Logic

A567

Figure 22. The Fault Tree for the Hazard – Incorrect AP Engagement Indication: Part 2.

Software Safety Analysis of a Flight Guidance System Page 58

Appendix E - FGS Requirements / Properties

The following pages provide excerpts from the requirements specification for the FGS model.
The information is presented first in English prose and then in the SMV syntax. The appendix is
therefore an illustration of the type of properties that were verified using the SMV model
checker. The outline of the appendix is as follows.

1. Annunciations

2. Flight Director

3. Pilot Flying Transfer

4. Independent & Active

5. Auto-Pilot Engagement

6. Mode Selection

6.1 Lateral Modes

6.1.1 Operation

6.1.2 Roll (ROLL)

6.1.3 Heading Select (HDG)

6.1.4 Navigation (NAV)

6.1.5 Lateral Approach (LAPPR)

6.1.6 Go Around (GA)

6.2 Vertical Modes

 6.2.1 Operation

 6.2.2 Pitch (PTCH)

 6.2.3 Vertical Speed (VS)

 6.2.4 Altitude Hold (ALT)

 6.2.5 Altitude Select (ALTSEL)

 6.2.6 Flight Level Change (FLC)

 6.2.7 Vertical Approach (VAPPR)

 6.2.8 Go Around (GA)

7. Cross Channel Synchronization

Software Safety Analysis of a Flight Guidance System Page 59

1. Annunciations

1.1 Selection

English

If this side is active and the mode annunciations are off, the mode annunciations shall be turned
on when the onside FD is turned on.

SMV

SPEC AG((!Mode_Annunciations_On & !Onside_FD_On) -> AX((Is_This_Side_Active = 1 &
Onside_FD_On) -> Mode_Annunciations_On))

1.2 De-Selection

English

If this side is active and the mode annunciations are on, the mode annunciations shall be turned
off if the onside FD is off, the offside FD is off, and the AP is disengaged.

SMV

SPEC AG(Mode_Annunciations_On -> AX((Is_This_Side_Active = 1 & !Onside_FD_On &
Offside_FD_On = FALSE & !Is_AP_Engaged) -> !Mode_Annunciations_On))

1.3 Operation

English

The mode annunciations shall not be on at system power up.

SMV

SPEC (!Mode_Annunciations_On)

Software Safety Analysis of a Flight Guidance System Page 60

2. Flight Director

2.1 Selection

English

If the onside FD cues are off, the onside FD cues shall be turned on when the FD button is
pressed (providing no higher priority event occurs at the same time).

SMV

SPEC AG(!Onside_FD_On -> AX((m_When_FD_Switch_Pressed.result &
m_No_Higher_Event_Than_FD_Switch_Pressed.result)-> Onside_FD_On))

2.2 De-Selection

English

If the onside FD cues are on, the onside FD cues shall be turned off when the FD switch is
pressed (providing no higher priority event occurs at the same time).

SMV

SPEC AG(Onside_FD_On -> AX((m_When_FD_Switch_Pressed.result &
m_No_Higher_Event_Than_FD_Switch_Pressed.result & Overspeed = 0) -> !Onside_FD_On))

2.3 Operation

English

If the onside FD cues are on, the onside FD cues shall not be turned off when another lateral
mode is manually selected.

SMV

SPEC AG(Onside_FD_On -> AX((m_When_Lateral_Mode_Manually_Selected.result ->
Onside_FD_On)))

Software Safety Analysis of a Flight Guidance System Page 61

3. Pilot Flying Transfer

3.1 Selection

English

The PF shall be transferred to the other side when the PF Transfer switch is pressed (providing
no higher priority event occurs at the same time).

SMV

SPEC AG(Pilot_Flying=LEFT -> AX((m_When_Transfer_Switch_Pressed.result &
m_No_Higher_Event_Than_Transfer_Switch_Pressed.result) -> Pilot_Flying=RIGHT))

SPEC AG(Pilot_Flying=RIGHT -> AX((m_When_Transfer_Switch_Pressed.result &
m_No_Higher_Event_Than_Transfer_Switch_Pressed.result) -> Pilot_Flying=LEFT))

3.2 Operation

English

If the mode annunciations are on, changing the PF side shall cause Roll Hold mode to become
the active lateral mode (providing this side becomes active and no higher priority event occurs at
the same time and an overspeed condition does not exist).

SMV

SPEC AG(Mode_Annunciations_On -> AX((Is_This_Side_Active = 1 &
Mode_Annunciations_On & m_When_Transfer_Switch_Pressed.result &
m_No_Higher_Event_Than_Transfer_Switch_Pressed.result) -> Is_ROLL_Active))

Software Safety Analysis of a Flight Guidance System Page 62

4. Independent / Active

4.1 Independent / Dependent

English

The independent mode condition will be met whenever LAPPR and VAPPR are active on both
the onside and offside FGS.

SMV

SPEC AG((Is_LAPPR_Active & Is_VAPPR_Active & Offside_Lappr_Selected = 1 &
Offside_Vappr_Selected = 1) -> m_Independent_Mode_Condition.result)

4.2 Active / Inactive

English

This side shall be active if the independent mode conditions are met.

SMV

SPEC AG(m_Independent_Mode_Condition.result <-> Is_This_Side_Active = 1)

Software Safety Analysis of a Flight Guidance System Page 63

5. Auto-Pilot Engagement

5.1 Selection

English

If the autopilot is disengaged, the autopilot shall engage (to the PF FGS) when the AP button on
the FCP is pressed (providing no higher priority event occurs at the same time).

SMV

SPEC AG(!Is_AP_Engaged -> AX((m_When_AP_Engage_Switch_Pressed.result &
m_No_Higher_Event_Than_AP_Engage_Switch_Pressed.result) -> Is_AP_Engaged))

5.2 De-Selection

English

If the autopilot is engaged, the autopilot shall disengage when the AP button on the FCP is
pressed (providing no higher priority event occurs at the same time).

SMV

SPEC AG(Is_AP_Engaged -> AX((m_When_AP_Engage_Switch_Pressed.result &
m_No_Higher_Event_Than_AP_Engage_Switch_Pressed.result) -> !Is_AP_Engaged))

5.3 Operation

English

If the autopilot is engaged, disengaging the autopilot shall not turn off the FD.

SMV

SPEC AG((Is_AP_Engaged & Onside_FD_On) -> AX(!Is_AP_Engaged -> Onside_FD_On))

Software Safety Analysis of a Flight Guidance System Page 64

6. Mode Selection

6.1 Lateral Modes

6.1.1 Operation

English

The default lateral mode shall be Roll Hold.

SMV

SPEC AG((Is_This_Side_Active = 1 & Mode_Annunciations_On &
m_Is_No_Nonbasic_Lateral_Mode_Active.result) -> Is_ROLL_Active)

English

Only one lateral mode shall ever be active at any time.

SMV

SPEC AG((Is_ROLL_Active -> (!Is_HDG_Active & !Is_NAV_Active & !Is_LGA_Active &
!Is_LAPPR_Active)) & (Is_HDG_Active -> (!Is_ROLL_Active & !Is_NAV_Active &
!Is_LGA_Active & !Is_LAPPR_Active)) & (Is_NAV_Active -> (!Is_ROLL_Active &
!Is_HDG_Active & !Is_LGA_Active & !Is_LAPPR_Active)) & (Is_LAPPR_Active ->
(!Is_ROLL_Active & !Is_HDG_Active & !Is_NAV_Active & !Is_LGA_Active)) &
(Is_LGA_Active -> (!Is_ROLL_Active & !Is_HDG_Active & !Is_NAV_Active &
!Is_LAPPR_Active)))

Software Safety Analysis of a Flight Guidance System Page 65

6.1.2 Roll Hold Mode

6.1.2.1 Selection

English

If this side is active and the mode annunciations are on, ROLL mode shall be selected if no other
lateral mode is active.

SMV

SPEC AG((Is_This_Side_Active = 1 & Mode_Annunciations_On &
m_Is_No_Nonbasic_Lateral_Mode_Active.result) -> Is_ROLL_Selected)

6.1.2.2 De-Selection

English

If this side is active, ROLL mode shall be cleared when any other lateral mode becomes active.

SMV

SPEC AG(Mode_Annunciations_On -> AX(Is_This_Side_Active = 1 &
m_When_Nonbasic_Lateral_Mode_Activated.result -> !Is_ROLL_Selected))

6.1.2.3 Annunciation

English

The controlled variable "Is_ROLL_Selected" shall be true if and only if ROLL mode is selected.

SMV

SPEC AG(Is_ROLL_Selected <-> ROLL = Selected)

Software Safety Analysis of a Flight Guidance System Page 66

7. Cross Channel Synchronization

7.1 Assumptions

7.1.1 Lateral

English

No more than one lateral mode on the other side will ever be active.

SMV

INVAR (Other_Input_RollSel -> (!Other_Input_HdgSel & !Other_Input_NavAct &
!Other_Input_LapprAct & !Other_Input_LgaSel)) & (Other_Input_HdgSel ->
(!Other_Input_RollSel & !Other_Input_NavAct & !Other_Input_LapprAct &
!Other_Input_LgaSel)) & (Other_Input_NavAct -> (!Other_Input_RollSel &
!Other_Input_HdgSel& !Other_Input_LapprAct & !Other_Input_LgaSel)) &
(Other_Input_LapprAct -> (!Other_Input_RollSel & !Other_Input_HdgSel&
!Other_Input_NavAct & !Other_Input_LgaSel)) & (Other_Input_LgaSel ->
(!Other_Input_RollSel & !Other_Input_HdgSel& !Other_Input_NavAct &
!Other_Input_LapprAct))

INVAR (Offside_Roll_Selected = 1 -> (!Offside_Hdg_Selected = 1 & !Offside_Nav_Active = 1
& !Offside_Lappr_Active = 1 & !Offside_Lga_Selected = 1)) & (Offside_Hdg_Selected = 1 ->
(!Offside_Roll_Selected = 1 & !Offside_Nav_Active = 1 & !Offside_Lappr_Active = 1 &
!Offside_Lga_Selected = 1)) & (Offside_Nav_Active = 1 -> (!Offside_Roll_Selected = 1 &
!Offside_Hdg_Selected = 1 & !Offside_Lappr_Selected = 1 & !Offside_Lga_Selected = 1)) &
(Offside_Lappr_Active = 1 -> (!Offside_Roll_Selected = 1 & !Offside_Hdg_Selected = 1 &
!Offside_Nav_Active = 1 & !Offside_Lga_Selected = 1)) & (Offside_Lga_Selected = 1 ->
(!Offside_Roll_Selected = 1 & !Offside_Hdg_Selected = 1 & !Offside_Nav_Active = 1 &
!Offside_Lappr_Active = 1))

Software Safety Analysis of a Flight Guidance System Page 67

7.2 Operation

7.2.1 General

English

If this side is not active, the mode annunciations shall take its value from the offside FGS.

SMV

SPEC AG(Is_This_Side_Active = 0 -> (Mode_Annunciations_On <-> Offside_Modes_On = 1))

SPEC AG(Is_This_Side_Active = 0 -> (!Mode_Annunciations_On <-> Offside_Modes_On =
0))

7.2.2 Lateral

English

If this side is not active, ROLL mode shall take its value from the offside FGS.

SMV

SPEC AG((Mode_Annunciations_On & Is_This_Side_Active = 0) -> (Is_ROLL_Selected <->
Offside_Roll_Selected = 1))

SPEC AG((Mode_Annunciations_On & Is_This_Side_Active = 0) -> (!Is_ROLL_Selected <->
Offside_Roll_Selected = 0))

