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Abstract 

We have developed a formal, executable 
model of the requirements for portions of the 
Vertical Navigation (VNAV) function of a Flight 
Management System and have conducted a 
software safety analysis on the model.  In particular, 
we have performed a Functional Hazard 
Assessment in order to identify the potentially 
hazardous conditions associated with the VNAV 
function.  We then conducted a Fault Tree Analysis 
and a Failure Mode Effects Analysis in order to 
identify the general categories of errors that relate 
to safety.  By comparing these general categories to 
the system architecture, we were able to develop a 
list of specific safety requirements for the VNAV 
function.  We then used formal methods tools to 
verify that the VNAV model satisfied the safety 
requirements. 

We provide an overview of the safety analysis 
performed to date on the VNAV model, and 
compare and contrast these results to a similar 
analysis performed on the mode logic of a Flight 
Guidance System.  Because the Flight Guidance 
System model was constructed entirely from 
Boolean logic it was easily analyzable with model 
checkers.  The VNAV model involves continuous 
logic, (altitude and position values), and requires 
the use of theorem provers.  The results of this 
analysis provide insight into the feasibility of 
integrating formal methods tools into the safety 
analysis process in a Model Based Development 
environment. 
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Introduction 

The Problem Domain 
As Figure 1 shows, the avionics architecture of 

a typical regional jet aircraft is comprised of many 
separate systems and subsystems.  Two key 
functions are the Flight Management System (FMS) 
and the Flight Control System (FCS).  The FCS is 
composed of a Flight Guidance System (FGS) that 
generates roll and pitch guidance commands, and an 
Auto-Pilot (AP) that executes them.  In comparison, 
the FMS is responsible for a more diverse set of 
functions requiring complex logic, Table 1.   

Table 1.  The Flight Management System is 
Responsible for Providing Functionality in Eight 

Key Areas . 

Flight Management System Functions  

• Airplane Performance 

• Flight Planning 

• Lateral Navigation (LNAV) 

• Pre-Flight Initialization 

• Radio Tuning 

• Route Planning 

• Thrust Management 

• Vertical Navigation (VNAV) 
 

The FMS has knowledge of the flight plan, 
which specifies the desired navigational details of 
the flight from takeoff to landing.  As shown in 
Figures 2 and 3, the flight plan contains both lateral 
and vertical data. 
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Figure 1.  The High Level Architecture of an Avionics System. 
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Figure 2.  The Lateral Flight Plan. 
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Figure 3.  The Vertical Flight Plan. 
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Of particular interest is the interaction between 
the FMS and the FGS.  With knowledge of the 
actual aircraft location the FMS can send 
commands to the FGS, which in turn commands the 
AP, in order to enable the aircraft to follow the 
flight plan.  When engaged, the FMS Lateral 
Navigation (LNAV) and Vertical Navigation 
(VNAV) functions act like a silent crew member in 
the cockpit, ordering mode change requests and 
resetting target altitude values.  Because of the 
safety critical nature of vertical navigation, and also 
the additional complexity that a change in altitude 
(and the associated change in energy) requires, the 
interaction between the FMS VNAV function and 
the FGS is of great concern.   

The detailed behavior expected of a VNAV 
function is specified by ARINC 702A-1, [1].  The 
ARINC standard provides a listing of over one 
dozen separate areas of responsibility for VNAV.  
We have implemented in our FMS VNAV model 
those VNAV functions that interact, either directly 
or indirectly, with the FGS as shown in Table 2.   

Table 2.  Selected VNAV Requirements  for a 
Typical Flight Management System. 

Trajectory Prediction Vertical Guidance 
Provide Location of 

Top of Climb 
Provide Altitude 

Targets That Enforce 
Altitude Compliance 

Provide Location of 
Top of Descent 

Provide Mode 
Commands to the FGS 

 Provide Flight Phase 
Switching 

Previous Work 
Previously, we conducted a software safety 

analysis on a formal model of the FGS mode logic , 
[2].  This logic, which was entirely Boolean in 
nature, was representative of the complexity of an 
actual aircraft system.  It was shown that industrial 
sized problems of this nature could be analyzed 
through the use of model checkers, a class of formal 
methods tools that explores the entire possible state 
space of all allowable solutions in order to identify 
any potential states that violate certain properties.  
We showed that using the NuSMV model checker, 
it was possible to verify over 300 properties of the 
FGS model in about an hour.  This verified the 

conclusion that formal methods are ready for 
industrial use. 

In contrast to the FGS, the FMS VNAV 
function is comprised of continuous equations 
involving integers and reals.  As such, it is a very 
different kind of software model than the FGS.  
Because of the different nature of this model, and 
because of the inherent safety critical nature of the 
VNAV function, we have extended our previous 
study to investigate the feasibility of using formal 
methods tools on the FMS VNAV model.  The 
sections that follow summarize the preliminary 
results of the study.   

Software Safety Analysis 

Background Information 
Underlying our analysis is an assumption 

about the nature of accidents as illustrated in Figure 
4.  As shown, errors (in requirements, 
implementation, operation, …) can generate faults, 
which in turn can lead to failures, which lead to 
hazards, which can result in accidents.  Our safety 
analysis therefore focuses on defining the hazards, 
failures, faults, and errors that could lead to 
accidents so that we can verify that no errors are 
present in the VNAV model.  That is, we seek to 
verify that the VNAV model has been implemented 
correctly and does not contain any errors that could 
place the system in a hazardous condition.  As is 
described in later sections, our analysis will use a 
combination of standard techniques, (e.g., Fault 
Tree Analysis and Failure Mode Effects Analysis), 
in combination with non-traditional, yet very 
powerful, formal methods techniques. 
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Figure 4.  The  Sequence of Events Leading to an 

Accident. 
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Specifying the Requirements 
A specification of the FMS VNAV function 

has been generated in a formal language, the 
Requirements State Machine Language without 
Events (RSML-e).  RSML-e is a synchronous 
language that was originally used to specify the 
Traffic Collision Avoidance System II (TCAS-II).  
It is important to note that the RSML-e model was 
ultimately adopted by the FAA as the official 
specification for TCAS-II.  As its name implies, 
RSML-e eliminates the use of events. RSML-e is 
similar to SpecTRM-RL, developed by the 
Safeware Engineering Corporation, and SCADE, 
developed by Esterelle Technologies, but has a 
slightly different syntax and underlying philosophy.  
RSML-e runs in the "Nimbus" environment 
developed by the Critical Systems Research group 
at the University of Minnesota.  An important 
advantage of RSML-e is that it possesses a precise 
formal semantics so that the models can be formally 
analyzed, [3].   

Defining the Safety Properties 
The first step in the safety analysis process is 

to formally define those properties of the software 
associated with safety.  Safety properties were 
generated via a Bi-Directional Analysis (BDA) 
technique, [4].  The starting point for the BDA is 
the list of hazards.  Top-down analysis is then used 
to trace the hazards down to the related errors.  To 
close the loop, an independent bottom-up analysis is 
then used to trace the errors back up to hazards. 

Defining the Hazards  

Safety is a system level problem and aviation 
safety standards ARP 4754 and ARP 4761 specify 
that safety analysis be performed both at the aircraft 
level and at the system level, [5, 6].  The aircraft 
level hazards are generally very few, such as loss of 
control.  If the loss of control hazard is examined, it 

can be found that failures in a number of systems, 
(e.g., hydraulic lines, control yokes, flight control 
surfaces,), could give rise to it.  However, as stated 
before, we are interested in defining the hazards for 
the FMS VNAV function.  These hazards will 
derive from functional failures and are defined in a 
Functional Hazard Assessment (FHA).   

We started with the functional requirements 
for the FMS VNAV, which were defined in Table 
2.  Examining the consequences of the FMS VNAV 
failing to provide this functionality identified the 
associated hazards.  Each of these hazards was then 
assigned a level of criticality in accordance with 
DO-178B and MIL STD 882, [7, 8].  We identified 
5 Level D (Minor) hazards, 8 Level C (Major) 
hazards and 1 Level B (Catastrophic) hazard in our 
model.  (It should be noted that there are likely 
other hazards associated with the VNAV function 
on actual systems, but our analysis will address 
only those hazards present in our model.)   Because 
Level B is the most critical hazard, the FMS VNAV 
is considered a Level B system.  The FHA for the 
Level B hazard is shown in Table 3.  This hazard 
forms the starting point for the next stage of the 
analysis. 

Top-Down Analysis  
Fault Tree Analysis (FTA) is a top-down 

analysis technique that is used to identify the 
contributing elements (errors / faults / failures) that 
could precipitate the system level hazards identified 
[9, 10].  FTA is a feed-back technique in that one 
starts with the system level hazards and attempts to 
work backward by identifying all possible causes of 
the hazards.  Although the name implies that the 
technique is limited only to “faults”, it should be 
emphasized that FTA is a general, visual technique 
that is used to trace higher level events (such as 
hazards) down to their contributing events.  These 
contributing events could be failures, or errors, in 
addition to faults. 

Table 3.  The Functional Hazard Assessment Identified One Level B Hazard. 

Functional 
Failure  

(Hazard) 

Critical 
Operational 

Phase 

Aircraft Manifestation Comment 

Allows 
Aircraft to 
Descend 

Through PSA. 

Descent Aircraft Drops Below the Pre-Select Altitude 
(PSA), Violating Pilot Defined (and possibly 

Air Traffic Control Mandated) Altitude Limit. 

During Approach the 
Aircraft is Allowed to Fly 

Through the PSA. 
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  In an actual aircraft program, the FTA would 
start with the system level hazards, for example, 
Loss of Control, and include all aircraft systems 
that could potentially contribute to such a hazard. 
For our purposes, the FTA will start with the 
hazards identified in the FHA.  Note that because 
safety is a system level property the FTA must 
include elements that input information to the FMS 
VNAV, such as the FGS, and elements that the 
FMS VNAV outputs information to, such as the 
PFD.  By performing a FTA on each of the hazards 
it is possible to a listing of the individual base 
events that could contribute to hazardous 
conditions.  For example, the FTA associated with 
the hazard “Allows Aircraft to Descend Through 
PSA.” is shown in Figure 5.  As shown at least 13 
separate events could precipitate this hazard.   

Bottom-Up Analysis 
As a check of the results from the top-down 

FTA is a bottom-up Failure Modes Effects Analysis 
(FMEA).  FMEA is a feed-forward technique in 
that the starting points for the analysis are possible 
errors, which are then traced forward to see if they 
have any impact on system safety (i.e., if they lead 
to potential hazards), [9, 10].  As with the FTA, the 
term FMEA should not imply that the results are 
limited to “failures”.  FMEA is a general analysis 
method that flows errors (or faults or failures) 
forward to hazardous conditions. 

The output of a FMEA is a tabular presentation 
that lists: a) failure mode (error); b) effects 
(hazard); and c) analysis (interpretation).  The 
starting point for the FMEA is the list of errors 
identified in the FHA.  For example, a portion of 
the FMEA for the level B mode logic hazard is 
shown in Table 5.   

Safety Properties 
Once the categories of errors that can result in 

a hazard have been identified, they are in further 
examined in order to identify the specific properties 
of the model that could produce the higher level 
events.  For example, the properties associated with 
“Error in Flight Phase Logic” are shown in Table 6.  
Note that many of these “safety” properties look 
like functional requirements.  In this sense, we have 
identified those requirements that are directly 
related to safety.  Verifying that these design 
requirements are indeed artifacts of the model we 

have constructed is an important step – one that is 
often omitted because it is so difficult. 

Our analysis of the full model is still 
underway.  However, we anticipate that the final 
results will identify over 100 separate requirements 
/ safety properties that we will wish to verify in the 
model. 

Translating the Requirements Model and 
Safety Properties into Analysis Tools 

Once the safety properties are defined, the next 
step in the safety analysis process is to express the 
requirements model and safety properties in the 
same formal language.  It is certainly possible to 
define the requirements and safety properties in the 
same language initially, but for real projects this 
will rarely be the case.  The requirements model 
will probably be developed in tools like RSML-e, 
SCADE, or Simulink.  Safety properties will 
probably be defined in English prose.  Even if the 
properties were defined in the requirements 
modeling tool, the modeling tool itself would 
probably lack the analysis capability and would 
require translation to a theorem prover or model 
checker.  As part of this project, the University of 
Minnesota has automated the translation of the 
model from RSML-e to the NuSMV model checker 
and the PVS theorem prover.   Building the 
translation capability is possible since both the 
origin and destination languages have a well 
defined semantics.   

The translation of the safety properties into the  
model checker or theorem prover language was 
done manually.  As a check on the accuracy of the 
translation, two experienced investigators translated 
each property independently and then compared 
results.  The translation is straightforward, but 
requires some knowledge of logic and the syntax of 
the tool being used.  If not already transparent, 
doing the manual translation also serves as a check 
on how well the properties (functional or safety) are 
defined. Ambiguous requirements result in 
ambiguous properties that cannot be stated in the 
precise manner demanded by a formal language.   
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Figure 5.  A Top Level View of the Fault Tree Analysis for the Hazard: 

Allows Aircraft to Descend Through PSA. 

 
Table 5.  The Failure Mode Effects and Criticality Analysis for the Hazard: 

Allows Aircraft to Descend Through PSA. 

Failure Mode  Effects  Analysis  

Error in Flight Phase Logic Allows Aircraft to 
Descend Through 

PSA 

Aircraft Drops Below the Pre-Select Altitude (PSA), 
Until Detected by Flight Crew During Monitoring of 

Flight Critical Data. 

Error in Path Descent Logic   

Error in Reference Altitude 
Logic 

  

 

Table 6.  Example Safety Properties are Associated With “Error in Flight Phase Logic.” 

Descent Phase Climb Phase Cruise Phase 
• Flight Phase Shall be 

Descent After the First Top 
of Descent Has Been 
Reached 

• Flight Phase Shall be Climb if 
There is a “Climb” Waypoint 
Ahead of the Aircraft 

• Flight Phase Shall be Cruise if 
the Aircraft Has Reached the 
Cruise Altitude 

 • Flight Phase Shall be Climb if 
the Last Top of Climb Has Not 
Been Reached 
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Formal Methods Analysis 
As pointed out earlier, the computation of the 

flight phase directly impacts many safety properties 
of the FMS VNAV function.  The property  

“The aircraft must be in either climb, 
cruise, or descent phase.” 

would be translated into NuSMV syntax as: 

SPEC AG(Is_FMS_VNAV_Valid -> 
(Is_Cruise_Phase_Criteria_Met | 
Is_Climb_Phase_Criteria_Met | 
Is_Descent_Phase_Criteria_Met) 

“SPEC” refers to the fact that this is a property 
being specified, “AG” means to do the proof for 
“All Global” states, “Is_FMS_VNAV_Valid” is the 
macro used to determine if FMS VNAV is valid 
and active, and “Is_Climb_Phase_Criteria_Met” is the 
macro used to determine if the conditions necessary 
for the aircraft to be in climb phase are valid.   This 
NuSMV statement would be literally translated as: 

“For all global states, if FMS VNAV is valid 
then either Cruise Phase Criteria is met, or 
Climb Phase Criteria is met, or Descent 
Phase Criteria is met.” 

This highlights one of the advantages of using 
formal specification.  English statements are 
notoriously ambiguous, but logical statements must 
be clear and precise.  While attempting to convert 
many of the original English properties into logic 
we find that we often go back and modify the 
English statement to remove ambiguity.  In this 
example, a clearer English statement – a statement 
that more clearly reflects exactly the property being 
investigated is 

“If FMS VNAV is valid, the aircraft must 
be in either climb, cruise, or descent 
phase.” 

The same property would be stated in PVS as  

Flight_Phase : LEMMA 
 verify(Is_FMS_VNAV_Valid IMPLIES 

Is_Cruise_Phase_Criteria_Met  OR 
 Is_Climb_Phase_Criteria_Met OR 
 Is_Descent_Phase_Criteria_Met) 

Intermediate Results Analysis 
As previously mentioned, the safety analysis of 

the FMS VNAV model is still underway. 
Nevertheless, some interesting results can be 
reported.  First and foremost is the fact that, without 
further work, the FMS VNAV model is not suitable 
for analysis using a model checker such as NuSMV.  
The reasons for this are not surprising.  The FMS 
VNAV model contains real numbers and 
trigonometric functions used to calculate the 
aircraft’s trajectory, neither of which can be 
handled by NuSMV. In contrast, the FGS model, 
while complex, consisted almost entirely of 
enumerated and Boolean values, making it ideally 
suited for verification through model checking.  

Of course, the reals can be converted to 
integers, using scaling to preserve the accuracy 
already included in the specification.  For example, 
most altitude values are specified in feet, with 
possible values ranging from -1,300.00 to 
+65,000.00.  Even so, the state space would be 
quite large. For example, truncating the accuracy of 
the altitude at two decimal points results in 
6,630,000 possible values for all altitude variables.  
In theory, the combined state space for two altitude 
variables, (such as the Pre-Select Altitude and the 
Flight Plan Target Altitude), would be the product 
of the state space for either variable, or more than 
1012.  This is the equivalent to the state space of 
over 40 independent Boolean variables.   

The University of Minnesota is augmenting the 
RSML-e to NuSMV translator with additional 
abstraction techniques that will hopefully allow us 
to analyze the FMS VNAV model using NuSMV. 
Another approach would be to manually replace the 
computations using reals and trigonometric 
functions with Boolean inputs. For example, when 
comparing the aircraft altitude to the PSA the actual 
desired property is the predicate  “Is the Barometric 
Altitude less than the Pre-Select Altitude” rather 
than the actual numerical difference in the altitudes.  
Many of the interesting properties of the FMS 
VNAV model could still be verified using such a 
simplified model. 

In the interim, our work has focused on the use 
of the PVS theorem prover. Unlike a model 
checker, a theorem prover is not constrained by the 
size of the state space.  Rather than conducting an 
exhaustive search of all possible states, a theorem 
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prover applies the rules of logic to reason about the 
system, in much the same way a human would. But 
where human reasoning is flawed and subject to 
error, a theorem prover ensures that each step of the 
proof is justified. For real systems, this level of 
rigor cannot be achieved without automated 
support.. 

Using the processing speed and memory of 
modern computing systems, a prover such as PVS 
can automate the bookkeeping and simpler proof 
steps, but much of the reasoning process is still 
guided by the human user.  For example, the user 
may instruct the theorem prover to try to prove a 
lemma by induction, only to generate different 
subgoals that must be proven individually before 
the proof can be completed.  The user must provide 
guidance on what rules of inference should be used, 
and in what order they should be applied, for the 
theorem prover to complete the proof. 

Much of our analysis so far has been devoted 
to discharging the type correctness conditions 
(TCCs) generated by the PVS theorem prover.  
Since PVS is a strongly typed system based on total 
functions, it routinely generates type correctness 
conditions that must be proven in addition to the 
main properties of interest.  Often, proving the type 
correctness conditions expose assumptions about 
the system that are unwarranted.  For example, 
since a common source of safety errors is 
dependence on a system input that is invalid, input 
variables in RSML-e can be set to UNDEFINED 
until a valid value is input.  The PVS translation of 
an RSML-e model generates a TCC to ensure that 
the guard on each transition is completely defined, 
ensuring that the system is deterministic ,   

In the case of the FMS VNAV model the 
theorem prover generated about 150 TCCs, most of 
which ensure that values are defined before use. 
Resolving these has forced us to go back and think 
much more carefully about the behavior of the 
model when inputs might be invalid.  

Other TCCs were more substantial.  For 
example, one of the TCCs generated required us to 
prove our earlier safety property that the aircraft 
must be in either climb, cruise, or descent phase.  
We anticipate that proofs of the TCCs will be 
completed in a few weeks so that we can begin 
reasoning about the other safety properties of the 
system. 

Summary and Conclusions 
We have constructed a formal, executable 

model of a complex, embedded software system – 
the Vertical Navigation Function of a Flight 
Management System.  In order to identify the 
properties of the model that are related to safety, we 
then conducted a software safety analysis using 
both standard techniques such as Functional Hazard 
Assessment (FHA), Fault Tree Analysis (FTA) and 
Failure Modes  Effects Analysis (FMEA), and 
formal methods techniques such as model checkers 
and theorem provers.  In particular, our analysis has 
focused on using the standard techniques to 
articulate the properties of the model that relate to 
safety.  We then plan to use the formal methods 
tools to show that all of the safety properties are 
mathematically verifiable properties of the model.   

To date, we have completed the FHA, and 
have made a first cut at the FTA and FMEA in 
order to identify some system level properties for 
further analysis.  Additional abstraction techniques 
need to be developed to analyze the VNAV model 
using the NuSMV model checker.  Our work with 
the PVS theorem prover is progressing, but has 
focused on discharging the type correctness 
conditions generated by the theorem prover. 

We anticipate that over the course of the next 
several months we will be able to define a 
translation to the NuSMV model checker that will 
enable us to use it to analyze the VNAV model.  At 
the same time, we should shortly complete the 
analysis of the TCC’s and will begin to prove 
various safety properties of the VNAV model using 
the PVS theorem prover. 
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