
22nd Digital Avionics Systems Conference (DASC) 1

SOFTWARE SAFETY ANALYSIS OF A FLIGHT MANAGEMENT SYSTEM
VERTICAL NAVIGATION FUNCTION – A STATUS REPORT

Alan C. Tribble and Steven P. Miller,

Rockwell Collins, Cedar Rapids, Iowa

Abstract

We have developed a formal, executable
model of the requirements for portions of the
Vertical Navigation (VNAV) function of a Flight
Management System and have conducted a
software safety analysis on the model. In particular,
we have performed a Functional Hazard
Assessment in order to identify the potentially
hazardous conditions associated with the VNAV
function. We then conducted a Fault Tree Analysis
and a Failure Mode Effects Analysis in order to
identify the general categories of errors that relate
to safety. By comparing these general categories to
the system architecture, we were able to develop a
list of specific safety requirements for the VNAV
function. We then used formal methods tools to
verify that the VNAV model satisfied the safety
requirements.

We provide an overview of the safety analysis
performed to date on the VNAV model, and
compare and contrast these results to a similar
analysis performed on the mode logic of a Flight
Guidance System. Because the Flight Guidance
System model was constructed entirely from
Boolean logic it was easily analyzable with model
checkers. The VNAV model involves continuous
logic, (altitude and position values), and requires
the use of theorem provers. The results of this
analysis provide insight into the feasibility of
integrating formal methods tools into the safety
analysis process in a Model Based Development
environment.

Acknowledgements
This work was supported, in part, by the NASA

Aviation Safety Program under contract NCC01-001
with the NASA Langley Research Center. Daniel
O’Brien, of the University of Minnesota, and Lucas
Wagner, of Iowa State University, are also commended
for their assistance.

Introduction

The Problem Domain
As Figure 1 shows, the avionics architecture of

a typical regional jet aircraft is comprised of many
separate systems and subsystems. Two key
functions are the Flight Management System (FMS)
and the Flight Control System (FCS). The FCS is
composed of a Flight Guidance System (FGS) that
generates roll and pitch guidance commands, and an
Auto-Pilot (AP) that executes them. In comparison,
the FMS is responsible for a more diverse set of
functions requiring complex logic, Table 1.

Table 1. The Flight Management System is
Responsible for Providing Functionality in Eight

Key Areas .

Flight Management System Functions

• Airplane Performance

• Flight Planning

• Lateral Navigation (LNAV)

• Pre-Flight Initialization

• Radio Tuning

• Route Planning

• Thrust Management

• Vertical Navigation (VNAV)

The FMS has knowledge of the flight plan,
which specifies the desired navigational details of
the flight from takeoff to landing. As shown in
Figures 2 and 3, the flight plan contains both lateral
and vertical data.

22nd Digital Avionics Systems Conference (DASC) 2

DISPLAYS
& PANELS

CONTROL
YOKES

THROTTLES
AIRCRAFT

STATE
SENSORS

RADIO/
NAV

SENSORS

OTHER
SENSORS

FLIGHT CONTROL SYSTEMFLIGHT
MANAGEMENT

SYSTEM

Database(s)

Flight Guidance

Mode Logic

Control Laws

Flight
Director

Auto-
Pilot

Flight Plan

Data Bus

ENGINES

CONTROL
SURFACES

DISPLAYS
& PANELS

CONTROL
YOKES

THROTTLES
AIRCRAFT

STATE
SENSORS

RADIO/
NAV

SENSORS

OTHER
SENSORS

FLIGHT CONTROL SYSTEMFLIGHT
MANAGEMENT

SYSTEM

Database(s)

Flight Guidance

Mode Logic

Control Laws

Flight
Director

Auto-
Pilot

Flight Plan

Data Bus

ENGINES

CONTROL
SURFACES

Figure 1. The High Level Architecture of an Avionics System.

ORIGIN
Airport

DESTINATION
Airport

ALTERNATE
Airport

Departure
Runway

Standard Instrument
Departure (SID)

Arrival
Runway

Standard Terminal
Arrival Route (STAR)

WPT A

WPT B

WPT C

Leg

Leg

Leg

WPT E

N

EW

S

WPT D Leg

ORIGIN
Airport

DESTINATION
Airport

ALTERNATE
Airport

Departure
Runway

Standard Instrument
Departure (SID)

Arrival
Runway

Standard Terminal
Arrival Route (STAR)

WPT A

WPT B

WPT C

Leg

Leg

Leg

WPT E

N

EW

S

WPT D Leg

Figure 2. The Lateral Flight Plan.

Departure
Runway

Arrival
RunwayWPT A WPT C

Leg Leg Leg

WPT E

SID STAR

Altitude

FL50B

FL100B

FL90A
250/FL100A

FL60

WPT B WPT D

Leg

Cruise Altitude

Departure
Runway

Arrival
RunwayWPT A WPT C

Leg Leg Leg

WPT E

SID STAR

Altitude

FL50B

FL100B

FL90A
250/FL100A

FL60

WPT B WPT D

Leg

Cruise Altitude

Figure 3. The Vertical Flight Plan.

22nd Digital Avionics Systems Conference (DASC) 3

Of particular interest is the interaction between
the FMS and the FGS. With knowledge of the
actual aircraft location the FMS can send
commands to the FGS, which in turn commands the
AP, in order to enable the aircraft to follow the
flight plan. When engaged, the FMS Lateral
Navigation (LNAV) and Vertical Navigation
(VNAV) functions act like a silent crew member in
the cockpit, ordering mode change requests and
resetting target altitude values. Because of the
safety critical nature of vertical navigation, and also
the additional complexity that a change in altitude
(and the associated change in energy) requires, the
interaction between the FMS VNAV function and
the FGS is of great concern.

The detailed behavior expected of a VNAV
function is specified by ARINC 702A-1, [1]. The
ARINC standard provides a listing of over one
dozen separate areas of responsibility for VNAV.
We have implemented in our FMS VNAV model
those VNAV functions that interact, either directly
or indirectly, with the FGS as shown in Table 2.

Table 2. Selected VNAV Requirements for a
Typical Flight Management System.

Trajectory Prediction Vertical Guidance
Provide Location of

Top of Climb
Provide Altitude

Targets That Enforce
Altitude Compliance

Provide Location of
Top of Descent

Provide Mode
Commands to the FGS

 Provide Flight Phase
Switching

Previous Work
Previously, we conducted a software safety

analysis on a formal model of the FGS mode logic ,
[2]. This logic, which was entirely Boolean in
nature, was representative of the complexity of an
actual aircraft system. It was shown that industrial
sized problems of this nature could be analyzed
through the use of model checkers, a class of formal
methods tools that explores the entire possible state
space of all allowable solutions in order to identify
any potential states that violate certain properties.
We showed that using the NuSMV model checker,
it was possible to verify over 300 properties of the
FGS model in about an hour. This verified the

conclusion that formal methods are ready for
industrial use.

In contrast to the FGS, the FMS VNAV
function is comprised of continuous equations
involving integers and reals. As such, it is a very
different kind of software model than the FGS.
Because of the different nature of this model, and
because of the inherent safety critical nature of the
VNAV function, we have extended our previous
study to investigate the feasibility of using formal
methods tools on the FMS VNAV model. The
sections that follow summarize the preliminary
results of the study.

Software Safety Analysis

Background Information
Underlying our analysis is an assumption

about the nature of accidents as illustrated in Figure
4. As shown, errors (in requirements,
implementation, operation, …) can generate faults,
which in turn can lead to failures, which lead to
hazards, which can result in accidents. Our safety
analysis therefore focuses on defining the hazards,
failures, faults, and errors that could lead to
accidents so that we can verify that no errors are
present in the VNAV model. That is, we seek to
verify that the VNAV model has been implemented
correctly and does not contain any errors that could
place the system in a hazardous condition. As is
described in later sections, our analysis will use a
combination of standard techniques, (e.g., Fault
Tree Analysis and Failure Mode Effects Analysis),
in combination with non-traditional, yet very
powerful, formal methods techniques.

Error

Fault
Failure

Hazard
Accident

Error
Detection

and
Correction

Fault
Tolerance

Fail
Safe

Environment

Error

Fault
Failure

Hazard
Accident

Error
Detection

and
Correction

Fault
Tolerance

Fail
Safe

Environment

Figure 4. The Sequence of Events Leading to an

Accident.

22nd Digital Avionics Systems Conference (DASC) 4

Specifying the Requirements
A specification of the FMS VNAV function

has been generated in a formal language, the
Requirements State Machine Language without
Events (RSML-e). RSML-e is a synchronous
language that was originally used to specify the
Traffic Collision Avoidance System II (TCAS-II).
It is important to note that the RSML-e model was
ultimately adopted by the FAA as the official
specification for TCAS-II. As its name implies,
RSML-e eliminates the use of events. RSML-e is
similar to SpecTRM-RL, developed by the
Safeware Engineering Corporation, and SCADE,
developed by Esterelle Technologies, but has a
slightly different syntax and underlying philosophy.
RSML-e runs in the "Nimbus" environment
developed by the Critical Systems Research group
at the University of Minnesota. An important
advantage of RSML-e is that it possesses a precise
formal semantics so that the models can be formally
analyzed, [3].

Defining the Safety Properties
The first step in the safety analysis process is

to formally define those properties of the software
associated with safety. Safety properties were
generated via a Bi-Directional Analysis (BDA)
technique, [4]. The starting point for the BDA is
the list of hazards. Top-down analysis is then used
to trace the hazards down to the related errors. To
close the loop, an independent bottom-up analysis is
then used to trace the errors back up to hazards.

Defining the Hazards

Safety is a system level problem and aviation
safety standards ARP 4754 and ARP 4761 specify
that safety analysis be performed both at the aircraft
level and at the system level, [5, 6]. The aircraft
level hazards are generally very few, such as loss of
control. If the loss of control hazard is examined, it

can be found that failures in a number of systems,
(e.g., hydraulic lines, control yokes, flight control
surfaces,), could give rise to it. However, as stated
before, we are interested in defining the hazards for
the FMS VNAV function. These hazards will
derive from functional failures and are defined in a
Functional Hazard Assessment (FHA).

We started with the functional requirements
for the FMS VNAV, which were defined in Table
2. Examining the consequences of the FMS VNAV
failing to provide this functionality identified the
associated hazards. Each of these hazards was then
assigned a level of criticality in accordance with
DO-178B and MIL STD 882, [7, 8]. We identified
5 Level D (Minor) hazards, 8 Level C (Major)
hazards and 1 Level B (Catastrophic) hazard in our
model. (It should be noted that there are likely
other hazards associated with the VNAV function
on actual systems, but our analysis will address
only those hazards present in our model.) Because
Level B is the most critical hazard, the FMS VNAV
is considered a Level B system. The FHA for the
Level B hazard is shown in Table 3. This hazard
forms the starting point for the next stage of the
analysis.

Top-Down Analysis
Fault Tree Analysis (FTA) is a top-down

analysis technique that is used to identify the
contributing elements (errors / faults / failures) that
could precipitate the system level hazards identified
[9, 10]. FTA is a feed-back technique in that one
starts with the system level hazards and attempts to
work backward by identifying all possible causes of
the hazards. Although the name implies that the
technique is limited only to “faults”, it should be
emphasized that FTA is a general, visual technique
that is used to trace higher level events (such as
hazards) down to their contributing events. These
contributing events could be failures, or errors, in
addition to faults.

Table 3. The Functional Hazard Assessment Identified One Level B Hazard.

Functional
Failure

(Hazard)

Critical
Operational

Phase

Aircraft Manifestation Comment

Allows
Aircraft to
Descend

Through PSA.

Descent Aircraft Drops Below the Pre-Select Altitude
(PSA), Violating Pilot Defined (and possibly

Air Traffic Control Mandated) Altitude Limit.

During Approach the
Aircraft is Allowed to Fly

Through the PSA.

22nd Digital Avionics Systems Conference (DASC) 5

 In an actual aircraft program, the FTA would
start with the system level hazards, for example,
Loss of Control, and include all aircraft systems
that could potentially contribute to such a hazard.
For our purposes, the FTA will start with the
hazards identified in the FHA. Note that because
safety is a system level property the FTA must
include elements that input information to the FMS
VNAV, such as the FGS, and elements that the
FMS VNAV outputs information to, such as the
PFD. By performing a FTA on each of the hazards
it is possible to a listing of the individual base
events that could contribute to hazardous
conditions. For example, the FTA associated with
the hazard “Allows Aircraft to Descend Through
PSA.” is shown in Figure 5. As shown at least 13
separate events could precipitate this hazard.

Bottom-Up Analysis
As a check of the results from the top-down

FTA is a bottom-up Failure Modes Effects Analysis
(FMEA). FMEA is a feed-forward technique in
that the starting points for the analysis are possible
errors, which are then traced forward to see if they
have any impact on system safety (i.e., if they lead
to potential hazards), [9, 10]. As with the FTA, the
term FMEA should not imply that the results are
limited to “failures”. FMEA is a general analysis
method that flows errors (or faults or failures)
forward to hazardous conditions.

The output of a FMEA is a tabular presentation
that lists: a) failure mode (error); b) effects
(hazard); and c) analysis (interpretation). The
starting point for the FMEA is the list of errors
identified in the FHA. For example, a portion of
the FMEA for the level B mode logic hazard is
shown in Table 5.

Safety Properties
Once the categories of errors that can result in

a hazard have been identified, they are in further
examined in order to identify the specific properties
of the model that could produce the higher level
events. For example, the properties associated with
“Error in Flight Phase Logic” are shown in Table 6.
Note that many of these “safety” properties look
like functional requirements. In this sense, we have
identified those requirements that are directly
related to safety. Verifying that these design
requirements are indeed artifacts of the model we

have constructed is an important step – one that is
often omitted because it is so difficult.

Our analysis of the full model is still
underway. However, we anticipate that the final
results will identify over 100 separate requirements
/ safety properties that we will wish to verify in the
model.

Translating the Requirements Model and
Safety Properties into Analysis Tools

Once the safety properties are defined, the next
step in the safety analysis process is to express the
requirements model and safety properties in the
same formal language. It is certainly possible to
define the requirements and safety properties in the
same language initially, but for real projects this
will rarely be the case. The requirements model
will probably be developed in tools like RSML-e,
SCADE, or Simulink. Safety properties will
probably be defined in English prose. Even if the
properties were defined in the requirements
modeling tool, the modeling tool itself would
probably lack the analysis capability and would
require translation to a theorem prover or model
checker. As part of this project, the University of
Minnesota has automated the translation of the
model from RSML-e to the NuSMV model checker
and the PVS theorem prover. Building the
translation capability is possible since both the
origin and destination languages have a well
defined semantics.

The translation of the safety properties into the
model checker or theorem prover language was
done manually. As a check on the accuracy of the
translation, two experienced investigators translated
each property independently and then compared
results. The translation is straightforward, but
requires some knowledge of logic and the syntax of
the tool being used. If not already transparent,
doing the manual translation also serves as a check
on how well the properties (functional or safety) are
defined. Ambiguous requirements result in
ambiguous properties that cannot be stated in the
precise manner demanded by a formal language.

22nd Digital Avionics Systems Conference (DASC) 6

Allows Aircraft to
Descend Through PSA
During Descent Phase

A581

Incorrect FMS VNAV
Descent Command

A583

Error in Flight Phase
Logic

A588

Error in Path Descent
Logic

A589

Error in Reference
Altitude Logic

A590

Incorrect PSA Value

A584

Active FGS Sends
Incorrect PSA Value

A585

FGS-FMS
Communications
Channel Failure

A591

FGS Sends Incorrect
PSA Value

A592

FGS Output Overwhelms
FMS

A593

Internal FGS Failure

A598

FCP Sends Incorrect
PSA Value

A586

FCP-FMS
Communications
Channel Failure

A594

FCP Sends Incorrect
PSA Value

A595

FCP Output Overwhelms
FMS

A596

Internal FCP Failure

A597

Inactive FGS Sends
Incorrect PSA Value

A587

Inactive FGS Believes
it is Active FGS

A599

Inactive FGS
Generates Incorrect

PSA Value

A600

Figure 5. A Top Level View of the Fault Tree Analysis for the Hazard:

Allows Aircraft to Descend Through PSA.

Table 5. The Failure Mode Effects and Criticality Analysis for the Hazard:

Allows Aircraft to Descend Through PSA.

Failure Mode Effects Analysis

Error in Flight Phase Logic Allows Aircraft to
Descend Through

PSA

Aircraft Drops Below the Pre-Select Altitude (PSA),
Until Detected by Flight Crew During Monitoring of

Flight Critical Data.

Error in Path Descent Logic

Error in Reference Altitude
Logic

Table 6. Example Safety Properties are Associated With “Error in Flight Phase Logic.”

Descent Phase Climb Phase Cruise Phase
• Flight Phase Shall be

Descent After the First Top
of Descent Has Been
Reached

• Flight Phase Shall be Climb if
There is a “Climb” Waypoint
Ahead of the Aircraft

• Flight Phase Shall be Cruise if
the Aircraft Has Reached the
Cruise Altitude

 • Flight Phase Shall be Climb if
the Last Top of Climb Has Not
Been Reached

22nd Digital Avionics Systems Conference (DASC) 7

Formal Methods Analysis
As pointed out earlier, the computation of the

flight phase directly impacts many safety properties
of the FMS VNAV function. The property

“The aircraft must be in either climb,
cruise, or descent phase.”

would be translated into NuSMV syntax as:

SPEC AG(Is_FMS_VNAV_Valid ->
(Is_Cruise_Phase_Criteria_Met |
Is_Climb_Phase_Criteria_Met |
Is_Descent_Phase_Criteria_Met)

“SPEC” refers to the fact that this is a property
being specified, “AG” means to do the proof for
“All Global” states, “Is_FMS_VNAV_Valid” is the
macro used to determine if FMS VNAV is valid
and active, and “Is_Climb_Phase_Criteria_Met” is the
macro used to determine if the conditions necessary
for the aircraft to be in climb phase are valid. This
NuSMV statement would be literally translated as:

“For all global states, if FMS VNAV is valid
then either Cruise Phase Criteria is met, or
Climb Phase Criteria is met, or Descent
Phase Criteria is met.”

This highlights one of the advantages of using
formal specification. English statements are
notoriously ambiguous, but logical statements must
be clear and precise. While attempting to convert
many of the original English properties into logic
we find that we often go back and modify the
English statement to remove ambiguity. In this
example, a clearer English statement – a statement
that more clearly reflects exactly the property being
investigated is

“If FMS VNAV is valid, the aircraft must
be in either climb, cruise, or descent
phase.”

The same property would be stated in PVS as

Flight_Phase : LEMMA
 verify(Is_FMS_VNAV_Valid IMPLIES

Is_Cruise_Phase_Criteria_Met OR
 Is_Climb_Phase_Criteria_Met OR
 Is_Descent_Phase_Criteria_Met)

Intermediate Results Analysis
As previously mentioned, the safety analysis of

the FMS VNAV model is still underway.
Nevertheless, some interesting results can be
reported. First and foremost is the fact that, without
further work, the FMS VNAV model is not suitable
for analysis using a model checker such as NuSMV.
The reasons for this are not surprising. The FMS
VNAV model contains real numbers and
trigonometric functions used to calculate the
aircraft’s trajectory, neither of which can be
handled by NuSMV. In contrast, the FGS model,
while complex, consisted almost entirely of
enumerated and Boolean values, making it ideally
suited for verification through model checking.

Of course, the reals can be converted to
integers, using scaling to preserve the accuracy
already included in the specification. For example,
most altitude values are specified in feet, with
possible values ranging from -1,300.00 to
+65,000.00. Even so, the state space would be
quite large. For example, truncating the accuracy of
the altitude at two decimal points results in
6,630,000 possible values for all altitude variables.
In theory, the combined state space for two altitude
variables, (such as the Pre-Select Altitude and the
Flight Plan Target Altitude), would be the product
of the state space for either variable, or more than
1012. This is the equivalent to the state space of
over 40 independent Boolean variables.

The University of Minnesota is augmenting the
RSML-e to NuSMV translator with additional
abstraction techniques that will hopefully allow us
to analyze the FMS VNAV model using NuSMV.
Another approach would be to manually replace the
computations using reals and trigonometric
functions with Boolean inputs. For example, when
comparing the aircraft altitude to the PSA the actual
desired property is the predicate “Is the Barometric
Altitude less than the Pre-Select Altitude” rather
than the actual numerical difference in the altitudes.
Many of the interesting properties of the FMS
VNAV model could still be verified using such a
simplified model.

In the interim, our work has focused on the use
of the PVS theorem prover. Unlike a model
checker, a theorem prover is not constrained by the
size of the state space. Rather than conducting an
exhaustive search of all possible states, a theorem

22nd Digital Avionics Systems Conference (DASC) 8

prover applies the rules of logic to reason about the
system, in much the same way a human would. But
where human reasoning is flawed and subject to
error, a theorem prover ensures that each step of the
proof is justified. For real systems, this level of
rigor cannot be achieved without automated
support..

Using the processing speed and memory of
modern computing systems, a prover such as PVS
can automate the bookkeeping and simpler proof
steps, but much of the reasoning process is still
guided by the human user. For example, the user
may instruct the theorem prover to try to prove a
lemma by induction, only to generate different
subgoals that must be proven individually before
the proof can be completed. The user must provide
guidance on what rules of inference should be used,
and in what order they should be applied, for the
theorem prover to complete the proof.

Much of our analysis so far has been devoted
to discharging the type correctness conditions
(TCCs) generated by the PVS theorem prover.
Since PVS is a strongly typed system based on total
functions, it routinely generates type correctness
conditions that must be proven in addition to the
main properties of interest. Often, proving the type
correctness conditions expose assumptions about
the system that are unwarranted. For example,
since a common source of safety errors is
dependence on a system input that is invalid, input
variables in RSML-e can be set to UNDEFINED
until a valid value is input. The PVS translation of
an RSML-e model generates a TCC to ensure that
the guard on each transition is completely defined,
ensuring that the system is deterministic ,

In the case of the FMS VNAV model the
theorem prover generated about 150 TCCs, most of
which ensure that values are defined before use.
Resolving these has forced us to go back and think
much more carefully about the behavior of the
model when inputs might be invalid.

Other TCCs were more substantial. For
example, one of the TCCs generated required us to
prove our earlier safety property that the aircraft
must be in either climb, cruise, or descent phase.
We anticipate that proofs of the TCCs will be
completed in a few weeks so that we can begin
reasoning about the other safety properties of the
system.

Summary and Conclusions
We have constructed a formal, executable

model of a complex, embedded software system –
the Vertical Navigation Function of a Flight
Management System. In order to identify the
properties of the model that are related to safety, we
then conducted a software safety analysis using
both standard techniques such as Functional Hazard
Assessment (FHA), Fault Tree Analysis (FTA) and
Failure Modes Effects Analysis (FMEA), and
formal methods techniques such as model checkers
and theorem provers. In particular, our analysis has
focused on using the standard techniques to
articulate the properties of the model that relate to
safety. We then plan to use the formal methods
tools to show that all of the safety properties are
mathematically verifiable properties of the model.

To date, we have completed the FHA, and
have made a first cut at the FTA and FMEA in
order to identify some system level properties for
further analysis. Additional abstraction techniques
need to be developed to analyze the VNAV model
using the NuSMV model checker. Our work with
the PVS theorem prover is progressing, but has
focused on discharging the type correctness
conditions generated by the theorem prover.

We anticipate that over the course of the next
several months we will be able to define a
translation to the NuSMV model checker that will
enable us to use it to analyze the VNAV model. At
the same time, we should shortly complete the
analysis of the TCC’s and will begin to prove
various safety properties of the VNAV model using
the PVS theorem prover.

22nd Digital Avionics Systems Conference (DASC) 9

References
1. ARINC 702A-1, Advanced Flight Management

System Computer, 31 January 2000.

2. Tribble, A. C., D. L. Lempia, and S. P. Miller,
“Software Safety Analysis of a Flight Guidance
System,” Proc. of 21st Digital Avionics Systems
Conference (DASC), 2002.

3. Whalen, M. W., A Formal Semantics for RSML,
Masters Thesis, University of Minnesota, April
2000.

4. Lutz, R. and R. Woodhouse, “Bi-Directional
Analysis for Certification of Safety-Critical
Software,” Proc. of 1st Int'l Software Assurance
Certification Conf.,” 1999.

5. ARP 4754, "Certification Considerations for
Highly-Integrated or Complex Aircraft
Systems," SAE International, November 1996.

6. ARP 4761, "Guidelines and Methods for
Conducting the Safety Assessment Process on
Civil Airborne Systems and Equipment," SAE
International, December 1996.

7. RTCA DO-178B, Software Considerations in
Airborne Systems and Equipment Certification,
01 DEC 1992.

8. MIL STD 882C, System Safety Program
Requirements, 19 January 1993.

9. Herrmann, D. S., Software Safety and
Reliability, (Los Alamitos, CA: IEEE
Computer Society, 1999).

10. System Safety Analysis Handbook , 2nd Ed.,
System Safety Society, July 1997.

