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Abstract. Detect and Avoid (DAA) systems are safety enhancement
software applications that provide situational awareness and maneu-
vering guidance to aid aircraft pilots in avoiding and remaining well
clear from other aircraft in the airspace. This paper presents a graph-
ical toolkit, called DAA-Displays, designed to facilitate the assessment
of compliance of DAA software implementations to formally specified
functional and operational requirements. The toolkit integrates simula-
tion and prototyping technologies allowing designers, domain experts,
and pilots to compare the behavior of a DAA implementation against
its formal specification. The toolkit has been used to validate an actual
software implementation of DAA for unmanned aircraft systems against
a standard reference algorithm that has been formally verified.

Keywords: Validation · Verification · Requirements · Detect and Avoid
· Formal Methods

1 Introduction

Aircraft pilots operating under visual flight rules, including pilots of remotely
operated vehicles, have the legal responsibility to see and avoid other aircraft
in the airspace [17, 18]. In the case of manned aircraft operations, the ability to
remain well-clear and see and avoid other aircraft depends upon the perception
and judgement of the human pilot. In the absence of an on-board pilot, there is
a need for an objective definition of the notion of well-clear that is appropriate
for Unmanned Aircraft Systems (UAS). This need has motivated the develop-
ment of a Detect and Avoid (DAA) capability for UAS that provides situational
awareness and maneuver guidance to UAS operators, to aid them in avoiding
and remaining well-clear of other aircraft in the airspace [3].

The RTCA3 standard document DO-365 [15] specifies the minimum opera-
tional and functional DAA requirements for large UAS, e.g., those that fly in
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Class A airspace. DAIDALUS (Detect and Avoid Alerting Logic for Unmanned
Systems) [11, 13] is an open source software library4 that implements the func-
tional requirements specified in DO-365. The core algorithms in DAIDALUS,
including detection, alerting, and maneuver guidance logics, are formally ver-
ified in the Prototype Verification System (PVS) [14]. Similar standardization
efforts are currently under way for small UAS. In the case of general aviation,
the DAA in the Cockpit (DANTi) concept [1, 2] developed at NASA leverages
advancements in DAA technologies for UAS as a safety enhancing capability for
pilots flying under visual flight rules and who are not receiving Air Traffic Con-
trol radar services. The DAIDALUS library can be configured to support DAA
capabilities for all those operational cases, i.e., small to large UAS and general
aviation aircraft.

DAA systems use aircraft state information, e.g., position and velocity 3-
D vectors, to predict a loss of well-clear between the primary vehicle, known
as the ownship, and traffic aircraft, known as intruders. In case of a predicted
loss of well-clear between the ownship and an intruder aircraft, an alert level is
generated. The alert level is an indication of the severity of the predicted loss
assuming the ownship and the intruder do not maneuver. Depending on the
alert level maneuver guidance is provided to the ownship to avoid the intruders.
Maneuver guidance has the form of bands, i.e., ranges of heading, horizontal
speed, vertical speed, and altitude maneuvers that are predicted to be conflict
free. The determination of the well-clear status is based on a mathematical
formula that uses distance and time separation thresholds. The actual values of
these thresholds depend on the operational case. For instance, in DO-365, the
minimum separation is 4000ft horizontally and 450ft vertically. Furthermore,
there is a time component that accounts for encounters with a high closure rate.
That time component, which is an approximation of the time to closest point
of approach, is 35s. These thresholds define a volume in space and time, called
well-clear volume, that has the shape of a cylinder elongated in the direction of
the relative velocity between the ownship and the intruder [10]. The thresholds
for small UAS are smaller and the definition does not include a time component.
For general aviation, the thresholds are slightly larger than for UAS.

In addition to minimum operational and functional requirements, DO-365
provides a set of test vectors intended to facilitate the validation of DAA imple-
mentations against these requirements. DAA developers may use DAIDALUS,
the reference implementation, to validate their DAA implementations against the
test vectors. If the two systems provide the same outputs for all test vectors, then
confidence is gained in the functional correctness of the implementation. While
this validation approach based on systematic comparison with a reference spec-
ification is conceptually simple, it poses some key challenges. One main hurdle
originates from round-off errors in machine arithmetic. In fact, DAA implemen-
tations, including those developed for DAIDALUS, use floating-point arithmetic.
The verified algorithms used in DAIDALUS, on the other hand, are specified in
PVS, and use real arithmetic. When numeric computations are used in control
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flows, round-off errors introduced by floating-point arithmetic may alter the logic
of a real-valued algorithm.

A precise characterization of all possible differences produced by round-off er-
rors is not trivial (see, for example, [16]). In the case of DAA functions, round-off
errors can introduce delays in the time when a maneuver guidance is provided,
or even change the alert level. The net result is that validation approaches based
on simple comparison of numerical values are often inconclusive, in the sense
that numerical differences between the output of a DAA implementation and
that of the reference specification do not necessarily flag problems in the im-
plementation. It is also true that, depending on the considered scenario, small
numerical differences may flag actual implementation problems.

To assess compliance with the reference specification, a more empirical method
can be adopted in addition to numerical comparisons. The method addresses the
following question: “If domain experts look at the maneuver guidances and alert
levels provided by both the DAA implementation and the reference specification,
would they judge the information provided by the two systems to be the same?”
The work presented in this paper introduces a toolkit, DAA-Displays, that can
be used to answer such an empirical question.

Contribution. This paper introduces a toolkit, DAA-Displays, for the validation
of DAA implementations. The toolkit can be used by software developers to
validate a DAA implementation against a reference specification. It can also be
used by domain experts that design and develop DAA requirements for opera-
tional concepts, to validate DAA requirements. The toolkit is freely available on
GitHub5 under the NASA Open Source License Agreement.

2 DAA-Displays

DAA-Displays is a graphical toolkit for the design and analysis of DAA imple-
mentations and requirements. The toolkit provides three main functionalities:

1. Rapid prototyping of cockpit displays with DAA functions;

2. Split-view simulations for the validation of DAA implementations against
reference specifications;

3. 3D simulations of flight scenarios with aircraft using DAA functions.

2.1 Rapid Prototyping

The rapid prototyping functionalities allow formal methods experts to create
realistic simulations suitable to discuss DAA algorithms with a multi-disciplinary
team of developers. This feature is particularly useful when executable formal
specifications of DAA functional requirements are available. In this case, DAA-
Displays enables the visualization of the behavior of the formal specifications
on concrete flight scenarios. This way, team members who may not be familiar
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Fig. 1: DAA Cockpit Display

with formal methods can get a better understanding of the type of alerting and
maneuver guidance provided by a DAA logic.

An example prototype used for this purpose is in Figure 1. This prototype was
created with the DAA-Displays toolkit to discuss different DAA configurations
with domain experts and pilots. The prototype reproduces the look and feel of
a real cockpit display. It includes the following elements:

– An interactive map showing the position and heading of the ownship in the
airspace (the blue chevron at the center of the map) as well as the position
and heading of traffic aircraft (the other chevrons in the map) relative to
the ownship. Color-coded chevrons are used to denote alert levels. These
colors are specified in standard documents. For example, in DO-365, a yellow
chevron denotes a corrective alert level between the ownship and the aircraft.
The color red denotes a warning alert level. Labels next to the chevrons show
the relative altitude of the aircraft with respect to the ownship in hundreds
of feet, e.g., 00 indicates co-altitude.

– A compass over the map indicates the heading of the ownship. Heading ma-
neuver guidance is displayed on the compass. For example, the yellow and red
bands shown on the compass in Figure 1 indicate that the current heading,
220 degrees, is conflict free, but a small change to the right will potentially
create a conflict with the traffic aircraft. Similar to alert levels, these bands
are color-coded, where yellow denotes a corrective maneuver and red denotes
a warning maneuver. According to DAA requirements, bands and alert col-
ors should correspond in the sense that if a traffic aircraft is represented by a

5 https://github.com/nasa/daa-displays
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chevron of a certain color, there should be a band, in the current trajectory
of the aircraft, of the same or higher level, e.g., warning is higher than cor-
rective. In Figure 1, if the ownship maneuvers to the right, e.g., 230 degrees,
the traffic aircraft becomes yellow. If the ownship maneuvers to 260 degrees,
the traffic aircraft becomes red.

– Tape indicators at the two sides of the display provide information for air-
speed (indicator on the left) in knots, altitude in feet (large indicator on the
right), and vertical speed (small indicator on the right) in feet per minute
of the ownship. Maneuver guidance involving change of airspeed, altitude,
and vertical speed are represented by colored bands over these indicators.
For example, the yellow band shown in Figure 1 for the airspeed indicator
states that airspeeds in the range 80 to 120 knots would create a potential
conflict with the traffic aircraft.

The display elements described above are available in the toolkit in the form
of a library of widgets. Additional details on the full set of widgets available in
the library are provided in the tool documentation.6

2.2 Split-View Simulations

Split-view simulations can be used to visually and systematically compare the
output of two DAA logics on the same encounter. The outputs can be from
different implementations and executable formal models, or from the same im-
plementation/formal model but with different configuration parameters.

An example split-view simulation used for this purpose is shown in Figure 2.
The view includes the following elements:

– Cockpit displays show alert levels and maneuver guidance by two DAA im-
plementations for a given encounter and selected configurations at a given
moment in time.

– Spectrogram plots show alert levels and maneuver guidance as they vary with
time; the x-axis in each plot represents time and the y-axis indicates alert
levels and maneuver guidance ranges.

The cockpit displays include information about the flight scenarios but focus on
single time instants. Spectrogram plots, on the other hand, focus on the temporal
behavior of the DAA logics, and give insights on the evolution of alert levels and
maneuver guidance over time for a given encounter. For example, with reference
to Figure 2, visual inspection of the plot diagrams allows one to confirm that
the two DAA implementations under analysis generate maneuver guidance that,
judged by a domain expert, are “sufficiently similar,” even though the numerical
values produced by the two implementations are slightly different in all time
instants (as highlighted by the yellow markers at the bottom of the plots).

By inspecting the plot diagrams in Figure 2, one can also notice a delay in
changing a red alert to a yellow alert at about 75 seconds. The relevance of

6 http://shemesh.larc.nasa.gov/fm/DAA-Displays.
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Fig. 2: Example split-view simulation created with DAA-Displays.

Fig. 3: Example 3D simulation created with DAA-Displays.

these kinds of differences may need careful assessment, and typically involves
engaging with pilots or DAA designers. This assessment can be carried out with
this same split view simulation, as the cockpit displays embedded in the view
show the flight scenario in a form that can be understood by both pilots and
DAA designers. The simulation is interactive, therefore one can easily jump to
specific time instants, and play back fragments of the scenario that are deemed
important for the assessment.

2.3 3D Simulations

The 3D simulation capability of the toolkit moves the focus of the analysis from
a cockpit-centric view to a scenario-centric view that includes the wider airspace
around the ownship. The viewport can be adjusted by tilting, panning, and
zooming the view. This capability can be used by developers to gain a better
understanding of spatial information on the trajectories followed by the ownship
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Fig. 4: Architecture of the DAA-Displays toolkit.

and traffic aircraft in a given scenario. This is useful, e.g., when assessing DAA
algorithms with computer-generated flight scenarios, as this view provides a
tangible idea of what the scenario is about.

An example 3D simulation realized to examine a computer-generated flight
scenario is showed in Figure 3. It includes two drones flying over a terrain. The
ownship is flying at an altitude of 30 feet. The other drone is following the
ownship. The two drones are at the same altitude.

3 Architecture

The architecture of the toolkit is shown in Figure 4. Three main views are used
to present the functionalities of the toolkit to developers. Underneath, a number
of components are used to implement the functionalities of the views. These
components can be customized and reused to create new views. A client-server
architecture is used to create a separation of concerns between visual components
necessary for interactive analysis of DAA functions, and functional components
necessary for the execution of DAA specifications and implementations.

Analysis front-end. The analysis front-end constitutes the client side of the ar-
chitecture. It builds on Web technologies, as this makes it easier to deploy on
different platforms, including tablets and mobile devices. The front-end element
is implemented in TypeScript, a strict superset of JavaScript annotated with
type information. This element includes three main reusable components:

– A playback player providing interactive controls for navigating simulation
scenarios (e.g., jump to specific time instants and playback of scenarios);

– A widgets library containing a series of interactive display elements that can
be used to assemble realistic cockpit display simulations;

– A plot library providing functionalities for creating interactive plots suitable
for rendering alerts and maneuver guidance computed by a DAA implemen-
tation over time.

Execution back-end. The execution back-end includes two main components:

– A DAA Server implementing communication mechanisms necessary to ex-
change simulation events and data with the analysis front-end;
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Fig. 5: Spectrogram plots for the analysis of alert flickering.

– An array of Execution Providers designed to connect the DAA Server to the
native execution environments necessary for the evaluation of DAA specifi-
cations and implementations. Each provider implements a standard interface
that enables the communication between a given execution environment and
the DAA Server. It also incorporates functions for automatic testing of prop-
erties that should always be true during the execution of DAA specifications
and implementations.

4 Use Cases

The toolkit is currently used to support the development of NASA’s DANTi
concept [1, 2] and the development of operational and functional requirements
for large UAS in landing and departing operations. These latter requirements
are being defined by RTCA Special Committee 228 and will be included in the
upcoming revision of DO-365. Example analyses and findings are discussed in
the remainder of this section.

Alert Flickering. A number of parameters can be used to configure when and how
alerting and maneuver guidance are computed in DAIDALUS. The toolkit was
used to gather additional insights on corner cases identified for certain configura-
tions. An example corner case relates to alert flickering, i.e., situations where an
alert level intermittently changes from one second to the next. This unintended
behavior has been detected in certain scenarios for specific configurations.

Split-view simulations proved useful for the identification of these problems
and for the development of possible solutions. In particular, spectrogram plots
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helped with the identification of flickering in alert levels and spikes in maneuver
guidance. An example split-view simulation carried out to evaluate a DAA al-
gorithm providing a possible solution to alert flickering is given in Figure 5. The
simulation shows alerts and bands computed by the original algorithm (diagrams
on the left-hand side of the figure) against those computed by a new algorithm
that uses hysteresis (diagrams on the right side). As it can be seen in the Alert-
ing plot (first plot from the top), alerts are not toggling in the new algorithm.
This solution, however, does not mitigate all problems. In fact, altitude bands
are still toggling — this can be easily seen from the spikes in the altitude bands
plot at the bottom of Figure 5.

Quick identification of these kinds of shortcomings at the early stage of design
of new algorithms is key to speed up development. The sheer use of simulation
and visualization technologies was sufficient to identify this issue on the spot.
It can be argued that this behavior would have been eventually discovered with
formal proofs. However, in this particular case, flickering is caused by small
numerical errors in the computation of alerts and maneuver guidance. These
kinds of errors are difficult to find and fix in a formal setting, as they often
require floating point round-off error analysis.

DANTi Display. The prototyping capabilities of the toolkit are currently being
used to support the development of a cockpit display for the DANTi concept.
Different prototypes have been developed in rapid succession to explore display
layouts and functionalities.

The initial DANTi prototype is shown in Figure 1. The new version intro-
duces new visual elements on the display for changing the zoom level of the
map (buttons at the bottom of the display) and for selecting the level of details
shown for traffic information (buttons at the top of the display). Future versions,
currently under development, include rendering of virtual regions in the airspace
(geo-fences) as well as aircraft trajectories. All these prototypes can be deployed
on portable electronic flight bags that can be carried by pilots and can be em-
ployed for user evaluations, e.g., to perform acceptability studies where pilots
are asked to assess the utility of the display in enhancing their see-and-avoid
capabilities.

Since the prototypes created with DAA-Displays can be driven by formal
specifications this opens the possibility to the use of formal models directly in
user evaluations, removing the burden of creating implementations that mimic
the formal specifications.

5 Related Work

PVSio-web [9] is a formal methods framework for modeling and analysis of in-
teractive systems. That framework has been extensively used for the analysis
of medical devices [8]. The toolkit presented in this work builds on experi-
ences with developing and using that framework. The main design aspect in-
herited from PVSio-web is the architecture for linking interactive prototypes to
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executable formal specifications. New design concepts are introduced in DAA-
Displays that are not present in PVSio-web such as split-view simulation compo-
nents, a widgets library of cockpit display elements, and 3D visualization capa-
bilities. SCADE Displays [7] is a prototyping tool for cockpit displays. The tool
can be used to create cockpit display prototypes suitable to visualize maneuver
recommendations. However, mechanisms are not provided for linking the pro-
totype to formal specifications. SCR [6] is a toolset for the analysis of software
requirements. Prototyping functionalities are supported, and the prototypes can
be linked to executable formal models. However, SCR does not support split-
view simulations facilitating systematic comparison of different implementations.
PVSioChecker [5] and MINERVA [12] are formal methods tools for comparative
analysis of PVS specifications and software code. These tools, however, focus on
checking numerical differences between the output produced by the implemen-
tation and the specification. As argued in this paper, this comparison method is
often inconclusive because of round-off errors.

Related to DAA algorithms, a comparative analysis between DAIDALUS and
ACAS-Xu, another well-known DAA algorithm for UAS, is presented in [4]. In
that work, plot diagrams similar to those used in DAA-Displays are employed
to present the results of the analysis. The development of analysis tools was,
however, not the main focus of their work. While some tools may have been
developed, they are not publicly available.

6 Conclusion

A toolkit, called DAA-Displays, has been presented that enables a systematic
comparison between DAA software implementations and reference specifications.
Because of round-off errors introduced in software implementations, such com-
parison cannot usually be done by checking numerical differences. The toolkit
provides specialized front-end views that enable comparison by simple visual
inspection of plot diagrams and interactive display prototypes. Future aspects
that will be incorporated into the toolkit include integration with hardware-in-
the-loop simulation tools for coupling simulations with hardware modules.
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1. Carreño, V., Consiglio, M., Muñoz, C.: Analysis and Preliminary Results of a
Concept for Detect and Avoid in the Cockpit. In: Proceedings of the 38th Digital
Avionics Systems Conference (DASC 2019). San Diego, CA, US (September 2019)

2. Chamberlain, J.P., Consiglio, M.C., Muñoz, C.: DANTi: Detect and Avoid iN
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