
NASA / CR-2001-211024

Theory Interpretations in PVS

Sam Owre and Natarajan Shankar

SRI International, Menlo Park, California

July 2001



The NASA STI Program Office ... in Profile

Since its founding, NASA has been dedicated to

the advancement of aeronautics and space
science. The NASA Scientific and Technical

Information (STI) Program Office plays a key
part in helping NASA maintain this important
role.

The NASA STI Program Office is operated by

Langley Research Center, the lead center for
NASA's scientific and technical information. The

NASA STI Program Office provides access to the
NASA STI Database, the largest collection of

aeronautical and space science STI in the world.
The Program Office is also NASA's institutional

mechanism for disseminating the results of its
research and development activities. These

results are published by NASA in the NASA STI

Report Series, which includes the following

report types:

TECHNICAL PUBLICATION. Reports of

completed research or a major significant

phase of research that present the results of
NASA programs and include extensive

data or theoretical analysis. Includes
compilations of significant scientific and
technical data and information deemed to

be of continuing reference value. NASA

counterpart of peer-reviewed formal
professional papers, but having less

stringent limitations on manuscript length
and extent of graphic presentations.

TECHNICAL MEMORANDUM. Scientific

and technical findings that are preliminary

or of specialized interest, e.g., quick release

reports, working papers, and
bibliographies that contain minimal
annotation. Does not contain extensive

analysis.

CONTRACTOR REPORT. Scientific and

technical findings by NASA-sponsored
contractors and grantees.

CONFERENCE PUBLICATION. Collected

papers from scientific and technical

conferences, symposia, seminars, or other

meetings sponsored or co-sponsored by
NASA.

SPECIAL PUBLICATION. Scientific,

technical, or historical information from

NASA programs, projects, and missions,

often concerned with subjects having
substantial public interest.

TECHNICAL TRANSLATION. English-

language translations of foreign scientific

and technical material pertinent to NASA's
mission.

Specialized services that complement the STI

Program Office's diverse offerings include
creating custom thesauri, building customized

databases, organizing and publishing research

results ... even providing videos.

For more information about the NASA STI

Program Office, see the following:

• Access the NASA STI Program Home Page

at http'//www.sti.nasa.gov

• E-mail your question via the Internet to
help@sti.nasa.gov

• Fax your question to the NASA STI Help
Desk at (301) 621-0134

• Phone the NASA STI Help Desk at
(301) 621-0390

Write to:

NASA STI Help Desk
NASA Center for AeroSpace Information
7121 Standard Drive

Hanover, MD 21076-1320



NASA / CR-2001-211024

Theory Interpretations in PVS

Sam Owre and Natarajan Shankar

SRI International, Menlo Park, California

National Aeronautics and

Space Administration

Langley Research Center
Hampton, Virginia 23681-2199

Prepared for Langley Research Center
under Contract NAS1-20334

July 2001



Available from:

NASA Center for AeroSpace Information (CASI)
7121 Standard Drive

Hanover, MD 21076-1320

(301) 621-0390

National Technical Information Service (NTIS)
5285 Port Royal Road

Springfield, VA 22161-2171
(703) 605-6000



Abstract

This is the final report for SRI Project 6464, Task 16, NASA Langley contract NAS1-

20334. The purpose of this task is to provide a mechanism for theory interpretations in

PVS so that it is possible to demonstrate the consistency of a theory by exhibiting an in-

terpretation that validates the axioms. The mechanization makes it possible to show that

one collection of theories is correctly interpreted by another collection of theories under a

user-specified interpretation for the uninterpreted types and constants. A theory instance

is generated and imported, while the axiom instances are generated as proof obligations to

ensure that the interpretation is valid. Interpretations can be used to show that an implemen-

tation is a correct refinement of a specification, that an axiomatically defined specification

is consistent, or that a axiomatically defined specification captures its intended models.

In addition, the theory parameter mechanism has been extended with a notion of theory

as parameter so that a theory instance can be given as an actual parameter to an imported

theory. Theory interpretations can thus be used to refine an abstract specification or to

demonstrate the consistency of an axiomatic theory. In this report we describe the mecha-

nism in detail. This extension is a part of PVS version 3.0, which will be publicly released
in mid-2001.



ii



Contents

1 Introduction

2 Mappings

3 Theory Declarations

4 Prettyprinting Theory Instances

5 Comparison with Other Systems

6 Future Work

7 Conclusion

Bibliography

1

5

ll

19

21

25

27

29

iii



Chapter 1

Introduction

Theory interpretations have a long history in first-order logic [Sho67,End72, Mon76]. They

are used to show that the language of a given source theory S can be interpreted within a tar-

get theory T such that the corresponding interpretation of axioms of S become theorems of

T. This demonstrates the consistency of S relative to T, and also the decidability of S mod-

ulo the decidability of T. Theories and theory interpretations have also become important in

higher-order logic and type theory with languages such as EHDM [EHD93], IMPS [Far92],

HOL [Win92], Maude [CDE+99], Extended ML [ST97], and SPECWARE [SJ95]. In these

languages, theories are used as structuring mechanisms for large specifications so that ab-

stract theories can be refined into more concrete ones through interpretation. In this report,

we describe a theory interpretation mechanism for the PVS specification language.

Specification languages and programming languages usually have some mechanism for

packaging groups of definitions into modules. Lisp and Ada have packages. Standard ML

has a module system consisting of signatures, structures corresponding to a signature, and

functors that map between structures. Packages can be made generic by allowing certain

declarations to serve as parameters that can be instantiated when the package is imported.

Ada has generic packages that allow parameters. SML functors can be used to construct

parametric modules. C++ allows templates.

In specification languages, a theory groups together related declarations of constants,

types, axioms, definitions, and theorems. One way of demonstrating the consistency of

such a theory is by providing an interpretation for the uninterpreted types and constants

under which the axioms are valid. The definitions and theorems corresponding to a valid

interpretation can then be taken as valid without further proof as long as they have been

verified in the source theory. The technique of interpreting one axiomatic theory in another

has many uses. It can be used to demonstrate the consistency or decidability of the former

theory with respect to the latter theory. It can also be used to refine an abstract theory down

to an executable implementation.



Interpretationsarealsousefulin showingthattheaxiomscapturetheintendedmod-
els.Forexample,aclocksynchronizationalgorithmwasdevelopedinEHDMandwaslater
shownto beconsistentusingthemappings,butit turnedoutthatin oneplace< wasused
insteadof <, andbecauseof thisasetof perfectlysynchronizedclockswasactuallydisal-
lowedbythemodel.Usinginterpretationsin thiswayissimilarto testinginallowingfor
theexplorationof thespaceof modelsfor thetheory.

Parametrictheoriesin PVSsharesomeof thefeaturesof theoryinterpretations.Such
theoriescanbedefinedwith formalparametersrangingovertypesandindividuals,for
example,1

group[G: TYPE, + : [G, G -> G] , 0: G, -: [G -> G] ] : THEORY

BEGIN

END group

An instance of the theory group can be imported by supplying actual parameters, the

type int of integers, integer addition +, zero 0, and integer negation -, corresponding to

the formal parameters, as in group [ int, +, 0, - ]. A theory can include assump-

tions about the parameters that have to be discharged when the actual parameters are sup-

plied. For example, the group axioms can be given as assumptions in the group theory

above. However, there are some crucial differences between parametric theories and the-

ory interpretations. In particular, if axioms are always specified as assumptions, then the

theory can be imported only by discharging these assumptions. It is necessary to have sep-

arate mechanisms for importing a theory with the axioms, and for interpreting a theory by

supplying a valid interpretation, that is, one that satisfies its axioms.

The PVS theory interpretation mechanism is quite similar to that for theory parameter-

ization. The axiomatic specification of groups could alternately be given in a theory

group : THEORY

BEGIN

G TYPE+

+ [G, G -> G]

0 G

- [G -> G]

END group

The group axioms are declared in the body of the theory. Such a theory can be inter-

preted by writing group{ {G := int, + := +, 0 := 0, - "= -} }. Here the left-

hand sides refer to the uninterpreted types and constants of theory group, and the right-

hand sides are the interpretations. This notation resembles that of theory parameterization

1This exploits a new feature of PVS version 3.0, in which numbers may be overloaded as names.

2



andis usedin contextswherea theoryis imported.Thecorrespondinginstancesof the
groupaxiomsaregeneratedasproofobligationsatthepointwherethetheoryis imported.
Theresultisatheorythatconsistsof thecorrespondingmappingof theremainingdeclara-
tionsin thetheorygroup. Thisallowsthetheorygroup tobeusedinothertheories,such
asringsandfields,andalsoallowsthetheorygroup tobesuitablyinstantiatedbygroup
structures.

Theoryinterpretationslargelysubsumeparametrictheoriesin thesensethatthethe-
oryparametersandthecorrespondingassumingscaninsteadbepresentedastminterpreted
typesandconstantsandaxiomssothattheactualparametersaregivenbymeansof anin-
terpretation.However,aparametrictheorywithbothassumingsandaxiomsinvolvingthe
parametersisnotequivalentto anyinterpretedtheory,astheparametersmaybeinstanti-
atedwithouttheneedtoprovetheaxioms.It isalsousefultohaveparametrictheoriesasa
convenientwayof groupingtogetheralltheparametersthatmustbeprovidedwheneverthe
theoryisused.Forexample,typicaltheoryparameterssuchasthesizeof anarray,or the
elementtypeof anaggregatedatatypesuchasanarray,list,or tree,arerequiredasinputs
wheneverthecorrespondingtheoriesareused.Whilethiskindofparameterizationcanbe
capturedbytheoryinterpretations,it wouldnotcapturetheintentthattheseparametersare
required inputs wherever the theory is used. Furthermore, when an operation from a para-

metric theory is used, PVS attempts to figure out the actual parameters based on the context

of its use. It can do this because the formal parameters are precisely delimited. The corre-

sponding inference is harder for theory interpretations since there might be many possible

interpretations that are compatible with the context of the operations use.

In addition to the uninterpreted types and constants in a source theory S, the PVS theory

interpretation mechanism can also be used to interpret any theories that are imported into

S by means of the THEORY declaration. The interpretation of a theory declaration for S'

imported within S must itself be a theory interpretation of S'. Two distinct importations

of a theory S' within S can be given distinct interpretations. A typical situation is when

two theories R1 and R2 both import a theory S as S1 and $2, respectively. A theory T

importing both R1 and R2 might wish to identify S1 and $2 since, otherwise, these would

be regarded as distinct within T. This can be done by importing an instance S' of S into

T and importing R1 with S1 interpreted by S' and R2 with $2 interpreted as S'. With

theory interpretations, we have also extended parametric theories in PVS to take theories

as parameters. For example, we might have a theory group_homomorphism of group

homomorphisms that takes two groups G1 and G2 as parameters as in the declaration

group_homomorphism[Gl, G2: THEORY group] : THEORY . ..

The actual parameters for these theory formals must be interpretations GI' and G2' of the

theory group.

Another typical requirement in a theory interpretation mechanism is the ability to map a

source type to some quotient with respect to an equivalence relation over a target type. For



example,rationalnumberscanbeinterpretedbymeansof apairof integerscorresponding
tothenumeratoranddenominator,butthesamerationalnumbercanhavemultiplesuchrep-
resentations.Weshowhowit ispossibletodefinequotienttypesinPVSandusethesetypes
tocaptureinterpretationswheretheequalityoverasourcetypeismappedtoanequivalence
relationoveratargettype.

Theimplementationof theoryinterpretationinPVSisdescribedin thefollowingchap-
ters.ThisreportassumesthereaderisalreadyfamiliarwiththePVSlanguage;for details
seethePVSLanguageManual[OSRSC99].Chapter2dealswithmappings,explainingthe
basicconceptsandintroducesthegrammar.Chapter3 introducestheorydeclarationsand
theoriesasparameterswhichallowanyvalidinterpretationof theformalparametertheory
asanactualparameter.Chapter4 describesanewcommandforviewingtheoryinstances.
Chapter5 comparesPVSinterpretationswithothersystems,Chapter6 describesfuture
work,andweconcludewithChapter7.

4



Chapter 2

Mappings

Theory interpretations in PVS provide mappings for uninterpreted types and constants of

the source theory into the current (interpreting) theory. Applying a mapping to a source

theory yields an interpretation (or target) theory. A mapping is specified by means of

the mapping construct, which associates tminterpreted entities of the source theory with

expressions of the target theory. The mapping construct is an extension to the PVS notion

of "name". The changes to the existing grammar are given in Figure 2.1.

The mapping construct defines the basic translation, but to be a theory interpretation the

mapping must be consistent: if type T is mapped to the type expression E, then a constant t

of type T must be mapped to an expression e of type E. In addition, all axioms and theorems

of the source theory must be shown to hold in the target theory under the mapping. Since

the theorems are provable from the axioms, it is enough to show that the translation of the

axioms hold. Axioms whose translations do not involve any uninterpreted types or constants

of the source theory are converted to proof obligations. Otherwise they remain axioms.

Theory interpretation may be viewed as an extension of theory parameterization. Given

a theory named T, the instance T [ al ..... an ] { { C1 : = 81 ..... Cm : =em } } is the

same as the original theory, with the actuals ai substituted for the corresponding formal

TheoFyXarne : : :

Name : ::

Mappings ::=

Mapping ::=

MappingLhs ::=

MappingRhs ::=

[Id@] Id [Actuals ] [Mappings]

[Id@] IdOp [Actuals ] [Mappings][

{ { Mapping++',' } }

MappingLhs MappingRhs

IdOp Bindings* [: { TYPE [ THEORY

• = { Expr I rypeExpr }

mop]

TypeExpr } ]

Figure 2.1: Grammar for Names with Mappings



parameters,andei substituted for ci, which must be an uninterpreted type or constant

declaration. Declarations that appear in the target of a substitution in the mapping are

not visible in the importing theory. Some axioms are translated to proof obligations. The

substituted forms of any remaining axioms, definitions, and lemmas are available for use,

and are considered proved if they are proved in the uninterpreted theory.

The following simple example illustrates the basic concepts.

thl[T: TYPE, e: T] : THEORY

BEGIN

t : TYPE+

c: t

f: [t -> T]

ax: AXIOM EXISTS (x, y: t) :

leml: LEMMA EXISTS (x:T) : x

END thl

f(x) /: f(y)

/= e

th2: THEORY

BEGIN

IMPORTING thl [int, 0]

{ { t := bool,

e := true,

f(x: bool)

lem2: LEMMA EXISTS (x:int) :

END th2

:= IF x THEN i ELSE 0 ENDIF }}

x/=O

Here theory t h 1 has both actual parameters and uninterpreted types and constants, as well

as an axiom and a lemma. Theory th2 imports thl, making the following substitutions:

T +- int

e +- 0

t +- bool

c +- true

f +- LAMBDA (x: bool) : IF x THEN 1 ELSE 0 ENDIF

Note that the mapping for f uses an abbreviated form of substitution. Typechecking this

leads to the following proof obligation.

IMP thl TCCI: OBLIGATION

EXISTS (x, y: bool) :

IF x THEN 1 ELSE 0 ENDIF /: IF y THEN 1 ELSE 0 ENDIF;

This is simply the interpretation of the ax axiom and is easily proved. The lemma leml

can be proved from the axiom, and may be used directly in proving lem2 using the proof

command (LEMMA "leml ").

6



Note that once the TCC has been proved, we know that th 1 is consistent. If we had left

out the mapping for f, then the TCC would not be generated, and the translation of theory

t h 1 would still contain an axiom and not necessarily be consistent.

One advantage to using mappings instead of parameters is that not all uninterpreted

entities need be mapped, whereas for parameters either all or none must be given. For

example, consider the following theory.

examplel[T: TYPE, c: T] : THEORY

BEGIN

f(x: T) : int = IF x = c THEN 0

END examplel

ELSE i ENDIF

It may be desirable to import this where T is always real, and c is left as a parameter,

but there is currently no mechanism for this. One could envision partial importings such as

IMPORT ING example 1 [ real, _], but it is not clear that this is actually practical--in

particular, the syntax for providing the missing parameters is not obvious. With mappings,

on the other hand, we can define examplel as follows.

examplel: THEORY

BEGIN

T: TYPE

c: T

f(x: T) : int = IF x = c THEN 0 ELSE 1 ENDIF

END examplel

Then we can rear to this theory _om another theory as in the _llowing.

example2: THEORY

BEGIN

th: THEORY = examplel{{T

frm: FORMULA f{{c :: 3}}

END example2

:= real}}

: f

The t h theory declaration just instantiates T, leaving c uninterpreted. The first reference

to f maps c to 3, whereas the second reference leaves it uninterpreted though it is still a

real. Note that formula frm is unprovable, since the uninterpreted c from the second

reference may or may not be equal to 3.

As described in the introduction, an important aspect of mappings is the support for

quotient types. In EHDM this was done by interpreting equality, but in PVS we instead

define a theory of equivalence classes, and allow the user to map constants to equivalence

classes under congruences. For example, the stacks datatype might be implemented

using an array as follows.

7



stack[t:TYPE] : DATATYPE

BEGIN

empty: empty?

push(top:t, pop: stack

END stack

: nonempty?

cstack[t: TYPE+] : THEORY

BEGIN

cstack: TYPE = [# size nat, elems: [nat -> t] #]

cempty?(s: cstack) : bool = (s'size = 0)

cempty: (cempty?) =

(# size := 0,

elems :: LAMBDA

cnonempty? (s: cstack)

ctop(s: (cnonempty?))

cpop(s: (cnonempty?))

cpush(x: t) (s: cstack

n: nat) : epsilon(LAMBDA (x:t) : true) #)

bool : (s'size /: 0)

t = s'elems (s'size - i)

cstack : s WITH [ 'size :: s'size - i]

: (cnonempty?) =

(# size := s_size + i,

elems := s'elems WITH [ (s'size) := x] #)

ce(sl, s2: cstack) : bool =

sl _size = s2 _size AND

FORALL (n: below(sl'size)) : sl'elems(n) = s2'elems(n)

IMPORTING equivalence_class[cstack, ce] , lifteq, lifteqs

The equivalence_class theory defines the quotient type of cstack with respect to

the equivalence relation ce. It is defined as follows.

equivalence_class[T:TYPE, =="

BEGIN

x, y: VAR T

(equivalence?[T]) ] : THEORY

equiv_class(x) : setof[T] = {Y 1 x == y}

E: TYPE = {A: setof[T] I EXISTS x: A = equiv_class(x)}

rep(A: E) : (A) = epsilon(A)

CONVERSION equiv_class, rep

equiv_class_covers: LEMMA FORALL x: EXISTS (A: E) : member (x, A)

equiv_class_separates: LEMMA

NOT (x == y)

IMPLIES disjoint? (equiv_class (x) , equiv_class (y))

END equivalence_class

Note that it introduces e qu i v_c i a s s and r ep as conversions. The type of the = = param-

eter ensure that only equivalence relations are used in generating equivalence classes. The

type E is the type of equivalence classes.



Theii ft e q and ii fteqs theories allow functions on concrete stacks to be lifted to

functions on equivalence classes, so long as they are congruences, that is, they satisfy the

p r e s e r ve s relation.

lifteq[D, R: TYPE, deq: (equivalence?[D]) ] : THEORY

BEGIN

IMPORTING equivalence_class

lift(f: (preserves[D, R] (deq, =[R] )) (A:E[D,deq])

: f (rep (A))

CONVERSION lift

END lifteq

: R

lifteqs[D, R: TYPE,

deq: (equivalence?[D]), req

: THEORY

BEGIN

IMPORTING equivalence_class

lift(f: (preserves[D, R] (deq, req)

= equiv_class [R, req] (f (rep(A))

CONVERSION lift

END lifteqs

(equivalence? [R] ) ]

) (A:E[D,deq]) : E[R, req]

For i i f t e q s, f satisfies the p r e s e r v e s relation if the following holds

FORALL (xl, x2: D) : deq(xl,x2) IMPLIES req(f(xl) ,f(x2) )

The reader might notice that the lifteq theory is not really necessary, as

lifteq[D, R, deq] is semantically equivalent to lifteqs[D, R, deq, =[R]].

However, in practice the lift conversion of lifteqs is not applied with-

out explicitly importing the correct instances. In addition, terms such as

rep [int, = [int] ] (equiv_class [int, = [int] ] (13)) end up being constructed, and

it takes some work to reduce this to 13.

With these theories imported, we can finish the specification of cstack as follows.

estack: TYPE : E

IMPORTING stack[t] { {

END cstack

stack := estack,

empty? := cempty?,

nonempty? := cnonempty?,

empty := cempty,

push(x: t, s estack) ::

top := ctop,

pop := cpop }

cpush(x) (s) ,

9



Herethesourcetypestack ismappedtotheequivalenceclassEdefinedbytheconcrete
equalityce, bymeansof the equiv_class conversion.Theconstantempty is then
mappedto its equivalenceclass.Themappingfor push ismoreinvolved;cpush must
firstbelifted in orderto applyit to theabstractstacks. Thisisappliedautomaticallyby
theconversionmechanismof PVS.Theapplicationof i i ft generatestheproofobligation
thatcpush preservestheequivalences,thatis,it isacongruence.Thismappinggeneratesa
largenumberofproofobligations,becausethest ack datatypegeneratesa st acks_adt
theorywitha largenumberof axioms,for example,extensionality,well-foundedness,and
induction.

ThePVSinterpretationsmechanismis muchsimplerto implementthantheonein
EUDM--equalityisnotaspecialcase,butsimplyanaspectof mappingatypetoanequiv-
alenceclass.Thetechniqueof mappingtypesto equivalenceclassesis quiteuseful,and
capturesthenotionofbehavioralequivalenceoutlinedin [ST97].In factit ismoregeneral,
in thatit worksforanyequivalencerelation,notjustthosebasedonobservablesorts.

10



Chapter 3

Theory Declarations

With the mapping mechanism, it is easy to specify a general theory and have it stand for

any number of instances. For example, groups, rings, and fields are all structures that can

be given axiomatically in terms of uninterpreted types and constants. This works well when

considering one such structure at a time, but it is difficult to specify theories that involve

more than one structure, for example, group homomorphisms. Importing the original the-

ory twice is the same as importing it once, and an attempted definition of a homomorphism

would turn into an automorphism. In this case what is needed is a way to specify multiple

different "copies" of the original theory. This is accomplished with theory declarations,

which may appear in either the theory parameters or the body of a theory. A theory declara-

tion in the formal parameters is referred to as a theory as parameter.1 Theory declarations

allow theories to be encapsulated, and instantiated copies of the implicitly imported theory

are generated.

For example, an (additive) group is normally thought of as a 4-tuple consisting of a set

G, a binary operator +, an identity element 0, and an inverse operator - that satisfies the

usual group axioms. Using theory interpretations, we simply define this as follows:

tThe term theory parameter refers to a parameter of a ttleo13_,so we use tile tern1 theory as parameter
instead.

11



group: THEORY

BEGIN

G: TYPE+

+: [G, G -> G]

0: G

-: [_ -> _]

x, y, z: VAR G

associative ax: AXIOM FORALL x, y, z: x + (y + z) = (x + y)

identity_ax: AXIOM FORALL x: x + 0 : x

inverse ax: AXIOM FORALL x: x + -x : 0 AND -x + x : 0

idempotent is identity: LEMMA x + x = x => x = 0

END group

+ Z

As described in Chapter 2, we can use mappings to create specific instances of groups.

For example,

group{{G := int, + := +, 0 := 0, - "= -}}

is the additive group of integers, whereas

group{{G := nzreal, + "= *, 0 := i, - "= LAMBDA (r:nzreal) : i/r}}

is the multiplicative group of nonzero reals.

This works nicely, until we try to define the notion of a group homomorphism. At

this point we need two groups, both individually instantiable. We could simply duplicate

the group specification, but this is obviously inelegant and error prone. Using theories as

parameters, we may define group homomorphisms as follows.

TheoryFormalDecl

TheoryDecl

TheoryDecIName

TheoryDecIMappings

TheoryDecIMapping

TheoryDecIMappingRhs

MappingSubst

MappingDef

MappingRename

::= TheoryFormaIType [ TheoryFormalConst [ TheoryDecl

::= Id : THEORY TheoryDecIName

::= [Id @] Id [Actuals] [TheoryDecIMappings]

::= { { TheoryDecIMapping++',' } }

::= MappingLhs TheoryDecIMappingRhs

::= MappingSubst [ MappingDef [ MappingRename

::= := { Expr [ rypeExpr }

::= = { Expr [ rypeExpr }

::= ::: { IdOp ]Number}

Figure 3.1: Grammar for Theory Declarations

12



group_homomorphism[Gl, G2: THEORY group] : THEORY

BEGIN

x, y: VAR GI.G

f: VAR [GI.G -> G2.G]

homomorphism?(f) : bool : FORALL x, y: f(x + y)

hom exists: LEMMA EXISTS f: homomorphism?(f)

END group_homomorphism

: f (x) + f (y)

Here G1 and G2 are theories as parameters to a generic homomorphism theory that may be

instantiated with two different groups. Hence we may import group_homomorphi sin,

for example, as

IMPORTING group_homomorphism[{{G := int, + := +, 0 := 0, - "= -}

{{G :: nzreal, + ": *, 0 :: i,

- "= LAMBDA (x: nzreal) : l/x}}]

There is a subtlety here that needs emphasizing; G1 and G2 are two distinct ver-

sions of theory group. For example, consider the addition of the following lemma to

gr oup_homomo rphi sm.

oops: LEMMA GI.0 = G2.0

If G1 and G2 are treated as the same group theory, this is a provable lemma. But then

after the importing given above we would be able to show that 0 = 1. Even worse, the

two different instances of groups may not even be type compatible, so the oops lemma

should not even typecheck.

We have solved this in PVS by making new theories G1 and G2 that are copies of the

original group theory. Declarations within these copies are distinct from each other and

from the original. Thus the oops lemma generates a type error, as G1. G and G2. G are

incompatible types.

This introduces new possibilities. When creating copies of a theory the mappings are

substituted and the original declarations disappear. However, it may be preferable to create

definitions rather than substitutions. In addition, it is sometimes useful to simply rename

the types or constants of a theory. For example, consider the following group instance

GI: THEORY = group{{G := int, + := +, 0 := 0, - "= -}}

w_ch generatesthe _llowingtheory.

GI: THEORY

BEGIN

x, y, z: VAR int

idempotent is identity:

END G1

LEMMA x + x = x => x = 0

13



To create definitions, use = instead of : =, as in the following.

G2: THEORY = group{ {G = int, + = +, 0 = 0, - } }

Now we get the following theory.

G2: THEORY

BEGIN

G: TYPE+ : int

+: [G, G -> G] = +

0: G = 0

-: [e -> e] = -

x, y, z: VAR G

idempotent is identity: LEMMA x + x = x => x = 0

END G2

Finally, to simply rename the uninterpreted types and constants, use : : = as in the follow-

ing.

G3: THEORY = group{{G ::= MG, + ::= *, 0 ::= 1, - ::= inv}}

The generated theory instance specifies multiplicative groups as follows.

G3: THEORY

BEGIN

MG: TYPE+

*: [MG, MG -> MG]

i: MG

inv: [Me -> Me]

x, y, z: VAR MG

associative ax: AXIOM FORALL x, y, z: x * (y * z) = (x * y) * z

identity_ax: AXIOM FORALL x: x * 1 : x

inverse ax: AXIOM FORALL x: x * inv(x) = 1 AND inv(x) * x = 1

idempotent is identity: LEMMA x * x = x => x = 1

END G3

The right-hand side of a renaming mapping must be an identifier, operator, or number, and

must not create ambiguities within the generated theory. Note that renamed declarations are

still uninterpreted, and may themselves be given interpretations, as in

G3i: THEORY = G3{{MG := nzreal, * "= *, 1 := i,

inv := LAMBDA (r: nzreal) : i/r}}

Finally, we can mix be differem _rms of mapping, to g_e a partial mapping.

G4: THEORY = group{{G = nzreal, + "= *, 0 ::= one}}

14



This generates the following theory instance.

G4: THEORY

BEGIN

G: TYPE+ : nzreal;

one: nzreal;

-: [nzreal -> nzreal]

x, y, z: VAR nzreal

identity_ax: AXIOM FORALL

inverse ax: AXIOM FORALL

idempotent is

END G4

(x: nzreal) : x * one = x

(x: nzreal) :

x * -x = one AND -x * x = one

identity: LEMMA x * x : x :> x : one

Note that associative_ax has disappeared--it has become a TCC of the importing

theory--whereas the other axioms are not so transformed because they still reference unin-

terpreted types or constants.

With theories as parameters we have another situation in which mappings are more con-

venient than theory parameters. Many times the same set of parameters is passed through

an entire theory hierarchy. If there are assumings, then these must be copied. For example,

consider the following theory.

th[T: TYPE, a, b: T] : THEORY

BEGIN

ASSUMING

A: ASSUMPTION a /: b

ENDASSUMING

END th

To import this theory, you simply provide a type and two different elements of that type.

But suppose you wish to import this theory from a theory that has the same parameters.

In this case the assumption must also be copied, as there is otherwise no way to prove the

resulting obligation. This can (and frequently does) lead to a tower of theories, all with

the same parameters and copies of the same assumptions, as well as proofs of the same

obligations.

There are ways around this, of course. Most assumptions may be turned into type

constraints, as in the following.

th[T: TYPE, a: T, b: {x: T l a /= x}] : THEORY

But this introduces an asymmetry in that a and b now belong to different types, and the

type predicate still must be provided up the entire hierarchy.

Using a theory as a parameter, we may instead define th as follows.

15



th: THEORY

BEGIN

T: TYPE,

a, b: T

A: AXIOM a

END th

/= b

We then parameterize using this theory (which is implicitly imported):

th_l It: THEORY th] : THEORY . . .

We have encapsulated the uninterpreted types and constants into a theory, and this is now

represented as a single parameter. Axiom A is visible within theory th_l, and no proof

obligations are generated since no mapping was given for t h. Now we can continue defin-

ing new theories as follows.

th 2 [t: THEORY th] : THEORY IMPORTING th 1 [t] . . .

th 3[t: THEORY th] : THEORY IMPORTING th 2 [t] . . .

None of these generate proof obligations, as no mappings are provided.

We may now instantiate th_n, for example, with the following.

IMPORTING th_n[th{{T := int, a := 0, b := i}}]

Now the substituted form of the axiom becomes a proof obligation which, when proved,

provides evidence that the theory t h is consistent.

With the introduction of theories as parameters, it is natural to allow theory declara-

tions that may be mapped, in the same way that instances may be provided for theories as

parameters. Thus the group_homomo rphi sm may be rewritten as follows:

group_homomorphism: THEORY

BEGIN

GI, G2: THEORY group

x, y: VAR GI.G

f: VAR [GI.G -> G2.G]

homomorphism?(f) : bool =

hom exists: LEMMA EXISTS

END group_homomorphism

FORALL x, y: f(x + y) = f(x) + f(y)

f: homomorphism? (f)

Again, the choice between using theories as parameters or theory declarations is really a

question of taste, as they are largely interchangeable.

As with theories as parameters, copies must be made for G1 and G2. Note that this

means that there is a difference between theory abbreviations and theory declarations, as

16



Importing ::= IMPORTING Importingltem++' , '

Importingltem ::= TheoryName [AS Id ]

Figure 3.2: Grammar for Importings

the former do not involve any copying. We decided to use the old form of theory abbre-

viation to define theory declarations, and to extend the IMP ORT YNG expressions to allow

abbreviations, as shown in Figure 3.2. Thus instead of

funset: THEORY = sets[[int -> int]]

which creates a copy of sets, use

IMPORTING sets[[int -> int]] AS funset

which imports sets [ [ int -> int ] ] and abbreviates it as funset.

17



18



Chapter 4

Prettyprinting Theory Instances

Mappings can get fairly complex, especially if actual parameters are involved, and it may be

desirable to see the specified theory instance displayed with all the substitutions performed.

To support this, we have provided a new PVS command: prettyprint-theory-

instance (M-x ppti). This takes two arguments: a theory instance, which in general

is a theory name with actual parameters and/or mappings, and a context theory, in which

the theory instance may be typechecked. The simplest way to use this command is to put

the cursor on the theory name as it appears in a theory as parameter, theory declaration, or

importing--when the command is issued it then defaults to the theory instance under the

cursor and the current theory is the default context theory. For example, putting the cursor

on group_homomorphism in the following and typing M-x ppti followed by two car-

riage returns 1 generates a buffer named group_homomorphism, ppi. All instances of

a given theory generate the same buffer name.

IMPORTING group_homomorphism[{{G := int, + := +, 0 := 0, - "= -}

{{G :: nzreal, + ": *, 0 :: i,

- ": LAMBDA (x: nzreal) : l/x}}]

This buffer has the following contents.

IThe first uses the theol3_ name instance at the cursor, and the second uses the CUlrent theol3_ as the context.

19



% Theory instance for

% group_homomorphism[groups{{ G

%

% groups{{ G

%

% 0

: int, + :: +,

: -, 0 :: 0 }},

: nzreal, + ": *,

= (LAMBDA (x: nzreal) : 1 / x),

: i } ]

group_homomorphism_instance: THEORY

BEGIN

IMPORTING groups{{ G := int, + := +, - "= -, 0 := 0 }}

IMPORTING groups{{ G := nzreal, + "= *

- "= (LAMBDA (x: nzreal) : 1 / x), 0 := 1 }}

x, y: VAR int

f: VAR [int -> nzreal]

homomorphism? (f) : bool =

FORALL (x: int), (y: int) : f(x + y) = f(x) * f(y)

hom exists: LEMMA EXISTS (f: [int -> nzreal]) : homomorphism?(f)

END group_homomorphism_instance

The goup mstancesshownonpagesl3-15provide moreexamplesoftheou_utproduced

by prettyprint-theory-instance.

20



Chapter 5

Comparison with Other Systems

In this chapter we compare PVS theory interpretations to existing programming and spec-

ification mechanisms of other systems. The EHDM system [EHD90] has a notion of a

mapping module that maps a source module to a target module. When a mapping module

is typechecked, a new module is automatically created that represents the substitution of

the interpretations for the body of the source theory. Equality is allowed to be mapped in

EHDM, in which case it must be mapped to an equivalence relation. In PVS, mappings

are provided as a syntactic component of names, and are essentially an extension of theory

parameters. Equality is not treated specially, but is handled by mapping a given type to a

quotient type.

IMPS [FGT90,Far94] also supports theory interpretations. It is similar to EHDM in that

it has a special de f-t r an s 3_at i on form that takes a source theory, target theory, sort as-

sociation list, and constant association list, and generates a theory translation. Obligations

may be generated that ensure that every axiom of the source theory is a theorem of the target

theory. If these are proved the translation is treated as an interpretation. There is no mech-

anism for mapping equality. As with both PVS and EHDM, defined sorts and constants of

the source theory are automatically translated. A more detailed comparison between IMPS

and an earlier version of PVS appears in an unpublished report by Kammtiller [Kam96].

In Maude [CDE+99] and its precursor OBJ [GW88] it is possible to define modules

that represent transition systems of a rewrite theory whose states are equivalence classes of

ground terms and whose transitions are inference rules in rewriting logic. A given mod-

ule may import another module, either protecting it, which means that the importing

module adds no junk or confusion, or including it, which imposes no such restrictions.

In addition to modules, Maude has theories, which are used to declare module interfaces.

These may appear as module parameters, as in M[X1 :: T1,..., Xn :: Tn], where the 32/

are labels and the Ti are names of theories. These theory parameters (source theories) may

be instantiated by target theories or modules using views, which indicate how each sort,

21



function,class,andmessageofthesourcetheoryismappedto thetargettheory.However,
Maudecurrentlydoesnotsupportthegenerationof proofobligationsfromsourcetheory
axioms,soviewsaresimplytheorytranslations,notinterpretations.

TheprogramminglanguageStandardML [MTH90]hasamodulesystemwheremod-
ulesaregivenby structures with a given signature, and parametric modules are functors

mapping structures of a given signature to structures. The PVS mechanism of using the-

ories as parameters resembles SML functors but for a specification language rather than a

programming language. Sannella and Tarlecki [ST97] describe a version of the ML mod-

ule system in which there are specifications containing sorts, operations, and axioms. For

example, the signature of stacks is the following.

STACK = sorts stack

opns empty : stack

push : int x stack --+ stack
pop : stack --+ stack

top : stack --+ int
is_empty : stack --+ bool

axioms is_empty(empty) = true

V s : stack. V n : int.is_empty(push(n, s) ) = false
V s : stack. V n : int.top(push(n, s) ) = n

V s : stack. V n : int.pop(push(n, s) ) = s

The following algebra is a realization of the above specification that corresponds to that of

cstack on page 8.

structure S2 : STACK =

struct

type stack : (int -> int) * int

val empty = ((fn k => 0) , 0)

fun push (n, (f, i) )

= ((fn k => if k = i then n else f k), i+l)

fun pop (f, i) = if i = 0 then (f, 0) else (f, i-l)

fun top (f, i) = if i = 0 then 0 else f(i-l)

fun is_empty (f, i) : (i:0)

Note however, that the stacks empty and pop(push(6,empty)) are not equal. Thus they

distinguish the observable sorts, in this case int and bool, which are the only data directly

visible to the user. The above two terms are not observable computations, so it does not

matter that they are different. In general, two different algebras are behaviorally equivalent

if all observable computations yield the same results. Note that choosing observable values

based on sorts is a bit coarse: for example, there may be two int-valued variables, one

of which is observable and one that represents an internal pointer. Mapping to equivalence

classes is more general, as it is easy to capture behavioral equivalence.

The induction theorem prover Nqthm [BM88, BGKM91] has a feature called

FUNCTIONALLY-INSTANTIATE that can be used to derive an instance of a theorem

22



by supplyinganinterpretationfor someof thefunctionsymbolsusedindefiningthetheo-
rem.Thecorrespondinginstancesof anyaxiomsconcerningthesefunctionsymbolsmust
bedischarged.Suchaxiomscanbeintroducedasconservativeextensionsasdefinitions
withtheDEFUNdeclarationor throughwitnessedconstraintsusingtheC©NSTRAI Ndec-
laration,or theycanbeintroducednonconservativelythroughanADD-AXIOMdeclaration.
Whilethefunctionalinstantiationmechanismis similarin flavorto PVStheoryinterpre-
tations,theunderlyinglogicof Nqthmis afragmentof first-orderlogicwhoseexpressive
powerismorelimitedthanthehigher-orderlogicof PVS.In addition,Nqthmlackstypes
andstructuringmechanismssuchasparametrictheories.

TheSPECWARElanguage[SJ95]employstheoryinterpretationsasamechanismforthe
stepwiserefinementof specificationsintoexecutablecode.SPECWAREhasconstructsfor
composingspecificationswhileidentifyingthecommoncomponents,andforcomposition-
allyrefiningspecificationssothattherefinementof aspecificationcanbecomposedfrom
therefinementof its components.UnlikePVS,SPECWAREhastheabilityto incorporate
multiplelogicsandtranslatespecificationsbetweentheselogics.A theoryis anindepen-
dentunitof specificationinPVSandhencethereisnosupportforcomposingtheoriesfrom
othertheories.However,theoperationsin SPECWAREcanlargelybesimulatedbymeans
oftheoriesandtheoryinterpretationsinPVS.

In summary,theoryinterpretationhasbeena standardtool in specificationlanguages
sincetheearlyworkonHDM [RLS79]andClear[BG81].PVSimplementstheoryinter-
pretationsasa simpleextensionof themechanismfor importingparametrictheories.PVS
theoryinterpretationssubsumethecorrespondingcapabilitiesavailablein otherspecifica-
tionframeworks.

23



24



Chapter 6

Future Work

A number of interesting extensions may be contemplated for the future.

Mapping of interpreted types and constants-- There are two aspects: one is simply

a convenience where, for example, we might have a tuple type declaration T: TYPE

= [TI, T2, T3] and want to map itto position: TYPE = [real, real,

real] by simply givingthe map {{T := position}}.

The second aspect is where the mapping is between two different kinds, for example

mapping a record type to a function type. This requires determining the corresponding

components as well as making explicit the underlying axioms. For example, record types

satisfy extensionality, and if they are mapped to a different type the implicit extensionality

axiom must be translated to a proof obligation.

Rewriting with congruences-- In theory substitution, if a type is mapped to a quotient

type then equality over this type is mapped to equality over the quotient type. If T is an

uninterpreted type, = an equivalence relation over T', and T'/ = the quotient type, then

= [ T ] is mapped to = [ T'/= ], which is equivalent to =. An equational formula thus still

has the form of a rewrite. However, to apply such a rewrite one generally needs to do some

lifting. The following is a simple example.

25



th: THEORY

BEGIN

T: TYPE

a, b: T

f, g: [T -> T]

. . . Some axioms

lem: LEMMA f(a)

END th

th2: THEORY

BEGIN

==(x, y: int) :

IMPORTING th{{T

a

b

f

g

END th2

involving f, g, a, and b

= g (b)

bool = divides (3, x -

:: m (::),

:= equiv_class (==) (2

:= equiv_class (==) (i

:: LAMBDA (x: E (::))

:: LAMBDA (x: E (::))

y)

I

I

equiv_class (rep (x)

equiv_class (rep (x)

- i),

- 2)}

To rewrite with i em, a must first be lifted to its equivalence class, then the rewrite is applied

and the result is then projected back using rep. To do this requires some modification to

the rewriting mechanism of the prover.

Consistency Analysis-- With a single independent theory such as groups, it is easy to

generate a mapping in which all axioms become proof obligations, and see directly that the

theory is consistent. On the other hand, if many theories are involved in which compositions

of mappings are involved, this may become quite difficult. What is needed is a tool that

analyzes a mapped theory to see if it is consistent, and reports on any remaining axioms

and uninterpreted declarations. This is similar in spirit to proof chain analysis, but works at

the theory level rather than for individual formulas.

Semantics of Mappings-- The semantics of theory interpretations needs to be formal-

ized and added to the PVS semantics report [OS97].

26



Chapter 7

Conclusion

Theory interpretations are used to embed an interpretation of an abstract theory in a more

concrete one. In this way, they allow an abstract development to be reused at the more

concrete level. Theory interpretations can be used to refine a specification down to code.

Theory interpretations can also be used to demonstrate the consistency of an axiomatic

theory relative to another theory.

Parametric theories in PVS provide some but not all of the functionality of theory in-

terpretations. In particular, they do not allow an abstract theory to be imported with only

a partial parameterization. Theory interpretations have been implemented in PVS version

3.0, which will be released in mid-2001. The current implementation allows the interpre-

tation of uninterpreted types and constants in a theory, as well as theory declarations. PVS

has also been extended so that a theory may appear as a formal parameter of another the-

ory. This allows related sets of parameters to be packaged as a theory. Quotient types have

been defined within PVS and used to admit interpretations of types where the equality on a

source type is treated as an equivalence relation on a target type.

Theory interpretations have been implemented in PVS as an extension of the theory

parameter mechanism. This way, theory interpretations are an extension of an already fa-

miliar concept in PVS and can be used in place of theory parameters where there is a need

for greater flexibility in the instantiation. The proof obligations generated by theory inter-

pretations are similar to those for parametric theories with assumptions.

A number of extensions related to theory interpretations remain to be implemented.

First, we plan to extend theory interpretations to the case of interpreted types and constants.

This poses some challenges since there are implicit operations and axioms associated with

certain type constructors. Second, the rewriting mechanisms of the PVS prover need to be

extended to rewrite relative to a congruence. This means that if we are only interested in

f(a) up to some equivalence that is preserved by f, then we could rewrite a up to equiv-

alence rather than equality. Third, the PVS semantics have to be extended to incorporate

27



theoryinterpretations.Finally,thePVSgroundevaluatorhasto beextendedto handle
theoryinterpretations.Currently,thegroundevaluatorgeneratescodecorrespondingto a
parametrictheoryandthiscodeisreusedwiththeactualparametersusedasargumentsto
theoperations.Theoryinterpretationscannotbetreatedasargumentsin thismannersince
thereis no fixedsetof parameters;parameterscanvaryaccordingto the interpretation.
Also,non-executableoperationscanbecomeexecutableasaresultoftheinterpretation.

In summary,webelievethattheoryinterpretationsareasignificantextensiontothePVS
specificationlanguage.Ourimplementationof thisin PVS3.0issimpleyetpowerful.We
expecttheoryinterpretationsto beawidelyusedfeatureof PVS.

28



Bibliography

[BG81]

[BGKM91]

[BM881

[CDE+99]

[EHD90]

[EHD91]

[EHD93]

[End72]

R. M. Burstall and J. A. Goguen. An informal introduction to specifications

using Clear. In The Correctness Problem in Computer Science. Academic

Press, London, 1981.

Robert S. Boyer, David M. Goldschlag, Matt Kaufmann, and J S. Moore.

Functional instantiation in first-order logic. In V. Lifschitz, editor, Artificial

Intelligence and Mathematical Theorem of Computation: Papers in Honor of

John McCarthy, pages 7-26. Academic Press, 1991.

R. S. Boyer and J S. Moore. A Computational Logic Handbook. Academic

Press, New York, NY, 1988.

M. Clavel, E Durfin, S. Eker, R Lincoln, N. Martf-Oliet, J. Meseguer, and J. F.

Quesada. Maude: Specification and programming in rewriting logic. Tech-

nical Report CDRL A005, Computer Science Laboratory, SRI International,
March 1999.

Computer Science Laboratory, SRI International, Menlo Park, CA. EHDM

Specification and Verification System Version 5.0-4)escription of the EHDM

Specification Language, January 1990. See [EHD91] for the updates to Ver-
sion 5.2.

Computer Science Laboratory, SRI International, Menlo Park, CA. EHDM

Specification and Verification System Version 5.X_upplement to User's and

Language Manuals, August 1991. Current version number is 5.2.

Computer Science Laboratory, SRI International, Menlo Park, CA. User

Guide for the EHDM Specification Language and Verification System, Version

6.1, February 1993. Three volumes.

H. B. Enderton. A Mathematical Introduction to Logic. Academic Press, New

York, NY, 1972.

29



[Far92]

[Far94]

[FGT90]

[GW88]

[Kam96]

[Mon76]

[MTH90]

[OS97]

[OSRSC99]

[RLS79]

[Sho67]

William M. Farmer. Theory interpretations in computerized mathematics (ab-

stract). Journal of Symbolic Logic, 57(1):356, March 1992.

W. M. Farmer. Theory interpretation in simple type theory. In J. Heering

et al., editor, Higher-Order Algebra, Logic, and Term Rewriting, volume 816

of Lecture Notes in Computer Science, pages 96-123. Springer-Verlag, 1994.

William M. Farmer, Joshua D. Guttman, and F. Javier Thayer. IMPS: An in-

teractive mathematical proof system. In Mark E. Stickel, editor, lOth Interna-

tional Conference on Automated Deduction (CADE), volume 449 of Lecture

Notes in Computer Science, pages 653-654, Kaiserslautem, Germany, July

1990. Springer-Verlag.

Joseph A. Goguen and Timothy Winkler. Introducing OBJ. Technical Report

SRI-CSL-88-9, Computer Science Laboratory, SRI International, Menlo Park,

CA, August 1988.

F. Kammfiller. Comparison of IMPS, PVS and Larch with respect to the-

ory treatment and modularization. Technical report, Computer Laboratory,

University of Cambridge, 1996. Unpublished Draft 1.0, available at http :

//www. first .gmd. de/~ florian/papers/report, ps. gz.

J. Donald Monk. Mathematical Logic. Graduate Texts in Mathematics.

Springer-Verlag, New York, NY, 1976.

R. Milner, M. Tofte, and R. Harper. The Definition of Standard ML. MIT

Press, 1990.

Sam Owre and Natarajan Shankar. The formal semantics of PVS. Techni-

cal Report SRI-CSL-97-2, Computer Science Laboratory, SRI International,

Menlo Park, CA, August 1997.

S. Owre, N. Shankar, J. M. Rushby, and D. W. J. Stringer-Calvert. PVS Lan-

guage Reference. Computer Science Laboratory, SRI International, Menlo

Park, CA, September 1999.

L. Robinson, K. N. Levitt, and B. A. Silverberg. The HDM Handbook. Com-

puter Science Laboratory, SRI International, Menlo Park, CA, June 1979.

Three Volumes.

Joseph R. Shoenfield. Mathematical Logic. Addison-Wesley, Reading, MA,

1967.

3O



[SJ95]

[ST97]

[Win92]

Yellamraju V. Srinivas and Richard Jfillig. Specware: Formal support for

composing software. In Bernhard M611er, editor, Mathematics of Program

Construction, number 947 in Lecture Notes in Computer Science, pages 399-

422. Springer-Verlag, 1995.

Donald Sannella and Andrzej Tarlecki. Essential concepts of algebraic speci-

fication and program development. Formal Aspects of Computing, 9:229-269,
1997.

Phillip J. Windley. Abstract theories in HOL. In Luc Claesen and Michael

J. C. Gordon, editors, Proceedings of the 1992 International Workshop on the

HOL Theorem Prover and its Applications, pages 197-210, Leuven, Belgium,

September 1992. IFIP, North-Holland.

31



REPORT DOCUMENTATION PAGE Form ApprovedOMBNO.0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other
aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and

Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188),
Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

July 2001 Contractor Report

4. TITLE AND SUBTITLE

Theory Interpretations in PVS

6. AUTHOR(S)

Sam Owre and Natarajan Shankar

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

SRI International
333 Ravenswood Ave.

Menlo Park, CA 94025

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration
Langley Research Center

Hampton, VA 23681-2199

5. FUNDING NUMBERS

C NAS 1-20334
Task 16

WU 704-50-11-01

8. PERFORMING ORGANIZATION

REPORT NUMBER

10. SPONSORING/MONITORING

AGENCY REPORT NUMBER

NASA/CR-2001-211024

11. SUPPLEMENTARY NOTES

Langley Technical Monitor: Ricky W. Butler
Final Report - Task 16

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified-Unlimited

Subject Category 61 Distribution: Standard
Availability: NASA CASI (301) 621-0390

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

The purpose of this task was to provide a mechanism for theory interpretations in PVS so that it is possible to
demonstrate the consistency of a theory by exhibiting an interpretation that validates the axioms. The

mechanization makes it possible to show that one collection of theories is correctly interpreted by another
collection of theories under a user-specified interpretation for the uninterpreted types and constants. A theory

instance is generated and imported, while the axiom instances are generated as proof obligations to ensure that
the interpretation is valid. Interpretations can be used to show that an implementation is a correct refinement of

a specification, that an axiomatically defined specification is consistent, or that a axiomatically defined
specification captures its intended models. In addition, the theory parameter mechanism has been extended with

a notion of theory as parameter so that a theory instance can be given as an actual parameter to an imported
theory. Theory interpretations can thus be used to refine an abstract specification or to demonstrate the

consistency of an axiomatic theory. In this report we describe the mechanism in detail. This extension is a part

of PVS version 3.0, which will be publicly released in mid-2001.

14. SUBJECT TERMS

Formal methods; Theory interpretation; Mapping; Refinement; Quotient type

17. SECURITY CLASSIFICATION

OF REPORT

Unclassified

18. SECURITY CLASSIFICATION

OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION

OF ABSTRACT

Unclassified

15. NUMBER OF PAGES

39

16. PRICE CODE

A03

20. LIMITATION

OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z-39-18
298-102


