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Abstract

This report discusses improved support for univariate quantifier elimination in the
Prototype Verification System (PVS). Previously, PVS had three strategies for quan-
tifier elimination—hutch, tarski, and sturm. Of these, only hutch is able to decide
queries in any input format—sturm only works on queries regarding a single polyno-
mial on an interval and tarski resolves queries in the universal existential fragment.
This paper describes an extended version of tarski. The extension is accomplished
by formally verifying a disjunctive normal form transformation in PVS and using
tarski on each conjunctive clause. Additionally, a preprocessing step is added to
the decision procedure underlying tarski. This preprocessing is designed to exploit
properties of polynomial structure to quickly resolve queries that have certain for-
mats. The preprocessing produces dramatic speedup when it succeeds in resolving a
query, and seems to introduce negligible overhead when it does not resolve a query.
Finally, testing reveals some ways to improve the hutch and tarski strategies.

1 Introduction

Quantifier elimination (QE) refers to the process of transforming a quantified for-
mula into a logically equivalent quantifier-free formula. Although Tarski proved that
quantifier elimination is decidable in 1951 [16], it was not until 1975 that George
Collins developed the first practical algorithm for QE: cylindrical algebraic decom-
position (CAD) [3]. In general, CAD is doubly exponential in the degree of the
polynomials. Although many people have improved CAD over the years, develop-
ment of QE methods continues to be an active area of research (see, e.g., [1, 4]).

QE is especially significant because queries involving real-valued polynomials of-
ten arise in formal proofs of safety-critical systems that interact with the physical
environment, i.e., cyber-physical systems. For example, the polynomial constraints
that arise in path planning and obstacle avoidance algorithms for autonomous sys-
tems are often amenable to QE techniques. The formal approach provides behavioral
guarantees that supplement experimental testing, and these guarantees are crucially
important when dealing with safety-critical systems. However, QE is often a signif-
icant computational bottleneck in the verification process.

This work focuses on improving support for quantifier elimination in the Pro-
totype Verification System (PVS) [13]. Currently, PVS implements support for
univariate QE in three strategies—sturm [12], tarski [10], and hutch [11]. At the
heart of these strategies are formally verified decision procedures based on Sturm’s
and Tarski’s theorems. Thus, the soundness of the strategies depends only on the
soundness of the PVS internal logic [10].

Of the PVS strategies for QE, only hutch is able to work on arbitrary queries—
sturm is primarily designed to test the satisfiability of a single polynomial within
an interval, and tarski can only be used to test the satisfiability of formulas in
the existential conjunctive fragment. This work extends tarski so that it is able
to handle arbitrary queries by formally verifying a disjunctive normal form (DNF)
transformation in PVS. In this paper, this extension is called dnftarski. However,
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the improved strategy replaced the current strategy tarski in the current release
of the NASA PVS Library.1 Further, because queries in the existential conjunctive
fragment often contain polynomial structure that is amenable to preprocessing, a
preprocessing step is added to the improved strategy. This step significantly speeds
up queries when it succeeds and introduces minimal overhead when it fails.

This report is structured as follows. Section 2 discusses related work. Section
3 motivates the approach, describes the preprocessing, and explains the DNF con-
struction. In Section 4, dnftarski is compared to tarski and hutch on existing
benchmarks, and is then tested on new examples for a more targeted analysis of
the modifications. The targeted analysis reveals some ways to improve tarski and
hutch, which are also discussed in Section 4. Concluding remarks are made in Sec-
tion 5, with future work discussed in 6. Appendices A, B, C, D, and E list the
benchmarks used in this report.

2 Related Work

Many tools such as Mathematica [7], QEPCAD [4], Z3 [5], and REDLOG [6] provide
substantial support for QE (including, in some cases, implementations of CAD). The
tool RAHD [14] combines various methods for quantifier elimination and, among
other things, makes use of polynomial structure in very deep and extensive ways.
However, the support of these tools is unverified and may contain bugs. Using a tool
like Mathematica or Z3 in a formal methods proof as a trusted oracle is undesirable,
because the correctness of the proof remains predicated on the soundness of the
oracle. Since theorem proving is challenging, sound support for QE is much more
limited than unverified support.

In 2007, Mahboubi implemented CAD in CoQ [8], but no one has yet succeeded
in formally verifying CAD. Cohen and Mahboubi formalized a procedure for multi-
variate QE in CoQ that is based on Tarski’s Theorem [2]. However, this procedure
is mainly implemented for theoretical interest, as a stepping stone towards a formal-
ization of CAD rather than a practical quantifier elimination procedure. Other QE
procedures have been implemented in Isabelle/HOL, HOL Light, and CoQ [10–12].

Disjunctive normal form and conjunctive normal form (CNF) transformations
have been formally verified in other theorem provers. In particular, Seidl and
Sickert formalized a DNF construction for linear temporal logic formulas in Is-
abelle/HOL [15], and Maric formalized a CNF construction as part of Isabelle/HOL’s
SAT solver library [9].

3 Approach

The approach is pictured in Figure 1. It involves the following steps: First, assume
that every QE query has been transformed into an equivalent existential QE query.
Then, as every Boolean formula is logically equivalent to a Boolean formula in dis-
junctive normal form, i.e., a disjunction of conjunctive clauses, translate the Boolean

1https://github.com/nasa/pvslib.
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formula in the query into an equivalent DNF formula. Next, run tarski with pre-
processing on each conjunctive clause. Finally, return “true” if any one of the
conjunctive clauses is “true”. Return “false” if they are all false. In particular, if
tarski resolves any of the clauses, then “true” can be returned at that stage with-
out considering the rest of the clauses. This procedure is sound since the authors
have formally verified that the DNF transformation produces a logically equivalent
formula and that the preprocessing is sound.

Initial Formula (from an existential QE query) 

Preprocess/tarski Preprocess/tarski Preprocess/tarski

Decide Truth

(a1
1 ^ · · · ^ a1

k) _ (a2
1 ^ · · · ^ a2

j ) _ · · · _ (an
1 ^ · · · ^ an

m)
<latexit sha1_base64="BK+2auX3930ts1xt/abKOvwwTwA=">AAACYnicbVFNT8IwGO6mKKIC6lEPjcQELmRDEz0avXjURNSEj+Vd10Gla5e2MyGEP+nNkxd/iGUuRoH39PT5SN8+DVPOtPG8D8fd2CxtbZd3Krt7+9Va/eDwSctMEdolkkv1EoKmnAnaNcxw+pIqCknI6XM4uV3oz29UaSbFo5mmdJDASLCYETCWCurTJgT+0Md9DiLCfRJJo4sDBJOh37IHqTDObZ31ttdhp7D9ChbnCbE+kQxFK6g3vLaXD14FfgEaqJj7oP7ejyTJEioM4aB1z/dSM5iBMoxwOq/0M01TIBMY0Z6FAhKqB7O8ojk+s0yEY7tXLIXBOfs3MYNE62kSWmcCZqyXtQW5TutlJr4azJhIM0MF+bkozjg2Ei/6xhFTlBg+tQCIYnZXTMaggBj7KxVbgr/85FXw1Gn75+3Ow0Xj+qaoo4yO0SlqIh9domt0h+5RFxH06ZScqlNzvtyKe+Ae/Vhdp8gcoX/jnnwDlVmyrw==</latexit>

. . .

Figure 1. The approach for dnftarski

The technical details of this approach are discussed below.

3.1 DNF Transformation

The DNF transformation works as follows: First, every Boolean expression is put
into negation normal form (NNF), so that negations only occur on polynomial re-
lations (and not on Boolean combinations of polynomial relations). Then, con-
junctions are recursively distributed over disjunctions, i.e., expressions of the form
(a ∨ b) ∧ c and c ∧ (a ∨ b) are transformed into (a ∧ c) ∨ (b ∧ c) and (c ∧ a) ∨ (c ∧ b),
respectively, until no such transformations are possible.

This transformation relies on a deep embedding of Boolean expressions, i.e., an
encoding of Boolean expressions as mathematical objects in the PVS language.
The dnftarski strategy parses Boolean expressions into an object having the type
PolyRelExpr, which is a datatype with the following form:

PCONST(pb:bool) : PCONST?

PREL(pn:[nat->rat],d:nat,rel:TarskiRel,r:rat) : PREL?

PABS(pn:[nat->rat],d:nat,rel:TarskiRel,r:rat) : PABS?

PAND(pe1,pe2:PolyRelExpr) : PAND?

POR(pe1,pe2:PolyRelExpr) : POR?

PNOT(pe:PolyRelExpr) : PNOT?

PIMPLIES(pe1,pe2:PolyRelExpr) : PIMPLIES?

PIFF(pe1,pe2:PolyRelExpr) : PIFF?

PWHEN(pe1,pe2:PolyRelExpr) : PWHEN?

PITE(pe1,pe2,pe3:PolyRelExpr) : PITE?

Here, PCONST encodes TRUE or FALSE, PREL encodes a single polynomial rela-
tion, PABS encodes a polynomial relation with an absolute value, PAND encodes
conjunction, POR encodes disjunction, PNOT encodes negation, PIMPLIES encodes
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implication, PIFF encodes equivalence, PWHEN encodes reverse implication, and PITE

encodes conditional statements. In PREL and PABS, pn represents a polynomial
p(x) = anx

n + · · · + a0 as a function from N to R, so that pn(i) = ai if i ≤ n
and pn(i) = 0 otherwise. The degree of this polynomial is represented by d, and
rel represents the relation between p and 0, which is one of >,≥, <,≤,=, and
6=. Constants (including the zero polynomial) are represented with degree 0. As
an example, the corresponding PolyRelExpr for (x > 0 ∨ 0 ≥ 0) ∧ x2 + 1 < 3
is PAND(PREL(f1, 1, r1), POR(PREL(f2, 0, r2), PREL(f3, 2, r3))) where r1, r2, and r3 rep-
resent >, ≥, and < respectively and f1, f2, and f3 represent x, 0, and x2 − 2,
respectively.

The DNF transformation takes a PolyRelExpr as input and returns an object of
type DNF. The DNF objects are defined as lists of lists of DNF Atoms. Each DNF Atom

is a record with three fields that encode a polynomial (as a function from N to R),
the degree of the polynomial, and the relation between the polynomial and 0. A
list of DNF Atoms encodes a conjunction of polynomial inequalities. Therefore, it
evaluates to TRUE if and only if every atom in the list evaluates to TRUE. An object
of type DNF evaluates to TRUE if and only if at least one of its lists of DNF Atoms

evaluates to true.
The representation of polynomials as functions was chosen to maintain con-

sistency between dnftarski and tarski, as tarski and its underlying theories
represent polynomials as functions. Although representing polynomials as lists is
computationally more efficient in general, maintaining consistency with legacy code
is vital for efficiency—this will be discussed further in Section 4.

The theory dnf polynomials contains the formalization of the DNF transfor-
mation. This theory proves, in particular, the lemma dnf preserves truth, which
states that for each PolyRelExpr p, the evaluation of the DNF associated to p is
logically equivalent to the evaluation of p. The theory dnf strategy relates the
evaluation of a DNF object to tarski, showing in particular that a DNF object eval-
uates to true if and only if tarski evaluates one of its lists of DNF atoms to true.
This result is verified in the lemma rel to tarski sound, which is the key lemma
in the dnftarski strategy.

As an important note, DNF transformations can greatly increase formula size.
However, formulas that tarski is currently capable of handling are (almost) already
in DNF format. Therefore, there is no formula size increase on these. Further, when
formula size increase does occur, evaluating the lists of DNF Atoms in parallel could
help speed up the computation. As discussed in Section 4, most of the time in a
dnftarski computation seems to be spent on the calls to tarski.

3.2 Preprocessing

All of the preprocessing methods are designed to target polynomial structure to
quickly resolve QE queries in the existential conjunctive fragment. Preprocessing is
introduced in an attempt to partially automate human intuition—the ultimate goal
would be for PVS to be able to quickly resolve queries including those that humans
can quickly resolve.

Towards this, the following properties are formally verified: Given the input
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query F ≡ ∃x ∈ R : f1(x) ∼1 0∧· · ·∧fn(x) ∼n 0, where each ∼i∈ {≥, >,=,≤, <, 6=},
then:

1. If for all i the constant term ci of fi(x) satisfies ci ∼i 0, then F is TRUE

2. If for all i the leading coefficient ki of fi satisfies ki ∼i 0, then F is TRUE

3. F resolves to TRUE if for all i either: the degree of fi is odd and the leading
coefficient ki of fi satisfies ¬(ki ∼i 0) or the degree of fi is even and the leading
coefficient ki of fi satisfies ki ∼i 0

These properties are equivalent to testing the sign of each polynomial at x = 0,
x = ∞, and x = −∞. The checks at −∞ and ∞ were already occurring in
tarski, but not in a preprocessing step. The preprocessing provides dramatic
speedup on queries on which it succeeds (including resolving some queries on which
tarski would otherwise hang), and minimal overhead when it fails. These proper-
ties are combined into preprocessingStepConj in preprocessing univariate. In
preprocessingConjTheorem, these properties are proven sound.

The main challenge in preprocessing is not proving the polynomial properties,
but rather integrating them into tarski while maintaining soundness. The nat-
ural place to integrate preprocessing in the existing PVS development is in the
compute solvable function. However, the proof of this function is extremely com-
plicated and does not easily lend itself to the addition of preprocessing. Instead, a
function compute solvable new is defined with the preprocessing in place, and this
is shown to be equivalent to the old compute solvable function. The soundness
proof of preprocessingConjTheorem is extremely modular, and thus it would be
very easy to modify preprocessingStepConj to incorporate additional preprocess-
ing to resolve input formulas F to TRUE.

4 Experimental Results

This section makes use of the benchmarks tested in [11]. Additionally, in order
to more accurately pinpoint tradeoffs between dnftarski and hutch, and to more
comprehensively test dnftarski, the following new sets of examples are used:

1. adversarial dnf examples — This theory contains a set of examples on
which hutch runs very quickly but dnftarski runs quite slowly.

2. adversarial hutch examples — Conversely, this theory contains examples
on which hutch runs more slowly than dnftarski.

3. tarski examples preprocess — This theory contains many examples on
which the preprocessing simplifies the original expression.

4. examples for parallelism — This theory contains examples on which the
strategy dnftarski is slow, but on which it would be much faster with paral-
lelism.
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All experiments are run on a 2018 Macbook Pro with 16 GB of memory and a
2.2 GHz Intel Core i7. The results are now discussed in more detail. All examples
are listed in the appendices.

4.1 Performance on Benchmarks

The performance of the various strategies on the benchmarks from [11] is shown in
Table 1. These examples are listed in Appendix A. The hutch strategy comes with
an optional sos? flag that changes the underlying computations [11]. By default, this
flag is set to true; this default behavior is referred to as hutch, and if instead the flag
set to nil, the resulting strategy is referred to as hutch : sos? nil. An entry of “—”
indicates that the strategy did not return an answer within 5 minutes. The number
in parentheses is the time that it took to run the underlying decision procedure.
The number outside the parentheses is the total time that it took to close the
proof. The difference in the two numbers is largely due to syntactic manipulations,
e.g., showing that different representations of polynomials are equivalent. Note in
particular that both the DNF transformation and the preprocessing are taking place
in the underlying decision procedure.

Problem hutch hutch : sos? nil tarski(orig.) tarski(prep.) dnftarski

Ex1 3.01 (0.02) 3.04 (0.017) 2.15 (0.089) 2.74 (0.086) 3.10 (0.096)

Ex2 3.02 (0.06) 3.25 (0.3) 3.00 (1.52) 4.34 (1.52) 4.27 (1.58)

Ex3 27.92 (22.65) 6.61 (1.25) 2.03 (0.19) 5.48 (0.19) 8.06 (0.2)

Ex4 4.14 (0.0057) 4.35 (0.038) 7.82 (5.70) 10.51 (5.95) 10.61 (5.88)

Ex5 5.68 (0.0068) 5.88 (0.12) 166.85 (164.33) 169.48 (163.58) 173.83 (166.87)

Ex6 68.50 (2.40) — — — —

Ex7 69.75 (43.10) — — — —

quads 2 1.73 (0.0014) 1.71 (0.0015) 1.10 (0.005) 1.71 (0.0046) 1.37 (0.0052)

quads 3 2.09 (0.0021) 2.14 (0.0038) 1.34 (0.028) 2.19 (0.027) 1.80 (0.029)

quads 4 2.52 (0.0026) 2.59 (0.0097) 1.77 (0.19) 2.78 (0.18) 2.40 (0.19)

quads 5 3.10 (0.0034) 3.12 (0.028) 3.26 (1.41) 4.52 (1.38) 4.12 (1.48)

quads 6 3.71 (0.004) 3.71 (0.069) 13.03 (10.95) 14.58 (10.78) 14.70 (11.46)

quads 7 4.10 (0.0047) 4.47 (0.17) 90.29 (87.94) 89.18 (84.84) 94.71 (91.05)

quads 8 5.37 (0.0056) 5.69 (0.43) — — —

quads 9 5.98 (0.0068) 6.86 (0.88) — — —

quads 10 6.69 (0.0094) 7.97 (1.53) — — —

Table 1. Strategies Performance in Seconds

The numbers overall reflect much faster runtimes than those in [11], likely due
to the difference in machines. Most notably, hutch is able to close two problems on
which it previously hung.

The similar run times of tarski (original) and tarski (with preprocessing)
indicates that preprocessing adds negligible computational overhead. The time spent
in the dnftarski and tarski decision procedures is almost identical in many cases
(although this is not too surprising, given that these formulas are almost already in
DNF format). In some examples, e.g., Ex3, Ex5, and quads 7, dnftarski is slightly
slower than tarski.

As a remark, subtle choices in the strategy can greatly influence runtime—
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especially in the final steps involving polynomial computations. For example, an
earlier version of dnf tarski represented polynomials as lists rather than as func-
tions from N to R. With this representation, there was considerable slowdown
on certain examples—so that quads 7 closed in 209.98(207.11) seconds and Ex5

closed in 277.98(272.51) seconds. The reason for this slowdown appears to be that
dfn tarski depends on legacy developments where polynomials are still being rep-
resented as functions. Therefore, the list representation in dnf tarski would add
overhead as this representation has to be translated back and forth between the old
legacy specifications and the new specifications. On other examples the slowdown
was much more minimal.

4.2 New Examples

Here are some key observations from the experiments that were run on the new
example sets.

4.2.1 Adversarial Examples for dnftarski

The examples in Appendix B suggest that the speed of dnftarski is largely pred-
icated on the speed of its calls to tarski, i.e. the time difference between running
dnftarski and summing the times it takes tarski to run on each of the conjunctive
clauses in the DNF is often small.

However, when there are many clauses in the DNF, the dnftarski decision
procedure is sometimes surprisingly slow. In example explode 5, there are 144
clauses in the DNF and the dnftarski decision procedure takes 35.86 seconds.
Although tarski has not been tested on each of the 144 clauses, none of them
individually seems particularly complicated, so this runtime is surprisingly slow.
It would be interesting to understand what is causing the slowdown, as running
the DNF construction in isolation indicates that the overhead from transforming
formulas into DNF is minuscule even in cases when the DNF contains many clauses.
As discussed in Section 4.2.4, such slowdown could likely be elided by working on
the clauses of the DNF in parallel.

4.2.2 Adversarial Examples for hutch

Appendix C lists a set of examples that are adversarial for hutch. Overall, it was
more difficult to find examples that are adversarial for hutch than it was to find
examples that are adversarial for tarski (and thus, by extension, dnftarski), which
is consistent with the conclusions of [11]. Further, even for examples where hutch is
extremely slow, hutch : sos? nil may be much faster—see example high deg 1,
example high deg 2, and example high deg 3. However, as in example high deg 4

and example with equalities, sometimes both hutch and hutch : sos? nil are
very slow, whereas dnftarski is fast.

There are many factors which can change the performance of a given strategy. It
seems that high-degree polynomials, polynomials with many roots, or polynomials
with roots that are close together can slow hutch down. Further, tarski and
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dnftarski sometimes outperform hutch on queries that include an equality relation,
such as example high deg 4 and example with equalities.

Moreover, it is sometimes the case that a single clause in the DNF of a compli-
cated formula is easily resolved. If the first clause in the formula is easily resolved,
dnftarski may be faster than hutchand hutch : sos? nil. This is the case in
example explode formula. On this example, dnftarski takes about 10 seconds,
and almost all of that is on polynomial computations. hutch is about 10 sec-
onds slower than dnftarski, and in particular the decision procedure underlying
hutch takes about 9 seconds. Interestingly, hutch : sos? nil is quite slow on this
example.

4.2.3 Preprocessing

The examples in the theory tarski examples preprocess are listed in Appendix D.
There are 15 examples total. The aggregate runtimes are given in Table 2. The
time in parentheses is the aggregated time that it took to run the underlying de-
cision procedures. The time outside the parentheses is the aggregated total time.
While specific methods may be faster or slower on certain examples (for example,
example high deg is particularly adversarial for hutch and example conj lc 4 is
particularly adversarial for tarski) the preprocessing makes dnftarski extremely
fast. Tarski hangs on two examples, i.e., it cannot return an answer within 5 min-
utes.

Method Aggregated time (s) Number Solved

Tarski (orig) 257.2 (227.46) 13

hutch 75.56 (38.37) 15

hutch : sos? nil 212.3 (175.71) 15

dnftarski 38.93 (0.073) 15

Table 2. Aggregated Times With and Without Preprocessing

4.2.4 Parallelism

As noted before, the clauses of a DNF formula could all be evaluated independently
and in parallel. The examples in the theory examples for parallelism listed in
Appendix E indicate that parallelism could be desirable not only when the DNF
construction greatly increases the formula size (see, for example example explode),
but also on smaller DNFs when certain calls to tarski close very quickly and other
calls take a long time (see, for example, example many roots 1 and example slow).
A strategy that allows parallel calls to tarski would help resolve the easier query
that terminated the process without the burden of having to resolve the computa-
tionally expensive query.

On some of these examples, unless adding in parallelism were to incur signifi-
cant overhead, it is likely to make dnftarski considerably faster than hutch. For
instance, on example many roots 1, hutch takes 33.38 seconds of total time and
hutch : sos? nil takes 42.64 seconds of total time. Here, dnftarski hangs because
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tarski is very slow on some of the initial conjunctive clauses. However, the con-
junctive clause that resolves to TRUE (and thus decides the query) is very quickly
resolved by tarski’s preprocessing.

In another instance, on example many roots 2 hutch runs in 156.83 seconds
of total time and hutch : sos? nil runs in 68.01 seconds of total time. Currently,
dnftarski runs in 131.91 seconds of total time and requires four calls to tarski.
Parallelizing could help reduce this considerably by allowing these four calls to
tarski to happen simultaneously rather than sequentially.

4.3 Improvements to tarski and hutch

The performed testing uncovered some places in tarski and hutch where the
strategy was unable to close some goals. First, in hutch, queries of the form
¬∃x ∈ R : F (x) were not being discharged even when F was unsatisfiable. Similarly,
queries of the form ¬∀x ∈ R : F (x) were not being discharged even when ¬F was
satisfiable. This happened because hutch was handling these formulas by moving
their negations to the antecedent—so that when given, for example, ¬∃x ∈ R : F (x),
it moved ∃x ∈ R : F (x) to the antecedent. Unfortunately, hutch was not storing
any information to indicate that a formula had been moved to the antecedent, and
so it treated the negations as if they were in the consequent. This has now been
fixed.

Second, there was a subtle behavior where tarski would sometimes fail to dis-
charge true queries, including “∀x ∈ R, x > 0 ∨ x+1 ≤ 1” and “∀x ∈ R, x9+12x5 <
0 ∨ x2 ≥ 49 ∨ x5 + 12x2 + 32x = 0 ∨ x > 0”. In these and other cases, the prob-
lem arose when PVS hid information regarding labels in the pre-assert function
in pvs-strategies.2

In the first example, x+1 is labeled with a name, say name1, so that name1 ≤ 1 is
known. PVS then hides the meaning of name1 and tries to prove x ≤ 0∨ x > 0, but
it cannot do so from the information available. In the second example, the variable
overlap occurs because when x2 is labeled with a name, this name is substituted for
the x2 term in x5 + 12x2 + 32. When the meaning of the name for x2 is hidden,
PVS does not have enough information to close the proof.

The strategy has been edited so that the relevant information regarding labels
is no longer hidden.

5 Conclusion

In this work, the PVS strategy tarski has been improved with a preprocessing
step and extended in dnftarski, a new general-purpose strategy for univariate
QE. Previously hutch was the only general-purpose strategy for univariate QE, and
because quantifier elimination is such a computational bottleneck in proofs, it is
desirable to have more than one strategy to perform quantifier elimination.

2Hiding unnecessary names in the strategies is highly desirable behavior, because the fewer
formulas that PVS has to work with, the more efficient it will be. However, in the proofs of these
examples, pre-assert was hiding necessary information.
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Overall, dnftarski and hutch have different strengths and weaknesses. In par-
ticular, dnftarski performs poorly when the underlying calls to tarski perform
poorly. This means that hutch and hutch : sos? nil often outperform dnftarski,
as tarski is highly sensitive to the number of formulas in the query and some-
what sensitive to variable degree and polynomial complexity. However, various fac-
tors can hinder the performance of hutch and hutch : sos? nil, and in some cases
dnftarski is superior. Generally, the speed of dnftarski seems to be predicated on
the speed of its calls to tarski, although in cases with large DNFs, dnftarski can
run more slowly. However, the DNF transformation itself seems to introduce mini-
mal overhead, and the preprocessing increases the competitiveness of dnftarski.

6 Future Work

One could continue to extend tarski (and thus dnftarski) with additional pre-
processing, as the existential conjunctive fragment lends itself very nicely to pre-
processing. It would be easy to extend preprocessingStepConj to contain more
preprocessing that can resolve formulas to “true”. An ideal preprocessing routine
would automate or supersede human intuition, and so a significant and challeng-
ing goal would be to implement reasoning to guess a rough range for values of x
that would satisfy the formula. For example, a human can look at the formula
x350 − x90 + x80 − x60 + x50 − 10.5 < 9.5 and quickly discern that the behavior is
fundamentally different when |x| < 1 and when |x| > 1. In particular, as long as
|x| ≤ 1, it is easy to see that the formula is true. However once |x| > 1, the formula
becomes unsatisfiable. So, one could approximate this formula with −1 ≤ x∧x ≤ 1.

The authors suggest adding preprocessing to automatically return “false” on
systems that are evidently unsatisfiable. For example, experiments suggest that
returning “false” on clauses that contain both some atom P and its negation ¬P
would be useful. Unfortunately, this preprocessing would not easily fit into the
specification of preprocessingStepConj, and because the soundness proof of the
tarski strategy is very complicated, the authors suggest implementing the trans-
formation to “false” as an initial transform system step, where an arbitrary query
is transformed into “∃x : x2 < 0” in cases when the original system is clearly
false. Further, this transform system step could contain other preprocessing de-
signed to reduce the number of polynomial relations in conjunctive clauses for which
tarski must check satisfiability. For example, it could trim formulas by removing
duplicate relations, and it could reduce linear systems with n clauses to systems
with at most two clauses. Reducing linear systems would help improve tarski’s
performance on interval computations. For example, currently tarski hangs on the
computation “∃x : x25 − 10.28x39 + 6.0697x3 + 96.6786x2 − 125.32x − 6.50689 >
0 ∧ x ≥ 8.4000001 ∧ x ≤ −3.00001”, even though the two linear constraints are
obviously inconsistent. (Surprisingly, hutch is also slow on this example.)

The authors also believe that it would be very worthwhile to change dnftarski to
use parallelism. The DNF construction is inherently parallel, and currently the
strategy is not taking advantage of this. Using parallelism would speed up the per-
formance of the strategy on examples such as those in examples for parallelism.

10



It would also be possible to parallelize calls to dnftarski and both forms of hutch.
This could be quite helpful—as the tradeoffs among the strategies are often very
difficult to analyze a priori, it is often not clear which strategy will be fastest on a
particular input problem.

References

1. C. W. Brown. Improved projection for cylindrical algebraic decomposition.
Journal of Symbolic Computation, 32(5):447–465, 2001.

2. C. Cohen and A. Mahboubi. Formal proofs in real algebraic geometry: From
ordered fields to quantifier elimination. Logical Methods in Computer Science,
8(1:02):1–40, February 2012.

3. G. Collins. Quantifier elimination for real closed fields by cylindrical algebraic
decomposition. In Second GI Conference on Automata Theory and Formal Lan-
guages, volume 33 of Lecture Notes in Computer Science, pages 134–183, Kaiser-
slautern, 1975. Springer-Verlag.

4. G. E. Collins and H. Hong. Partial cylindrical algebraic decomposition for
quantifier elimination. Journal of Symbolic Computation, 12(3):299–328, 1991.

5. L. de Moura and G. Passmore. Computation in real closed infinitesimal and
transcendental extensions of the rationals. In Automated Deduction - CADE-
24, 24th International Conference on Automated Deduction, Lake Placid, New
York, June 9-14, 2013, Proceedings, 2013.

6. A. Dolzmann and T. Sturm. REDLOG: Computer algebra meets computer
logic. Acm Sigsam Bulletin, 31(2):2–9, 1997.

7. W. R. Inc. Mathematica, Version 12.0. Champaign, IL, 2019.

8. A. Mahboubi. Implementing the cylindrical algebraic decomposition within the
coq system. Mathematical Structures in Computer Science, 17(1):99–127, 2007.

9. F. Maric. Formal verification of modern SAT solvers. Archive of Formal Proofs,
July 2008.
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Appendix A

Benchmarks

Ex1 :∀x ∈ R : x ≥ −9 ∧ x < 10 ∧ x4 > 0 =⇒ x12 > 0.

Ex2 :∀x ∈ R : (x− 2)2 · (−x + 4) > 0 ∧ x2 · (x− 3)2 ≥ 0 ∧ x− 1 ≥ 0 ∧
− (x− 3)2 + 1 > 0 =⇒ (−(x− 11/12))3 · (x− 41/10)3 ≥ 0.

Ex3 :∃x ∈ R : x5 − x− 1 = 0 ∧ x12 + 425/23 · x11 − 228/23 · x10 − 2 · x8

− 896/23 · x7 − 394/23 · x6 + 456/23 · x5 + x4 + 471/23 · x3

+ 645/23 · x2 − 31/23 · x− 228/23 = 0 ∧ x3 + 22 · x2 − 31 ≥ 0 ∧
x22 − 234/567 · x20 − 419 · x10 + 1948 > 0.

Ex4 :∀x ∈ R : x > 0 ∨ −((61 · x)/9) + (5 · x2)/9 + (20 · x3)/9 > −4 ∨
1 ≤ x ∨ x ≤ 0 ∨ −((19 · x)/9) + (10 · x2)/9 ≤ −1 ∨ −((13 · x)/9)

+ (31 · x2)/45 + x3/18 ≤ −(7/10) ∨ −((61 · x)/9) + (5 · x2)/9

+ (20 · x3)/9 ≤ −4.

Ex5 :∀x ∈ R : −((5 · x)/6)− (10 · x2)/3− x3/3 > 0 ∨ (5 · x)/6

+ (10 · x2)/3 + x3/3 > 0 ∨ 1 ≤ x ∨ x ≤ 0 ∨ −((19 · x)/9)

+ (10 · x2)/9 ≤ −1 ∨ −((13 · x)/9) + (31 · x2)/45 + x3/18 ≤ −(7/10)

∨ −((101 · x)/30)− (64 · x2)/15 + (14 · x3)/15 ≤ −(11/5) ∨
− ((61 · x)/9) + (5 · x2)/9 + (20 · x3)/9 ≤ −4.
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Ex6 :∃x ∈ R : −((51 · x)/10)− (267 · x2)/2− (5409 · x3)/10− (4329 · x4)/5

− (2052 · x5)/5− 70 · x6 > −(7/10) ∧ −((10327 · x)/270)

− (71681 · x2)/270− (135853 · x3)/810− (57328 · x4)/135

+ (77743 · x5)/135 + (115774 · x6)/405 + (175 · x7)/18 + (49 · x8)/3

+ (49 · x9)/162 > −(721/90) ∧ −((2981 · x)/90)− (251 · x2)/6

− (24217 · x3)/270 + (2698 · x4)/135 + (18964 · x5)/135

− (595 · x6)/54 + (280 · x7)/27 + (7 · x8)/27 > −(206/45) ∧
− ((799 · x)/90) + (169 · x2)/18− (7933 · x3)/270 + (2672 · x4)/135

+ (329 · x5)/90 + (112 · x6)/27 + (7 · x7)/54 > −(103/90) ∧
− ((781 · x)/90)− (701 · x2)/6− (12217 · x3)/270 + (11323 · x4)/135

+ (7264 · x5)/135 + (935 · x6)/54 + (280 · x7)/27

+ (7 · x8)/27 > −(77/15) ∧ −((361 · x)/30)

− (811 · x2)/30 + (307 · x3)/45 + (2353 · x4)/90− (17 · x5)/6

+ (52 · x6)/9 + (2 · x7)/9 > −(44/15) ∧ −((33 · x)/10)− (2 · x2)/15

+ (41 · x3)/90 + (2 · x4)/15 + 2 · x5 + x6/9 > −(11/15) ∧
− ((1339 · x)/405)− (70225 · x2)/324− (11549 · x3)/270

+ (65378 · x4)/405 + (23483 · x5)/810 + (1109 · x6)/27

+ (1540 · x7)/81 + (49 · x8)/162 > −(721/60) ∧ −((10741 · x)/540)

− (2263 · x2)/45 + (5191 · x3)/180 + (7753 · x4)/270− (52 · x5)/9

+ (203 · x6)/18 + (7 · x7)/27 > −(103/15) ∧ −((1481 · x)/90)

− (811 · x2)/180 + (2113 · x3)/90− (493 · x4)/36 + (59 · x5)/9

+ (2 · x6)/9 > −(22/5) ∧ −((913 · x)/180) + (563 · x2)/90

− (257 · x3)/60 + (17 · x4)/9 + x5/9 > −(11/10) ∧
− ((91 · x)/18) + (10 · x2)/3− (5 · x3)/2 + (20 · x4)/9 > −2 ∧
− ((2 · x)/9)− (25 · x2)/18 + (10 · x3)/9 > −(1/2) ∧
− ((61 · x)/9) + (5 · x2)/9 + (20 · x3)/9 > −4 ∧ 1 > x ∧ x > 0 ∧
− ((19 · x)/9) + (10 · x2)/9 > −1 ∧ −((13 · x)/9) + (31 · x2)/45

+ x3/18 > −(7/10) ∧ −((253 · x)/90)− (53 · x2)/30 + (34 · x3)/15

+ x4/9 > −(11/5) ∧ −((97 · x)/90)− (2051 · x2)/90 + (86 · x3)/15

+ (82 · x4)/9 + (2 · x5)/9 > −(44/5) ∧ −((93307 · x)/1620)

− (298609 · x2)/810 + (30583 · x3)/270 + (264373 · x4)/810

− (289811 · x5)/1620 + (3113 · x6)/27 + (931 · x7)/81 + (8 · x8)/81 >

− (193/5) ∧ −((4741 · x)/540)− (9151 · x2)/90 + (6397 · x3)/60

− (2686 · x4)/135 + (28 · x5)/9 + (38 · x6)/3 + (7 · x7)/27 > −(77/10).
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Ex7 :∀x ∈ R : x < −1 ∨ 0 > x ∨ (41613 · x)/2 + 26169 · x2

+ (64405 · x3)/4 + 4983 · x4 + (7083 · x5)/10 + (1207 · x6)/35

+ x7/8 > −6435 ∨ 11821609800 · x + 22461058620 · x2 + 35 · x12 ≤
4171407240 · x3 + 45938678170 · x4 + 54212099480 · x5

+ 31842714428 · x6 + 10317027768 · x7 + 1758662439 · x8

+ 144537452 · x9 + 5263834 · x10 + 46204 · x11 ∨ x ≤ 0 ∨
9609600 · x + 45805760 · x2 + 92372280 · x3 + 102560612 · x4

+ 68338600 · x5 + 27930066 · x6 + 6857016 · x7 + 938908 · x8

+ 58568 · x9 + 753 · x10 ≤ 0 ∨ 788107320 · x + 1101329460 · x2

+ 10 · x11 ≤ 782617220 · x3 + 2625491260 · x4 + 2362290448 · x5

+ 1063536663 · x6 + 240283734 · x7 + 24397102 · x8 + 1061504 · x9

+ 9179 · x10 ∨ 90935460 · x + 81290790 · x2 + 5 · x10 ≤ 125595120 · x3

+ 237512625 · x4 + 161529144 · x5 + 51834563 · x6 + 6846880 · x7

+ 356071 · x8 + 2828 · x9 ∨ 640640 · x + 2735040 · x2 + 4837448 · x3

+ 4581220 · x4 + 2505504 · x5 + 794964 · x6 + 138652 · x7 + 11237 · x8

+ 207 · x9 ≤ 0 ∨ 5 · x8 ≤ 73920 · x + 238560 · x2 + 303324 · x3

+ 192458 · x4 + 63520 · x5 + 10261 · x6 + 608 · x7 ∨ 73920 · x
+ 278880 · x2 + 424284 · x3 + 332962 · x4 + 142928 · x5 + 32711 · x6

+ 3514 · x7 + 98 · x8 ≤ 0 ∨ x ≤ −1.

quads 2 :∀x ∈ R : x > 0 ∧ x < 2 =⇒ ((x− 0) · (x− 1) ≤ 0 ∨
(x− 1) · (x− 2) ≤ 0).

quads 3 :∀x ∈ R : x > 0 ∧ x < 3 =⇒ ((x− 0) · (x− 1) ≤ 0 ∨
(x− 1) · (x− 2) ≤ 0 ∨ (x− 2) · (x− 3) ≤ 0).

quads 4 :∀x ∈ R : x > 0 ∧ x < 4 =⇒ ((x− 0) · (x− 1) ≤ 0 ∨
(x− 1) · (x− 2) ≤ 0 ∨ (x− 2) · (x− 3) ≤ 0 ∨ (x− 3) · (x− 4) ≤ 0).

quads 5 :∀x ∈ R : x > 0 ∧ x < 5 =⇒ ((x− 0) · (x− 1) ≤ 0 ∨
(x− 1) · (x− 2) ≤ 0 ∨ (x− 2) · (x− 3) ≤ 0 ∨ (x− 3) · (x− 4) ≤ 0 ∨
(x− 4) · (x− 5) ≤ 0).

quads 6 :∀x ∈ R : x > 0 ∧ x < 6 =⇒ ((x− 0) · (x− 1) ≤ 0 ∨
(x− 1) · (x− 2) ≤ 0 ∨ (x− 2) · (x− 3) ≤ 0 ∨ (x− 3) · (x− 4) ≤ 0 ∨
(x− 4) · (x− 5) ≤ 0 ∨ (x− 5) · (x− 6) ≤ 0).
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quads 7 :∀x ∈ R : x > 0 ∧ x < 7 =⇒ ((x− 0) · (x− 1) ≤ 0 ∨
(x− 1) · (x− 2) ≤ 0 ∨ (x− 2) · (x− 3) ≤ 0 ∨ (x− 3) · (x− 4) ≤ 0 ∨
(x− 4) · (x− 5) ≤ 0 ∨ (x− 5) · (x− 6) ≤ 0 ∨ (x− 6) · (x− 7) ≤ 0).

quads 8 :∀x ∈ R : x > 0 ∧ x < 8 =⇒ ((x− 0) · (x− 1) ≤ 0 ∨
(x− 1) · (x− 2) ≤ 0 ∨ (x− 2) · (x− 3) ≤ 0 ∨ (x− 3) · (x− 4) ≤ 0 ∨
(x− 4) · (x− 5) ≤ 0 ∨ (x− 5) · (x− 6) ≤ 0 ∨ (x− 6) · (x− 7) ≤ 0 ∨
(x− 7) · (x− 8) ≤ 0).

quads 9 :∀x ∈ R : x > 0 ∧ x < 9 =⇒ ((x− 0) · (x− 1) ≤ 0 ∨
(x− 1) · (x− 2) ≤ 0 ∨ (x− 2) · (x− 3) ≤ 0 ∨ (x− 3) · (x− 4) ≤ 0 ∨
(x− 4) · (x− 5) ≤ 0 ∨ (x− 5) · (x− 6) ≤ 0 ∨ (x− 6) · (x− 7) ≤ 0 ∨
(x− 7) · (x− 8) ≤ 0 ∨ (x− 8) · (x− 9) ≤ 0).

quads 10 :∀x ∈ R : x > 0 ∧ x < 10 =⇒ ((x− 0) · (x− 1) ≤ 0 ∨
(x− 1) · (x− 2) ≤ 0 ∨ (x− 2) · (x− 3) ≤ 0 ∨ (x− 3) · (x− 4) ≤ 0 ∨
(x− 4) · (x− 5) ≤ 0 ∨ (x− 5) · (x− 6) ≤ 0 ∨ (x− 6) · (x− 7) ≤ 0 ∨
(x− 7) · (x− 8) ≤ 0 ∨ (x− 8) · (x− 9) ≤ 0 ∨ (x− 9) · (x− 10) ≤ 0).
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Appendix B

Adversarial DNF Examples

example ta ors 1 :∀x ∈ R : x9 + 12·x5 < 0 ∨ x2 ≥ 49 ∨ x3 + 5·x8 + 32·x6 + x > 1/2∨
x3 ≥ 8 ∨ x5 + 12·x2 + 32·x = 0 ∨ x > 0 ∨ x < 2.

example ta ors 2 :∀x ∈ R : x9 + 12·x5 < 0 ∨ x2 ≥ 49 ∨ x3 + 5·x8 + 32·x6 + x > 1/2∨
x3 ≥ 8 ∨ x5 + 12·x2 + 32·x = 0 ∨ x > 0.

example ta ors 3 :∀x ∈ R : x9 + 12·x5 < 0 ∨ x2 ≥ 49 ∨ x3 + 5·x8 + 32·x6 + x > 1/2∨
x3 ≥ 8 ∨ x = 0 ∨ x > 0 ∨ x < 2.

example ta ors 4 :∀x ∈ R : x < 2 ∨ x > 0 ∨ x = 0∨
x3 ≥ 8 ∨ x9 + 12·x5 < 0 ∨ x2 ≥ 49∨
x3 + 5·x8 + 32·x6 + x > 1/2.

example ta ors 5 :∀x ∈ R : x9 + 12·x5 < 0 ∨ x2 ≥ 49∨
x3 + 5·x8 + 32·x6 + x > 1/2∨
x3 ≥ 8 ∨ x5 + 12·x2 + 32·x = 0 ∨ x > 0.

example ta ors 6 :∀x ∈ R : x9 + 12·x5 < 0 ∨ x2 ≥ 49∨
x3 + 5·x8 + 32·x6 + x > 1/2 ∨ x3 ≥ 8 ∨ x = 0 ∨ x < 2.

example ta ors 7 :∀x ∈ R : x9 + 12·x5 < 0 ∨ x2 ≥ 49 ∨ x3 + 5·x8 + 32·x6 + x > 1/2∨
x3 ≥ 8 ∨ x = 0 ∨ x > 0.

example ors 8 :∀x ∈ R : x9 + 12·x5 < 0 ∨ x2 ≥ 49∨
x3 + 5·x8 + 32·x6 + x > 1/2 ∨ x3 ≥ 8 ∨ x = 0 ∨ (x > 0 ∧ x < 2).

example explode 1 :∀x ∈ R : (x < 0 ∧ x2 > 0) ∨ (x2 ≥ 49 ∧ x ≥ 7)∨
(x > 0 ∧ x + 2 > 2 ∧ x + 5 > 3) ∨ (x = 0 ∧ x2 = 0 ∧ x3 = 0).

example explode 2 :∀x ∈ R : (x2 6= 2 ∧ x3 6= 3 ∧ x = 0) ∨ (x < 0 ∧ x2 > 0)

∨ (x2 ≥ 49 ∧ x ≥ 7) ∨ (x > 0 ∧ x + 2 > 2 ∧ x + 5 > 3).
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example explode 4 :∃x ∈ R : (x < 0 ∨ x2 > 0) ∧ (x2 ≥ 49 ∨ x ≥ 10)∧
(x > 1/2 ∨ x + 2 > 300 ∨ x + 5 > 20)∧
(x3 ≥ 8 ∨ x > 1) ∧ (x < −20 ∨ x < −12 ∨ x3 6= 35) ∧ (x < 2 ∨ x > 0).

example explode 5 :∃x ∈ R : (x < 0 ∨ x2 > 0) ∧ (x2 ≥ 49 ∨ x ≥ 10)∧
(x > 1/2 ∨ x + 2 > 300 ∨ x + 5 > 20) ∧ (x3 ≥ 8 ∨ x > 1)∧
(x3 6= 35 ∨ x < −20 ∨ x < −12) ∧ (x > 0 ∨ x < 2).

example explode 6 :∃x ∈ R : x2 > 0 ∧ x2 ≥ 49 ∧ x + 2 > 300 ∧ x3 ≥ 8 ∧ x3 6= 35 ∧ x > 0.

example explode 7 :∀x ∈ R : (x < 0 ∧ x2 > 0) ∨ (x2 ≥ 49 ∧ x ≥ 7)∨
(x > 1/2 ∧ x + 2 > 5/2 ∧ x + 5 > 3)∨
(x3 ≥ 8 ∧ x > 1) ∨ (x 6= 5 ∧ x2 6= 25 ∧ x3 6= 125).

example slow :∃x ∈ R : (x5 − 4·x4 + 16·x3 − 2348·x2 + 10·x− 14 > 0∧
x12 − 4·x4 + 16·x3 − 2348·x2 + 10·x− 14 < 0)∨
(589·x7 − 25·x6 − 4·x4 + 16·x3 − 2348·x2 + 10·x + 14 < 0

∧ x12 − 4·x4 + 16·x3 − 2348·x2 + 10·x− 14 < 0 ∧ −35·x20 < −20).

example slow tarski :∃x ∈ R : 589·x7 − 25·x6 − 4·x4 + 16·x3 − 2348·x2 + 10·x + 14 < 0∧
x12 − 4·x4 + 16·x3 − 2348·x2 + 10·x− 14 < 0 ∧ −35·x20 < −20.

example high degree :¬∃x ∈ R : (x101 − 5·x100 + 10·x− 510)2 + (x11 − 11·x10 + 2·x3 + x)2 = 0.
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Appendix C

Adversarial Hutch Examples

example hutch slow 1 :¬∃x ∈ R : x5 − 11.5·x4 − 27.5·x3 + 223.5·x2 + 436.5·x− 270 = 0∧
x7 + 31.5·x6 − 258·x5 − 10007·x4 + 25881·x3 + 350312·x2 + 467640·x−
324000.125000001 = 0∧
x7 − 5·x6 − 8.75·x5 + 16·x4 + 4.75·x3 − 11·x2 + 3·x = 0 ∧ x 6= −3.

example hutch slightly slow 1 :¬∃x ∈ R : x4 + 10·x3 + 35·x2 + 50·x + 24 = 0∧
(x5 − 35·x4 + 485·x3 − 3325·x2 + 11274·x− 0.5 > 0∨
− 12·x3 − x5 < 0).

example high deg 1 :∃x ∈ R : x240 − 5·x8 + 32·x6 + x2 > 1/3 ∧ x < 1/2.

example high deg 2 :¬∃x ∈ R : x240 − 5·x8 + 32·x6 + x2 > 1/3 ∧ x2 = 0 ∧ x < −1/2.

example high deg 3 :∃x ∈ R : x350 − x90 + x80 − x60 + x50 − 10.5 < 9.5 ∧ x3 = 0.5.

example high deg 4 :∃x ∈ R : x350 − x90 + x80 − x60 + x50 − 10.5 < 9.5 ∧ x3 − x2 = −0.01.

example check : ∃x ∈ R : x350 − x90 + x80 − x60 + x50 − 10.5 < 9.5∧
x2 − 0.010207·x− 0.0101031 = 0.

example with equality : ∀x ∈ R : x2 6= 0 ∨ x8 − 12·x− 0.001 + x25 − 20·x12 = 0∨
(x2 < 5 ∧ x 6= 1.2617199999) ∨ −x2 + x4 + x6 − x > 0∨
x2 + x4 − x6 − x− 0.0001 < 0.

example with equalities :∀x ∈ R : x2 6= 0 ∨ ((x8 − 12·x− 0.001 + x25 − 20·x12 = 0∨
(x2 < 5 ∧ x 6= 1.2617199999) ∨ −x2 + x4 + x6 − x > 0∨
x2 + x4 − x6 − x− 0.0001 < 0) ∧ x90 − x80 + 0.0001 < 0.002).

example explode formula : ∃x ∈ R : (x < 0 ∨ x100 − x90 < 0)∧
(x2 ≥ 49 ∨ x ≥ 10 ∨ x3 − 9·x2 ≥ 0)∧
(x < 1/2 ∨ x102 + 5 > 20)∧
(x3 < 8 ∨ x4 + 1.8·x3 − 3.59·x2 − 3.96·x + 4.84 > 0)∧
(x3 6= 35 ∨ x < −20) ∧ (x < 2 ∨ −0.0001·x3 ≤ −0.0008).
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Appendix D

Tarski Examples with Preprocessing

example odd 1 :∃x ∈ R : x27 + 312·x2 + 513·x22 + 1200000 < 0.

example odd 2 :∃x ∈ R : x27 + 312·x2 + 513·x22 + 1200000 = 0.

example odd 3 :∃x ∈ R : x27 + 312·x26 − x25 + x24 − 30·x23 + 153·x22 + 513·x + 12 > 0.

example conj odd 1 :∃x ∈ R : x27 + 312·x2 + 513·x22 + 10 < 0∧
2·x27 − 312·x2 − 3000·x22 − 20 < 0 ∧ 12·x85 + 1250·x84 < 0.

example conj odd 2 :∃x ∈ R : −x27 + 312·x2 + 513·x22 + 10 > 0∧
− 12·x25 + 25·x2 ≥ 0 ∧ −x3 + 248325·x− 35 ≥ 0.

example conj odd 3 :∃x ∈ R : −x27 + 312·x2 + 513·x22 + 10 > 0∧
− 12·x25 + 25·x2 ≥ 0 ∧ x3 + 248325·x− 35 ≤ 0.

example conj odd 4 :∃x ∈ R : −x27 + 312·x2 + 513·x22 + 10 > 0∧
− 12·x25 + 25·x2 ≥ 0 ∧ x3 + 248325·x− 35 ≤ 0 ∧ 30·x25 − 40·x− 350 < 0.

example conj coeff 1 :∃x ∈ R : −x27 + 120 > 0 ∧ −x27 − x26 − x25 + 1 > 0∧
− 67·x67 − 100·x66 − 30·x65 + 30 > 0.

example conj coeff 2 :∃x ∈ R : −x27 + 120 > 0 ∧ −x27 − x26 − x25 + 1 > 0∧
− 67·x67 − 100·x66 − 30·x65 + 30 > 0 ∧ x + 12 > 0.

example conj lc 1 :∃x ∈ R : −x26 + 12·x5 ≤ 0 ∧ −50·x27 − 10·x26 + 400 < 0∧
− 2·x2 + 100·x + 50 ≤ 0 ∧ −x < 0.

example conj lc 2 :∃x ∈ R : x26 + 12·x5 ≥ 0 ∧ x27 − 10·x26 + 400 > 0∧
x5 − 100·x4 − 200·x3 − 100·x− 50 ≥ 0.
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example conj lc 3 :∃x ∈ R : x26 + 12·x5 ≥ 0 ∧ x27 − 10·x26 + 400 > 0∧
x5 − 100·x4 − 200·x3 − 100·x− 50 ≥ 0∧
− 213·x6 − 100·x4 − 200·x3 − 100·x− 50 < 0.

example conj lc 4 :∃x ∈ R : x26 + 12·x5 ≥ 0 ∧ x27 − 10·x26 + 400 > 0∧
x5 − 100·x4 − 200·x3 − 100·x− 50 ≥ 0∧
− 213·x6 − 100·x4 − 200·x3 − 100·x− 50 < 0 ∧ −2·x11 + 23·x2 ≤ 0.

example conj lc 5 :∃x ∈ R : x26 + 12·x5 ≥ 0 ∧ x27 − 10·x26 + 400 > 0∧
x5 − 100·x4 − 200·x3 − 100·x− 50 ≥ 0∧
− 213·x6 − 100·x4 − 200·x3 − 100·x− 50 < 0∧
− 2·x11 + 23·x2 ≤ 0 ∧ −2·x13 ≤ 0.

example high deg :∃x ∈ R : x120 − 5·x8 + 32·x6 + x2 > 1/3 ∧ x > 2.
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Appendix E

Examples for Parallelism

example slow :∀x ∈ R : (x < 0 ⇐⇒ x37 + 12·x3 − 57 < 0)∨
(x < 0 ⇐⇒ x9 + 12·x3 < 0 ∧ x2 > 0).

example slow tarski : ∃x ∈ R : x < 0 ∧ x37 + 12·x3 − 57 ≥ 0 ∧ x ≥ 0∧
x9 + 12·x3 ≥ 0.

example many roots 1 :¬∀x ∈ R : x25 − 10.28·x39 + 6.0697·x3 + 96.6786·x2−
125.32·x− 6.50689 > 0 =⇒
((x < 8.4000001 ∧ x > −1.510002) ∨ (x > −3.00001 ∧ x < 9)).

example many roots 1 tarski : ∃x ∈ R : x25 − 10.28·x39 + 6.0697·x3 + 96.6786·x2−
125.32·x− 6.50689 > 0 ∧ x ≤ −1.510002 ∧ x ≤ −3.00001.

example many roots 2 :∀x ∈ R : x25 − 10.28·x49 + 6.0697·x3 + 96.6786·x2−
125.32·x− 6.50689 = 0 =⇒
((x < 8.4000001 ∧ x > −1.510002) ∨ (x > −3.00001 ∧ x < 9)).

example explode :∀x ∈ R : (x < 0 ∧ x2 > 0) ∨ (x2 ≥ 49 ∧ x ≥ 7)∨
(x > 1/2 ∧ x + 2 > 5/2 ∧ x + 5 > 3)∨
(x3 ≥ 8 ∧ x > 1) ∨ (x = 0 ∧ x2 = 0 ∧ x3 = 0) ∨ (x > 0 ∧ x < 2)
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