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Abstract 
 

The Federal Aviation Administration (FAA) has been mandated by the 

Congressional funding bill of 2012 to open the National Airspace System 

(NAS) to Unmanned Aircraft Systems (UAS). With the growing use of 

unmanned systems, NASA has established a multi-center “UAS 

Integration in the NAS” Project, in collaboration with the FAA and 

industry, and is guiding its research efforts to look at and examine crucial 

safety concerns regarding the integration of UAS into the NAS. Key 

research efforts are addressing requirements for detect-and-avoid (DAA), 

self-separation (SS), and collision avoidance (CA) technologies. In one of 

a series of human-in-the-loop experiments, NASA Langley Research 

Center set up a study known as Collision Avoidance, Self-Separation, and 

Alerting Times (CASSAT). The first phase assessed active air traffic 

controller interactions with DAA systems and the second phase examined 

reactions to the DAA system and displays by UAS Pilots at a simulated 

ground control station (GCS). Analyses of the test results from Phase I 

and Phase II are presented in this paper. Results from the CASSAT study 

and previous human-in-the-loop experiments will play a crucial role in the 

FAA’s establishment of rules, regulations, and procedures to safely, 

efficiently, and effectively integrate UAS into the NAS. 

Introduction 
Unmanned Aircraft Systems (UAS) have become the forefront of aviation technology and will 

soon be commonplace in the National Airspace System (NAS) as a result of the Congressional 

funding bill of 2012, which mandated the Federal Aviation Administration (FAA) to open the NAS 

to UAS. In response to this effort, and with safety being the primary concern, the National 

Aeronautics and Space Administration (NASA) has established a “UAS Integration in the NAS” 

project that spans four NASA centers, in collaboration with the FAA and industry, to examine 

essential safety concerns regarding the integration of UAS in the NAS. Routine access to the NAS 

will require UAS to have new equipage, minimum operations standards, rules and regulations, and 

procedures.  Many supporting research efforts will be required to answer difficult questions 

concerning these standards, regulations, and procedures. Detect-and-avoid (DAA) 

implementations, self-separation (SS) procedures, and collision avoidance (CA) technologies to 

remain well-clear of other aircraft are top research priorities in assuring safe integration. Research 

efforts at NASA Langley Research Center are guiding the answer to those difficult questions to 

assure safe and efficient integration of UAS into the NAS. The present study focuses on DAA 

system acceptability to both air traffic controllers and pilots of UAS and is entitled Collision 

Avoidance, Self-Separation, and Alerting Times (CASSAT) human-in-the-loop experiment – a 

two-phase study and the third in a series of Controller Acceptability Studies (CAS). 

 

Many hurdles accompany the safe integration of UAS in the NAS, including the requirement to 

see-and-avoid other aircraft per Title 14 of the United States Code of Federal Regulations (CFR) 

14, Parts 91.111 and 91.113 and other applicable regulations and accepted practices. Pilots are 

required to follow right-of-way rules and remain well clear of other aircraft. In all airspace classes, 

pilots are expected to comply with these see-and-avoid requirements while also complying with 

Air Traffic Control (ATC) instructions and clearances or to negotiate changes to these instructions 
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and/or clearances as necessary. See-and-avoid capable pilots are generally expected to maneuver 

and communicate in predictable ways and in a manner that preserves the safety, orderliness, and 

efficiency of the Airspace system when operating in a positive control environment. UAS will 

likely be expected to operate in a similar manner, but with DAA replacing the see-and-avoid 

capability of a manned aircraft. The acceptable design space and capabilities for DAA systems in 

this environment are largely undefined. CAS-1 and CAS-2 controller-in-the-loop simulation 

experiments sought to illuminate the DAA design space for UAS operating in a positive control 

ATC environment. Reports on the CAS-1 study may be found in Chamberlain, Consiglio, 

Comstock, Ghatas, and Muñoz (2015), and Ghatas, Comstock, Consiglio, Chamberlain, and 

Hoffler (2015). Reports on the CAS-2 study may be found in both a NASA Technical 

Memorandum (TM), Comstock, Ghatas, Consiglio, Chamberlain, and Hoffler (2015), and in a 

conference proceedings paper, Comstock, Ghatas, Consiglio, Chamberlain, and Hoffler (2015). 

As an extension of CAS-1 and CAS-2, CASSAT focused on addressing minimum and maximum 

acceptable declaration times for projected well clear losses from the perspective of active air traffic 

controllers and of Instrument Flight Rules (IFR) rated pilots and explored alerting structures as 

DAA and CA functions are integrated. 

 

The DAA technology employed in the present study worked much like the algorithms in the Traffic 

Alert and Collision Avoidance System (TCAS), but with a Self-Separation Volume (SSV), also 

referred to as the well-clear volume, that was large enough to avoid (a) corrective Resolution 

Advisories (RAs) for TCAS equipped intruders; (b) safety concerns for controllers; and, (c) undue 

concern for proximate see-and-avoid pilots.  The present series of studies sought to determine 

operationally acceptable SSV sizes and look-ahead prediction times to inform system designers 

about required DAA surveillance range and accuracy.  Guidance from the DAA system was 

provided to the UAS pilot to maintain positions outside the well-clear boundary.  Details of the 

self-separation guidance shown to the UAS pilots to maintain well-clear may be found in the CAS-

1 paper (Chamberlain, et al., 2015).   

 

In addition to avoiding the issuance of TCAS RAs, the DAA system should also be designed to 

prevent the issuance of traffic alerts, avoid capturing the attention of, or otherwise precluding 

increases in workload, or prevent additional vectoring requirements for ATC and the UAS pilot.  

This work attempts to provide guidance for DAA standards for “well clear” (following 14 CFR 

§91.113) that consider these ATC and UAS pilot concerns. Further information may also be found 

in Consiglio et al. (2015). 
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Phase I – Air Traffic Controller Acceptability Study 

1. Phase I General Information 

1.1 Approach and Objectives 
The primary focus of the Phase I portion of the Collision Avoidance, Self-Separation, and Alerting 

Times (CASSAT) experiment was to address minimum and maximum acceptable declaration 

times for projected well clear losses from the perspective of active air traffic controllers. In this 

simulation study, controllers managed a mix of manned aircraft and DAA-equipped UAS traffic 

and provided ratings on acceptability of Horizontal Miss Distances (HMDs) (see section 2.7.1) 

when near traffic encounters occurred, acceptability of alerting times, and workload ratings during 

test sessions. 

 

The following research questions, which drove the experiment design, were proposed: 

A. Given a projected well clear loss, which of the three values evaluated is the minimum 

acceptable alert time? 

B. Given a projected well clear loss, which of the three values evaluated is the maximum 

acceptable alert time? 

C. Which, if any, of the alert times are too excessive leading to nuisance alerts for the air 

traffic controllers? 

D. Is there an interaction between Alerting Time and Horizontal Miss Distance? 

2. Phase I Method 

2.1 Subjects 
Eleven active Air Traffic Controllers, with no experience at the Dallas-Fort Worth (DFW) East-

side facility, were recruited to perform traffic separation tasks for the scenarios developed in the 

phase I study.  Each of the controllers was the sole controller and performed ATC tasks in the 

simulated DFW East-side environment over a span of three days. To maintain a near real-world 

environment and workload similar to that of actual DFW traffic, background traffic was controlled 

by pseudo-pilots at two separate pilot stations located in another room within the Air Traffic 

Operations Laboratory (ATOL, see Appendix A for the layout). UAS aircraft were controlled by 

two additional pseudo-pilots each having access to Ground Control Station (GCS) displays 

showing the self-separation guidance information in real-time; ground control stations were 

located in a third separate room within the ATOL. Pseudo-pilots in this study refer to pilots who 

were either part of the research team or were trained and hired by the research team to regularly 

participate in the CAS studies. ATC subjects were also in communications with other controllers 

at towers and adjacent airspace who handled handoffs to and from the subject controller’s airspace. 

These “other” controllers were trained and hired by the research team to regularly participate in 

the CAS studies. For a visual representation of the lab layout, please see Appendix A. 
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2.2 Procedure 
The traffic scenarios were designed so that there were 14 UAS traffic encounters per scenario 

session for six hours of evaluation, with each scenario session lasting approximately one hour. An 

initial questionnaire (Appendix B) and training occurred on day one. On day two, additional 

training runs were conducted followed by the first three hours of testing with the remaining three 

hours of testing on day three. UAS aircraft were controlled by two pseudo-pilots, each having 

access to GCS displays showing the DAA self-separation guidance information in real-time. 

Background traffic, to maintain the environment and workload close to that of actual DFW traffic, 

was controlled by pseudo-pilots at two additional pilot stations. The controller managed the 

manned and unmanned traffic which were all flying in the same airspace (DFW East side) and 

communicating with ATC by simulated Very High Frequency (VHF) radio communications. 

Communications with the UAS were handled the same as manned aircraft communications. The 

auditory communications with the UAS had a 400 millisecond (msec) delay each way to simulate 

terrestrial link and digital link delays.  Prior results from the CAS-2 study showed that 400 msec 

delays were not a problem for controllers and often not noticed.  UAS traffic encounters were 

between the UAS and Visual Flight Rules (VFR) traffic that was transmitting position and altitude 

information (transponding) but not in voice communications with ATC.  This meant that if a 

maneuver was required to maintain separation, the UAS would make the maneuver.  Additional 

IFR and VFR traffic present was traffic taking off, landing, or transitioning the airspace and 

communicating with the controller. Background traffic in the airspace consisted of about 50 

aircraft per hour which were a mix of IFR and VFR aircraft.  

 

2.3 Independent Variables 
To address the research questions noted above, multiple independent variable of interest were 

examined, which included: 

1. Horizontal Miss Distance (HMD). There was an adjustable parameter used in the DAA 

self-separation algorithms that yields a given HMD if the UAS pilot flies just at the edge 

of the navigation display guidance “bands.”  See Chamberlain et al. (2015) for details.  The 

UAS pilots who were part of the research team would fly at the edge of this guidance, 

yielding the desired HMD for each particular encounter distance, so that controllers could 

evaluate that distance. Simulator data yielded the actual Closest Point of Approach (CPA) 

during the encounter as a check to insure that the desired HMD was obtained. The 

controller observed the miss distance and geometry on the radar scope and evaluate the 

acceptability of that HMD. 

2. Alerting Time. The amount of lead time the guidance presented to the UAS pilot before 

loss of well clear. 

3. Encounter Geometry. The geometry between the aircraft in the encounter situation and the 

speed differentials between the encountering aircraft. The variable of interest for a minority 

of encounters (vertical encounters) was a “look-ahead” parameter of Time to Co-altitude 

(TCOA) that was used by the Detect and Avoid Alerting Logic for Unmanned Systems 

(DAIDALUS) algorithms. 

 

The parameters of these independent variables are shown in Table 1. Additionally, two variables 

that were manipulated in the earlier CAS-1 and CAS-2 studies were held constant for this study. 
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These were a fixed wind profile of 21 knots at 3000 feet and a fixed 400 msec voice 

communications delay with the UAS pilot. 

 

Table 1 - Independent Variables for Phase I 

Independent Values Number Values 

Horizontal Miss Distances 

(HMD) 
3 values 0.7, 1.0, 1.5  Nautical Miles (nmi) 

Alerting Time (used by 

DAIDALUS algorithms) 
3 values 30, 45, and 75 seconds 

Encounter Geometry 5 values 
Head-on, Overtake, Crossing, Vertical Overtake, 

Vertical Crossing 

Time to Co-altitude (TCOA) 

for vertical encounters (used 

by DAIDALUS algorithms) 

2 values 0 and 20 seconds 

 

The encounter geometries noted in Table 1, had the following specifications. Head-on: intruder 

(VFR manned) track at 180 degrees from ownship (UAS) +/- 15 degrees; Crossing: intruder track 

at 90 degrees from ownship +/- 15 degrees; Over-take: intruder track at 0 degrees from ownship 

+/- 15 degrees. The encounter speed differential for crossing geometries was +/- 60 knots. A single 

speed differential was used for head-on and over-take encounters. A sample of encounter 

geometries can be found in Appendix C. 

2.4 Scenarios 
The airspace modeled for this experiment was a portion of airspace delegated to the DFW Terminal 

Radar Approach Control Facility (TRACON) (D10), specifically, Sector DN/AR-7 South Flow.  

The majority of UAS traffic arrived or departed McKinney National (FAA airport identifier: 

KTKI), formerly known as Collin County Regional, and is approximately 28 nautical miles (nmi) 

Northeast of DFW. The scenarios were designed and situated in this airspace so as to enable 

various encounter geometries between the UAS and intruder aircraft while manned aircraft traffic 

was handled in order to achieve realistic levels of workload for the Controllers.  A chart of the area 

that was used in the initial training session on Day 1 is shown in Figure 1.   
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Figure 1. Chart used in initial training showing McKinney National (KTKI), upper right; DFW 

is in the lower left. 

 

The three HMD values (shown in Table 1) were varied within the test hours such that a given 

encounter might follow an encounter with a different HMD. The alert time remained constant for 

each test hour. For a given test hour, there were 14 encounters consisting of six crossing 

encounters, three head-on encounters, three overtake encounters, and two vertical encounters. Each 

subject controlled traffic for six test hours across two days for a total of 84 encounters. Nine 

hundred and twenty-four (924) encounters were made for a total of eleven (11) air traffic controller 

test subjects. 

 

2.5 Communications, Navigation, and Surveillance Assumptions 
The experiment assumed Communication, Navigation, and Surveillance (CNS) architectures and 

capabilities appropriate for current-day operations in the applicable airspace classes, and that these 

capabilities were available to all aircraft (manned and unmanned) in the simulation environment. 

UAS were communicating with ATC in a similar manner to the manned aircraft. The intruders 

were VFR traffic that were transponding but were not in voice communications with ATC. UAS 

command, control, and communication capability was assumed available between Unmanned 

Aircraft (UA) and their respective GCS. The UA was assumed to be capable of 

receiving/transmitting voice communications to and from ATC facilities and proximate “party-

line” aircraft via VHF radio in the same manner as manned aircraft in the same airspace and of 
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relaying these voice communications to/from the GCS pilot via one or more UA-GCS links. “Party 

line” refers to the open radio channel through which all aircraft in a given airspace communicate 

ATC; pilots are able to hear their own clearances in addition to those of the other aircraft. It was 

further assumed that, in addition to the relayed voice communications, the UA-GCS link(s) carried 

all command/control data between the UAS and GCS. The communications delays were for the 

voice communications channel only and no delay was introduced for UAS control or position 

reporting. This study assumed large size UAS (e.g., Predator or Global Hawk class). For Phase I, 

the UAS GCS pilots were confederate participants (not subjects). It was assumed that surveillance 

sensors applicable to support DAA were available and functioned without failures. 

 

2.6 Software, Hardware, and Facilities 
The displays for the UAS and manned aircraft control stations and the ATC displays were driven 

by modified versions of the Multi Aircraft Control System (MACS) software (Prevot, 2002), 

running on Windows-based computers. Modifications included incorporation of DAIDALUS 

algorithms to drive Navigation display “bands” which indicated a range of headings that would 

result in a loss of well clear with one or more traffic aircraft (Consiglio et al., 2015). The 

DAIDALUS algorithms are an update of the Stratway+ algorithms used in prior controller 

acceptability studies. These displays provided the information which guided UAS pilots to make 

requests for maneuvers in the encounter scenarios. Details of the appearance of the Navigation 

display “bands” can be found in the CAS-1 report (Chamberlain et. al., 2015). Additional 

information on the DAA algorithms may be found in Hagen, Butler, and Maddalon, 2011, and 

Muñoz et al. (2014).  

 

2.7 Dependent Variables 
 
2.7.1 Horizontal Miss Distance. After each traffic encounter, an ATC subject matter expert 

seated next to the Controller subject asked: “How was the spacing of that last encounter?” or “How 

acceptable was the miss distance in the previous encounter?” Subjects had a copy of the 

information shown in Table 2 available to them during the test sessions. They were briefed that 

fractional responses, such as 1.5 or 3.5, were completely acceptable. If time permitted, an 

explanation for the rating was asked and noted. 
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Table 2 - Rating scale definitions used for assessment of Horizontal Miss Distance (HMD). 

(Note that fractional values, e.g., 1.5, were acceptable) 

1 
Much too close; unsafe or potentially so; cause or 

potential cause for issuance of a traffic alert 

2 Somewhat close, some cause for concern 

3 
Neither unsafely close nor disruptively large, did not 

perceive the encounter to be an issue 

4 

Somewhat wide, a bit unexpected; might be disruptive 

or potentially disruptive in congested airspace and/or 

with high workload 

5 

Excessively wide, unexpected; disruptive or 

potentially disruptive in congested airspace and/or 

with high workload 

 

 

2.7.2 Alerting Times. In addition to the HMD rating after each encounter, a rating was requested 

on the timing of the maneuver request using the scale shown in Table 3. Subjects had a copy of 

the scale definitions available to them during the test sessions. 

 

Table 3 - Rating scale definitions used for assessment of Maneuver Request Timing. 

A 
Too Early: Request made too early; potentially 

disruptive if a maneuver not required 

A/B Between A and B 

B 
Timing Okay:  Not too early or too late; timing of 

request completely acceptable 

B/C Between B and C 

C 

Too Late: Request made too late; potentially 

disruptive to adjacent traffic if a large maneuver 

required 

 

 

2.7.3 Workload Assessment.  About every five minutes during each hour long test session, a 

workload rating was requested. This was done similar to the Air Traffic Workload Input Technique 

(ATWIT) method of workload assessment (Stein, 1985). A scale with numbers from 1 to 6 was 

presented at the top of the ATC display and the subject clicked on their selection (one of the 

numbers 1-6) when prompted (i.e., an aurally presented “Ding” – through headphones – occurred 

and the rating scale turned yellow). ATC test subjects were briefed on definitions of the 1 to 6 

scale during the training and also had the scale definitions available during the test sessions. For 

this study, the scale definitions were: 1 – Minimal mental effort required; 2 – Low mental effort 

required; 3 – Moderate mental effort required; 4 – High mental effort required; 5 – Maximal mental 

effort required; and, 6 – Intense mental effort required. Appendix D shows the scale definitions 

table handout that was provided to the subjects. 
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2.7.4 System Performance Metrics. Data concerning the encounter aircraft separation 

distances were recorded throughout the period of the encounter and included aircraft-to-aircraft 

separation distances and time to the Closest Point of Approach (CPA). Data was also obtained on 

the DAA band information presented to the GCS pilots when flying the traffic encounters. 

 

2.7.5 Post-run Questionnaires. After each one-hour test session, a questionnaire was 

administered to each subject to record ratings and comments on the preceding test session 

(Appendix E). Specific topics addressed included: 1 – Effects of communications delay; 2 – 

Realism of traffic density; 3 – Realism of workload; and, 4 – Realism of communications rate. 

3. Phase I Results 

3.1 Horizontal Miss Distance Ratings 
Traffic encounters between DAA equipped UAS and manned aircraft that were transmitting 

position and altitude information (transponding), but not in voice communications with ATC 

occurred 14 times in a test session hour. After each encounter, ratings using the scale shown in 

Table 2 were obtained. Figure 2 shows the controller ratings for Crossing Geometry Encounters 

for each of the Horizontal Miss Distances under test. The figure shows a greater frequency of “too 

close” or “somewhat close” responses for the 0.7 nmi HMD, and these “close” responses 

diminished somewhat for the 1.0 nmi HMD and were nearly non-existent for the 1.5 nmi HMD. 

For the 1.5 nmi HMD, there were an increased frequency of responses on the “wide” end of the 

rating scale. These results confirm for active controllers the results found in CAS-1 and CAS-2 

with retired controllers. 

 

Figure 3 shows similar results for the overtake encounters, where the DAA equipped UAS was 

overtaking the manned aircraft. Figure 4 show the rating results for the head-on geometry cases. 

Both of these encounter geometries show similar distributions to the crossing encounter geometry 

case described above. The highest frequency of “3” response, defined as “Neither unsafely close 

nor disruptively large, did not perceive the encounter to be an issue,” occurred at the 1.0 and 1.5 

nmi HMD values. These results were consistent with the prior CAS-1 and CAS-2 results, even 

with the change from 0.5 to 0.7 nmi for the smallest HMD. 
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Figure 2. Controller ratings for Crossing Geometry Encounters by Horizontal Miss Distance. 

 

 

 
Figure 3. Controller ratings for Overtake Geometry Encounters by Horizontal Miss Distance. 
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Figure 4. Controller ratings for Head-on Geometry Encounters by Horizontal Miss Distance. 

 

3.2 Alerting Times Ratings 
The alert time was a parameter set in the UAS DAA software and can be thought of as analogous 

to the beam of a flashlight at night which permits seeing things out to a certain distance. The alert 

time represented the DAA detection time before loss of well clear. The Alert Time values under 

test for Phase I of the study were 30, 45, and 75 seconds. The well clear boundary was defined for 

all cases as 30 seconds before the CPA, meaning that the total look ahead times were 30+30=60, 

30+45=75, and 30+75=105 seconds. The objective of the DAA system is to keep the aircraft 

outside the 30 second well clear boundary by having the addition of the alert time. 

 

The impact of Alert Time is indirect for the controller, as it would be evidenced by the timing of 

when the UAS pilot facing an encounter requiring maneuvering called to request a maneuver to 

avoid the traffic. Figure 5 shows the controller miss distance ratings across all HMD values for 

each of the Alert Times. Changes in alert times for the displays for the UAS pilots did not reflect 

any systematic difference in the HMD ratings by the controllers. 

 

Figure 6 shows the results of the Maneuver Request Timing Rating made by the controllers using 

the scale shown in Table 3. It should be noted that there were many cases in which the controller 

called the UAS traffic before the traffic made a call to ATC, so no timing rating was available in 

such cases. The percentage of cases in which the controller called the traffic first, or for other 

reasons a rating was not made, were 49.3% for the 30 second alert time, 51.5% for the 45 second 

alert time, and 36.0% for the 75 second alert time. For the cases where a rating was made, it is 

interesting to note that the most frequent response “B - Timing Okay” was made for all alert time 

values. It is also interesting to note that there were no “A – Too Early” responses for the 30 second 

alert time. Also worth noting is that there were very few “C – Too Late” ratings for any of the 

Alert Time values. 
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Figure 5. Controller miss distance ratings for Crossing Encounters by UAS alert times of 30, 45, 

and 75 seconds. 

 

 
Figure 6. Controller timing rating for Crossing Encounters by UAS alert times of 30, 45, and 75 

seconds. 
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4. Phase I Discussion 
The research questions for Phase I will be repeated here so that results related to each question can 

be explored. 

 

A. Given a projected well clear loss, which of the three values evaluated is the minimum 

acceptable alert time? 

B. Given a projected well clear loss, which of the three values evaluated is the maximum 

acceptable alert time? 

C. Which, if any, of the alert times are too excessive leading to nuisance alerts for the air traffic 

controllers? 

 

As previously noted, the values of alert time in the DAA algorithm have only an indirect effect on 

the air traffic controller as the timing may be reflected in when the UAS pilot calls ATC to request 

a maneuver. Examination of controller ratings on the Maneuver Request Timing scale showed no 

consistent effects by the Alert Time. As noted in Section 3.2, there were many cases in which the 

controller notified the UAS pilot of the traffic before the pilot made a call to the controller. That 

provides a rationale for why, in Figure 6, there were no ratings at the “too late” end of the scale as 

the controller would have already called those aircraft. On the opposite end of Figure 6, the 

magnitude of ratings for “A = Too Early” roughly align with the magnitude of the alert times. 

However, the most frequent responses for all alert times was “B = Timing Okay.” Therefore, of 

the times tested, none appear to consistently fall into the “A = Too Early” category, which may 

lead to a nuisance alert. 

 

D. Is there an interaction between Alerting Time and Horizontal Miss Distance? 

 

From the ATC rating data, there appears to be no interaction between the Alerting Time and the 

HMD. The separation distances are directly observable by the controller, and as noted, the alerting 

time is only noticeable indirectly through a call from a UAS when a traffic maneuver is needed. 
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Phase II – Pilot Acceptability Study 

5. Phase II General Information 

5.1 Approach and Objectives 
The primary focus of the Phase II portion of the CASSAT experiment was to address minimum 

and maximum acceptable declaration times for projected well clear losses from the perspective of 

Instrument Flight Rules (IFR) rated pilots with and without experience controlling large size UAS, 

such as a Predator or Global Hawk. In this phase of CASSAT, pilots controlled simulated DAA-

equipped UA and provided ratings on acceptability of distance-threshold (DTHR) values when 

near traffic encounters occurred, acceptability of alerting times, workload ratings during test 

conditions, and feedback regarding the Alerting Structure.  The DTHR value is the distance that 

the DAIDALUS algorithms use to provide band guidance to the pilot, and was experimentally 

varied in the study.  DTHR is used in this phase of the study to avoid confusion with the use of 

HMD as a fixed minimum value that constitutes a well clear loss, which may not be same as the 

DTHR value. 

 

The following research questions, which drove the experiment design, were proposed: 

A. Given a projected well clear loss, which of the three values evaluated is the minimum 

acceptable alert time? 

B. Given a projected well clear loss, which of the three values evaluated is the minimum 

acceptable alert time? 

C. Which, if any, of the alert times are too excessive leading to nuisance alerts for the UA 

pilots? 

D. Which, if any, of the alert times are too short providing insufficient time to query/negotiate 

maneuvers with ATC and execute said maneuvers before triggering TCAS RAs? 

E. Is there an interaction between Alerting Time and DTHR? 

F. Which of two candidate alerting structures, with different use of auditory cues and icon 

colors, is preferred by the UA pilot? 

G. In Vertical Encounters, does prediction of time to co-altitude (TCOA) affect acceptability 

of the Alert? 

6. Phase II Method 

6.1 Subjects 
Twelve pilots from across the country were recruited to perform traffic separation tasks for the 

scenarios developed. All twelve of the pilots were instrument rated; six of the twelve pilots had 

experience flying manned aircraft exclusively while the remaining six had additional experience 

flying unmanned aircraft, such as Predators and Global Hawks. Pilots participated for two days 

each, and each data collection session consisted of two subject pilots independently flying a 

simulated UAS in the DFW East-side airspace. On Day 1, subjects were trained on the DFW 

airspace, the DAA concept, the simulation environment, and were given an initial questionnaire 

(Appendix F). All subjects had experience communicating with ATC and were current in their 

pilot ratings and certifications. 
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6.2 Procedure 
Similar to Phase I, the traffic scenarios were designed so that there were 14 UAS traffic encounters 

per hour, and there were a total of six test hour sets split between the two data collection days. 

Traffic scenarios were split between two ground control stations so that each pilot saw seven UAS 

traffic encounters during each test hour for a total of 42 encounters per pilot, and for all twelve 

subjects, this meant a set of data with 504 encounters. Both ground control stations displayed the 

DAA self-separation guidance information in real-time along with one of two alerting structures. 

Additionally, GCS-1 was set to a TCOA of 0 and GCS-2 was set to a TCOA value of 20 – these 

TCOA values remained constant throughout the experiment. The pilots switched seats on Day 2 

to allow exposure to each TCOA value. This TCOA value parameter only affected traffic 

encounters approaching vertically (from above or below). The two alerting structures, which 

contained different levels of aural and visual cues to alert pilots of oncoming and/or nearby traffic, 

were presented to the pilots subjects (see section 6.3 Independent Variables). One alerting structure 

was shown to the pilots on Day 1, and on Day 2, the pilots saw the other alerting structure. The 

order of presentation of alerting structures was counterbalanced across the six pairs of test subjects. 

To maintain a real-world environment and a workload similar to that of actual DFW traffic, the 

background traffic was controlled by two pseudo-pilots at two additional pilot stations located in 

a separate simulation room. The DFW East-side controller, with whom the test subjects were 

communicating, was part of the research team. 

 

The pilot subjects began control of a given UAS with the aircraft already in flight by a handoff 

process, and when the aircraft completed the traffic encounter, control was handed off to a research 

team pilot. Each subject controlled one aircraft at a time and as a result, there was sufficient time 

between controlling each aircraft so that post-encounter questions could be answered and rating 

scales completed. Two pilots using separate GCS stations were run at the same time. To increase 

workload and add some degree of distraction from just looking for traffic encounters to appear, 

members of the research team asked the pilot subjects questions that required each pilot to conduct 

a map search task while flying the UAS in the scenarios. Secondary task questions (Appendix G) 

were tailored to each test session so that the questions matched the map area in which the 

encounters were scripted to occur. 

 

As in Phase I, the voice communications channel had a 400msec two-way delay between the 

simulated UAS and ATC. Additional manned and unmanned traffic were also on the ATC 

frequency and could also be visible on the map display if within range, which was selectable by 

the pilots. This level of traffic meant that at times there could be delay in communicating with 

ATC due to voice traffic congestion. Similar to Phase I, traffic encounters were between the UAS 

and VFR traffic that was transmitting position and altitude information (transponding), but not in 

voice communications with ATC, thus all maneuvering, if required, was performed by the UAS.   

 

6.3 Independent Variables 
The independent variables evaluated in Phase II are shown in Table 4. There were some differences 

from those used in Phase I (shown back in Table 1). The first difference was in the case of head-

on geometry encounters in which a subset of runs were done at a 2.0 nmi DTHR (not tested in 

phase I) in addition to 0.7, 1.0, and 1.5 nmi.  Secondly, the alert times used in the DAA algorithms 

were changed to be 40, 60, and 75 seconds, in response to new information under discussion at 

standards organizations with regard to minimal alert times. The third difference was in the case of 
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the alerting structure that was displayed on the GCS station to the pilot subjects. Subjects were 

shown two separate alerting structures - Alerting Structure “A” (Figure 7) and Alerting Structure 

“B” (Figure 8). On Day 1, both subjects would see one alerting structure and the other alerting 

structure on Day 2; the order in which the alerting structures were presented changed for each pair 

of pilot subjects. Further information on the alerting structures may be found in Consiglio et al. 

(2015). 

 

Table 4 - Independent Variables for Phase II 

Independent Values Number Values 

Horizontal Miss Distances (DTHR) 3 or 4 values 

0.7, 1.0, and 1.5 nmi for Crossings and 

Overtakes 

 1.0, 1.5, and 2.0 nmi for Head-on cases 

Alerting Time (used by DAIDALUS 

algorithms) 
3 values 40, 60, and 75 seconds 

Encounter Geometry 5 values 
Head-on, Overtake, Crossing, Vertical 

Overtake, Vertical Crossing 

Time to Co-altitude (TCOA) for 

vertical encounters (used by 

DAIDALUS algorithms) 

2 values 0 and 20 seconds 

Alerting Structure 2 types “A” and “B” 

 

 

 

Figure 7. Alerting Structure "A"         Figure 8. Alerting Structure "B" 
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6.4 Scenarios 
Scenarios in Phase II were similar to those used in Phase I (refer to Section 2.4), with the 

exception of data collection being focused on the GCS pilots as opposed to the ATC controller.  

A member of the research team sat near each test subject to ask the secondary task (map search) 

questions and to ask encounter rating questions. 

 

6.5 Communications, Navigation, and Surveillance Assumptions 
Communications, navigation, and surveillance assumptions remained constant between Phase I 

and Phase II of the experiment. Please refer to Section 2.5 of this paper for more information. 

 

6.6 Software, Hardware, and Facilities 
Software, Hardware, and Facilities remained the same between both phases of the experiment. 

Please refer to Section 2.6 of this paper for more information. 

 

6.7 Dependent Variables 
 

6.7.1 Horizontal Miss Distance (DTHR).  Horizontal miss distances, or DTHR, were measured 

in the same manner as in Phase I. After each traffic encounter, a researcher, who was seated next 

to the pilot subjects, would ask “How was the spacing of that last encounter?” or “How acceptable 

was the miss distance in the previous encounter?” Subjects had a copy of the information shown 

in Table 2 available to them during the test sessions. They were briefed that fractional responses, 

such as 1.5 or 3.5, were acceptable. If time permitted, an explanation for the rating was asked and 

noted. Additionally, horizontal miss distances were also rated via an end-of-encounter 

questionnaire that was filled out by each subject after each encounter on a 7-point scale (0 = Much 

Too Close, 4 = About Right, 7 = Much Too Wide). Responses were scored on a 120 point range, 

since marks could occur between the 7 “tic” marks. 

 

6.7.2 Alert Times Ratings.  Ratings for alert times were requested on the timing of the maneuver 

request using the scale shown in Table 3. Subjects had a copy of the scale definitions available to 

them during the test sessions. The same researcher who asked questions regarding the horizontal 

miss distance would also ask the pilot subject “How was the alert time of that last encounter?” or 

“How acceptable was that alert time?” 

 

6.7.3 Workload Assessment.  A workload assessment was requested after each encounter and 

was filled out by each subject via the end-of-encounter questionnaire on a 7-point scale (0 = Low, 

7 = High). Responses were scored on a 120 point range, since marks could occur between the 7 

“tic” marks. Forty-two assessments of workload were collected from each subject. 

 

6.7.4 System Performance Metrics.  Data concerning the encounter aircraft separation 

distances were recorded throughout the period of the encounter and included aircraft-to-aircraft 

separation distances and time to the CPA. Data was also obtained on the DAA band information 

presented to the GCS pilots when flying the traffic encounters. 
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6.7.5 Secondary Task. In an attempt to increase workload and add some degree of distraction 

from just looking for traffic encounters to appear, members of the research team added a secondary 

task to the design of the experiment. Research team members asked questions that required the 

pilots to conduct a map search task while flying the UAS in the scenarios. 

 

6.7.6 Post-encounter Questionnaires. After each encounter in each one-hour test session, a 

questionnaire was administered to record ratings and comments on the preceding encounter 

(Appendix H). Specific topics addressed included: 1 – Timing of the alert; 2 – Horizontal miss 

distance; 3 –Navigation scale (scaled used on display to view surrounding area); 4 – Alert level 

information (volume of alert); 5 – False alerts; 6 – Missed alerts; 7 – Workload; and, 8 – Time 

Pressure. 

 

6.7.7 Post-run Questionnaires. After each one-hour test session, a questionnaire was 

administered to record ratings and comments on the preceding test session (Appendix I). Specific 

topics addressed included: 1 – Effects of communications delay; 2 – Realism of traffic density; 

3 – Realism of workload; 4 – Realism of communications rate; 5 – Usability of display; and 6 – 

Ease of use of alerting structure. 

7. Phase II Results 

7.1 Horizontal Miss Distance Ratings 
At the end of each traffic encounter, the GCS pilots were asked to rate the DTHR on the scale 

presented in Table 2. Figure 9 shows the distribution of their responses for the Crossing geometry 

encounters. This figure shows that the majority of the responses were a “3” on the scale indicating 

miss distances that were not too close or too wide. For the 0.7 nmi DTHR, over 30% of the ratings 

were on the “too close” or “somewhat close” end of the scale. For the 1.0 nmi DTHR encounters, 

ratings on this end of the scale dropped to about 20%, and for the 1.5 nmi DTHR dropped to about 

15%. 

 

Figure 10 shows the DTHR ratings for the overtake conditions. Here, about a third of the ratings 

for the 0.7 nmi DTHR were “somewhat close.” This dropped to about 20% for the 1.0 nmi distance, 

and to zero for the 1.5 nmi distance, where there were almost 20% of ratings on the “somewhat 

wide” end of the scale. 

 

Figure 11 shows similar ratings for the head-on encounters. For head-on encounters, an additional 

DTHR of 2.0 nmi was also tested. Over 70% of the ratings for DTHR of 0.7 and 1.0 nmi, and over 

80% for DTHR of 1.5 and 2.0 nmi indicated that the encounter separation distance was neither 

“too close” or “too wide” in the head-on geometry cases. 
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Figure 9. UAS Pilot ratings for Crossing Geometry Encounters with DTHR of 0.7, 1.0, and 1.5 

nmi (216 encounters). 

 

 

 
Figure 10. UAS Pilot ratings for Overtake Geometry Encounters with DTHR of 0.7, 1.0, and 1.5 

nmi (108 encounters). 

 

1.0
1.5

2.0
2.5

3.0
3.5

4.0
4.5

5.0

0

10

20

30

40

50

60

70

80

0.7 1.0 1.5

R
at

in
g 

(1
=T

o
o

 C
lo

se
, 

3
=O

ka
y,

 
5

=T
o

o
 W

id
e)

P
er

ce
n

ta
ge

DTHR (nmi)

1.0
1.5

2.0
2.5

3.0
3.5

4.0
4.5

5.0

0

10

20

30

40

50

60

70

80

90

0.7 1.0 1.5

R
at

in
g 

(1
=T

o
o

 C
lo

se
, 

3
=O

ka
y,

 
5

=T
o

o
 W

id
e)

P
er

ce
n

ta
ge

DTHR (nmi)



 

20 

 

 
Figure 11. UAS Pilot ratings for Head-on Geometry Encounters with DTHR of 1.0, 1.5, and 2.0 

nmi (108 encounters). 

 

7.2 Alert Times Ratings 
Three alert times values were tested during the study. These values are parameters in the 

DAIDALUS algorithm in software running on the GCS and were counterbalanced across the six 

one-hour test sessions, such that all three alert time values were presented on Day 1 and again on 

Day 2 of the study. Figure 12 shows the alert time ratings for the crossing geometry encounters.  

The majority of responses were in the “Timing Okay” category, with no systematic changes 

attributable to the alert time manipulation. 

 

Figure 13 shows the alert time ratings for the overtake geometry encounters where the majority of 

the rating responses were in the “Timing Okay” category, but with about 20% of responses in the 

“Between B and C” (between Okay and Too Late) category. This reflects the overtake geometry 

in which the smaller speed differential between the two aircraft result in getting closer in distance 

before the time-based algorithm indicates that it is time for a maneuver. As in the crossing case, 

no systematic differences are noted across the three alert times tested. 

 

Figure 14 shows the alert time ratings for the head-on case. As in the other alert time geometries, 

the majority (>75%) of ratings were in the “Timing Okay” category, regardless of the alert time 

value.  
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Figure 12. UAS Pilot ratings for Crossing Geometry Encounters with Alert Times of 40, 60, and 

75 seconds (A = Too Early, B = Timing Okay, C = Too Late). 

 

 

 
Figure 13. UAS Pilot ratings for Overtake Geometry Encounters with Alert Times of 40, 60, and 

75 seconds (A = Too Early, B = Timing Okay, C = Too Late). 
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Figure 14. UAS Pilot ratings for Head-on Geometry Encounters for Alert Times of 40, 60, and 

75 seconds (A = Too Early, B = Timing Okay, C = Too Late). 

 

7.3 Distance from Well Clear Boundary 
Figure 15 shows for the crossing geometry cases the mean distance outside the DTHR at the CPA 

that the UAS pilots flew the simulated aircraft in the traffic encounters.  The set of data comprising 

this figure included 216 encounters, of which only four had losses of well clear (negative distances, 

CPA< DTHR). The alert time did not appear to have any systematic effect on the CPA distances. 

 

Figure 16 shows similar information for the overtake encounters. In this geometry, there were 108 

encounters and six well clear losses. While no systematic differences occurred as a result of the 

alert time, the overall distances outside the DTHR for all DTHR values are smaller for the overtake 

geometry case than for either the crossing or head-on geometries. This may reflect the slower 

overtake speed differential leading to more time to fly closer to the DTHR boundary. 

 

Figure 17 shows similar information for the head-on geometry case, where there were a total of 

108 encounters and four losses of well clear. As in the crossing and overtake geometries, there 

were no systematic effects due to the alert time variable. 
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Figure 15. Mean distance from DTHR at CPA for Crossing Geometry Encounters for 40, 60, 

and 75 second Alert Times (216 encounters, 4 losses of well clear). Error bars denote standard 

deviations. 

 

 

 
Figure 16. Mean distance from DTHR at CPA for Overtake Geometry Encounters for 40, 60, 

and 75 second Alert Times (108 encounters, 6 losses of well clear). Error bars denote standard 

deviations. 
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Figure 17. Mean distance from DTHR at CPA for Head-on Geometry Encounters for 40, 60, and 

75 second Alert Times (108 encounters, 4 losses of well clear). Error bars denote standard 

deviations. 
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loss of well clear on the basis of separation distance. These cases make up only 3.37% of the 

encounters and occurred for all DTHR values, and all encounter geometries. 
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Table 5 - Cases where CPA was less than DTHR (Occurred in 17 of 504 encounters {3.37%}) 

Geometry 
HMD 

(nmi) 

CPA 

(nmi) 

Difference 

(nmi) 

Duration for 

CPA<DTHR (sec) 
Comment 

Head-On 1.5 1.47 -0.03 5.5 
Turned once, did not 

turn further 

Head-On 1.5 1.39 -0.11 12.5 
Started maneuver too 

late 

Head-On 1.5 1.39 -0.11 10 
Turned once, did not 

turn further 

Head-On 2.0 1.4 -0.60 25.1 
Overcorrection on 

return-to-course 

Crossing 0.7 0.1 -0.6 15.2 

Late acquisition of 

aircraft, no time to 

maneuver 

Crossing 0.7 0.64 -0.06 6 

Likely autopilot-

induced “drift” 

towards intruder 

Crossing 1.5 1.49 -0.01 5 
Overcorrection on 

return-to-course 

Crossing 1.5 1.09 -0.41 21 

Pilot turned right, 

then left; insufficient 

time to recover well 

clear 

Crossing 1.5 1.47 -0.03 8 
Overcorrection on 

return-to-course 

Overtake 1.0 0.94 -0.06 15.9 
Overcorrection on 

return-to-course 

Overtake 1.5 1.48 -0.02 18.7 
Overcorrection on 

return-to-course 

Overtake 1.5 1.49 -0.01 3.5 
Overcorrection on 

return-to-course 

Overtake 1.5 1.29 -0.21 42.1 
Overcorrection on 

return-to-course 

Overtake 1.5 1.38 -0.12 38.7 
Overcorrection on 

return-to-course 

Overtake 1.5 1.4 -0.10 10.5 
Overcorrection on 

return-to-course 

Vertical-

Crossing 
0.7 0.35 -0.35 9.5 

Started maneuver too 

late 

Vertical-

Overtake 
0.7 0.01 -0.69 17.1 

Pilot did not deviate 

laterally before Loss 

of Well Clear 
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7.4 Vertical Encounters 
Data were collected from a total of 72 vertical encounters in the study, meaning that each GCS 

pilot saw one in each hour, or six over the two days of testing. All vertical encounters had an 

DTHR of 0.7 nmi. Figure 18 shows the distance ratings by the GCS pilots and illustrates that a 

sizable proportion of these were considered “Too close” or “Somewhat close.” The alert time 

variable appeared to have no systematic effect on the distance ratings. 

 

As would be expected from the distance ratings noted above, the GCS pilot alert time ratings, 

shown in Figure 19, show a shift in responses towards the “Too Late” end of the scale compared 

to other encounter geometries. In Figure 19, the number of responses to the right of “Timing Ok,” 

or in the “Too Late” direction were 62.5% for 40 seconds alert time, 50.0% for the 60 seconds 

alert time, and 33.3% for the 75 seconds alert time. This makes intuitive sense as additional alert 

time should diminish “Too Late” responses.  

 

Figure 20 shows the distance from DTHR at the CPA for each of the alert times. There were only 

two losses of well clear among the 72 vertical encounters. This figure also shows a breakdown in 

the data set for a parameter in the DAA algorithm referred to as Time-to-Co-altitude (TCOA), a 

parameter considered useful in adding alert time to vertical encounters. In Figure 18, no difference 

appears attributable to the TCOA parameter, at least for the CPA data. Also worth noting in this 

figure is that 40 and 60 seconds alert time encounters were vertical overtakes, while 75 seconds 

alert time encounters were of the vertical crossing geometry. In agreement with non-vertical 

encounters presented earlier, the crossing geometry encounters have larger mean CPA - DTHR 

differences. 

 

 

 
Figure 18. UAS Pilot Distance ratings for Vertical Geometry Encounters for each Alert Time. 

All DTHR values were 0.7 for Vertical Geometry Encounters. 
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Figure 19. UAS Pilot Alert Time ratings for Vertical Geometry Encounters 

(A = Too Early, B = Timing Okay, C = Too Late). 
 

 

 
Figure 20. Mean distance from DTHR at CPA for Vertical Geometry Encounters for 40, 60, and 

75 second Alert Times and Time to Co-Altitude values of 0 and 20 seconds (72 encounters, 2 

losses of well clear). Encounters at 40 and 60 seconds are Vertical Overtake Encounters, 75 

second encounters are Vertical Crossing Encounters. Error bars denote standard deviations. 
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7.5 Alerting Structures 
At the end of every one-hour test session, each GCS pilot was asked to answer a series of fifteen 

questions on an end-of-hour questionnaire. Seven of the fifteen questions focused on the alerting 

structure that was presented to the pilot subjects on the GCS display and consisted of the following 

questions: 

 

1. Rate the ease of the display. 

2. Rate the ease of the alerting structure. 

3. Was the display user-friendly? 

4. Did the display provide the necessary information to predict a potential loss of separation? 

5. Rate your trust of the bands on the display? 

6. Were the number of alert icons during the past hour acceptable? 

7. Were the number of aural alerts during the past hour acceptable? 

 

Based on responses provided on the end-of-hour questionnaires and during the de-brief session on 

Day 2 of testing, Alerting Structure “A” was the preferred schema. Pilot subjects commented that 

Alerting Structure “A” was user-friendly and intuitive. Additionally, although some subjects also 

found Alerting Structure “B” to be user-friendly, the majority of them did not find having two 

“red” icons to be appealing. Multiple pilot subjects commented that simpler is better in terms of 

alerting structures. 

8. Phase II Discussion 
The research questions involved: 

 

A. Given a projected well clear loss, which of the three values evaluated is the minimum 

acceptable alert time? 

B. Given a projected well clear loss, which of the three values evaluated is the maximum 

acceptable alert time? 

C. Which, if any, of the alert times are too excessive leading to nuisance alerts for the UA pilots? 

D. Which, if any, of the alert times are too short providing insufficient time to query/negotiate 

maneuvers with ATC and execute said maneuvers before triggering TCAS RAs? 

E. Is there an interaction between Alerting Time and DTHR? 

F. Which of two alerting structures, with different use of auditory cues and icon colors, is 

preferred by the UA pilots? 

G. In Vertical Encounters, does prediction of time to co-altitude (TCOA) affect acceptability of 

the Alert? 

 

For Phase II, three Alert Times were tested in the DAIDALUS algorithm, and these included 40, 

60, and 75 seconds. The majority of ratings by the UAS pilots were in the “B = Timing Okay” 

category regardless of the Alert Time. As illustrated by Figures 12 to 14, very few rating responses 

occurred at either the “A = Too Early” or “C = Too Late” ends of the scale, regardless of the 

encounter geometry. These results suggest little change in perception of an acceptable alert time 

across the range of Alert Times evaluated. Based on these results, none of the values tested can be 

considered excessive, leading to a nuisance alert for the UAS pilot. Likewise, very few “Too Late” 

responses indicate that even the shortest Alert Time tested still provided enough time to negotiate 
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a maneuver. No consistent interaction between Alerting Time and DTHR was shown in the rating 

or CPA data sets for the lateral maneuver encounters. 

 

For the Vertical encounters, a different picture emerges from the Alert Time ratings. Here, a higher 

percentage of rating responses were found on the “C = Too Late” end of the scale than for lateral 

maneuvers. Despite this, the greatest frequency still occurred at the “B = Timing Okay” category, 

as in the lateral maneuver conditions. The CPA-DTHR difference was not affected by the TCOA 

value (see Figure 20).   

 

Of the total of 504 encounters for Phase II, only 17 (3.37%) had distance-based (CPA-DTHR) 

losses of well clear. These well clear losses occurred over all DTHR values and for all of the 

geometries under test. The most frequent cause was starting the traffic separation maneuver too 

late. Guidance for these maneuvers was guided by the navigation display bands. 

9. Conclusion 
This study evaluated a candidate DAA system with adjustable parameters from the perspective of 

both ATC and the UAS pilot. In Phase I, building on Controller Acceptability Studies (CAS) 1 

and 2, ATC acceptability ratings for DTHR of 0.7, 1.0 and 1.5 nmi showed the highest 

acceptability ratings for the 1.0 and 1.5 nmi DTHR values. DTHR ratings by active controllers 

were consistent with ratings by retired controllers in the earlier CAS-1 and CAS-2 studies. An 

Alert Time variable in the DAA software driving the UAS GCS displays did not show much effect 

on the ATC side in the ratings of the UAS maneuver request time ratings by ATC. 

 

In Phase II, UAS pilots requested maneuvers, or in some cases ATC contacted them first, and 

followed the DAA guidance at the GCS, and rated each of the DTHR values more frequently as 

“Neither too close nor too large” indicating less sensitivity to the distance than found on the part 

of the ATC controllers. For the crossing traffic condition and the 0.7 nmi DTHR, over 30% of the 

ratings were on the “too close” or “somewhat close” end of the scale. For the 1.0 nmi DTHR 

encounters, ratings on this end of the scale dropped to about 20%, and for the 1.5 nmi DTHR 

dropped to about 15%. Alert Timing rating results showed no consistent interaction with DTHR 

or with CPA for the lateral maneuvers. Specifics of the vertical maneuvers were discussed in an 

earlier section. 

 

The present study assumed perfect surveillance systems without positional error or uncertainty. 

Future studies, designed to inform the designers of DAA systems and critical parameters within 

them, need to incorporate sensor uncertainty and sensor effective range as variables of interest. 

Also of interest are simulation of failure modes, and especially from the ATC perspective, the 

maneuvers that a UAS would perform in a high traffic density environment if the communications 

or control link is lost. The aim of this work is to provide useful information for guiding future rules 

and regulations applicable to flying UAS in the NAS. 
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Appendix A – Air Traffic Operations Laboratory (ATOL) CASSAT Layout 
 

 
 

Key: 

 “Brief B/BB” Room – Briefing Room used in both Phase I and Phase II for initial 

briefing  

 

 “UAS/UA” Room – UAS in the NAS Lab (housed the pseudo-pilot background traffic 

stations and the pseudo-controller stations) 

 

 “ATC B/AB” Room – Air Traffic Controller Room (housed the ATC subject control 

station in Phase I and the ATC subject matter expert (part of the research team) in Phase 

II) 

 

 “Pilot Room B/PB” Room – UAS Pilot Room (housed the Ground Control Stations for 

flying the UAS aircraft; Phase I had pseudo-pilots from the research team flying the UAS 

aircraft and Phase II had the pilot subjects) 
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Appendix B – Phase I Initial Questionnaire 
 

Background experience 

1.  Please indicate the length of your overall ATC experience (years, e.g. 15)  ___________ 

2. Length of experience at current ATC Facility (years) _______________________ 

3. Which other airports have you worked? (3 most recent)  __________________________ 

4. Do you have experience in ATC operations with Unmanned Aircraft Systems (UAS) in 

U. S. airspace? 

(Yes / No) ________    Military/ Overseas? (Yes / No) __________ 

UAS with Certificates of Authorizations (COA)? (Yes / No) _______________________ 

 

5. Do you have experience as a pilot?  (Yes / No) _____ If yes, what types of aircraft and 

how many hours. 

________________________________________________________________________ 

6. Do you have experience with RC (Radio Controlled) aircraft? (Yes / No)   ______ If yes, 

what types of RC aircraft. 

________________________________________________________________________ 

7. Comments on any of the above questions:  

________________________________________________________________________

________________________________________________________________________ 

 

Questions about today 

1. Do you have normal or corrected to normal vision? (Yes / No) __________ 

2. Do you have normal or aided to normal hearing? (Yes / No) __________ 

3. Do you feel adequately rested today?  (Yes/No) __________ 

4. Approximately how many hours of sleep did you get last night? __________ 

5. Did you travel from another time zone to get here? (Yes / No) __________ If yes, which 

time zone? __________ 

6. Comments on any of the above questions:  

________________________________________________________________________ 
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Appendix C – Encounter Geometries from Phase I and Phase II 

Head-on Encounter Geometry 
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Crossing Encounter Geometry 
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Overtake Encounter Geometry 
 

 

 

Vertical-Crossing Encounter Geometry 
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Vertical-Overtake Encounter Geometry 
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Appendix D – Phase I Workload Ratings by Test Hour 
 

Workload assessment:  A modified version of the ATWIT (Air Traffic Workload Input 

Technique) method of Workload assessment was used.  When an aurally presented (through 

headphones) “Ding” occurred and the 1-6 rating scale turned yellow the subject responded by 

clicking on the desired number.  ATC Test subjects were briefed on definitions of the 1 to 6 scale 

during training and also had the scale definitions available during the test sessions. 

 

Table D- 1. Workload Rating Scale Definitions 

1 Minimal mental effort required 

2 Low mental effort required 

3 Moderate mental effort required 

4 High mental effort required 

5 Maximal mental effort required 

6 Intense mental effort required 
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Appendix E – Phase I End of Hour Questionnaire 
 

1. Rate the extent that communications delays with the Unmanned Aircraft affected your 

communications overall with BOTH manned and unmanned aircraft. 

__ Communications Delay was not a factor during this hour (no noticeable delay) 

__ Communications Delay, although noticed, did not impact traffic handling 

__ Communications Delay had some effect on communications (more repeats, “step-ons”) 

__ Communications Delay had a major impact on communications with many more repeats 

required 

__ Communications Delay had such a large effect that the amount of delay observed would 

not be acceptable in real world operations 

 

Comments:  

______________________________________________________________________________

______________________________________________________________________________

______________________________________________________________________________ 

 

2. Rate the extent that communications delays with the Unmanned Aircraft affected your 

communications with ONLY the unmanned aircraft. 

__ Communications Delay was not a factor during this hour (no noticeable delay) 

__ Communications Delay, although noticed, did not impact traffic handling 

__ Communications Delay had some effect on communications (more repeats, “step-ons”) 

__ Communications Delay had a major impact on communications with many more repeats 

required 

__ Communications Delay had such a large effect that the amount of delay observed would 

not be acceptable in real world operations 

 

Comments:  

______________________________________________________________________________

______________________________________________________________________________

______________________________________________________________________________ 

 

3.  Rate the realism of the Traffic Density of the simulation during the preceding hour.  (Check 

one line below) 

__ Traffic Density was significantly higher than in real operations 

__ Traffic Density was somewhat higher than real world operations 

__ Traffic Density was about the same as would be found in real world operations 

__ Traffic Density was somewhat lower than real world operations 

__ Traffic Density was significantly lower than in real world operations 

 

Comments:  

______________________________________________________________________________

______________________________________________________________________________ 
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4.  Rate the realism of the Workload of the simulation during the preceding hour.  (Check one 

line below) 

__ Workload was significantly higher than in real operations 

__ Workload was somewhat higher than real world operations 

__ Workload was about the same as would be found in real world operations 

__ Workload was somewhat lower than real world operations 

__ Workload was significantly lower than in real world operations 

 

Comments:  

______________________________________________________________________________

______________________________________________________________________________

______________________________________________________________________________ 

 

5.  Rate the realism of the Communications Rate during the preceding hour of the simulation 

environment.   (Check one line below) 

__ Communications Rate was significantly higher than in real operations 

__ Communications Rate was somewhat higher than real world operations 

__ Communications Rate was about the same as would be found in real world operations 

__ Communications Rate was somewhat lower than real world operations 

__ Communications Rate was significantly lower than in real world operations 

 

Comments:  

______________________________________________________________________________

______________________________________________________________________________

______________________________________________________________________________ 

 

6.  Were there encounters that had aircraft too close to be acceptable in the operational 

environment? 

__ Yes 

__ No 

 

Comments:  

______________________________________________________________________________

______________________________________________________________________________

______________________________________________________________________________ 

 

7.  Were there encounters that had aircraft too far apart to be acceptable in the operational 

environment? 

__ Yes 

__ No 

 

Comments:  

______________________________________________________________________________

______________________________________________________________________________

______________________________________________________________________________ 
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Appendix F – Phase II Initial Questionnaire 
 

Background experience 
1.  What pilot certifications do you have? (Choose all that apply) 

 
A) Private 
B) Commercial 
C) Airline Transport Pilot (ATP) 
D) None 
E) Other (please list below): 

___________________________________________________________________________
___________________________________________________________________________ 

 
2. What pilot ratings/certifications do you have? (Choose all that apply) 

 
A) SEL 
B) MEL 
C) Instrument 
D) CFI 
E) CFII 
F) Helicopter 
G) None 
H) Other (please list below): 

___________________________________________________________________________
___________________________________________________________________________ 

 
3. Top four aircraft (manned and/or unmanned) you have flown (by hours) 

 
1. _____________________, __________ Hours 
2. _____________________, __________ Hours 
3. _____________________, __________ Hours 
4. _____________________, __________ Hours 

 
4. How many manned flight hours and years of experience do you have? 

__________ Flight Hours 
__________ Years 

 
5. How many unmanned flight hours and years of experience do you have? 

__________ Flight Hours 
__________ Years 

 
6. Do you have experience flying in a mixed operations environment (unmanned aircraft and 

general/commercial aircraft in same airspace)? 
 
A) Yes 
B) No 
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7. Have you had any experience operating an unmanned aircraft (or remotely controlled aircraft) 
before today? 
 
A) Yes 
B) No 

 

If yes, in a simulation environment (comparable to this experiment) or in real life? And 

how many hours/years? 
A) Simulation Environment:     B) Real Life: 

_____________ Hours          ______________ Hours 

_____________ Years          ______________ Years 
 

8. What types of UAS have you flown? 
______________________________________________________________________________
______________________________________________________________________________
______________________________________________________________________________ 
 

9. What type of training, specific to UAS, did you receive prior to today? 
______________________________________________________________________________
______________________________________________________________________________
______________________________________________________________________________ 

 

10. Comments on any of the above questions:  

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________ 

Questions about today 

1. Do you have normal or corrected to normal vision? (Yes / No) __________ 

2. Do you have normal or aided to normal hearing? (Yes / No) __________ 

3. Do you feel adequately rested today?  (Yes/No) __________ 

4. Approximately how many hours of sleep did you get last night? __________ 

5. Did you travel from another time zone to get here? (Yes / No) __________ 

a. If yes, which time zone? __________ 
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Appendix G – Phase II Secondary Task Questions for Sessions 1-3 
 

  
Secondary Task Questions for Set 1 
  

GCS Call Sign Time Cutoff Question Correct? 
Conflict 

Declaration 
RA 

Action Timing HMD 

1 
Radix51 201 246 

What is the identifer 

for Bishops Landing?  
T80 

          

1 
Radix51 261 306 

What airport is closest 
to the town of 
Prosper?  Aero 

Country 

          

2 JIFFY43 438 483 What airport has the 
identifier T33?  Rives 

          

2 
JIFFY43 498 543 

What is the identifier 
of the Mesquite 
Airport?  HQZ 

          

1 
Flyby18 674 719 

What airport has the 
Identifier T31?  Aero 
Country 

          

1 
Flyby18 734 779 

How long is the Four 
Winds runway?  

2600ft 

          

2 
Noble61 945 990 

What airport is closest 
to the town of Van 
Alstyne 

          

2 
Noble61 1005 1050 

How long is the 

Square Air runway?  
1800ft 

          

1 
Diode11 1158 1203 

What airport has the 
Identifier TKI?  
Mckinney 

          

1 
Diode11 1218 1263 

What airport is closest 
to the town of 
Melissa?  Square Air 

          

2 
Float28 1408 1453 

How long is the 
Tilghman runway?  

3100ft 

          

2 
Float28 1468 1513 

Which airport is 
closest to the town of 
Celina? 

          

1 Rondo19 1634 1679 How long is the Casey 

runway? 

          

1 Rondo19 1694 1739 How long is the Stone 
runway? 

          

2 
Hack60 1862 1907 

What airport is closest 
to the town of 
Westminster?  Flying 
T 

          

2 
Hack60 1922 1967 

What airport has the 
identifier of 9S1?  
Four Winds 
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Secondary Task Questions for Set 1 
  

GCS Call Sign Time Cutoff Question Correct? 
Conflict 

Declaration 
RA 

Action Timing HMD 

1 
Lock58 2113 2158 

What airport is closest 
to the town of 
Farmersville?  Short 
Stop 

          

1 
Lock58 2173 2218 

What is the ASOS 

frequency for 
Mckinney? 

          

2 
Harpo65 2362 2407 

Which airport is 
closest to the town of 
Allen?  McKinney 

          

2 
Harpo65 2422 2467 

What is the identifier 
of the Majors Airport?  
GVT 

          

1 
Jazz35 2577 2622 

Which airport is 
closest to the town of 

Anna?  Stone 

          

1 
Jazz35 2637 2682 

How long is the 
AeroCountry runway?  
2900ft 

          

2 
Kilts49 2839 2884 

How long is the 
Denton runway?  
7000ft 

          

2 Kilts49 2899 2944 What is the Identifier 
of Ironhead?  T58 

          

1 
Shark54 3075 3120 

What is the name of 

the lake next to 

McKinney?  Lake 
Lavon 

          

1 
Shark54 3135 3180 

Which airport is 
closest to the town 
of Valdasta?  Stone 

          

2 
Flux40 3293 3338 

What airport is closest 

to Pilot Point?  
Venable 

          

2 
Flux40 3353 3398 

What airport has the 
identifier T80?  
Bishops Landing 
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Secondary Task Questions Set2 
  

GCS Call Sign Time Cutoff Question Correct? 
Conflict 

Declaration 
RA 

Action Timing HMD 

1 Cozy51 240 285 Approximately How far is the 
town of Valdasta to Collin 
County?  10 miles 

          

1 Cozy51 300 345 What airport is closest to the 
town of Celeste?  Card 

          

2 Mojo43 431 476 What is the runway length of 
Rockwall?  3400ft 

          

2 Mojo43 491 536 What kind of operations are 
likely at Caddo Mills?  

Skydiving 

          

1 Check18 686 731 What airport has the identifier 
6XB?  Viltures Row 

          

1 Check18 746 791 What lake is is next to the 
town of Tioga?  Ray Roberts 
Lake 

          

2 Quark61 920 965 What is the runway length of 
Garland/DFW*  It’s a heliport 

          

2 Quark61 988 1033 What is AirPark East's 
identifier?  1F7 

          

1 Ibex11 1169 1214 How long is the the Rives 
runway?  2800ft 

          

1 Ibex11 1229 1274 What airport has the identifier 
T48? Phillips 

          

2 Rover28 

1382 1427 

What airport is closest to the 
town of Whitewright?  Rowland 
or TriCounty 

          

2 Rover28 1442 1487 What town is closest to the 
airport of Tilghman?  Van 
Alstyne 

          

1 Rivet19 1660 1705 What airport is closest to the 
town of Merit?  Short Stop 

          

1 Rivet19 1720 1765 How long is the Lavon North 
Runway?  2600ft 

          

2 Mist60 1820 1865 Name 3 towns near highway 
30.  Royse City, Greenville, 
Rockwall 

          

2 Mist60 1880 1925 Approximately how far is the 
Rockwall Airport to McKinney? 
~12miles 

          

1 Kitty58 2118 2163 What is the identifier of 
Vultures Row?  6XB 

          

1 Kitty58 2178 2223 How long is the Lane Runway?  
3300ft 
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Secondary Task Questions Set2 
  

GCS Call Sign Time Cutoff Question Correct? 
Conflict 

Declaration 
RA 

Action Timing HMD 

2 Expo65 2348 2393 Which airport is closest to the 
town of Nevada?  Caddo Mills 

          

2 Expo65 2408 2453 How long is the Collin Co 
Regional Runway?  7000ft 

          

1 Saber35 2560 2605 Which airport is closest to the 
town of Aubrey?  Venable 

          

1 Saber35 2652 2697 Is the Lane airport runway 
paved?  No 

          

2 Gizmo49 2800 2845 What kind of operations are 

likely at the Tri County 
airport?  Skydiving 

          

2 Gizmo49 2860 2905 Which airport is closest to the 
town of Collinsville?  Sudden 
Stop 

          

1 Glaze54 3052 3097 Which airport is closest to the 
town of Howe?  TX Aerosport 

          

1 Glaze54 3112 3157 How long is the Bridges 
runway?  3200ft 

          

2 Lazy40 3310 3355 How many runways does 
Caddo Mills have?  2 

          

2 Lazy40 3364 3409 Which airport is closest to the 

town of Garland?  
Rockwall/Garland DFW 
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Secondary Task Questions Set3 
  

GCS Call Sign Time Cutoff Question Correct? 
Conflict 

Declaration 
RA 

Action Timing HMD 

1 
Amaze51 211 256 

Which airport is closest to 
the town of Valley View? The 
88 

          

1 
Amaze51 271 316 

What is the elevation of the 
tallest tower currently 

visible on your map?  2726ft 

          

2 
Maven43 446 491 Is the Bishop runway 

paved? Yes 

          

2 
Maven43 506 551 How long is the Flying T 

runway?  3500ft 

          

1 
Exam18 686 731 Is the Bishop's Landing 

runway paved?  No 

          

1 
Exam18 746 791 

Which airport is closest to 
the town of Dorchester?  TX 
Aerosport 

          

2 
Quail61 925 970 How long is the Short Stop 

runway?  1500ft 

          

2 
Quail61 985 1030 

What lake is next to the 
town of Farmersville?  Lake 
Lavon 

          

1 
Raven11 1320 1365 Is the Rocky runway paved?  

No 

          

1 
Raven11 1380 1425 Which airport is closest to 

the town of Kingston?  Card 

          

2 
Lever28 1403 1448 Is the Lakeview runway 

paved?  Yes 

          

2 
Lever28 1463 1508 How long is the Mustang 

runway?  1800ft 

          

1 
Kayak19 1633 1678 How long is the Hennington 

Runway?  2800ft 

          

1 
Kayak19 1693 1738 

Which airport is closest to 
the town of Randolph?  
Grove Hill 

          

2 
Dojo60 1859 1904 Which airport has the 

Identifier 1F7?  AirPark East 

          

2 
Dojo60 1919 1964 How long is the Flying M 

Runway?  1900ft 

          

1 
Ajax58 2132 2177 Is the Pleasure runway 

paved?  No 

          

1 
Ajax58 2192 2237 How long is the Horseshoe 

Lake Runway?  2700ft 

          

2 
Muzle65 2490 2535 Which airport is closest to 

the town of Wylie?  Rockwall 
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Secondary Task Questions Set3 
  

GCS Call Sign Time Cutoff Question Correct? 
Conflict 

Declaration 
RA 

Action Timing HMD 

2 
Muzle65 2550 2595 

What airport is closest to the 
town of Caddo Mills?  Caddo 
Mills 

          

1 
Nole35 2589 2634 Which airport is closest to 

the town of Tioga?  Bridges 

          

1 
Nole35 2649 2694 How long is the Robotek 

runway?  1200ft 

          

2 
Jumpy49 2842 2887 

Which airport is closest to 
the town of Lebanon?  

Airpark Dallas 

          

2 
Jumpy49 2902 2947 

How long is the Wesse 
International runway?  
5300ft 

          

1 
Ninja54 3070 3115 

Which airport is closest ot 
the town of Wolfe City?  
Hennington 

          

1 
Ninja54 3130 3175 How long is the Card 

Runway? 

          

2 
Index40 3283 3328 Which airport has the 

identifier T14?  Taylor 

          

2 
Index40 3343 3388 Is the Skinner runway 

paved?  No 
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Appendix H – Phase II Post-encounter Questionnaire 
 

 
1.  Timing of the Alert (mark anywhere on the line) 

|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|  
Alerted too soon About Right Alerted too late  
 

2. Horizontal Miss Distance Guidance (mark anywhere on the line) 

|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|  
Much too close                                              About Right                                                           Much too wide  

 

3. Navigation Scale selected for most for this encounter (nmi)  

__ 2.5 __ 5 __ 10 __ 20 __ 40 __ 80  
 

4. Alert Level Information        

|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|  
“too quiet”                                                     About Right                                                                 “too chatty”  
few levels/changes                                                                                                                     too many level /changes  
 

5. See Any False Alerts? (___ ) Yes (___) No  Comment: ______________________________  

 

6. See Any Missed Alerts? (___ ) Yes (___) No Comment: _____________________________  

 

7. Workload  

 
|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|  
Low (0)                                                                      50                                                                        High (100)  
 

8. Time Pressure 

 
|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|  
Low (0)                                                                      50                                                                        High (100)  

 

Comments: _________________________________________________________________  

___________________________________________________________________________ 

___________________________________________________________________________ 
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Appendix I – Phase II Post-run Questionnaire 
 

1. Rate the extent that communications delays with Air Traffic Control (ATC) affected your 

communications overall. 

__ Communications Delay was not a factor during this hour (no noticeable delay) 

__ Communications Delay, although noticed, did not impact traffic handling 

__ Communications Delay had some effect on communications (more repeats, “step-ons”) 

__ Communications Delay had a major impact on communications with many more repeats 

required 

__ Communications Delay had such a large effect that the amount of delay observed would 

not be acceptable in real world operations 

 

Comments:  

______________________________________________________________________________ 

______________________________________________________________________________ 

 

2.  Rate the realism of the Workload of the simulation during the preceding hour.  (Check one 

line below) 

__ Workload was significantly higher than in real operations 

__ Workload was somewhat higher than real world operations 

__ Workload was about the same as would be found in real world operations 

__ Workload was somewhat lower than real world operations 

__ Workload was significantly lower than in real world operations 

 

Comments:  

______________________________________________________________________________

______________________________________________________________________________ 

 

3.  Were there encounters that had aircraft too close to be acceptable in the operational 

environment? 

__ Yes 

__ No 

 

Comments:  

______________________________________________________________________________

______________________________________________________________________________ 

 

4.  Were there encounters that had aircraft too far apart to be acceptable in the operational 

environment? 

__ Yes 

__ No 

 

Comments:  

______________________________________________________________________________ 
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5. Rate your ability to maintain separation from other aircraft. 
 
|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|  
Too Easy                               Moderate      Too 

Difficult 

 

Comments: 

______________________________________________________________________________

______________________________________________________________________________ 

 

6. Rate your ability to minimize deviations from the planned path. 

 
|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|  
Too Easy                               Moderate      Too 

Difficult 

 

Comments: 

______________________________________________________________________________

______________________________________________________________________________ 

 

7. Rate your ability to handle all pilot tasks (including the secondary tasks). 
 
|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|  
Too Easy                               Moderate      Too 

Difficult 

 

Comments: 

______________________________________________________________________________

______________________________________________________________________________ 

 

8. Rate the complexity of the encounters during the past hour. 

 
|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|  
Not Complicated                               Moderate      Too 

Complicated 

 

Comments: 

______________________________________________________________________________

______________________________________________________________________________ 

 

9. Rate the ease of use of the display. 

 
|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|  
Too Easy                               Moderate      Too 

Difficult 



 

52 

 

 

Comments: 

______________________________________________________________________________

______________________________________________________________________________ 

 

10. Rate the ease of use of the alerting structure. 

 
|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|  
Too Easy                               Moderate      Too 

Difficult 

 

Comments: 

______________________________________________________________________________

______________________________________________________________________________ 

 

11. Was the display user-friendly? 

 

              __ Yes 

  __ No 

 

Comments: 

______________________________________________________________________________

______________________________________________________________________________ 

 

12. Did the display provide the necessary information to predict a potential loss of separation? 

 

             __ Yes 

  __ No 

 

Comments: 

______________________________________________________________________________

______________________________________________________________________________ 

 

 

 

13. Rate your trust of the bands on the display. 

 
 |-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|  
Low (0)          50      High (100) 
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Comments: 

______________________________________________________________________________

______________________________________________________________________________ 

 

14. Were the number of alert icons during the past hour acceptable? 

 

             __ Yes 

  __ No 

 

Comments: 

______________________________________________________________________________

______________________________________________________________________________ 

 

15. Were the number of aural alerts during the past hour acceptable? 

 

              __ Yes 

  __ No 

 

Comments: 

______________________________________________________________________________

______________________________________________________________________________ 

 

 

 


