

November 2006

NASA/TM-2006-214518

An Abstract Plan Preparation Language

Ricky W. Butler
Langley Research Center, Hampton, Virginia

César A. Muñoz
National Institute of Aerospace, Hampton, Virginia

The NASA STI Program Office . . . in Profile

Since its founding, NASA has been dedicated to the
advancement of aeronautics and space science. The
NASA Scientific and Technical Information (STI)
Program Office plays a key part in helping NASA
maintain this important role.

The NASA STI Program Office is operated by
Langley Research Center, the lead center for NASA’s
scientific and technical information. The NASA STI
Program Office provides access to the NASA STI
Database, the largest collection of aeronautical and
space science STI in the world. The Program Office is
also NASA’s institutional mechanism for
disseminating the results of its research and
development activities. These results are published by
NASA in the NASA STI Report Series, which
includes the following report types:

• TECHNICAL PUBLICATION. Reports of

completed research or a major significant phase
of research that present the results of NASA
programs and include extensive data or
theoretical analysis. Includes compilations of
significant scientific and technical data and
information deemed to be of continuing
reference value. NASA counterpart of peer-
reviewed formal professional papers, but having
less stringent limitations on manuscript length
and extent of graphic presentations.

• TECHNICAL MEMORANDUM. Scientific

and technical findings that are preliminary or of
specialized interest, e.g., quick release reports,
working papers, and bibliographies that contain
minimal annotation. Does not contain extensive
analysis.

• CONTRACTOR REPORT. Scientific and

technical findings by NASA-sponsored
contractors and grantees.

• CONFERENCE PUBLICATION. Collected

papers from scientific and technical
conferences, symposia, seminars, or other
meetings sponsored or co-sponsored by NASA.

• SPECIAL PUBLICATION. Scientific,

technical, or historical information from NASA
programs, projects, and missions, often
concerned with subjects having substantial
public interest.

• TECHNICAL TRANSLATION. English-

language translations of foreign scientific and
technical material pertinent to NASA’s mission.

Specialized services that complement the STI
Program Office’s diverse offerings include creating
custom thesauri, building customized databases,
organizing and publishing research results ... even
providing videos.

For more information about the NASA STI Program
Office, see the following:

• Access the NASA STI Program Home Page at

http://www.sti.nasa.gov

• E-mail your question via the Internet to

help@sti.nasa.gov

• Fax your question to the NASA STI Help Desk

at (301) 621-0134

• Phone the NASA STI Help Desk at

(301) 621-0390

• Write to:

 NASA STI Help Desk
 NASA Center for AeroSpace Information
 7121 Standard Drive
 Hanover, MD 21076-1320

National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23681-2199

November 2006

NASA/TM-2006-214518

An Abstract Plan Preparation Language

Ricky W. Butler
Langley Research Center, Hampton, Virginia

César A. Muñoz
National Institute of Aerospace, Hampton, Virginia

Available from:

NASA Center for AeroSpace Information (CASI) National Technical Information Service (NTIS)
7121 Standard Drive 5285 Port Royal Road
Hanover, MD 21076-1320 Springfield, VA 22161-2171
(301) 621-0390 (703) 605-6000

An Abstract Plan Preparation Language

Rick W. Butler∗ César A. Muñoz†

November 21, 2006

Abstract

This paper presents a new planning language that is more abstract than most
existing planning languages such as the Planning Domain Definition Language (PDDL)
or the New Domain Description Language (NDDL). The goal of this language is to
simplify the formal analysis and specification of planning problems that are intended
for safety-critical applications such as power management or automated rendezvous
in future manned spacecraft. The new language has been named the Abstract Plan
Preparation Language (APPL). A translator from APPL to NDDL has been developed
in support of the Spacecraft Autonomy for Vehicles and Habitats Project (SAVH)
sponsored by the Explorations Technology Development Program, which is seeking
to mature autonomy technology for application to the new Crew Exploration Vehicle
(CEV) that will replace the Space Shuttle.

Acronyms
AI Artificial Intelligence
APPL Abstract Plan Preparation Language
CEV Crew Exploration Vehicle
NDDL New Domain Description Language
PDDL Planning Domain Definition Language
SAL Symbolic Analysis Laboratory
SAVH Spacecraft Autonomy for Vehicles and Habitats

∗r.w.butler@larc.nasa.gov. NASA Langley Research Center.
†munoz@nianet.org. National Institute of Aerospace.

1

Contents

1 Introduction 3

2 A Short Description of the Simple Rover Problem 4
2.1 Simple Rover Types . 4
2.2 Simple Rover Timelines . 5
2.3 The Rover . 8
2.4 Initial State and Goals . 9

3 The Abstract Plan Preparation Language 9
3.1 Types . 9
3.2 Expressions . 11
3.3 Timelines . 12
3.4 Constraints Section . 15
3.5 Initial States and Goals . 15

4 The APPL to NDDL Translator 16
4.1 Features of the Translator . 16

5 Conclusion and Future Work 18
5.1 Intervals as Timelines . 18
5.2 General Initial State Specifications . 19

A Simple Rover Problem 21
A.1 APPL Code . 21
A.2 Translator-Generated NDDL Code . 23

B Banana-Monkey Problem 30
B.1 APPL Code . 31
B.2 Translator-Generated NDDL Code . 33

2

1 Introduction

The New Domain Description Language (NDDL) is a powerful planning language devel-
oped at NASA Ames [2] which has evolved from PDDL[3] It is the planning language of
the Extensible Universal Remote Operations Architecture (EUROPA 2). EUROPA 2 is a
component-based software library for constructing highly-tailored, domain-specific planners.
The authors write “Our goal in developing EUROPA 2 is to provide a fast, flexible, ex-
tensible, reusable technology platform for building planning and scheduling applications for
space exploration [1].” Its predecessor, EUROPA, was used for a variety of NASA missions
including MAPGEN (Mars rovers) and HSTS (Deep Space 1). The EUROPA planner seeks
to solve both the planning (i.e., sequencing of actions) and scheduling (i.e., allocation of time
and resources) problems at the same time. Complex real-world problems such as controlling
autonomous spacecraft do not lend themselves to a decoupled solution approach. Here, one
has to deal with issues such as

• operations which take time,

• operations which may be non-deterministic,

• subsystems that can experience failure,

• issues of resource consumption such as fuel or battery power,

• need to limit cost of operations,

• situations where previous choices and operations impact the choice of the next actions,
and

• the initial use of instruments requires calibration.

The Abstract Plan Preparation Language (APPL) is a planning language strongly in-
spired by NDDL that is centered around the idea that not all constraints are alike in the
specification of an AI planning problem. In particular, the temporal interval constraints that
specify the actions that may occur on parallel timelines have special attributes. Most im-
portantly, these actions must be mutually exclusive on a particular timeline. These features
enable a more compact specification of actions and states that is in a manner analogous
to the specification of state transition systems with special notations for temporal interval
operations. All the syntactic features of APPL are fully exploited in a translator from APPL
to NDDL that automatically generates the voluminous set of temporal constraints required
in a NDDL specification.

Because the syntax and semantics of APPL are simpler than those of NDDL, APPL is
more suitable for formal verification, static analysis, and automated test generation. Indeed,
we are in the process of developing a translator from APPL to SRI’s Symbolic Analysis
Laboratory (SAL) that will enable the application of safety analysis techniques to plans
written in APPL.1 That work will be reported in a subsequent paper.

1This is being done in collaboration with SRI international, the developers of the SAL model checker.
Many different types of verifications and analyzes are possible here. John Rushby presented a number of
these in a recent SAVH V&V workshop, May 2006.

3

The rest of this paper is organized as follows. Section 2 presents the APPL language
by way of example using the Simple Sample Application (The Planetary Rover) tutorial
problem that comes with the EUROPA 2 distribution. A formal description of the the
language is given in Section 3. Section 4 describes the translator from APPL to NDDL.
Finally, Section 5 proposes extensions and enhancements to the APPL language. Examples
in APPL and their corresponding NDDL generated code are included in the appendices.

2 A Short Description of the Simple Rover Problem

The Simple Rover problem is defined in a tutorial entitled the Simple Sample Application
(The Planetary Rover) provided with the EUROPA 2 planning system developed at NASA
Ames. This problem describes a planetary rover that has four main components: a navigator,
an instrument controller, a command interface, and a battery. The navigator controls the
rover’s movement; the instrument controller manages a scientific instrument; the command
interface manages instructions from the scientists controlling the rover; and the battery
provides the power needed to operate the rover.

Associated with each of these components is a timeline of actions (or a function that maps
times into actions) that must be scheduled by an AI planning system such as EUROPA.2

Since only one of these actions can be active on a single timeline at any given time, they are
mutually exclusive. Although there are several other constraints that govern the scheduling
of these actions, the mutual exclusive constraint is fundamental to a planning system. Fur-
thermore, these actions are adjacent to each other. Therefore the allowed sequence of actions
can be specified like a state machine. This is illustrated graphically in Figure 1. In APPL,
the valid sequence of actions are described using a notation that essentially elaborates the
transition matrix of the state machine. For example the allowed transitions of the navigator
timeline component is described as follows:

At(x) -> Going(x,y) -> At(y)

All the components of the Simple Rover example are declared in a module enclosed within
the keywords PLAN SimpleRover and END SimpleRover.

2.1 Simple Rover Types

The Simple Rover problem requires the definition of some types such as Location and Paths.
These are defined in APPL as follows:

TYPE Location(name:string; x,y:int)

TYPE Path(name:string; from,to:Location; cost:float)

The keyword TYPE appears first, followed by the name of the type, e.g., Location and
Path, and a list of typed attributes, e.g., name, x, and x for Location, and name, from, to,
and cost for Path.

2In NDDL, these actions are called predicates.

4

GoingAtNavigator:

unstowInstrument: take
sampleplace stowstowed

phone
home

sample
take

phone
lander

Command:

[0,+inf]

[0,+inf] [2,6] [3,12] [0,10] [2,6]

Going

stowed

Goal: Take sample at rock4

[10,+inf]
bat: −400

bat: −20 bat: −120 bat: −20

bat: −400

bat: −20

Initial State: At lander with instrument stowed, battery = 1000

Figure 1: Graphical Specification of Simple Rover Problem

2.2 Simple Rover Timelines

The four timeline components of the rover, e.g., Navigator, Instrument, Command, and
Battery, are defined using a timeline section. The section begins with the keyword TIMELINE

followed by the name of the timeline and a list of typed attributes. The keyword ACTIONS

initiates the delineation of the set of mutually exclusive actions that can be scheduled on a
timeline. The keyword TRANSITIONS initiates an optional section where the valid sequence
of actions are defined. The keyword END followed by the name of the timeline closes this
section.

In the case of the timeline Battery, the list of attributes consists of initial_charge,
load_level_min, and load_level_max, all of them of type float. There is only one action
on this timeline that records the changes on the battery load.

TIMELINE Battery(initial_charge, load_level_min, load_level_max: float)

ACTIONS

Change(quantity:float)

END Battery

The timeline Navigator has two actions: At and Going, which correspond, respectively,
to the rover stopped at a location and going from one location to another.

TIMELINE Navigator

5

ACTIONS

At(location:Location)

Going(from,to: Location)

WITH from != to;

let path: Path(_,from,to,cost) in

starts Battery.Change(cost)

TRANSITIONS

At(x) -> Going(x,y) -> At(y)

END Navigator

The At action has one parameter location which is defined using the Location compo-
nent defined previously. The Going action has two parameters: from and to, both of type
Location as well. The action Going has associated a constraint, which follows the keyword
WITH. The first part of the constraint states that the parameters from and to are different.
The second part of the constraint is more involved. It specifies a path between the locations
from and to and that the cost of taking this path has to be recorded in the timeline of some
Battery. Since in the Simple Rover example there is only one battery, there is no need
to keep track of which battery is used. The operator starts is the basic interval operator
with the same name in NDDL. The complete list of Allen’s interval operators is: contains,
contained_by, before, meets, met_by, overlaps, starts, equals, and ends.

The constraint in the specification of the action Going illustrates an important syntac-
tic feature of APPL called parameter matching. Parameter matching allows for implicit
declaration of variables when they first occur as arguments of actions or compound types.
For instance, the variable cost is implicitly declared to be of type float as required by
Path. Subsequent occurrences of the same name refers to the same variable. In NDDL,
this feature will generate an explicit equality between the fourth argument of Path and the
only argument of the action Change in the timeline Battery. The symbol “_” stands for an
unspecified value and never imposes any constraints.

The final part of the specification of the timeline Navigator (i.e. the TRANSITIONS sec-
tion), delineates the allowed set of action transitions. The -> syntax is used to enumerate all
possible actions that can follow an action. If an action can be followed by several different
actions, a special syntax is provided to simplify the specification. This is illustrated subse-
quently. Parameter matching is also used in the declaration of transitions: parameters with
the same name must be equal. For instance, the first parameter of Going must be equal to
the parameter of the preceding At. Also the Going action must be followed by an At action
where its parameter is the same as the second parameter of Going. These are used by the
APPL to NDDL translator to construct the explicit constraints.

The timeline Instrument is defined as follows:

TIMELINE Instrument

6

ACTIONS

TakeSample(rock:Location) : [0,10]

WITH starts Battery.Change(-120);

contained_by Navigator.At(rock)

Place(rock:Location) : [3,12]

WITH starts Battery.Change(-20);

contained_by Navigator.At(rock)

Stow : [2,6]

WITH contained_by Navigator.At

Unstow : [2,6]

WITH contained_by Navigator.At

Stowed

TRANSITIONS

Stowed -> Unstow -> Place(r) -> TakeSample(r) -> Stow -> Stowed

END Instrument

Five actions are defined: TakeSample, Place, Stowed, Unstow, and Stowed. These cor-
respond to the actions that the rover’s instrument can sequence through. The interval that
follows the declaration of an action specifies a time constraint on the duration of the action.
For example, the action Unstow must have a duration between 2 and 6 time units. In the
specification of a time interval, the symbol “_” is used to denote minus infinity, if it appears
in the lower bound, or plus infinity, if it appears as the upper bound.

The timeline Command is defined as follows:

TIMELINE Commands

ACTIONS

Idle

TakeSample(rock:Location): [20,25]

WITH contains Instrument.TakeSample(rock)

PhoneHome

WITH starts Battery.Change(-600)

PhoneLander

WITH starts Battery.Change(-20)

7

TRANSITIONS

Idle -> TakeSample -> (PhoneHome | PhoneLander)

END Commands

Four different actions are defined: Idle, TakeSample, PhoneHome, and PhoneLander. The
action Idle has no constraints associated with it. The action TakeSample must completely
contain the action TakeSample defined in the instrument timeline. The actions PhoneHome

and PhoneLander record their power consumption in the battery timeline. The construct “|”
in the transitions section indicates that either of the actions PhoneHome and PhoneLander

may follow the action TakeSample.

2.3 The Rover

The rover itself is defined as a type whose attributes are the battery, the navigator, the
instrument, and the commands. We also define specific instances of locations, paths, battery,
navigator, instrument, commands, and rover.

TYPE Rover(battery:Battery;

navigator:Navigator;

instrument:Instrument;

command:Commands)

VARIABLES

lander: Location("Lander", 0, 0)

rock1 : Location("ROCK1", 9, 9)

rock2 : Location("ROCK2", 1, 6)

rock3 : Location("ROCK3", 4, 8)

rock4 : Location("ROCK4", 3, 9)

p1: Path("Very Long Way", lander, rock4, -2000.0)

p2: Path("Moderately Long Way", lander, rock4, -1500.0)

p3: Path("Short Cut", lander, rock4, -400.0)

bat : Battery(10000.0, 0.0, 1000.0)

nav : Navigator(bat)

ins : Instrument(bat,nav)

com : Commands(bat,nav,ins)

spirit : Rover(bat,com,nav,ins)

8

2.4 Initial State and Goals

The subsection INITIAL-STATE specifies the initial actions of the timelines. Timelines that
are not initialized may start in an arbitrary state. Finally, the desired end goal is specified
in the subsection GOALS. In this case, we specify that the rover must reach rock4.

INITIAL-STATE

|-> nav.At(lander)

|-> ins.Stowed

|-> com.Idle

GOALS

com.TakeSample(rock4)

3 The Abstract Plan Preparation Language

The Abstract Planning Language (APPL) is strongly inspired on the New Domain Descrip-
tion Language (NDDL) and the Constraint-based Temporal Planning paradigm. Therefore,
there are several conceptual similarities between NDDL and APPL. However, in contrast
to NDDL, APPL does not follow the object oriented paradigm. Instead, APPL offers a
more declarative approach that supports static type-checking, pattern matching, and con-
venient notations for temporal operators. Furthermore, in ADDL, we distinguish between
compound types, which can be seen as record types, and timelines, which are special kinds
of compound types that perform actions and whose temporal behavior is constrained by a
set of valid transitions.

The specification of a planning problem in APPL consists of a sequence of types, timelines,
constraints, variables, initial states, and goal declarations. These declarations form a module,
which is enclosed between the keywords PLAN <identifier> and END <identifier>.

〈appl-def 〉 ::=-- PLAN 〈identifier〉

? 〈type-decl〉
〈timeline-decl〉
〈constraints-decl〉

〈var-decl〉

〈init-decl〉
-

-

〈goal-decl〉
END 〈identifier〉 -�

3.1 Types

APPL is a strongly typed language, i.e., all elements of an APPL program are declared
of a given type. From an operational point of view, types in APPL can be understood as
containers or sets.

The basic types of APPL are int, float, bool, and string. Furthermore, APPL sup-
ports enumerations, intervals, and user-defined types.

9

〈type〉 ::=-- 〈basic-type〉
〈enumeration〉
〈interval〉

〈defined-type〉

-�

〈basic-type〉 ::=-- int
float
bool
string

-�

〈enumeration〉 ::=-- { 〈identifiers〉 } -�

〈identifiers〉 ::=--
,

?〈identifier〉 -�

〈interval〉 ::=-- [〈expression-or-nil〉 , 〈expression-or-nil〉] -�

〈defined-type〉 ::=-- 〈identifier〉
(〈arguments〉)

-�

〈arguments〉 ::=--
,

?〈expression-or-nil〉 -�

APPL enables the declaration of simple and compound types. Simple types are aliases,
enumerations, and intervals. Compound types are records declared as parameterized types.
The parameters of a compound type are called attributes and they correspond to the fields of
the record. A compound type can be defined as a subtype of a previously defined (compound)
type.

〈type-decl〉 ::=-- TYPE 〈simple-type-decl〉
〈compound-type-decl〉

-�

〈simple-type-decl〉 ::=-- 〈identifier〉 = 〈type〉 -�

〈compound-type-decl〉 ::=-- 〈identifier〉
(〈parameters〉) = 〈type〉

-�

〈parameter〉 ::=-- 〈identifiers〉 : 〈type〉 -�

〈parameters〉 ::=--
;

?〈parameter〉 -�

The following are valid type declarations in APPL. Note that the variables that occur
in the type “Location("Home",x,y)” are declared as attributes of the type “MyLocation”.
Should this not be the case, an error would be reported by the ADDL compiler.

10

// An alias type

TYPE myint : int

// An enumeration type

TYPE OnOff = { ON, OFF }

// An interval type

TYPE Int_ge_1 = [1,_]

// A compound type

TYPE Location(name:string; x,y:int)

// A subtype of a compound type

TYPE MyLocation(x,y:int) = Location("Home",x,y)

3.2 Expressions

The set of expressions in APPL are drawn from NDDL. The operator “let” declares a
variable of a certain type that satisfies a given constraint. The symbol “_” denotes an
unspecified argument when it appears as an argument of an action or compound type.
Within an interval, it stands for ±∞ depending on its position as lower bound or upper
bound. The symbols “->” and “<-” are shorthands for the Allen’s operators “meets” and
“met-by”, respectively.

〈expression-or-nil〉 ::=-- 〈expression〉
_

-�

〈expression〉 ::=-- 〈literal〉
〈identifier〉

(〈arguments〉)
(〈expression〉)

〈expression〉 〈op〉 〈expression〉
〈unary-op〉 〈expression〉

if 〈expression〉 then 〈expression〉 else 〈expression〉 endif
let 〈identifier〉 : 〈type〉

= 〈expression〉
in 〈expression〉

〈allen-op〉 〈action〉

-�

11

〈op〉 ::=-- +
-
*
/
&&
||
=
!=
<
<=
>
>=

-�

〈unary-op〉 ::=-- -
!

-�

〈allen-op〉 ::=-- ->
<-

contains
contained_by

before
meets
met_by

overlaps
starts
equals
ends

-�

3.3 Timelines

Timelines are sophisticated compound types. In addition to attributes, a timeline also
specifies actions and transitions. If an action is not qualified, then it refers to the timeline
in which it is being defined in.

〈timeline-decl〉 ::=-- TIMELINE 〈identifier〉
(〈parameters〉) = 〈type〉

-

- 〈actions-decl〉 〈transitions-decl〉 END 〈identifier〉 -�

〈actions-decl〉 ::=-- ACTIONS ?〈action-decl〉 -�

〈transitions-decl〉 ::=--

TRANSITIONS ?〈transition-decl〉

-�

12

〈action-decl〉 ::=-- 〈identifier〉
(〈parameters〉) : 〈interval〉

-

-

WITH 〈expression〉
-�

〈transition-decl〉 ::=-- 〈action〉 ?-> 〈action〉 -�

〈action〉 ::=-- 〈simple-action〉

(
|

?〈simple-action〉)

-�

〈simple-action〉 ::=-- 〈qualified-id〉
(〈arguments〉)

-�

〈qualified-id〉 ::=--

〈identifier〉 .
〈identifier〉 -�

The following is an alternative declaration of the navigator timeline of the Simple Rover
example. In this case, the battery that provides the power to the navigator is explicitly
declared. This may be important if there is more than one battery in the system.

TIMELINE Navigator2(battery:Battery)

ACTIONS

At(location:Location)

Going(from,to: Location)

WITH from != to;

let path: Path(_,from,to,cost) in

starts battery.Change(cost)

TRANSITIONS

At(x) -> Going(x,y) -> At(y)

END Navigator2

Alternative, but more detailed, specifications of the instrument timeline are shown below.
The declaration of the attributes of Instrument2 explicitly states that the battery used
by the navigator and the instrument are the same. In Instrument3, the battery and the
navigator are also explicitly declared. However, in contrast to Instrument2, nothing is said
about the relation between the batteries used by the instrument and the navigator.

13

TIMELINE Instrument2(battery:Battery; navigator:Navigator(battery))

ACTIONS

TakeSample(rock:Location) : [0,10]

WITH starts battery.Change(-120);

contained_by navigator.At(rock)

Place(rock:Location) : [3,12]

WITH starts battery.Change(-20);

contained_by navigator.At(rock)

Stow : [2,6]

WITH contained_by navigator.At

Unstow : [2,6]

WITH contained_by navigator.At

Stowed

TRANSITIONS

Stowed -> Unstow -> Place(r) -> TakeSample(r) -> Stow -> Stowed

END Instrument2

TIMELINE Instrument3(battery:Battery; navigator:Navigator)

ACTIONS

TakeSample(rock:Location) : [0,10]

WITH starts battery.Change(-120);

contained_by navigator.At(rock)

Place(rock:Location) : [3,12]

WITH starts battery.Change(-20);

contained_by navigator.At(rock)

Stow : [2,6]

WITH contained_by navigator.At

Unstow : [2,6]

WITH contained_by navigator.At

Stowed

14

TRANSITIONS

Stowed -> Unstow -> Place(r) -> TakeSample(r) -> Stow -> Stowed

END Instrument3

3.4 Constraints Section

In the specification of a planning problem, it is often necessary to express constraints that
involve more than one timeline. Although it is expected that all cross-timeline constraints
could be expressed in the ACTIONS section, it may be convenient to gather some of these
constraints in a section together. Therefore a CONSTRAINTS section has been added to the
language:

〈constraints-decl〉 ::=-- CONSTRAINTS ?〈constraint-decl〉 -�

〈constraint-decl〉 ::=-- 〈simple-action〉 〈expression〉 -�

Parameter matching is used to specify parameter relationships within a constraint:

CONSTRAINTS

Commands.TakeSample(rock) contains Instrument.Take_Sample(rock)

Instrument.Take_Sample(rock) contained_by Navigator.At(rock)

Instrument.Place(rock) contained_by Navigator.At(rock)

In the CONSTRAINTS section full name qualification of actions is required.

3.5 Initial States and Goals

Initial states and goals are declared according to the following syntax.

〈var-decl〉 ::=-- VARIABLES ?〈identifier〉 : 〈type〉
= 〈expression〉

-�

〈init-decl〉 ::=-- INITIAL-STATE ?|-> 〈action〉 -�

〈goal-decl〉 ::=-- GOALS ?〈action〉 -�

15

4 The APPL to NDDL Translator

A prototype translator has been developed that generates NDDL code from an APPL input
file.3 The following command

java APPL -nddl Rover.appl

is used to compile the file rover.appl into NDDL. The translator halts at the first error.
Otherwise, it generates the files Rover-model.nddl and Rover-initial-state.nddl.

To illustrate the power of the APPL language, we have included the output from the
Simple Rover and the classical Banana-Monkey example in the appendices. The level of
abstraction provided by the APPL language is seen in the twofold increase in size as one
goes from APPL to NDDL.

4.1 Features of the Translator

Much of the verbosity of the NDDL language derives from the need to specify sequences of
actions. The following code defined in a timeline named Location in Monkey.appl:

At(x) -> Going(x,y) -> At(y)

results in the following NDDL:

// Transitions for Location

Location::At {

meets(Going v0_);

eq(v0_.from,loc);

}

Location::Going {

meets(At v1_);

eq(v1_.loc,to);

}

where a simple matching algorithm is used to generate the constraints on the parameters of
the actions Going and At. Even when there are no matching parameters as in

Low -> Climbing -> High -> Climbing_Down -> Low

the expansion can be significant:

// Transitions for Altitude

Altitude::Low {

meets(Climbing);

3The translator is electronically available from http://research.nianet.org/~munoz/APPL.

16

}

Altitude::Climbing {

meets(High);

}

Altitude::High {

meets(Climbing_Down);

}

Altitude::Climbing_Down {

meets(Low);

}

The following language construct in Rover.appl

Idle -> TakeSample -> (PhoneHome | PhoneLander)

provides a efficient mechanism for specifying choice. In NDDL this must be expressed using
an explicit variable. The translator generates the following NDDL code

// Transitions for Commands

Commands::Idle {

meets(TakeSample);

}

Commands::TakeSample {

int v3_ = [1 2];

if (v3_ == 1) {

meets(PhoneHome);

}

if (v3_ == 2) {

meets(PhoneLander);

}

}

The translation of the WITH statements associated with actions such as

Going(from,to: Location)

WITH from != to;

let path:Path(_,from,to,cost) in

starts Battery.Change(cost)

is quite efficient. This is translated into

17

Navigator::Going {

Path path;

eq(path.from,from);

eq(path.to,to);

starts(Battery.Change v0_);

eq(v0_.quantity,path.cost);

}

This illustrates how APPL handles parameter matching and let-in expressions. A variable
path is defined such that the first two parameters correspond to the parameters of the
predicate Going. The variable cost implicitly declared in APPL will be translated into
an equality that relates the parameter of the predicate Change in Battery and the third
parameter of path.

5 Conclusion and Future Work

A major goal of the APPL language is to provide as much abstraction as possible. We believe
that this will greatly facilitate the translation into SAL and provide a rich environment for
the formal analysis of the planning domain under consideration. Therefore, in the first
version of the language, we have deliberately eschewed enhancements that would increase
its complexity even where the power or flexibility of the language would be significantly
increased. As needs arise in real applications, we will expand the language to meet these
needs. It is our hope that such modifications can be kept at a minimum and that the
abstract nature of the language can be preserved. In this section, we will briefly discuss
some of potential enhancements that we have considered but not included.

5.1 Intervals as Timelines

One limitation of the current version of APPL is that it does not provide a mechanism to
explicitly access the starting and ending times of an action. For instance, in the Simple
Rover example, the goal of taking a sample is specified as:

goal(Commands.TakeSample sample);

sample.start.specify(63);

precedes(sample.end, world.m_horizonEnd);

The intended meaning is that TakeSample must start at time 63 and end before a constant
world.m_horizonEnd, which has the value 100.

We have considered adding the ability to directly specify the starting and ending times
of actions in expressions. For example

Commands.TakeSample().start = 63;

Commands.TakeSample().end < 100

Alternatively, we have explored the idea of allowing intervals to be used as special anony-
mous actions in Allen’s expressions. In this case, the lower bound of the interval specifies the

18

starting time of the anonymous actions and the upper bound the ending time. For instance,
the previous goal could be expressed:

GOALS

Commands.TakeSample() starts [63,_]

This concise notation fully exploits Allen’s operators and may simplify specifications where
absolute time intervals are needed. For instance,

GOALS

Commands.TakeSample() equals [63,100]

specifies that the action TakeSample exactly starts at time 63 and ends at time 100, while

GOALS

Commands.TakeSample() contained_by [63,100]

specifies that the action TakeSample starts after time 63 and ends before time 100.
However, the semantic implications of either one of these alternatives have not yet been

analyzed.

5.2 General Initial State Specifications

The APPL planning language has been defined with a specific viewpoint about what con-
stitutes a planning problem. In particular, that a planning problem consists of

1. a well-defined initial state,

2. a well-defined goal,

3. actions to achieve that goal, and

4. constraints on those actions.

It appears that NDDL allows a fuzzier notion of initial state, where some timelines do
not become active until a time later than 0 or have relaxed start and end points. In APPL
this could be handled by allowing general initial state specifications. For instance,

INITIAL-STATE

|-> Navigator.At(lander) contained_by [10,_]

would specify that the initial location for Navigator is lander after time 10. Nothing is
said about the state of the navigator before that time.

This relaxation of initial state specifications would prevent detection of errors where one
inadvertently omits a timeline initialization.

19

References

[1] Tania Bedrax-Weiss, Conor McGann, Andrew Bachmann, Will Edington, and Michael
Iatauro. Europa-2: User and contributor guide. Technical report, NASA AmesResearch
Center, Moffett Field, CA, Feb 2005.

[2] Jeremy Frank and Ari Jonsson. Constraint-based attribute and interval planning. Tech-
nical report, NASA AmesResearch Center, Moffett Field, CA, 2002. to appear in the
Journal of Constraints, Special Issue on Constraints and Planning.

[3] Drew McDermott and AIPS’98 IPC Committee. PDDL–the planning domain defini-
tion language. Technical report, Yale University, 1998. Technical report, Available at:
www.cs.yale.edu/homes/dvm, 1998.

20

A Simple Rover Problem

A.1 APPL Code

PLAN Rover

TYPE Paths = {Very_Long_Way, Moderately_Long_Way, Short_Cut}

TYPE Locations = {Lander, ROCK1, ROCK2, ROCK3, ROCK4}

TYPE Location(name:Locations; x, y:int)

TYPE Path(name:Paths; from,to: Location; cost:float)

TYPE Battery(ic,ll_min,ll_max:float) =

Resource(ic,ll_min,ll_max,0.0,0.0,-inff,-inff)

TIMELINE Navigator

ACTIONS

At(location:Location)

Going(from,to: Location)

WITH from != to;

let path:Path(_,from,to,cost) in

starts Battery.change(cost)

TRANSITIONS

At(x) -> Going(x,y) -> At(y)

END Navigator

TIMELINE Commands

ACTIONS

Idle

TakeSample(rock:Location): [20,25]

PhoneHome

21

WITH starts Battery.change(-600)

PhoneLander

WITH starts Battery.change(-20)

TRANSITIONS

Idle -> TakeSample -> (PhoneHome | PhoneLander)

END Commands

TIMELINE Instrument

ACTIONS

TakeSample(rock:Location) : [0,10]

WITH starts Battery.change(-120);

contained_by Navigator.At(rock);

contained_by Commands.TakeSample(rock)

Place(rock:Location) : [3,12]

WITH starts Battery.change(-20);

contained_by Navigator.At(rock)

Stow : [2,6]

WITH contained_by Navigator.At

Unstow : [2,6]

WITH contained_by Navigator.At

Stowed

TRANSITIONS

Stowed -> Unstow -> Place(r) -> TakeSample(r) -> Stow -> Stowed

END Instrument

TYPE Rover(battery:Battery;command:Commands; navigator:Navigator;

instrument:Instrument)

VARIABLES

22

lander: Location(Lander, 0, 0)

rock1 : Location(ROCK1, 9, 9)

rock2 : Location(ROCK2, 1, 6)

rock3 : Location(ROCK3, 4, 8)

rock4 : Location(ROCK4, 3, 9)

p1: Path(Very_Long_Way, lander, rock4, -2000.0)

p2: Path(Moderately_Long_Way, lander, rock4, -1500.0)

p3: Path(Short_Cut, lander, rock4, -400.0)

bat : Battery(1000.0, 0.0, 1000.0)

com : Commands

nav : Navigator

ins : Instrument

spirit : Rover(bat,com,nav,ins)

INITIAL-STATE

|-> Navigator.At(lander)

|-> Instrument.Stowed

|-> Commands.Idle

GOALS

Commands.TakeSample(rock4) equals [63,t]

END Rover

A.2 Translator-Generated NDDL Code

// File Rover-model.nddl

// Generated from Rover.appl

// On Tue Nov 21 14:52:57 EST 2006

// By APPL-c.4 (11/17/06)

// Import Standard Europa NDDL Libraries

#include "Plasma.nddl"

#include "PlannerConfig.nddl"

PlannerConfig World = new PlannerConfig(0,100,500,+inf);

// Forward declarations

class Battery;

23

class Path;

class Rover;

class Location;

class Instrument;

class Commands;

class Navigator;

// Class declarations

enum Paths {Very_Long_Way,Moderately_Long_Way,Short_Cut};

enum Locations {Lander,ROCK1,ROCK2,ROCK3,ROCK4};

class Location {

Locations name;

int x;

int y;

Location(Locations _name,

int _x,

int _y) {

name = _name;

x = _x;

y = _y;

}// Constructor Location

}// Class Location

class Path {

Paths name;

Location from;

Location to;

float cost;

Path(Paths _name,

Location _from,

Location _to,

float _cost) {

name = _name;

from = _from;

to = _to;

cost = _cost;

}// Constructor Path

24

}// Class Path

class Battery extends Resource {

Battery(float ic,

float ll_min,

float ll_max) {

super(ic,ll_min,ll_max,0.0,0.0,-inff,-inff);

}// Constructor Battery

}// Class Battery

class Navigator extends Timeline {

predicate Null {

precedes(0,start);

eq(end,100);

}

predicate At {

Location location;

precedes(0,start);

precedes(end,100);

}// Predicate At

predicate Going {

Location from;

Location to;

precedes(0,start);

precedes(end,100);

neq(from,to);

}// Predicate Going

}// Timeline Navigator

Navigator::Going {

Path path;

eq(path.from,from);

eq(path.to,to);

starts(Battery.change v0_);

eq(v0_.quantity,path.cost);

}

// Transitions for Navigator

Navigator::At {

meets(Going v1_);

25

eq(v1_.from,location);

}

Navigator::Going {

meets(At v2_);

eq(v2_.location,to);

}

class Commands extends Timeline {

predicate Null {

precedes(0,start);

eq(end,100);

}

predicate Idle {

precedes(0,start);

precedes(end,100);

}// Predicate Idle

predicate TakeSample {

Location rock;

eq(duration,[20 25]);

precedes(0,start);

precedes(end,100);

}// Predicate TakeSample

predicate PhoneHome {

precedes(0,start);

precedes(end,100);

}// Predicate PhoneHome

predicate PhoneLander {

precedes(0,start);

precedes(end,100);

}// Predicate PhoneLander

}// Timeline Commands

Commands::PhoneHome {

starts(Battery.change v3_);

eq(v3_.quantity,-600);

}

Commands::PhoneLander {

starts(Battery.change v4_);

26

eq(v4_.quantity,-20);

}

// Transitions for Commands

Commands::Idle {

meets(TakeSample);

}

Commands::TakeSample {

int v5_;

eq(v5_,[1 2]);

if (v5_ == 1) {

meets(PhoneHome);

}

if (v5_ == 2) {

meets(PhoneLander);

}

}

class Instrument extends Timeline {

predicate Null {

precedes(0,start);

eq(end,100);

}

predicate TakeSample {

Location rock;

eq(duration,[0 10]);

precedes(0,start);

precedes(end,100);

}// Predicate TakeSample

predicate Place {

Location rock;

eq(duration,[3 12]);

precedes(0,start);

precedes(end,100);

}// Predicate Place

predicate Stow {

eq(duration,[2 6]);

precedes(0,start);

precedes(end,100);

}// Predicate Stow

27

predicate Unstow {

eq(duration,[2 6]);

precedes(0,start);

precedes(end,100);

}// Predicate Unstow

predicate Stowed {

precedes(0,start);

precedes(end,100);

}// Predicate Stowed

}// Timeline Instrument

Instrument::TakeSample {

starts(Battery.change v6_);

eq(v6_.quantity,-120);

contained_by(Navigator.At v7_);

eq(v7_.location,rock);

contained_by(Commands.TakeSample v8_);

eq(v8_.rock,rock);

}

Instrument::Place {

starts(Battery.change v9_);

eq(v9_.quantity,-20);

contained_by(Navigator.At v10_);

eq(v10_.location,rock);

}

Instrument::Stow {

contained_by(Navigator.At);

}

Instrument::Unstow {

contained_by(Navigator.At);

}

// Transitions for Instrument

Instrument::Stowed {

meets(Unstow);

}

28

Instrument::Unstow {

meets(Place v11_);

}

Instrument::Place {

meets(TakeSample v12_);

eq(v12_.rock,rock);

}

Instrument::TakeSample {

meets(Stow);

}

Instrument::Stow {

meets(Stowed);

}

class Rover {

Battery battery;

Commands command;

Navigator navigator;

Instrument instrument;

Rover(Battery _battery,

Commands _command,

Navigator _navigator,

Instrument _instrument) {

battery = _battery;

command = _command;

navigator = _navigator;

instrument = _instrument;

}// Constructor Rover

}// Class Rover

// File Rover-initial-state.nddl

// Generated from Rover.appl

// On Tue Nov 21 14:52:57 EST 2006

// By APPL-c.4 (11/17/06)

// Import Rover NDDL Model

#include "Rover-model.nddl"

29

// Variables

Location lander = new Location(Lander,0,0);

Location rock1 = new Location(ROCK1,9,9);

Location rock2 = new Location(ROCK2,1,6);

Location rock3 = new Location(ROCK3,4,8);

Location rock4 = new Location(ROCK4,3,9);

Path p1 = new Path(Very_Long_Way,lander,rock4,-2000.0);

Path p2 = new Path(Moderately_Long_Way,lander,rock4,-1500.0);

Path p3 = new Path(Short_Cut,lander,rock4,-400.0);

Battery bat = new Battery(1000.0,0.0,1000.0);

Commands com = new Commands();

Navigator nav = new Navigator();

Instrument ins = new Instrument();

Rover spirit = new Rover(bat,com,nav,ins);

close();

// Initial states

goal(Navigator.At v13_);

eq(v13_.start,0);

v13_.location.specify(lander);

goal(Instrument.Stowed v14_);

eq(v14_.start,0);

goal(Commands.Idle v15_);

eq(v15_.start,0);

// Goals

goal(Commands.TakeSample v16_);

v16_.rock.specify(rock4);

v16_.start.specify(63);

B Banana-Monkey Problem

The classical Banana-Monkey planning problem consists of three basic timelines: Location,
Altitude, and Monkey. The location timeline has two predicates: At and Going. These
must alternate on the timeline.

At → Going → At → Going → . . .

The altitude timeline has four predicates which must sequence as follows

Low → Climbing → High → Climbing_Down → Low → . . .

30

GRABBING_BANANA

high

At Going At

low climbing high climbing low
down

BANANA

...

...

At

(1,inf) (5,inf) (1,inf)

(1,inf) (10,inf) (1,inf) (1,inf) (1,inf)

(1,inf) (1,2) (1,inf)

At (tree)

NOT_HAVE
BANANA

GRABBING

GRABBING_BANANA

HAVE_
BANANA

low

Going

climbing

Figure 2: Monkey1 Problem

The banana timeline has three predicates that must sequence as follows:

Not_Have_Banana → Grabbing_Banana → Have_Banana

The NDDL specification constrains the time intervals as follows

• The Climbing interval must be contained by an At interval. A parameter of Climbing
determines whether the climbing is a tree climbing action or a rock climbing action.

• The Grabbing_Banana interval must be contained by an At interval and it must be
contained by a High interval.

• The Grabbing_Banana predicate must only occur when the monkey is high in the tree.

• The Going predicate must only occur when the altitude is low.

Graphically this problem can be presented as shown in figure 2 The intervals below the
blocks in the figure specify the duration of each predicate, i.e., the minimum and maximum
times in this state.

B.1 APPL Code

PLAN Monkey

TYPE Label = { Rock, Tree }

TIMELINE Location

31

ACTIONS

At(loc:Label): [1,_]

Going(from,to:Label): [5,_]

TRANSITIONS

At(x) -> Going(x,y) -> At(y)

END Location

TIMELINE Altitude

ACTIONS

Low: [1,_]

High: [1,_]

Climbing(flag:[1,2]): [10,_]

WITH

if flag = 1 then

contained_by Location.At(Rock)

else

contained_by Location.At(Tree)

endif

Climbing_Down: [1,_]

TRANSITIONS

Low -> Climbing -> High -> Climbing_Down -> Low

END Altitude

TIMELINE Monkey

ACTIONS

Not_Have_Banana: [1,_]

Have_Banana: [1,_]

Grabbing_Banana: [1,2]

32

TRANSITIONS

Not_Have_Banana -> Grabbing_Banana -> Have_Banana

END Monkey

CONSTRAINTS

Location.Going :: contained_by Altitude.Low

Monkey.Grabbing_Banana :: contained_by Location.At(Tree)

Monkey.Grabbing_Banana :: contained_by Altitude.High

VARIABLES

loc : Location

alt : Altitude

mon : Monkey

INITIAL-STATE

|-> loc.At(Rock)

|-> alt.Low

|-> mon.Not_Have_Banana

GOALS

mon.Have_Banana

END Monkey

B.2 Translator-Generated NDDL Code

// File Monkey-model.nddl

// Generated from Monkey.appl

// On Tue Nov 21 14:53:00 EST 2006

// By APPL-c.4 (11/17/06)

// Import Standard Europa NDDL Libraries

#include "Plasma.nddl"

#include "PlannerConfig.nddl"

PlannerConfig World = new PlannerConfig(0,100,500,+inf);

33

// Forward declarations

class Monkey;

class Altitude;

class Location;

// Class declarations

enum Label {Rock,Tree};

class Location extends Timeline {

predicate Null {

precedes(0,start);

eq(end,100);

}

predicate At {

Label loc;

eq(duration,[1 +inf]);

precedes(0,start);

precedes(end,100);

}// Predicate At

predicate Going {

Label from;

Label to;

eq(duration,[5 +inf]);

precedes(0,start);

precedes(end,100);

}// Predicate Going

}// Timeline Location

// Transitions for Location

Location::At {

meets(Going v0_);

eq(v0_.from,loc);

}

Location::Going {

meets(At v1_);

eq(v1_.loc,to);

}

34

class Altitude extends Timeline {

predicate Null {

precedes(0,start);

eq(end,100);

}

predicate Low {

eq(duration,[1 +inf]);

precedes(0,start);

precedes(end,100);

}// Predicate Low

predicate High {

eq(duration,[1 +inf]);

precedes(0,start);

precedes(end,100);

}// Predicate High

predicate Climbing {

int flag;

eq(flag,[1 2]);

eq(duration,[10 +inf]);

precedes(0,start);

precedes(end,100);

}// Predicate Climbing

predicate Climbing_Down {

eq(duration,[1 +inf]);

precedes(0,start);

precedes(end,100);

}// Predicate Climbing_Down

}// Timeline Altitude

Altitude::Climbing {

if (flag==1) {

contained_by(Location.At v2_);

eq(v2_.loc,Rock);

} else {

contained_by(Location.At v3_);

eq(v3_.loc,Tree);

}

}

// Transitions for Altitude

35

Altitude::Low {

meets(Climbing);

}

Altitude::Climbing {

meets(High);

}

Altitude::High {

meets(Climbing_Down);

}

Altitude::Climbing_Down {

meets(Low);

}

class Monkey extends Timeline {

predicate Null {

precedes(0,start);

eq(end,100);

}

predicate Not_Have_Banana {

eq(duration,[1 +inf]);

precedes(0,start);

precedes(end,100);

}// Predicate Not_Have_Banana

predicate Have_Banana {

eq(duration,[1 +inf]);

precedes(0,start);

precedes(end,100);

}// Predicate Have_Banana

predicate Grabbing_Banana {

eq(duration,[1 2]);

precedes(0,start);

precedes(end,100);

}// Predicate Grabbing_Banana

}// Timeline Monkey

// Transitions for Monkey

36

Monkey::Not_Have_Banana {

meets(Grabbing_Banana);

}

Monkey::Grabbing_Banana {

meets(Have_Banana);

}

// Constraints

Location::Going {

contained_by(Altitude.Low);

}

Monkey::Grabbing_Banana {

contained_by(Location.At v4_);

eq(v4_.loc,Tree);

}

Monkey::Grabbing_Banana {

contained_by(Altitude.High);

}

// File Monkey-initial-state.nddl

// Generated from Monkey.appl

// On Tue Nov 21 14:53:00 EST 2006

// By APPL-c.4 (11/17/06)

// Import Monkey NDDL Model

#include "Monkey-model.nddl"

// Variables

Location loc = new Location();

Altitude alt = new Altitude();

Monkey mon = new Monkey();

close();

// Initial states

goal(loc.At v5_);

eq(v5_.start,0);

v5_.loc.specify(Rock);

37

goal(alt.Low v6_);

eq(v6_.start,0);

goal(mon.Not_Have_Banana v7_);

eq(v7_.start,0);

// Goals

goal(mon.Have_Banana v8_);

38

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

2. REPORT TYPE
Technical Memorandum

 4. TITLE AND SUBTITLE

An Abstract Plan Preparation Language
5a. CONTRACT NUMBER

 6. AUTHOR(S)

Butler, Ricky W.; and Muñoz, César A.

 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

NASA Langley Research Center
Hampton, VA 23681-2199

 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration
Washington, DC 20546-0001

 8. PERFORMING ORGANIZATION
 REPORT NUMBER

L-19280

10. SPONSOR/MONITOR'S ACRONYM(S)

NASA

13. SUPPLEMENTARY NOTES
An electronic version can be found at http://ntrs.nasa.gov

12. DISTRIBUTION/AVAILABILITY STATEMENT
Unclassified - Unlimited
Subject Category 61
Availability: NASA CASI (301) 621-0390

19a. NAME OF RESPONSIBLE PERSON

STI Help Desk (email: help@sti.nasa.gov)

14. ABSTRACT

This paper presents a new planning language that is more abstract than most existing planning languages such as the Planning
Domain Definition Language (PDDL) or the New Domain Description Language (NDDL). The goal of this language is to
simplify the formal analysis and specification of planning problems that are intended for safety-critical applications such as
power management or automated rendezvous in future manned spacecraft. The new language has been named the Abstract
Plan Preparation Language (APPL). A translator from APPL to NDDL has been developed in support of the Spacecraft
Autonomy for Vehicles and Habitats Project (SAVH) sponsored by the Explorations Technology Development Program,
which is seeking to mature autonomy technology for application to the new Crew Exploration Vehicle (CEV) that will replace
the Space Shuttle.

15. SUBJECT TERMS
Artificial Intelligence; Autonomy; Formal Methods; Planning; Verification

18. NUMBER
 OF
 PAGES

43
19b. TELEPHONE NUMBER (Include area code)

(301) 621-0390

a. REPORT

U

c. THIS PAGE

U

b. ABSTRACT

U

17. LIMITATION OF
 ABSTRACT

UU

Prescribed by ANSI Std. Z39.18
Standard Form 298 (Rev. 8-98)

3. DATES COVERED (From - To)

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

70680.04.13.01.02

11. SPONSOR/MONITOR'S REPORT
 NUMBER(S)

NASA/TM-2006-214518

16. SECURITY CLASSIFICATION OF:

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and
Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person
shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

11 - 200601-

