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Abstract

Embedded distributed systems have become an integral part of many safety-critical
applications.  There have been many attempts to solve the self-stabilization problem of clocks
across a distributed system.  An analysis of one such protocol called the Byzantine Self-
Stabilizing Pulse Synchronization (BSS-Pulse-Synch) protocol from a paper entitled “Linear
Time Byzantine Self-Stabilizing Clock Synchronization” by Daliot et al [Daliot 03] is presented
in this report.  This report also includes a discussion of the complexity and pitfalls of designing
self-stabilizing protocols and provides counterexamples for the claims of the above protocol.

Introduction

Synchronization and coordination algorithms are part of distributed computer systems.
Clock synchronization algorithms are essential for managing the use of resources and controlling
communication in a distributed system.  Also, a fundamental criterion in the design of a robust
distributed system is to embed the capability of tolerating and potentially recovering from
failures caused by malicious behavior that are not predictable in advance.  Overcoming such
failures is most suitably addressed by tolerating Byzantine faults [Lamport 82].  A Byzantine
fault model encompasses asymmetric failures within the limitations of the maximum number of
faults at a given time.  Driscoll et al. [Driscoll 03] addressed the frequency of occurrences of
Byzantine faults in practice and the necessity to tolerate Byzantine faults in ultra-reliable
distributed systems.  A distributed system tolerating as many as f Byzantine faults requires a
network size of more than 3f nodes.  Lamport et al. [Lamport 82, Lamport 85] were the first to
present the problem and show that Byzantine agreement cannot be achieved for fewer than
3f+1processors.  Dolev et al. [Dolev 84] proved that at least 3f+1 processors are necessary for
clock synchronization in the presence of f Byzantine faults.

A self-stabilizing system is able to start in any random state and to recover from transient
failures after the faults dissipate.  The possibility of self-stabilizing distributed computation was
first presented in a classic paper by Dijkstra [Dijkstra 74].  In that paper, he asked whether it
would be possible for a set of machines to stabilize their collective behavior in spite of unknown
initial conditions and distributed control.  The idea was that the system should be able to
converge to a legitimate state within a bounded amount of time, by itself, without external
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intervention.  The main challenges associated with self-stabilization are complexity of the design
and proof of correctness of the protocol.  Another difficulty is achieving efficient convergence
time for the proposed self-stabilizing protocol.

A recent result in this area is the Byzantine self-stabilization pulse synchronization (BSS-
Pulse-Synch) protocol developed by Daliot et al [Daliot 03].  In this paper we report a flaw in
that protocol by providing explicit counterexamples.

The BSS-Pulse-Sync Protocol

The BSS-Pulse-Synch protocol as stated in [Daliot 03] is reproduced in Figure 1.
Statement labels S1, S2, and S3 are added for future reference in subsequent sections.  Cycle is
the self-stabilization period, n is the number of nodes in the system, f the maximum number of
faulty nodes, ρ the clock drift with respect to real time, and d is the bound on message
transmission time.

Figure 1.  The BSS-Pulse-Synch protocol.

The primary claim of that paper, as stated in Theorem 2, is that the protocol self-
stabilizes in the presence of at most f Byzantine nodes where n ≥ 3f + 1.  Theorem 2 is restated
here for ease of reference.  Another claim is that the nodes will converge to within a precision of
2d(1 + 2ρ) time units of each other.

Theorem 2 [Daliot 03].  BSS-Pulse-Sync solves the Self-Stabilization Pule
Synchronization Problem in the presence of at most f Byzantine nodes, n ≥ 3f + 1.

BSS-Pulse-Sync(Cycle, n, f)
S1 – if (cycle_countdown_is_0) then           /* endogenous message */

send “Propose-Pulse” message to all;
cycle_countdown_is_0 = ‘False’’;

S2 – if received f +1 distinct “Propose-Pulse” messages then  /* triggered message */
send “Propose-Pulse” message to all;

S3 – if received n – f distinct “Propose-Pulse” messages then     /* pulse invocation */
invoke “pulse” event;
cycle_countdown = Cycle;
flush “Propose-Pulse” message counter;
ignore “Propose-Pulse” messages for 2d(1 + 2ρ) time units;
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Interpretation of the BSS-Pulse-Sync Protocol

The BSS-Pulse-Synch protocol is a slight variation of the Srikanth and Toueg [Srikanth
87] protocol.  In the context of clock synchronization, it is understood that all statements of the
protocol are concurrently executed.  Furthermore, the protocol is executed continuously at every
local clock tick, unless stated otherwise.

Due to the ambiguity of the description of the protocol as described in [Daliot 03] various
interpretations are possible.  To avoid unintended interpretations, the authors of the paper were
contacted and some of the issues were clarified.  The following is our understanding of the
intended protocol.

• The protocol is executed continuously.
• All statements are executed at every tick.  However, S2 sends a “Propose-Pulse” once

and only when it reaches the threshold value of f+1 as opposed to repeatedly at and
after reaching the threshold.

• A good node counts its own message.

The Counterexamples

In the counterexamples presented here we show that the BSS-Pulse-Synch protocol
[Daliot 03] does not converge.  Table 1 is an  execution  trace of a system with parameters n = 4,
f = 1, Cycle = C, with no clock drift, ρ = 0, i.e. �2d(1 + 2ρ)� = 2d, all clocks starting in phase,
and d = 1 tick.  Node 4 is the faulty node while nodes 1, 2, and 3 are good nodes.  Table 2 is
another execution trace of a system with parameters n = 4, f = 1, Cycle = C, with clock drift ρ ≥
0, i.e. �2d(1 + 2ρ)� = 2d or 3d, all clocks starting in phase, and d = 1 tick.  The state of each node
is represented by (C – t), in time units since the last pulse event, with the stored propose-pulse
message as superscripts.  Symbol ‘x’ represents a received message and symbol ‘–’ represents no
message received from the corresponding node, 4 positions, one for each node.  The types of
faults considered are symmetric and asymmetric (a.k.a. Byzantine).

The tables have four columns, one for time reference and one for each good node.  A row
of the table depicts activities of all good nodes, in their corresponding columns, for that time
tick.  As is shown in Table 1 the system starts from a random state where the nodes are 4d apart
and reaches the same state within 5 ticks.  This process repeats indefinitely.  The faulty node in
this counterexample is symmetric.  The symmetrically faulty node transmits its message to all
nodes at t+0, t+2, and t+5.  At t+1, nodes 1 and 2 ignore that message while node 3 accepts it.
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Table 1.  The counterexample for ρ = 0, 2d(1 + 2ρ) = 2d, and symmetric fault.

Time Node 1 Node 2 Node 3
t + 0 (C-5)xxx-

� C---- (C-1)----, ignore (C-3)x---

t + 1 (C-1)----, ignore (C-2)----, ignore (C-4)x--x, send
t + 2 (C-2)----, ignore (C-3)--x- (C-5)x-xx

� C----

t + 3 (C-3)---x (C-4)--xx, send (C-1)----, ignore
t + 4 (C-4)-x-x, send (C-5)-xxx

� C---- (C-2)----, ignore
t + 5 (C-5)xxx-

� C---- (C-1)----, ignore (C-3)x---

In Table 2 the system starts from a random state where the nodes are 4d apart and reaches
the same state within 6 ticks.  This process repeats indefinitely.  Therefore, the system does not
converge and the precision remains 4d, 2d more than the expected 2d value.  This table can be
viewed from many angles.  For instance, if 1 >> ρ > 0 and �2d(1 + 2ρ)� = 3d time units, then the
type of faulty node that results in this counterexample is symmetric.  The symmetric faulty node
transmits its message to all nodes at t+0, t+2, t+4, and t+6.  At t+1, nodes 1 and 2 ignore that
message while node 3 accepts it.  However, if ρ = 0 and 2d(1 + 2ρ) = 2d time units, the faulty
node in this counterexample is asymmetric.  The asymmetrically faulty node transmits its
message  to  one node at a time, specifically, at t+0 to node 3, at t+2 to node 2, and at t+4 to
node 1.

Table 2.  The counterexample for ρ > 0, �2d(1 + 2ρ)� = 3d, and symmetric fault and
for ρ = 0, 2d(1 + 2ρ) = 2d, and asymmetric faulty.

Time Node 1 Node 2 Node 3
t + 0 (C-6)xxx-

� C---- (C-2)---- (C-4)x---

t + 1 (C-1)---- (C-3)---- (C-5)x--x

t + 2 (C-2)---- (C-4)--x- (C-6)x-xx
� C----

t + 3 (C-3)---- (C-5)--xx (C-1)----

t + 4 (C-4)-x-- (C-6)-xxx
� C---- (C-2)----

t + 5 (C-5)-x-x (C-1)---- (C-3)----

t + 6 (C-6)xxx-
� C---- (C-2)---- (C-4)x---
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Discussion

There is a vast literature on the topic of clock self-stabilization.  Although there is no
definitive guideline for a design of a distributed protocol, there are some invaluable points to
keep in mind in the design process.  Some of these points are well known within the community
while others are not so obvious.  In particular, below are a couple of points from [Kopetz 97].

• If two nodes broadcast their messages at the same time, there is no guarantee in the order of
arrival of the messages at other nodes.

• A consistent delivery order of a set of events in a distributed system does not necessarily
reflect the temporal or causal order of the events.

In addition to the above points, our research has resulted in a number of other key points
that are essential for the design of a protocol. Some of the pertinent findings are stated here along
with an observation.  These remarks are in the context of a distributed system with n ≥ 3f +1 and
all good nodes actively participating in the self-stabilization process.

• At random start up, a good node could be observed asymmetrically.
• A faulty node can increase the likelihood of a good node being observed asymmetrically.

We have also observed that a good node should be responsive to the incoming messages
at all times.  In other words, a blank rejection of all messages from other nodes for any length of
time and during the self-stabilization process is to be avoided.  The counterexamples provided
here are a direct result of violation of this observation.  Consequently, a hand simulation resulted
in the compact counterexamples reported here.  To verify the counterexamples, we modeled the
protocol in Stochastic Model checking Analyzer for Reliability and Timing (SMART) [Ciardo
03] and reproduced the counterexamples.  In addition, the model checker explored all various
startup scenarios that eventually lead to the failure of the protocol.  All traces produced by the
model checker are variations of the above counterexamples.  Most traces took many cycles to
reach the given state.  Other traces show that the protocol falls in and out of such states over
many cycles depending on the behavior of the faulty node.  The counterexamples presented here
are the most compact scenarios that capture the essence of the flaw in the proposed protocol.
These counterexample reveal the repetition cycle is significantly less than the Cycle as specified
by the BSS-Pulse-Synch protocol.

Also, due to the ambiguity of the description of the protocol, different variations of the
protocol were modeled.  In particular, we wondered if it mattered whether a good node counted
its own message or not.  Also, does it matter whether statement S2 were to send a message even
after crossing the (f+1) threshold.  All variations of the protocol suffered from the same flaw and,
thus, resulted in similar counterexamples.

The fundamental flaw in the design of the BSS-Pulse-Synch protocol is that it failed to
consider that good nodes might be observed asymmetrically.  In order for a distributed system to
converge, it is essential that eventually all good nodes reach a point where they all have a
consistent view of each other, but the system cannot be assumed to start in such a state.
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The main challenges associated with self-stabilization are complexity of the design and
proof of correctness of the protocol.  As is evident here, although a mathematical hand proof for
the BSS-Pulse-Synch protocol was provided in [Daliot 03], that proof was found to be flawed.
Because self-stabilization is a notoriously subtle and difficult problem, it is recommended that
mathematical proofs of proposed solutions be rigorously examined using formal methods.  One
way of accomplishing such goal is mechanical verification of the proofs via theorem proving, i.e.
HOL, PVS, SAL, etc., or model checking, i.e. SMART, SMV/NuSMV, SPIN, etc.  Mechanically
checked proofs are the only way we can have strong assurance that all possible scenarios are
covered.

The authors of the BSS-Pulse-Synch protocol have acknowledged the flaw and have
since proposed other solutions to the problem [Daliot 05].  However, these newly proposed
solutions are yet to be analyzed.
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