

February 2006

NASA/TM-2006-213951

Comments on the “Byzantine Self-Stabilizing Pulse
Synchronization” Protocol: Counterexamples

Mahyar R. Malekpour
Langley Research Center, Hampton, Virginia

Radu Siminiceanu
National Institute of Aerospace, Hampton, Virginia

The NASA STI Program Office . . . in Profile

Since its founding, NASA has been dedicated to the
advancement of aeronautics and space science. The
NASA Scientific and Technical Information (STI)
Program Office plays a key part in helping NASA
maintain this important role.

The NASA STI Program Office is operated by
Langley Research Center, the lead center for NASA’s
scientific and technical information. The NASA STI
Program Office provides access to the NASA STI
Database, the largest collection of aeronautical and
space science STI in the world. The Program Office is
also NASA’s institutional mechanism for
disseminating the results of its research and
development activities. These results are published by
NASA in the NASA STI Report Series, which
includes the following report types:

• TECHNICAL PUBLICATION. Reports of

completed research or a major significant phase
of research that present the results of NASA
programs and include extensive data or
theoretical analysis. Includes compilations of
significant scientific and technical data and
information deemed to be of continuing
reference value. NASA counterpart of peer-
reviewed formal professional papers, but having
less stringent limitations on manuscript length
and extent of graphic presentations.

• TECHNICAL MEMORANDUM. Scientific

and technical findings that are preliminary or of
specialized interest, e.g., quick release reports,
working papers, and bibliographies that contain
minimal annotation. Does not contain extensive
analysis.

• CONTRACTOR REPORT. Scientific and

technical findings by NASA-sponsored
contractors and grantees.

• CONFERENCE PUBLICATION. Collected

papers from scientific and technical
conferences, symposia, seminars, or other
meetings sponsored or co-sponsored by NASA.

• SPECIAL PUBLICATION. Scientific,

technical, or historical information from NASA
programs, projects, and missions, often
concerned with subjects having substantial
public interest.

• TECHNICAL TRANSLATION. English-

language translations of foreign scientific and
technical material pertinent to NASA’s mission.

Specialized services that complement the STI
Program Office’s diverse offerings include creating
custom thesauri, building customized databases,
organizing and publishing research results ... even
providing videos.

For more information about the NASA STI Program
Office, see the following:

• Access the NASA STI Program Home Page at

http://www.sti.nasa.gov

• E-mail your question via the Internet to

help@sti.nasa.gov

• Fax your question to the NASA STI Help Desk

at (301) 621-0134

• Phone the NASA STI Help Desk at

(301) 621-0390

• Write to:

 NASA STI Help Desk
 NASA Center for AeroSpace Information
 7121 Standard Drive
 Hanover, MD 21076-1320

National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23681-2199

February 2006

NASA/TM-2006-213951

Comments on the “Byzantine Self-Stabilizing Pulse
Synchronization” Protocol: Counterexamples

Mahyar R. Malekpour
Langley Research Center, Hampton, Virginia

Radu Siminiceanu
National Institute of Aerospace, Hampton, Virginia

Available from:

NASA Center for AeroSpace Information (CASI) National Technical Information Service (NTIS)
7121 Standard Drive 5285 Port Royal Road
Hanover, MD 21076-1320 Springfield, VA 22161-2171
(301) 621-0390 (703) 605-6000

1

Comments on the “Byzantine Self-Stabilizing Pulse Synchronization”
Protocol: Counterexamples

Mahyar R. Malekpour
NASA Langley Research Center, Hampton, VA, USA

m.r.malekpour@larc.nasa.gov
Radu Siminiceanu

National Institute of Aerospace, Hampton, VA, USA
radu@nianet.org

Abstract

Embedded distributed systems have become an integral part of many safety-critical
applications. There have been many attempts to solve the self-stabilization problem of clocks
across a distributed system. An analysis of one such protocol called the Byzantine Self-
Stabilizing Pulse Synchronization (BSS-Pulse-Synch) protocol from a paper entitled “Linear
Time Byzantine Self-Stabilizing Clock Synchronization” by Daliot et al [Daliot 03] is presented
in this report. This report also includes a discussion of the complexity and pitfalls of designing
self-stabilizing protocols and provides counterexamples for the claims of the above protocol.

Introduction

Synchronization and coordination algorithms are part of distributed computer systems.
Clock synchronization algorithms are essential for managing the use of resources and controlling
communication in a distributed system. Also, a fundamental criterion in the design of a robust
distributed system is to embed the capability of tolerating and potentially recovering from
failures caused by malicious behavior that are not predictable in advance. Overcoming such
failures is most suitably addressed by tolerating Byzantine faults [Lamport 82]. A Byzantine
fault model encompasses asymmetric failures within the limitations of the maximum number of
faults at a given time. Driscoll et al. [Driscoll 03] addressed the frequency of occurrences of
Byzantine faults in practice and the necessity to tolerate Byzantine faults in ultra-reliable
distributed systems. A distributed system tolerating as many as f Byzantine faults requires a
network size of more than 3f nodes. Lamport et al. [Lamport 82, Lamport 85] were the first to
present the problem and show that Byzantine agreement cannot be achieved for fewer than
3f+1processors. Dolev et al. [Dolev 84] proved that at least 3f+1 processors are necessary for
clock synchronization in the presence of f Byzantine faults.

A self-stabilizing system is able to start in any random state and to recover from transient
failures after the faults dissipate. The possibility of self-stabilizing distributed computation was
first presented in a classic paper by Dijkstra [Dijkstra 74]. In that paper, he asked whether it
would be possible for a set of machines to stabilize their collective behavior in spite of unknown
initial conditions and distributed control. The idea was that the system should be able to
converge to a legitimate state within a bounded amount of time, by itself, without external

2

intervention. The main challenges associated with self-stabilization are complexity of the design
and proof of correctness of the protocol. Another difficulty is achieving efficient convergence
time for the proposed self-stabilizing protocol.

A recent result in this area is the Byzantine self-stabilization pulse synchronization (BSS-
Pulse-Synch) protocol developed by Daliot et al [Daliot 03]. In this paper we report a flaw in
that protocol by providing explicit counterexamples.

The BSS-Pulse-Sync Protocol

The BSS-Pulse-Synch protocol as stated in [Daliot 03] is reproduced in Figure 1.
Statement labels S1, S2, and S3 are added for future reference in subsequent sections. Cycle is
the self-stabilization period, n is the number of nodes in the system, f the maximum number of
faulty nodes, ρ the clock drift with respect to real time, and d is the bound on message
transmission time.

Figure 1. The BSS-Pulse-Synch protocol.

The primary claim of that paper, as stated in Theorem 2, is that the protocol self-
stabilizes in the presence of at most f Byzantine nodes where n ≥ 3f + 1. Theorem 2 is restated
here for ease of reference. Another claim is that the nodes will converge to within a precision of
2d(1 + 2ρ) time units of each other.

Theorem 2 [Daliot 03]. BSS-Pulse-Sync solves the Self-Stabilization Pule
Synchronization Problem in the presence of at most f Byzantine nodes, n ≥ 3f + 1.

BSS-Pulse-Sync(Cycle, n, f)
S1 – if (cycle_countdown_is_0) then /* endogenous message */

send “Propose-Pulse” message to all;
cycle_countdown_is_0 = ‘False’’;

S2 – if received f +1 distinct “Propose-Pulse” messages then /* triggered message */
send “Propose-Pulse” message to all;

S3 – if received n – f distinct “Propose-Pulse” messages then /* pulse invocation */
invoke “pulse” event;
cycle_countdown = Cycle;
flush “Propose-Pulse” message counter;
ignore “Propose-Pulse” messages for 2d(1 + 2ρ) time units;

3

Interpretation of the BSS-Pulse-Sync Protocol

The BSS-Pulse-Synch protocol is a slight variation of the Srikanth and Toueg [Srikanth
87] protocol. In the context of clock synchronization, it is understood that all statements of the
protocol are concurrently executed. Furthermore, the protocol is executed continuously at every
local clock tick, unless stated otherwise.

Due to the ambiguity of the description of the protocol as described in [Daliot 03] various
interpretations are possible. To avoid unintended interpretations, the authors of the paper were
contacted and some of the issues were clarified. The following is our understanding of the
intended protocol.

• The protocol is executed continuously.
• All statements are executed at every tick. However, S2 sends a “Propose-Pulse” once

and only when it reaches the threshold value of f+1 as opposed to repeatedly at and
after reaching the threshold.

• A good node counts its own message.

The Counterexamples

In the counterexamples presented here we show that the BSS-Pulse-Synch protocol
[Daliot 03] does not converge. Table 1 is an execution trace of a system with parameters n = 4,
f = 1, Cycle = C, with no clock drift, ρ = 0, i.e. �2d(1 + 2ρ)� = 2d, all clocks starting in phase,
and d = 1 tick. Node 4 is the faulty node while nodes 1, 2, and 3 are good nodes. Table 2 is
another execution trace of a system with parameters n = 4, f = 1, Cycle = C, with clock drift ρ ≥
0, i.e. �2d(1 + 2ρ)� = 2d or 3d, all clocks starting in phase, and d = 1 tick. The state of each node
is represented by (C – t), in time units since the last pulse event, with the stored propose-pulse
message as superscripts. Symbol ‘x’ represents a received message and symbol ‘–’ represents no
message received from the corresponding node, 4 positions, one for each node. The types of
faults considered are symmetric and asymmetric (a.k.a. Byzantine).

The tables have four columns, one for time reference and one for each good node. A row
of the table depicts activities of all good nodes, in their corresponding columns, for that time
tick. As is shown in Table 1 the system starts from a random state where the nodes are 4d apart
and reaches the same state within 5 ticks. This process repeats indefinitely. The faulty node in
this counterexample is symmetric. The symmetrically faulty node transmits its message to all
nodes at t+0, t+2, and t+5. At t+1, nodes 1 and 2 ignore that message while node 3 accepts it.

4

Table 1. The counterexample for ρ = 0, 2d(1 + 2ρ) = 2d, and symmetric fault.

Time Node 1 Node 2 Node 3
t + 0 (C-5)xxx-

� C---- (C-1)----, ignore (C-3)x---

t + 1 (C-1)----, ignore (C-2)----, ignore (C-4)x--x, send
t + 2 (C-2)----, ignore (C-3)--x- (C-5)x-xx

� C----

t + 3 (C-3)---x (C-4)--xx, send (C-1)----, ignore
t + 4 (C-4)-x-x, send (C-5)-xxx

� C---- (C-2)----, ignore
t + 5 (C-5)xxx-

� C---- (C-1)----, ignore (C-3)x---

In Table 2 the system starts from a random state where the nodes are 4d apart and reaches
the same state within 6 ticks. This process repeats indefinitely. Therefore, the system does not
converge and the precision remains 4d, 2d more than the expected 2d value. This table can be
viewed from many angles. For instance, if 1 >> ρ > 0 and �2d(1 + 2ρ)� = 3d time units, then the
type of faulty node that results in this counterexample is symmetric. The symmetric faulty node
transmits its message to all nodes at t+0, t+2, t+4, and t+6. At t+1, nodes 1 and 2 ignore that
message while node 3 accepts it. However, if ρ = 0 and 2d(1 + 2ρ) = 2d time units, the faulty
node in this counterexample is asymmetric. The asymmetrically faulty node transmits its
message to one node at a time, specifically, at t+0 to node 3, at t+2 to node 2, and at t+4 to
node 1.

Table 2. The counterexample for ρ > 0, �2d(1 + 2ρ)� = 3d, and symmetric fault and
for ρ = 0, 2d(1 + 2ρ) = 2d, and asymmetric faulty.

Time Node 1 Node 2 Node 3
t + 0 (C-6)xxx-

� C---- (C-2)---- (C-4)x---

t + 1 (C-1)---- (C-3)---- (C-5)x--x

t + 2 (C-2)---- (C-4)--x- (C-6)x-xx
� C----

t + 3 (C-3)---- (C-5)--xx (C-1)----

t + 4 (C-4)-x-- (C-6)-xxx
� C---- (C-2)----

t + 5 (C-5)-x-x (C-1)---- (C-3)----

t + 6 (C-6)xxx-
� C---- (C-2)---- (C-4)x---

5

Discussion

There is a vast literature on the topic of clock self-stabilization. Although there is no
definitive guideline for a design of a distributed protocol, there are some invaluable points to
keep in mind in the design process. Some of these points are well known within the community
while others are not so obvious. In particular, below are a couple of points from [Kopetz 97].

• If two nodes broadcast their messages at the same time, there is no guarantee in the order of
arrival of the messages at other nodes.

• A consistent delivery order of a set of events in a distributed system does not necessarily
reflect the temporal or causal order of the events.

In addition to the above points, our research has resulted in a number of other key points
that are essential for the design of a protocol. Some of the pertinent findings are stated here along
with an observation. These remarks are in the context of a distributed system with n ≥ 3f +1 and
all good nodes actively participating in the self-stabilization process.

• At random start up, a good node could be observed asymmetrically.
• A faulty node can increase the likelihood of a good node being observed asymmetrically.

We have also observed that a good node should be responsive to the incoming messages
at all times. In other words, a blank rejection of all messages from other nodes for any length of
time and during the self-stabilization process is to be avoided. The counterexamples provided
here are a direct result of violation of this observation. Consequently, a hand simulation resulted
in the compact counterexamples reported here. To verify the counterexamples, we modeled the
protocol in Stochastic Model checking Analyzer for Reliability and Timing (SMART) [Ciardo
03] and reproduced the counterexamples. In addition, the model checker explored all various
startup scenarios that eventually lead to the failure of the protocol. All traces produced by the
model checker are variations of the above counterexamples. Most traces took many cycles to
reach the given state. Other traces show that the protocol falls in and out of such states over
many cycles depending on the behavior of the faulty node. The counterexamples presented here
are the most compact scenarios that capture the essence of the flaw in the proposed protocol.
These counterexample reveal the repetition cycle is significantly less than the Cycle as specified
by the BSS-Pulse-Synch protocol.

Also, due to the ambiguity of the description of the protocol, different variations of the
protocol were modeled. In particular, we wondered if it mattered whether a good node counted
its own message or not. Also, does it matter whether statement S2 were to send a message even
after crossing the (f+1) threshold. All variations of the protocol suffered from the same flaw and,
thus, resulted in similar counterexamples.

The fundamental flaw in the design of the BSS-Pulse-Synch protocol is that it failed to
consider that good nodes might be observed asymmetrically. In order for a distributed system to
converge, it is essential that eventually all good nodes reach a point where they all have a
consistent view of each other, but the system cannot be assumed to start in such a state.

6

The main challenges associated with self-stabilization are complexity of the design and
proof of correctness of the protocol. As is evident here, although a mathematical hand proof for
the BSS-Pulse-Synch protocol was provided in [Daliot 03], that proof was found to be flawed.
Because self-stabilization is a notoriously subtle and difficult problem, it is recommended that
mathematical proofs of proposed solutions be rigorously examined using formal methods. One
way of accomplishing such goal is mechanical verification of the proofs via theorem proving, i.e.
HOL, PVS, SAL, etc., or model checking, i.e. SMART, SMV/NuSMV, SPIN, etc. Mechanically
checked proofs are the only way we can have strong assurance that all possible scenarios are
covered.

The authors of the BSS-Pulse-Synch protocol have acknowledged the flaw and have
since proposed other solutions to the problem [Daliot 05]. However, these newly proposed
solutions are yet to be analyzed.

Acknowledgment

This work was supported by NASA’s Vehicle Systems Program. We’d also like to thank
Wilfredo Torres-Pomales, Paul Miner, Victor Carreno, Cesar Munoz, and Ricky Butler for their
invaluable comments.

7

References:
[Ciardo 03] Ciardo, Gianfranco; Siminiceanu, Radu: Structural Symbolic CTL Model

Checking, CAV 2003, Boulder, Colorado, LNCS 2725, pp.40-53, July
2003.

[Daliot 03] Daliot, Ariel; Dolev, Danny; Parnas, Hanna: Linear Time Byzantine Self-
Stabilizing Clock Synchronization, Proceedings of 7th International
Conference on Principles of Distributed Systems (OPODIS-2003), La
Martinique, France, December 2003.

[Daliot 05] Daliot, Ariel; Dolev, Danny: Self-stabilizing Byzantine Pulse
Synchronization, Technical Report TR2005-84, School of Engineering
and Computer Science, The Hebrew University of Jerusalem, Aug. 2005.

[Dijkstra 74] Dijkstra, E.W.: Self stabilizing systems in spite of distributed control,
Commun. ACM 17,643-644m 1974.

[Dolev 84] Dolev, Danny; Halpern, J.Y.; Strong, R.: On the Possibility and
Impossibility of Achieving Clock Synchronization. In proceedings of the
16th Annual ACM STOC (Washington D.C., Apr.). ACM, New York,
1984, pp. 504-511. (Also appear in J. Comput. Syst. Sci.)

[Driscoll 03] Driscoll, Kevin; Hall, Brendan; Sivencronam, Hakan; Zumsteg, Phil:
Byzantine Fault Tolerance, from Theory to Reality: Computer Safety,
Reliability, and Security, Springer-Verlag Heidelberg, ISBN: 3-540-
20126-2, Volume 2788 / 2003, October 2003, pp. 235 - 248

[Lamport 82] Lamport, Leslie; Shostak, Robert.; Pease, Marshall: The Byzantine
General Problem, ACM Transactions on Programming Languages and
Systems, 4(3), pp. 382-401, July 1982.

[Lamport 85] Lamport, L; Melliar-Smith, P. M.: Synchronizing clocks in the presence of
faults, J. ACM, vol. 32, no. 1, pp. 52-78, 1985.

[Kopetz 97] Kopetz, H: Real-Time Systems, Design Principles for Distributed
Embedded Applications, Kluwar Academic Publishers, ISBN 0-7923-
9894-7, 1997.

[Srikanth 87] Srikanth, T. K.; Toueg, Sam: Optimal Clock Synchronization. Journal of
the Association for Computing Machinery, Vol. 34, No. 3, July 1987, pp.
626-645.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

2. REPORT TYPE
Technical Memorandum

 4. TITLE AND SUBTITLE

Comments on the "Byzantine Self-Stabilizing Pulse Synchronization"
Protocol: Counterexamples

5a. CONTRACT NUMBER

 6. AUTHOR(S)

 Malekpour, Mahyar R.; and Siminiceanu, Radu

 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

NASA Langley Research Center
Hampton, VA 23681-2199

 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration
Washington, DC 20546-0001

 8. PERFORMING ORGANIZATION
 REPORT NUMBER

L-19203

10. SPONSOR/MONITOR'S ACRONYM(S)

NASA

13. SUPPLEMENTARY NOTES
An electronic version can be found at http://ntrs.nasa.gov

12. DISTRIBUTION/AVAILABILITY STATEMENT
Unclassified - Unlimited
Subject Category 62
Availability: NASA CASI (301) 621-0390

19a. NAME OF RESPONSIBLE PERSON

STI Help Desk (email: help@sti.nasa.gov)

14. ABSTRACT

Embedded distributed systems have become an integral part of many safety-critical applications. There have been many
attempts to solve the self-stabilization problem of clocks across a distributed system. An analysis of one such protocol called
the Byzantine Self-Stabilizing Pulse Synchronization (BSS-Pulse-Synch) protocol from a paper entitled “Linear
Time Byzantine Self-Stabilizing Clock Synchronization” by Daliot, et al., is presented in this report. This report also includes
a discussion of the complexity and pitfalls of designing self-stabilizing protocols and provides counterexamples for the claims
of the above protocol.

15. SUBJECT TERMS
Byzantine Fault; Byzantine Pulse Synchronization; Clock Synchronization; Counterexample; Formal Verification;
Self-Stabilization

18. NUMBER
 OF
 PAGES

12
19b. TELEPHONE NUMBER (Include area code)

(301) 621-0390

a. REPORT

U

c. THIS PAGE

U

b. ABSTRACT

U

17. LIMITATION OF
 ABSTRACT

UU

Prescribed by ANSI Std. Z39.18
Standard Form 298 (Rev. 8-98)

3. DATES COVERED (From - To)

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

23-645-84-06

11. SPONSOR/MONITOR'S REPORT
 NUMBER(S)

NASA/TM-2006-213951

16. SECURITY CLASSIFICATION OF:

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and
Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person
shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

02 - 200601-

