
Design for ValidationSally C. JohnsonRiky W. ButlerNASA Langley Researh CenterHampton, VA 23665{5225 �AbstratThe use of omputer hardware and software in life-ritial appliations, suh as for ivil air transports, de-mands the use of rigorous formal mathematial validationproedures. However, formal spei�ation and veri�a-tion will only be tratable if the system is designed ina manner that lends itself to formal methods. Likewise,aurate reliability analysis will only be tratable if thenumber of interating omponents that must be individ-ually inluded in a single reliability model is kept to alow number and if their failure behavior interations anbe modeled simply. Also, the system must be designedsuh that the system reliability does not diretly dependon system parameters that annot be aurately deter-mined. This paper presents a design methodology basedon the onept of designing a system in suh a mannerthat it an be rigorously validated, or \design for valida-tion." IntrodutionThe development of the Airbus A320 marked the be-ginning of a new era in ivil air transport tehnology|dependene on ight-ruial digital avionis. However,there are many indiations that this step was premature,given the urrent state of the pratie in digital systemsdesign and validation[1℄. Although the A320 was erti�edby the British Civil Aviation Authority (CAA), BrianPerry, head of Avionis and Eletrial Systems for theCAA admits, \It's true that we are not able to estab-lish to a fully veri�able level that the A320 software hasno errors. It's not satisfatory, but it's a fat of life"[2℄.Airframers pereive that inreased use of ight-ruialdigital avionis is an eonomi neessity. But how antraditionally onservative airframers, suh as Boeing andMDonnell Douglas, safely make the transition to ight-ruial avionis without jeopardizing their onservativereputations?There are numerous reports of serious inidents involv-ing the use of omputers in life-ritial appliations. For�Published in IEEE Aerospae and Eletroni SystemsJournal, Vol. 7, No. 1, Jan. 1992, pp. 38-43. Also Presentedat the 10th Digital Avionis Systems Conferene (DASC), LosAngeles, Ca, Ot. 7-11, 1991.

example, \In 1983 a United Airlines Boeing 767 went intoa four-minute powerless glide after the pilot was om-pelled to shut down both engines," beause the omput-erized engine-ontrol system, in an attempt to optimizefuel eÆieny, had ordered the engines to run at a rel-atively slow speed ausing ie buildup and subsequentoverheating[2℄. John Garman, Deputy Chief of NASAJohnson's Spaeraft Software Division, stated, \It's ashard to predit a software failure as it is to predit whatyour poker hand will be in the next deal"[2℄.The urrent proedure (RTCA DO-178A) used in er-ti�ation of ight-ruial software for ivil air transportsis not so muh a veri�ation of the system itself as anexamination of the proess used in its development. Theerti�ation proess onsists of heking for ompletenessof doumentation and adherene to aeptable design anddevelopment praties. Aording to Mike DeWalt of theFAA, \Basially, we take a slie through the whole sys-tem. That is, we pik a funtion like left aileron ontroland follow it all the way down through testing and on�g-uration management"[2℄. Thus, the testing of the systemis learly inomplete. Even after erti�ation of the A320,\various unsettling reports have appeared in the Euro-pean press, regarding: engines unexpetedly throttlingup on �nal approah; inaurate altimeter readings; sud-den power loss prior to landing; stearing problems whiletaxiing"[2℄.There are two major reliability fators to be addressedin the design of ultra-reliable avionis: hardware om-ponent failures and design errors. Even though signi�-ant inreases in the reliability of future hardware deviesare envisioned, hardware omponent failures in the op-erational environment will remain unavoidable. Further-more, industry trends towards signi�antly reduing therequirements for airraft maintenane ations will meaninreased dependene on the ability of systems to toleraterandom hardware faults.Design aws are errors introdued in the developmentphase rather than the operational phase. These inludeerrors in spei�ation of the system, disrepanies be-tween the spei�ation and the design, and errors madein implementing the design in hardware or software.While it is onvenient to onsider these fators sepa-rately, they are inexorably linked beause of their stronginterations. The need for tolerating random hardware1

omponent failures requires the use of redundant hard-ware omponents. The aompanying need for redun-dany management funtions an greatly inrease theomplexity of the operating system software and hard-ware. Complexity inreases the likelihood of serious, yetlatent, design aws.The design of a system entails making a series of de-sign deisions and tradeo�s. These tradeo�s are typi-ally made towards greater performane or lowest ostwithout regard for inreased design omplexity and thuslower reliability. For example, the developers of the Ad-vaned Fighter Tehnology Integration (AFTI) F-16 de-ided to use triplex, asynhronous hannels beause itwas believed that synhronous hannels would be morevulnerable to a single-point failure due to eletromag-neti interferene (EMI) or lightning. However, this de-ision greatly ompliated the design and integration ofthe system. During ight tests, the majority of the in-ight anomalies found were attributed to design over-sights during integration of systems developed separately,and many of them were diretly attributable to unex-peted interations between the asynhronous operationand the redundany management system[3, 4℄.This paper outlines an approah for the developmentof ultra-reliable digital avionis for ivil air transports|a \design-for-validation" philosophy that inludes rigor-ous appliation of formal methods. First, the basi on-ept of the methodology is introdued, and the role offormal methods is explored. The impat of the design-for-validation philosophy on the system design proess isthen demonstrated by two simple examples. More de-tail about the design-for-validation methodology is thengiven, followed by some onluding remarks.Basi ConeptA ommonly stated requirement for the ight riti-al omponents of ommerial airraft is a probability offailure not greater than 10�9 for a 10-hour mission time.This reliability region is learly outside the domain whereblak-box testing is feasible. Thus, analyti tehniquesmust be used in addition to testing to demonstrate thata system meets its requirements.The validation problem for life-ritial systems an bedeomposed into two major subtasks:1. Quanti�ation of the probability of system failuredue to physial failure.2. Establishing that design errors are not present.Sine urrent tehnology annot manufature eletronidevies with failure rates low enough to meet the reliabil-ity requirements diretly, fault-tolerane strategies mustbe utilized that enable the ontinued operation of the sys-tem in the presene of omponent failures. The �rst sub-task must therefore alulate the reliability of the systemarhiteture that is designed to tolerate physial failures.This leads to the use of stohasti models of the faultarrival and fault reovery behaviors of the system. Suhmodels depend ritially upon the orretness of the soft-ware and hardware whih implements the fault-tolerane

of the system. For example, if the redundany manage-ment system improperly diagnoses a good proessor asfailed or if a voter selets a faulty value, the assumptionsof the reliability model may be violated|leading to \use-less" reliability numbers. Thus, the seond subtask mustnot only establish the absene of errors in the ontrollaws and their implementation, but also the absene oferrors in the underlying arhiteture whih exeutes theontrol laws. Furthermore, it must be demonstrated thatthe reliability model is a omplete and aurate model ofthe implemented system. Sine this annot be rigorouslydemonstrated through testing, analyti methods must beused. Thus, the design-for-validation onept onsists ofthe following:1. The system is designed in suh a manner that aomplete and aurate reliability model an be on-struted. All parameters of the model that annotbe dedued from the logial design must be mea-sured. All suh parameters must be measurablewithin a feasible amount of time.2. During the design proess, tradeo�s are made in fa-vor of designs that minimize the number of mea-surable parameters in order to redue the valida-tion ost. A design that has exeptional perfor-mane properties yet requires the measurement ofhundreds of parameters (e.g., by time-onsumingfault-injetion experiments) would be rejeted overa less apable system that requires minimal experi-mentation.3. The system is designed in a manner that enablesa proof of orretness of its logial struture. Thereliability model does not inlude transitions repre-senting design errors.4. The reliability model is shown to be aurate withrespet to the system implementation. This is a-omplished analytially.The Role of Formal MethodsThe design-for-validation approah is based on the be-lief that life-ritial digital systems (software and hard-ware) must be designed in a manner that enables rigor-ous mathematial analysis in order to truly meet theirreliability goals. The mathematis for the design of asoftware system or digital hardware is logi, just as alu-lus and di�erential equations are the mathematial toolsused in other engineering �elds. The following steps areperformed to aomplish a formal veri�ation.1. Spei�ation of system using languages based onmathematial logi2. Rigorous spei�ation of desired properties as wellas implementation details3. Mathematial proof that the implementation meetsthe desired abstrat properties4. Use of semi-automati theorem provers to insure theorretness of the proofs2

The �rst two steps by themselves represent the most lim-ited appliation of formal methods. Nevertheless, the useof spei�ation languages based on mathematial logian o�er tremendous improvement in the spei�ationproess. De�ienies and inonsistenies an be detetedearly in the development proess when their orretionis less ostly. Step (3) represents the use of traditionalmathematial \hand" proofs to verify that the implemen-tation meets the spei�ation. Step (4) represents the�nal and most rigorous appliation of formal methods|the use of mehanial theorem provers to hek the or-retness of the proofs themselves.Several projets have already demonstrated that for-mal spei�ation ombined with informal design reviewsand walkthroughs is useful and ost-e�etive for unover-ing design faults. IBM's Cleanroom software experienehas shown that \More than 90 perent of total produtdefets were found before �rst exeution," (as opposedto the ustomary 60 perent), while produtivity was\equal to or better than expeted for ordinary softwaredevelopment"[5℄. Likewise, the parallel development ofthe Transputer by two design teams onluded with theteam employing formal spei�ation tehniques omplet-ing the design on time and under budget (and reeivingthe Queen's award in reognition of this e�ort). However,while the use of formal spei�ation alone without proofis an e�etive method for unovering design faults earlyin the design proess, it is not rigorous enough for om-plex, life-ritial appliations. Numerous design faultswere still unovered during the testing of IBM softwaredeveloped using formal spei�ation teamed with infor-mal orretness arguments.Even when the orretness of a system is proven andheked using mehanial theorem provers, one annotguarantee that the probability of a design fault is zero.The proofs ould be based on inorret axioms, the sys-tem requirements ould be inomplete or inaurate, orthere ould even be an error in the proof (e.g. the sys-tem designer makes an error in designing the system andomes up with an erroneous proof that happens to bedelared a valid proof by the mehanial theorem proverbeause of a design fault in the theorem prover).Formal methods is a powerful system design tehniquefor two reasons. First, the use of formal methods providesa degree of on�dene in the orretness of the systemthat is impossible with less rigorous methods. But moreimportantly, the appliation of formal methods fores thesystem designer to examine his system design in intriatedetail and to keep that design simple and modular enoughto be rigorously analyzable. For example, Dijkstra reog-nized that formal veri�ation of software programs ouldbe greatly simpli�ed by restriting the programmer to afew basi ontrol strutures and eliminating the use of\goto" statements, and this was his priniple motivationfor introduing the idea of strutured programming. Un-fortunately, \Many popularizers of strutured program-ming have ut out the rigorous part about mathematialveri�ation in favor of the easy part about no gotos"[5℄.System Design Examples

nnn -- �2� 321Figure 1: Over-simpli�ed Model of Fault-TolerantDual Proessor
n nnn? --4 2�(1� C)2�C � 321

Figure 2: Aurate Model of Fault-Tolerant DualProessorThe design-for-validation philosophy means that, ide-ally, how the system is to be validated should be onsid-ered from the very �rst moments of the system designproess. The following simple examples illustrate thisproess:Example System 1Suppose we must design a simple fault-tolerant systemwith a probability of failure no greater than 2 � 10�6whose maximum mission time is 10 hours. We quiklyeliminate the use of a simplex proessor sine there is notehnology that an produe a proessor with this low of afailure rate. Thus, we begin to explore the notion of fault-tolerane. We next onsider the use of redundany|howabout a dual? When the �rst proessor fails, we willautomatially swith to the other proessor. We developthe Markov model shown in �gure 1 to model suh asystem.Unfortunately, our design su�ers from one major prob-lem. It would be impossible to prove that any imple-mentation behaves in aordane with this model. Theproblem is that one annot design a dual system that andetet the failure of the �rst proessor and swith to theseond 100% of the time.1 Thus, we must aept the fatthat there is a single-point failure in our system and in-lude that failure transition in our reliability model (see�gure 2).Now we have a parameter in our model whih mustbe measured|C. This parameter represents the frationof single faults from whih the system will suessfullyreover. We must now determine whether this param-eter an be measured in a feasible amount of time (i.e.say less than year) with statistial signi�ane. Anal-ysis of this model using the SURE reliability analysisprogram[6℄ shows the sensitivity of the system reliabilityto C, as shown in Table 1. From this sensitivity analysis,1There are theoretial proofs that this annot be done.3

C LOWERBOUND UPPERBOUND:9990 2:99600 � 10�6 2:99900 � 10�6:9992 2:59660 � 10�6 2:59920 � 10�6:9994 2:19720 � 10�6 2:19940 � 10�6:9996 1:79780 � 10�6 1:79960 � 10�6:9998 1:39840 � 10�6 1:39980 � 10�61:000 9:99000 � 10�7 1:00000 � 10�6Table 1: Sensitivity Analysis of System Reliabilityto Parameter C.Pf
10�11
10�3
10�910�710�5

10�10 10010�8 10�6 10�4 10�2pp
pp

1�CFigure 3: Failure Probability of 5MR with � = 10�5as a Funtion of Cwe an see that we must demonstrate that C is greaterthan 0.9995. It an be shown that 20000 observations areneessary to estimate this parameter to a reasonable levelof statistial signi�ane. If we optimistially 2 assumethat eah fault injetion requires 1 minute, then this val-idation exerise would require 330 hours (i.e. 14 days).In this ase, we deide we an live with this amount oftesting and proeed to develop our system.Example System 2Now suppose we need to design a system with a reli-ability goal of 1 � 10�9. We deide to develop a nonre-on�gurable 5-plex (5MR) using a proessor with a fail-ure rate of 10�5=hour. We do not intend to use formalmethods to verify the orretness of the fault-maskingapability of the system, so we must rely on testing tovalidate this property. Through testing we must estab-lish that the probability of a single point failure, say C,is suÆiently small. The probability of system failure isplotted as a funtion of 1�C in �gure 3. The value of Cmust now be greater than 0.9999982.It is easily shown that over a million fault injetionswould be required to measure this parameter even if we2Theoretially one would have to observe the system for along time in ase the fault has a large lateny period. If oneassumes that fault lateny is less than 1 minute one an ensorthe experiment.

are very optimisti about the testing proess. If eahinjetion required 1 minute, this would require almost1.9 years of non-stop fault injetions.It would be nie if we ould design our system so thatsuh an experiment is unneessary. This is preisely thenotion of design for validation. The system is designedso that a single point failure annot ause system failure(i.e. C = 1), and this is demonstrated to be true byformal proof. Thus, one uses the power of analysis toeliminate experimental testing.The Design-for-Validation MethodologySystem design begins with a detailed desription of thesystem requirements written in a formal, mathematiallanguage. The system design then proeeds in a hier-arhial fashion from a highest-level spei�ation of thesystem down to a detailed implementation level. There-fore, formal methods are applied to the total system, notjust to the individual subsystems, and all interationsbetween subsystems are formally desribed and under-stood. Of ourse, this represents the long-term ideal. Inthe short term, formal methods will probably be appliedto individual ritial subsystems �rst.Although experimental methods annot be used tomeasure ultra-reliability diretly, there are important ap-pliations of experimental methods. The reliability mod-els used to analyze the system will depend on auratemeasurements of ertain parameters, suh as omponentfailure rates and system reon�guration rates. Likewise,the interfae between the lowest level of formal systemdesription and the atual hardware implementation ofthe system must be bridged by aurate desriptions andmeasurements of the hardware funtionality and timing.Reliability AnalysisReliability models are onstruted based on a detailedunderstanding of the failure modes and fault tolerane ofa system. A reliability predition is only as aurate asthe reliability model of the system. Consequently, it isessential that a formal proof be onstruted to demon-strate that the Markov model is an abstration of theimplementation[7℄. It is important to reognize that ex-perimental methods annot be used to demonstrate thisfor ultrareliable systems. This would require as muhexperimentation as diret life-testing of the system.Additionally, the reliability estimate obtained for asystem is only as aurate as the parameters used inthe model. Therefore, the reliability model, and henethe system behavior, must be based on parameters thatan be aurately measured or estimated through analy-sis or experimentation. This would typially inlude thefailure rates of the hardware omponents and the reov-ery time for deteting, isolating, and reon�guring out afailed omponent.There are pratial and e�etive omputational ap-proahes available today for alulating the reliability4

of Markov models[6, 8℄. The main area of onern isthat reliability models are often onstruted with manyparameters that would require exhorbitant amounts oftesting to measure aurately. If rigorous validation isto be aomplished, systems will have to be designeddi�erently|even if this means adding additional hard-ware to the system to make the validation task tratable.Design FaultsReliability modeling tehniques are satisfatory for val-idating the failure probability due to random hardwarefailures given that aurate omponent failure rate datais available. The primary obstale in validation of ultra-reliable systems onerns design faults in funtionality,not random hardware failures. With random hardwarefailures, the failures are assumed (and generally aeptedto be) independent between eletrially isolated redun-dant hannels, and the failure probabilities of the repli-ated units an be multipled, greatly inreasing the over-all system reliability predition. When onsidering designfaults suh as software bugs, however, it has been foundthat errors in repliated versions, even though reated bydi�erent programmers using di�erent programming lan-guages, are not independent; i.e. the programmers tendto make the same kinds of mistakes[9℄.The onept of di�erent repliated versions is alled\design diversity" and has been applied to both softwareand hardware. It is generally aepted that design diver-sity an result in inreased reliability, but it is not possi-ble to quantify the inrease in the ultra-reliable regime.These onsiderations leave validation of life-ritial sys-tems in a quandary: testing is not appropriate beauseof the exhorbitant number of tests required. The design-for-validation philosophy leads us to the approah of for-mally verifying the orretness of eah and every elementof the design. There is no attempt to measure the proba-bility of system failure due to design faults. One provenorret, the design is assumed orret for all analyses.Although formal veri�ation an oneptually be ar-ried down to deeper and deeper levels of re�nement (sayto the quantum-physis level), ultimately one reahes apoint where the ost/bene�ts do not justify veri�ationat a level any lower. For example, it is typially believedthat gate-level design is suÆiently low. At lower lev-els CAD synthesis tools seem to be adequate to developfault-free designs. The implementation onsequently isbuilt in terms of \atomi" omponents suh as NANDgates, rystal osillators, lathes, et. These omponentsare desribed mathematially. The demonstration thatthese omponents are desribed properly must be doneexperimentally. For example, the drift rates of the lokrystal osillators is obtained by measurement.Performane AnalysisAvionis systems typially onsist of a number of tasksthat exeute periodially. The ight-ruial avionistasks must reliably alulate the outputs needed to on-trol the airplane aording to strit real-time deadlines.

EE ��
ount

exeution timesHard upper boundFigure 4: Histogram of Task Exeution TimesFundamentally, the validation must establish that all ofthe ight-ruial tasks meet their deadlines.Although probabilisti/statistial methods have beensuessfully utilized to model general purpose operat-ing systems, they have limited appliation to the perfor-mane validation of ultrareliable, hard real-time systems.In fat, the majority of performane analysis tools beingdeveloped today are useful for estimating the average per-formane levels of a system, but are of little use in esti-mating in the tails of the performane distribution. Sim-ulation is of little value in suh estimation for the samereason that software reliability annot be quanti�ed|youannot estimate what you annot observe.Sine the set of tasks are onstant and their sheduleis almost always stati, the performane problem reduesto a demonstration that eah task's exeution time isbounded. Unfortunately, experimental methods annotestablish this property to the required level of reliabil-ity. When one measures the exeution times of a taskone obtains a histogram like the one shown in �gure 4.Colleting enough measurements to estimate with suÆ-ient statistial signi�ane the probability that the harddeadline would be exeeded is infeasible. Consequently,one must use formal ode analysis to demonstrate thatthe exeution times are stritly bounded. However, inmany ases suh analytial methods will also be infeasi-ble unless the ode is developed (or redesigned) in suh amanner as to support the required analyses. In reogni-tion of this problem, the proposed 00-55 British defenestandard de�nes strit oding praties that avoid imple-mentations whose exeution times annot be analytiallybounded.System Modi�ationIn an ideal world, the system requirements wouldbe ompletely de�ned at the start of the projet andfrozen|hanges in the system requirements during de-sign and implementation would be forbidden. However,this is simply not a realisti senario for large develop-ment projets. The plea that John Garman of NASA5

Johnson direts to the aademi and software engineer-ing ommunity is to \help us to �nd ways to reliablymodify software with minimum impat in time and ost."Garman ontinues, \Maintaining software systems in the�eld, absorbing large hanges or additions in the middleof development yles, and reon�guring software sys-tems to \�t" never-quite-idential vehiles or missionsare our real problems today"[10℄. The reason that mod-ifying systems is diÆult and expensive is beause theinterations between subsystems are subtle and hard todetermine. When a hange is made to one subsystem, itis extremely diÆult to determine all of the other sub-systems that are impated by that hange. However, ifa system has been formally veri�ed using an automatedtheorem prover system, then whenever a system mod-i�ation is made, the user an determine whih othersubsystems are impating by rerunning the proofs. Theproofs for subsystems not impated by the hange willremain valid, while the proofs of orretness of the im-pated subsystems will be reported as \unproved." Theuser then modi�es the a�eted subsystems and their a-ompanying proofs, on�dent that no unexpeted inter-ations have been overlooked.Conluding RemarksMost of the formal methods researh sponsored in theUnited States has been targetted towards appliation offormal methods to seurity appliations. We believe thatappliation of formal methods will be the state of thepratie for ivil air transports in 10 to 15 years. Toahieve this, muh work must be done to develop for-mal methods tehnology. Methods and tools for develop-ing formally veri�ed fault-tolerant system hardware ar-hitetures, operating systems, and avionis appliationsoftware must be developed and demonstrated. Cur-rent formal methods tools are tedious and diÆult touse, and they an only be e�etively used by personsskilled in formal mathematial reasoning. Over time, itis expeted that tool developers will ome through withreative breakthroughs to automate some of the tedioussteps that are now required. However, the developmentof tools powerful enough to allow persons that are notskilled in mathematial logi to perform rigorous proofsof systems is very unlikely in the foreseeable future. Thelogial thought proesses needed to prove a system or-ret are far beyond the apabilities of today's arti�ialintelligene researh. Therefore, if formal methods are togain widespread use, there must be a supply of logiiansto pratie the raft.As formal methods beomes the state of the pratie,reuse of proven hardware and software and reuse of proofsthemselves will beome ost e�etive. Software reuse to-day has gained only minimal aeptane for three rea-sons: 1) development of new software is pereived as be-ing relatively heap, 2) most software is not built withsuÆient modularity to make its reuse pratial, and 3)rigorous spei�ation is ruial to reusability. Formallyveri�ed software is expensive, is typially built in a moremodular fashion to failitate the proof e�ort, and is rig-

orously spei�ed. Therefore, one is more likely to tryto reuse formally veri�ed software. Even in situationswhere new software or hardware must be developed, ex-isting proven designs an be modi�ed and parts of theiroriginal proofs reused.Referenes[1℄ N. G. Leveson, \Software safety: What, why, andhow," Computing Surveys, vol. 18, June 1986.[2℄ J. Beatson, \Is ameria ready to `y by wire'?,"Washington Post, Apr. 1989.[3℄ J. Rushby, \Formal spei�ation and veri�ation ofa fault-masking and transient-reovery model fordigital ight-ontrol systems." To be published asa NASA Contrator Report, 1991.[4℄ D. A. Makall, \Experienes with a ight-ruialdigital ontrol system," Tehnial Paper 2857,NASA, Nov. 1988.[5℄ H. D. Mills, M. Dyer, and R. C. Linger, \Cleanroomsoftware engineering," IEEE Software, pp. 19{24,Sept. 1987.[6℄ R. W. Butler and A. L. White, \SURE reliabilityanalysis: Program and mathematis," Tehnial Pa-per 2764, NASA, Mar. 1988.[7℄ L. Moser, M. Melliar-Smith, and R. Shwartz, \De-sign veri�ation of SIFT," Contrator Report 4097,NASA, Sept. 1987.[8℄ R. W. Butler and S. C. Johnson, \The art offault-tolerant system reliability modeling," Tehni-al Memorandum 102623, NASA, Mar. 1990.[9℄ J. C. Knight and N. G. Leveson, \An experimentalevaluation of the assumptions of independene inmultiversion programming," IEEE Transations onSoftware Engineering, vol. SE-12, pp. 96{109, Jan.1986.[10℄ J. R. Garman, \The bug heard 'round the world,"ACM SIGSOFT Software Engineering Notes, vol. 6,pp. 3{10, Ot. 1981.

6

