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In air traffic management, conflict detection algorithms are used to determine whether
or not aircraft are predicted to lose horizontal and vertical separation minima within a time
interval assuming a trajectory model. In the case of linear trajectories, conflict detection
algorithms have been proposed that are both complete, i.e., they detect all conflicts, and
sound, i.e., they do not present false alarms. In general, for arbitrary nonlinear trajectory
models, it is possible to define detection algorithms that are either sound or complete, but
not both. This paper considers the case of nonlinear aircraft trajectory models based on
polynomial functions. In particular, it proposes a conflict detection algorithm that precisely
determines whether, given a lookahead time, two aircraft flying polynomial trajectories are
in conflict. That is, it has been formally verified that, assuming that the aircraft trajectories
are modeled as polynomial functions, the proposed algorithm is both sound and complete.

I. Introduction

Separation requirements in the airspace are typically given by a minimum horizontal separation, e.g., 5
nautical miles, and a minimum vertical separation, e.g., 1000 feet [13]. A loss of separation between two
aircraft occurs when both of these minima are simultaneously violated, and a conflict occurs when the aircraft
are predicted to lose separation in the near future, usually 5 minutes. Conflict detection algorithms have as
input the state information of two aircraft and a lookahead time. They return a Boolean value indicating
whether or not the aircraft are in conflict, i.e., they are predicted to be in a loss of separation within the given
lookahead time. When a conflict is detected, conflict resolution algorithms compute resolution maneuvers
for the aircraft that maintain the required aircraft separation. Conflict detection and resolution (CD&R)
systems are part of computer-based systems that assist pilots and air traffic controllers to maintain safety
in the airspace by keeping aircraft separated. These separation assurance systems are critical elements of
air/ground distributed operational concepts for the next generation of air traffic management systems such
as the US’s Next Generation of Air Traffic Systems (NGATS) [22] and Europe’s Single European Sky ATM
Research (SESAR).2

CD&R algorithms rely on the reported state information of the aircraft. This state information typically
includes 3D position and velocity vectors. A given aircraft trajectory model is then used to propagate
the current state information forward in the future within the time interval determined by the lookahead
time. Several state propagation methods for CD&R systems have been proposed [8]. For example, state-
based conflict detection algorithms use a linear projection of the current state of the aircraft. This simple
aircraft trajectory model corresponds to a point mass moving along a straight line at constant speed. More
sophisticated state propagation methods assume nonlinear trajectories or probabilistic trajectory models.

Three important safety properties for conflict detection algorithms are soundness, completeness, and
correctness. Given an aircraft trajectory model, an algorithm is sound if it only detects potential conflicts,
i.e., if in every situation where the algorithm returns true, the aircraft are in conflict according to the
trajectory model, then the detection algorithm is sound. An algorithm is complete if all conflicts are detected,
i.e., if in every situation where two aircraft are in conflict according to the trajectory model, the algorithm
returns true, then the detection algorithm is complete. Finally, a detection algorithm is correct if it is both
sound and complete, meaning that the algorithm returns true if and only if the aircraft’s trajectories are
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in conflict. The notions of soundness and completeness are related to the notions of false alerts and missed
alerts and they may play a role in the development of safety cases for the certification of CD&R systems.

For linear trajectories, i.e., trajectories where the initial velocity does not change within the lookahead
time, it is possible to define algorithms that are correct, i.e., sound and complete [3,9]. Unfortunately, for
nonlinear trajectory models, designing a conflict detection algorithm that is correct is more challenging. One
way to design a detection algorithm for an arbitrary trajectory model is to test a number of sample points,
representing aircraft positions within a given lookahead time, and return the Boolean value true if some of
those points are in loss of separation. Such an algorithm is sound but not complete, since it cannot detect
conflicts that occur outside the set of sample points.

In previous work, the authors proposed a detection algorithm for arbitrary nonlinear trajectory models
and formally verified its main safety properties [11]. That algorithm is based on a numerical method using
Bernstein polynomials, which are a particular case of spline functions. The algorithm explicitly computes a
small interval enclosure for the smallest distance between two aircraft during a lookahead time, and returns
a Boolean value depending on this information. That algorithm can be proved to be correct within some
approximation bounds. More precisely, by modifying the separation minima (both horizontal and vertical),
the algorithm is provably sound or provably complete. However, for given separation minima it cannot
simultaneously satisfy both properties.

In this paper, the authors present a new, formally verified conflict detection algorithm for aircraft tra-
jectories described by polynomials in the time variable. This algorithm is provably correct. Thus, given the
state information of two aircraft and a lookahead time, it returns the Boolean value true if and only if the
aircraft, which are assumed to fly polynomial trajectories, are predicted to be in loss of separation within
the lookahead time. The proposed algorithm is based on a well-known result in real algebraic geometry
called Tarski’s theorem. This theorem enables the computation of a Boolean value that precisely determines
whether or not the distance between two polynomial trajectories ever crosses a certain separation threshold
within a time interval. In the case of linear trajectories, the quadratic formula can be used to determine
whether a polynomial of degree 2, i.e., the square of the distance between two aircraft at any time, ever
crosses the separation minima. In the case of polynomial trajectories of higher degree, Tarski’s theorem can
be used to make the same determination.

The rest of the paper is organized as follows. The conflict detection problem is discussed in Section II.
Tarski’s theorem is described in Section III. This theorem is the backbone of the conflict detection algorithm
for polynomial trajectories that is proposed in Section IV. The last section discusses related work and
concludes the paper. The proposed conflict detection algorithm and its correctness property have been
formally specified and verified in the Prototype Verification System (PVS) [14]. To make this paper accessible
to non-PVS users, this paper uses mathematical notation instead of PVS concrete syntax.

II. Conflict Detection

Since conflicts between multiple aircraft can be detected in a pairwise fashion, this paper only considers
conflicts between two aircraft. These two aircraft are referred to as the ownship and the intruder. As
usual in CD&R literature, the airspace volume is modeled using a flat-earth projection in a 3-dimensional
rectangular coordinate system. That is, aircraft positions are viewed as points in R3. The separation
requirement between two aircraft is specified as a minimum horizontal separation D and a minimum vertical
separation H. Typically, D is 5 nautical miles and H is 1000 feet [13]. In this paper, D and H are considered
to be known numerical constants. The separation requirement can be understood as an imaginary horizontal
cylinder, called the protected zone, of height 2H and diameter 2D around the intruder aircraft.

A loss of separation between the ownship and the intruder aircraft occurs when the horizontal distance
between the aircraft is less than D and the vertical distance is less than H, i.e., when the ownship is in the
interior of the intruder’s protected zone. Let s, € R3 and s; € R3 be the current positions of the ownship and
intruder aircraft, respectively. Formally, the ownship and intruder aircraft are said to be in loss of separation
if the following predicate on s, and s;, holds.

los?(so,8:) = |s.| <H and |s(,,,[ <D,

where s = s, — s;, i.e., s is the relative position of the ownship with respect to the intruder aircraft, and
S(xz,y) is the horizontal projection of 3-dimensional vector s.
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II.A. Trajectories

An aircraft trajectory represents the set of possible positions for the aircraft according to some state prop-
agation model [8]. A state propagation model for CD&R systems may be as simple as a linear projection
of the current position at the current constant velocity. More complicated models consider uncertainties in
the aircraft state due to aircraft dynamics, weather patterns, and other factors. In this paper, an aircraft
trajectory is a continuous function that maps a time in R to an aircraft position in R3. Given a time ¢t € R,
the evaluation of a trajectory at time ¢ is a point in R? that represents the projected 3-dimensional position
for the aircraft at the time ¢.

Example 1 (Linear Dynamics). Tactical state-based CDER systems uses an aircraft trajectory model that
assumes a linear projection of its current position s € R® along its current velocity v € R3. This type
of trajectory can be represented by the parametric function linearsy: R — R3, with parameters s and v,
defined by

linearsy(t) =s+1¢ v. (1)

Example 2 (Turn Dynamics). During a steady coordinated turn without friction, the position of an aircraft
will follow a circle of radius gtlde)’ where v is the true air speed, g is the acceleration of gravity, and ¢ is
the bank angle of the aircraft. Thus, the trajectory of an aircraft during a turn can be represented by the
parametric function turns o w.v.: R = R, with parameters s, v, a, w, and v,, defined by

tUrNg 1 o w0, (1) =8 + (rsin(a + tw), rcos(a + tw), tv,), (2)

2

where s is the center point of the turn, w = % tan ¢, a is the angle along the turn at time zero, r = gtVTw

and v, s the vertical speed.

Henceforth, trajectories for the ownship and intruder aircraft are denoted by P, and P;, respectively.
Specifically, trajectories will be studied where each of the components functions of P, and P; are defined
with polynomials in a time variable t.

II.B. Conflict Detection Algorithms

While loss of separation is formalized as a predicate on two aircraft positions s, and s;, a conflict between
two aircraft is formalized as a predicate on the ownship and intruder trajectories P, and P; in R — R3,
respectively. The conflict predicate is defined for a lookahead time T that represents a time interval of
interest. As in the case of D and H, T is assumed to be a known numerical constant. The trajectories P,
and P; are in conflict if there exists ¢ € [0, T] such that the positions P,(t) and P;(¢) are in loss of separation:

conflict?(P,, P;) = 3t € [0,T] : los?(P,(t), P;(t)). (3)

Example 3. If both trajectories, P, and P;, are given by linear projections of the states of the aircraft at
time zero, then P,(t) = s, +tv, and P;(t) = s;+tv;, wheres,, s;, Vo, and v; are the positions and velocities
of the ownship and the intruder at time zero, respectively. In this case,

conflict?(P,, P;) <= 3t € [0,T] :[s, +tv.| < H and
I8¢z.5) + Ve, <D,

where s =8, —s; and v =v, — v;. This definition is typically used in state-based CDER [3,9].

An algorithm used by an aircraft to detect conflicts with another aircraft is called a conflict detection
algorithm. In this paper, a conflict detection algorithm is a function cd that takes as inputs P, and P;, and
returns a Boolean value. Formally, a conflict detection algorithm cd is complete if for all trajectories P,, P;
such that conflict?(P,, P;) = true, it holds that cd(P,, P;) = true. Similarly, it is sound if for trajectories
P,, P; such that cd(P,, P;) = true, it holds that conflict?(P,, P;) = true. Finally, the algorithm cd is correct
if it is both sound and complete.
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II.C. Conflict For Polynomial Trajectories

In this paper, a state propagation model based on polynomial trajectories is considered. That is, it is
assumed that

P,(t) = (agt? + -+ -+ a1t + ag, bpt" 4+ - +bit + by, cst®+ -+ 1t + co),
Pi(t) = (dptt + -+ dit +do, et +-- -+ et +eg, fnt™ 4+ fit + fo).

where q, r, s, k, [, and m are, respectively, the degrees of the polynomials appearing above.
Given the explicit descriptions above of these trajectories, conflict between these trajectories can be
specified as follows.

conflict?(P,, P;) =

dteR :
t > 0 and
T—-t >0 and (4)

D? — ((agt? +--- 4 ag) — (dxt* +--- +do))* -
((bpt" 4 -4+ bo) — (est' + -~ +¢9))? >0 and
H? = ((est™+ oo+ co) = (fmt™ + -+ + fo))® > 0.
Thus, detecting a conflict for these polynomial trajectories is equivalent to solving this system of four
polynomial relations. Indeed, each of the last four lines of the formula is of the form p(¢) R0, where R is in

the set {>, >}, and where p(t) is a polynomial in the variable ¢.
For a linear trajectory model, Formula 4 can be reduced to

conflict?(P,, P;) =

dteR:
t > 0 and
T—t >0 and

D? — ((Vout + S0z) — (Vigt + 8i2))* — ((voyt + Soy) — (Vigt + sly))2 >0 and
H? — ((Vozt + Soz) — (Viet + szz))2 >0,

where Po = (Sow + t’an;, Soy + t’on, Soz + tvoz)a Pz = (Sim + t’in, Siy + tviyv Siz + tviz)7 and S0,8i, Vo, V; are the
positions and velocities of the ownship and the intruder at time zero.

ITII. Tarski’s Theorem

In Section I1.C, it is shown that the problem of detecting conflicts for polynomial trajectories is equivalent
to determining whether a system of four polynomial equations has a solution ¢, where t is a real number.
There is an algorithm that can efficiently determine whether or not this system of polynomials has a solution.
Such an algorithm belongs to the mathematics field of semi-algebraic geometry [1], which is the study of
systems of polynomial relations. The algorithm presented in this paper is a particular instance of a more
general algorithm for determining the existence of solutions of any system of polynomial relations.

To illustrate how it is possible to analytically determine whether a polynomial relation has a solution,
consider first the simple case of a single quadratic polynomial inequality at? + bt + ¢ < 0, where a > 0.
This quadratic opens upward, and therefore this equation has a solution if and only if there exists at least
one root of this polynomial, meaning that there exists some ¢ where at? + bt + ¢ = 0. However, by using
the quadratic equation, it is relatively easy to see that this happens if and only if b2 — 4ac > 0. Thus, the
analytic way to check whether at? + bt + ¢ < 0 has a solution is to check whether b — 4ac > 0. This shows
that determining analytically whether a polynomial formula has a solution is possible, at least in the case
where the polynomial is a quadratic.

In fact, it is possible to determine analytically whether any polynomial system has a solution. The
algorithm used in this paper is based on Tarski’s theorem. First, recall that the extended real numbers R*
are defined as the real numbers R with two extra points added, namely co and —oco. Any polynomial p can
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be evaluated at any point of R*, and it returns another extended real number in R*. For instance, if p is
the polynomial p(t) = t2, then p(cc) = oo and p(—o0) = oo, and if p is the polynomial p(t) = —t3, then
p(00) = —oo and p(—o0) = oo. Next, let g and h be univariate polynomials, such that h is nonzero. Using
the standard Euclidean division algorithm for polynomials, it is always possible to find polynomials ¢ and r
such that ¢ = ¢- h+r and the degree of r is less than the degree of h. Let rem(g, k) denote the polynomial r
after division, known as the remainder. Given univariate polynomials p and g, the Sturm sequence of p and
g is a sequence S of polynomials

Pos P1, P25 --- s Pm; (5)
where
Po =D
=gy,
Vd>1:pg=—-rem(pi_2,pi—1), (6)
Pm = 0,and
Pm—1 7£ 0.

Evaluating each of the polynomials in a Sturm sequence at some x € R* produces a sequence of extended
real numbers. A function oy, 4 is defined on R* by setting o, 4() to be equal to the number of sign changes
in this sequence. When counting the number of sign changes in an evaluated Sturm sequence, any zeros are
ignored. For example, if m =7 and po(x) =4, p1(z) = =3, pa(x) = =5, ps(x) =0, ps(z) = 18, ps(z) = —4,
pe(x) = —1 and p7(x) = 0, there are sign changes between pg(z) and p;(z), between ps(z) and py(z), and
between py(x) and ps(z). In this case, the number of sign changes in the sequence is given by o(x) = 3.

A basic form of Tarski’s theorem states that for a,b € R* with a < b, if neither a nor b is a root of both
p and p’ - g, then

Op.g(a) — op 4(b) = card({z € (a,b] : p(xr) =0 and g(x) > 0}) —
card({z € (a,b] : p(z) =0 and g(z) < 0}).

Here, the function card(S) denotes the cardinality of a finite set S. The case where ¢ is the constant
polynomial 1 is commonly known as Sturm’s theorem [21]. The basic version of Tarski’s theorem motivates
the definition of the Tarski query, TQ, which is a function with polynomials p and ¢ as inputs.

TQ(p, g) = 0p,g(—00) = op,g(00).
Theorem 1. Let p, g be univariate polynomials. Then
TQ(p,g9) = card{z € R: p(x) =0 and g(x) >0}) — card({x € R: p(z) =0 and g(z) < 0}).

The proof of Theorem 1 can be found in works on real algebraic geometry [1]. Theorem 1 is enough to
prove the correctness theorem of the conflict detection algorithm presented in this paper. That correctness
theorem is Theorem 5. However, we now discuss how, in general Theorem 1 above can be used to solve
arbitrary systems of polynomials. However, this general framework, as just noted, is not required to prove
the main correctness theorem (Theorem 5).

Well-written expositions of Sturm’s and Tarski’s theorems can be found in the literature [1,4,20]. In-
stantiating the polynomial g with 1, g, and ¢g? in Theorem 1, it can be seen that the following equality of
vectors holds, where there is a matrix multiplication on the right hand side.

TQ(p, 1) card(S=)
TQ(p,g9) | =M - |card(Ss)| , (7)
TQ(p, g°) card(S<)

where Sp ={z € R : p(x) =0 and g(z) R 0} and

1 1 1

M=|0 1 -1 (8)
0 1 1
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Since the matrix M is invertible, the vector on the far right hand side can be computed by calculating the
three Tarski queries.

In the following sections, entries of matrices are expressed with indices starting at 0. The top left entry of
a matrix is its (0,0)-th entry, and the first entry of a vector is its O-th entry. The expression M][i, j] denotes
the (i,7) entry of a matrix M. Let g = {go, ..., gx} be any sequence of polynomials and define TQ(p, g) to
be the vector with 3¥*1 entries whose i-th entry is given by

k
Q. [[ 91
d=0

where (ig,...,i) is the base—3 representation of i. Let NSol(p, g) be the vector with 3**! entries whose
j-th entry is given by the cardinality of the set
SolSet(p,g,j) ={z € R : p(z) =0 and go(z) Rop 0 and ... and gr(x) Ry 0},

where each relation Ry, with 0 < d < k, is given by

= if jd = Oa
R; = > if jg=1,
< if jg =2,
and where (jo, ..., jk) is the base-3 representation of j.
Theorem 2. For any polynomial g and sequence g = (go, - .., gk),, all with real coefficients,
TQ(p, g) = M1 - NSol(p, g). (9)

Theorem 2 and its proof can be found in works on real algebraic geometry [1]. The matrix M®®*+1) in
Formula (9) denotes the standard (k + 1) tensor power of the matrix M. The matrix M®*+1 is invertible
and its inverse is given by the following formula.

k+1
1 0 -1 B+
®(k+1)y—1 _ —L®(k+1) _ 1 1
M ) =M = |0 33
1
0 3 —3
The next result following immediately from this
Theorem 3. For a nonzero polynomial p and a sequence of nonzero polynomials g = (go, - .-, gk),, all with

real coefficients,
NSol(p, g) = (M~1)**+V. TQ(p, g).

The theorem above follows directly from the discussion above, and a more indepth discussion and proof
can be found in works on real algebraic geometry [1]. Theorem 3 enables the effective computation of
NSol(p, g), which are cardinalities of sets of the form

{teR :p(t)=0 and go(x) Rop 0 and ... and gp(z) Ry 0},

with Ry € {=,>,<,#,>,<} for 0 < d < k. That is, this theorem makes it possible to count solutions
to sets of relations, provided that one of the relations is an equality. In the more general case, it is always
possible to reduce any system of polynomials with relations in {=, >, <, #, >, <}, to a system of polynomials
where one of the relations is an equality. This can be done by adding one extra polynomial equation, where
the polynomial in question is either the product of the polynomials in the system or the derivative of that
product. This is stated by the following theorem, whose reasoning follows from standard theorems in real
analysis [1,19].

Theorem 4. Consider a collection of polynomials go,...,gr and relations Ry, ..., Rk, where Rg € {=,>
,<,#,>,<} for 0 < d < k. Suppose that the system S = go(t) Ro 0 and ... and gi(t) Rg O is not
satisfied at either —oo or co. Then S has a solution t € R if and only if one of the following two conditions
holds, where @ is the polynomial HZ:O gd-

e S and Q = 0 are satisfiable at a common point.

e S and Q' = 0 are satisfiable at a common point.
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IV. Conflict Detection Algorithm for Polynomial Trajectories

Let P, and P; be the polynomial trajectories described in Section II.C. Recall from that section that
conflict detection between P, and P; is equivalent to determining whether the following system of polynomials
has a solution ¢ € R.

CDpy(t) > 0 and CDp,(t) > 0 and CDpy(¢t) > 0 and CDps(¢) > O,

where the polynomials CDp,, CDp,, CDp,, and CDp; are defined by

CDpO(t) = ta

CDpl(t) =—t+T,

CDp,(t) = D? — ((agt? + -+ ag) — (dit* + -+ do))*> — ((bt" + - +bo) — (est' + - +€p))?,
(t)

CDp;(t) = H? — ((cst® + - +co) — (fut™ + -+ fo))*.

Theorem 4 makes it possible to define a conflict detection algorithm for trajectories of this type by computing
the coefficients of the appropriate row of the matrix (M~1)®(*+1) a5 well as the vector TQ(p, g). This enables
the direct computation of the corresponding element of the vector NSol(p, g). In fact, the algorithm first
simplifies the above system by noting that if either CDp,(¢f) = 0 or CDp,(t) = 0, then this system has a
solution at either 0 or T'. Thus, the algorithm first checks whether there is a solution at 0 or 7" and then
uses Theorem 4 to check whether there is a solution to the following system, which only includes > relations
and no > relations.

CDpy(t) > 0 and CDp,(t) > 0 and CDpy(t) > 0 and CDps(t) > 0. (10)

Theorem 4 implies that the product of one of the polynomials is zero at the solution point, since their product
@ is zero at that point. However, the system of polynomial relations in Formula (10) has only > relations,
S0 it is impossible that the product of these polynomials is zero at any point where this system is satisfied.
Thus, the only other possibility for the conditions in Theorem 4 to have a solution is for a solution to exist at
a point where the derivative of the product of these four polynomials is zero. This motivates the definition
of the conflict detection algorithm in Figure 1 for polynomial trajectories P, and P;. The algorithm below
returns a Boolean value depending on whether the aircraft are in conflict or not.

The sum of 16 Tarski queries that appears in the definition of the algorithm cd_poly in Figure 1 is equal
to twice the dot product of the 40-th row of (M®%)~! with the vector TQ(II, {go, 91,92, 93}), where, as
in the algorithm above, g; = CDp;, for 0 <7 < 3, and Il = gy - g1 - g2 - g3. The 40-th row of this matrix
corresponds to the 40-th entry of the vector

NSol(IL, {90, 91, g2, 93 }),
which is given by the following cardinality:
card({t e R: II'(t) = 0 and go(t) >0 and g1(¢) >0 and go(t) > 0 and g3(t) > 0}).
The correctness theorem for the algorithm above is presented below. It is the main result of this paper.

Theorem 5 (Correctness for Polynomial Trajectories). The conflict detection algorithm cd_poly is both
sound and complete, and therefore also correct, for polynomial trajectories. That is for all polynomial tra-
jectories P, and P;, conflict?(P,, P;) = true, i.e., the trajectories are in conflict, if and only if

cd_poly(P,, P;) = true.

Theorem 5 states that, assuming a polynomial trajectory model, the algorithm cd_poly precisely detects
all conflicts, i.e., it does not miss any conflict and it does not return true when aircraft trajectories are not
actually in conflict.
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cd_poly(P,, P;) =
let
go = CDpy, g1 = CDpy, g2 = CDp,, g3 = CDp3,
H=go-91-92-93 in
if los?(P,(0), P;(0)) or los?(Po(T),P;(T)) then
true

elsif gg=0 or gy =0 or go=0 or g3=0 or I'=0 then

false
elsif
TQ(IL, gog1929s) + TQUL gog1g293) + TQ(IL gogi939s) + TQUL, gog19593) +
TQ(IL, gogi g293) + TQ(IT, gogig295) + TQUL gogig39s) + TQ(IL, gogigsgs) +
TQ(I, g3919293) + TQ(IL, g5g19293) + TQL, g5919593) + TQ(IL, g3919593) +
TQ(IL g5979293) + TQ(IL, 9597 9295) + TQ(IL, g597939s) + TQ(IL gogig395) #0 then
true
else
false
endif.

Figure 1. Conflict detection algorithm for polynomial trajectories

Example 4. Consider the following two polynomial trajectories, which appears as an example in [11].

P,(t) = (—3.2484 + 270.7¢ + 433.121% — 324.83999 ¢3,
15.1592 4+ 108.28 ¢ 4 121.2736 > — 649.67999 3,
38980.8 4 5414.0t — 21656.0t2 + 32484.0t°),

P;(t) = (1.0828 — 135.35t + 234.9676 t* + 3248.4 13,
18.40759 — 230.6364 ¢ — 121.2736 t> — 649.67999 >,
40280.15999 — 10828.0t 4 24061.9816 > — 32484.0¢3).

The unit of time for these trajectories is hours (hr), the unit of horizontal position is nautical miles (nmi),
and the unit of vertical position is feet (ft). At time t = 0 hours (current time), the positions of the ownship
and intruder aircraft are (—3.2484,15.1592,38980.8) and (1.0828,18.40759,40280.15999), respectively. At
this time, the aircraft are approzimately 5.414 nmi apart horizontally and approzimately 1299.36 ft apart
vertically. Thus, given the separation standard minima of 5 nmi horizontally and 1000 ft vertically, the
aircraft are not currently in loss of separation.

The algorithm cd_poly predicts that the aircraft are in conflict for a lookahead time of 3 minutes, i.e.,
when T = 21—0. That is cd_poly(P,, P;) = true. In fact, it is shown in [11] that the aircraft are in loss of

separation at time t = 225?24, or in about 70 seconds. It follows that conflict?(P,, P;) holds. At this time,

the aircraft are approximately 4.999 nmi apart horizontally and —999.92 ft vertically.

V. Related Work and Conclusion

Safety properties, including soundness, completeness and correctness, have been formally verified for
CD&R algorithms that assume a linear trajectory model [3,9,10,12]. A conflict resolution algorithm for
curved trajectories has been formally verified using hybrid-model checking techniques [17]. Other type of
trajectories, such as piece-wise linear trajectories also enable analytic detection methods [6,7] and thus, formal
proofs of these algorithms are feasible. CD&R algorithms that handle complicated nonlinear trajectories
either iterate conflict computations at specified discrete steps [5,15] or they rely on approximation methods [2,
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16, 18]. Formal verification of these kinds of algorithms is usually difficult. In [11], the authors proposed
a conflict detection algorithm for arbitrary trajectory models and they verified in PVS that the algorithm
is correct within some approximation bounds. That is, the algorithm can be configured to be sound or
complete, but not both.

This papers presents a conflict detection algorithm for two aircraft flying polynomial trajectories. The
algorithm precisely determines whether the aircraft are in conflict within a given lookahead time. The
proposed algorithm is sound and complete, i.e., it detects all conflicts and present no false alarms. To the
best knowledge of the authors, this is the first conflict detection algorithm for nonlinear trajectory models
that has been formally proved to be correct. While the algorithm presented in this paper assumed a trajectory
model based on polynomial functions, this is not a significant limitation. Indeed, every nonlinear trajectory
can be uniformly approximated with a polynomial trajectory in the time variable, for instance using Taylor
series. This is because any continuous function can be uniformly approximated by polynomials [19]. In
addition, there exist some models for turning trajectories, such as those based on splines, that are explicitly
defined using polynomials.

The mathematical development presented in this paper, including definitions and theorems, has been
specified and verified in the interactive theorem prover PVS. A theorem prover is a computer program that
provides a specification language and a logic engine that checks every deduction step of a mathematical
proof. This verification process is resource-intensive, but the safety critical role that CD&R systems play in
the airspace system largely justifies this formalization effort.
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