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AIR TRAFFIC CONFLICT RESOLUTIONAND RECOVERY*

ALFONSGESER1,Ct)SARMUIKIOZ_,GILLESDOWEK§,ANDFLORENTKIRCHNER¶

Abstract. Anessentialelementin theFreeFlightconceptis thedetectionandavoidanceof airtraffic
conflicts.A conflictoccurswhentherequiredseparationbetweentwoaircraft,namelytheownshipandthe
intruder,is lost. Conflictdetectionandresolutionsystemspredictlossof separationandoutputconflict
avoidancemaneuversthat diverttheownshipfromits originaltrajectory.In thispaper,weaddressthe
problemof redirectingtheownshipto its originalpath,in a geometricoptimalway,withoutintroducing
newconflicts.WecallthisconceptResolution and Recovery. Given the current 3-dimensional position and

velocity vectors of two aircraft in predicted conflict and the ownship's required time of arrival at the target

point, the resolution and recovery algorithm outputs a choice of maneuvers. Each maneuver comprises an

escape course and a recovery course to be followed by the ownship. The escape course brings the ownship off

the predicted conflict and the recovery course returns it to the original target point. We provide a rigorous

mathematical description of the problem and show that the algorithm is correct, i.e., no matter which of

the proposed maneuvers the ownship picks, it will arrive at the target point at the scheduled time while

maintaining the minimum required separation to the intruder at all times.

Key words, conflict detection and resolution, 3-dimensional airspace, traffic avoidance, fl'ee flight

Subject classification. Computer Science

1. Introduction. Conflict Detection and Resolution (CD&R) systems are designed to warn air traffic

controllers and/or pilots about an imminent loss of separation between aircraft, and to assist them in a

corrective maneuver. Algorithms for CD&R have been largely studied over the last decade (for a survey on

CD&R methods see [11]) and new algorithms are proposed every day.

With the emerging of more reliable surveillance and communication technologies, air borne CD&R capa-

bility is becoming a fundamental feature of new concepts for air traffic management such as Free Flight [14]

and DAG-TM (Distributed Air/Ground Traffic concept) [1]. These concepts address the expected increase

in air traffic density in the next decades, by distributing among the different actors of the airspace system

the responsibility for keeping minimum traffic separation. In contrast to ground-based systems, on board

systems have a limited access to computational resources and, by their nature, are distributed. To target

the complexity of a fl'ee-ffight environment, new approaches for CD&R have been proposed based on non-

standard programming techniques such as genetic algorithms [6, 12, 9], neural networks [5], game theory

[15], graph theory [3], or semidefinite programming [8]. These approaches deal with issues such as multi-

ple aircraft conflicts and uncertainties in the prediction of aircraft trajectories. Given the computational

complexity of some of these approaches, they may require time and space diseretizations.

A more classical approach to CD&R is the so-called geometric approach [7, 10, 2, 4]. In this approach,

aircraft trajectory predictions are based on linear projections of current aircraft states. This approach

exploits the facts that linear projections can be computed efficiently and that prediction errors are negligible
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during short look-ahead times. For this reason, this approach is also referred as tactical. For large look-

ahead times a more strategic approach that looks at the (pilot) intent irtformatiort, i.e., the flight plan, is

in order. While tactical approaches have well-understood geometric descriptions that allow for efficient and

clear algorithms, they fall short on pilots' expectations in some field studies [16]. Strategic approaches seem

to be more appreciated by pilots, but their theory is far less understood.

In a previous work [4], we have proposed a geometric optimization algorithm for CD&R in a 3-D airspace.

In this paper, we address the recovery problem, that is, redirecting the ownship to the original path while

maintaining the minimum required separation at all times. The new proposed algorithm is on the border

between tactical and strategic algorithms. Its inputs are the three-dimensional position and velocity vectors

of two aircraft, which we call the ownship and the intruder aircraft, and the time where the ownship is

required to arrive at its target point ("Required Time of Arrival", RTA). The RTA defines the position of

the target point by the ownship's constant movement. RTA is a limited form of intent information: the target

point may be the next trajectory change point in the ownship flight plan. Assuming a loss of separation

between two aircraft, the algorithm outputs a choice of maneuvers for the ownship. Each maneuver consists

of an escape course that brings the ownship off the predicted conflict, and a subsequent recovery co_ar'se that

leads the ownship back to its original path. If the ownship follows any proposed maneuver then it arrives

at RTA at the scheduled position without having experienced a loss of separation at any time. In the mean

time, the intruder aircraft is assumed to continue its current trajectory, that is, ownship resolution and

recovery maneuvers take place assuming no cooperation of the intruder aircraft.

The various maneuvers that our algorithm proposes differ in the constraints they satisfy. For example,

one constraint requires that during the maneuver, the ownship may only change its ground speed, but not

its heading or its vertical speed. Another constraint requires that only the vertical speed of the ownship

may change. Imposing such constraints restricts the number of choices to finitely many, simplifies the

calculations performed by the algorithm, is simple to conceive and to perform by the crew, and enhances

passenger comfort. The maneuvers that our algorithm outputs may be rendered at a display for the air traffic

controller or the pilot who may select among the proposed solutions. Our algorithm is also suitable for use

underneath a trajectory planner which may perform the selection. However, we do not address the question

of physical implementability of the maneuvers proposed by the algorithm. In particular, the algorithm

does not check for minimum/maximum altitude/airspeed. Nor does it implement cost-based analysis such

as fuel consumption. It depends on the capabilities of the ownship whether a proposed maneuver can be

implemented or not. Since aircraft performance data are not available to the algorithm, we assume that

these kinds of analysis are implemented in an external module.

The algorithm is computationally efficient, suitable for embedding in a flight-deck computer, and appro-

priate for formal verification. In particular, we have a rigorous analysis, by pencil and paper, of the algorithm.

Mechanically checked proofs are currently under development. We strongly believe that given the critical-

ity of CD&R, rigorous techniques and well-understood mathematical models are required to guarantee the

overall safety of the new, and more autonomous, air traffic systems.

Notation. Variables denoting positions are named "s", velocities are named "v", and times are named

"t"; ownship variables are subscripted by "o"; intruder variables are subscripted by "i"; relative and generic

variables have neither subscript. Coordinate names (x,y, or z) are appended as a subscript to the name.

Variables assigned to the escape course receive a prime; variables assigned to the recovery course receive

' denotes the x coordinate of the ownship escape speed, vy denotes the ya double prime. For instance Vo_

coordinate of the original relative speed, and t' denotes the time the escape course ends.



2. Definitionofthe Problem.Forconflictdetectionpurposes,aircraftareassumedtobesurrounded
byanavoidance region, which is typically a cylinder of diameter 5 nautical miles and height 1000 feet. Two

aircraft are said to be in conflict when their avoidance regions overlap. In this paper, we take an alternative,

but equivalent view, where aircraft are surrounded by pfvtected zones twice as big as the individual avoidance

regions. In this view, a conflict is the incursion of one aircraft in the protected zone of another one.

We assume the airspace given as a three-dimensional Cartesian coordinate system, where the z-axis points

upward in the vertical direction. We consider two aircraft, namely ownship and intruder. The ownship's

initial position (i.e., its position at time t = 0) is given by the vector _ = (sox, so_, So_). The ownship's

original velocity vector is given by _ = (Vox, Vov, vow). Likewise the intruder's initial position, _, and the

intruder's velocity vector, _, are given. It is convenient to consider the ownship's motion relative to the

intruder. For this purpose, we introduce a relative coordinate system where the intruder's position is at the

origin, and we consider the relative position vector g = (s_, sv, s_) = _ - _ and the relative velocity vector

,7 = (v_, vy, v_) = _ - _. In this coordinate system, the protected zone is a cylinder P around the intruder

defined as follows:

P= {(x,y,z) l x2 + y2 < D 2 and Izl < H].

In the usual view, D and H denote the diameter and height of the avoidance region, respectively.

The aircraft are said to be in conflict at time t when g+ tg C P. They are in predicted conflict if they

are in conflict at some time 0 < t.

Given a velocity vector _g= (Vx, vy, v_), we define the following concepts.

• Ground speed: Length of the horizontal projection of g, i.e., \/v_ + V 2 ,

• Vertical speed: Vertical component of ,7, i.e., v_.

• Heading: Direction of the horizontal projection of 9', i.e., angle a such that vx = vcos(a) and

vy = v sin(a), where v is the ground speed of _g. We avoid explicit references to a in our analytical

description of the escape-recovery maneuvers.

The task of the resolution and recovery algorithm (RR3D) is defined as follows:

Inputs:

• Initial relative ownship's position g.

• Absolute velocity vectors t_, v_ of ownship and intruder aircraft, respectively. The relative velocity

vector is given by _b"= fro - _.

• Required Time of Arrival (RTA) or target time t" > 0, which determines the target point

#' = g+ t"_. (2.1)

Assumptions:

• Courses, i.e., trajectories between way-points, are line segments. Hence, courses are described by

a position, a velocity vector, and a time interval. Moreover, we assume that changes of course or

speed are implemented in zero time by an aircraft.
2 _2• Absolute ground speeds are not zero, i.e.. %, + roy _ 0 and v_ + v? # 0.Zy

• Neither at initial time nor at target time are the aircraft in conflict, i.e., g, if' _ P.

• Neither at initial time nor at target time is the ownship at the boundary of the intruder's protected

zone, i.e.,g,s'• {(x,y,z) I x_+y_ ¢ D_ or Izl >H}.

• The aircraft are in predicted conflict before t", i.e., g+ t_7 • P for some time 0 < t < t".

Outputs: A list of maneuvers each one a triple, , .7 .7,(t ,%, vo), composed of
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FIG. 2.1. Predicted conflict scenario
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FIG. 2.2. Escape-recovery maneuver

• A time of switch t' such that 0 < t' < t".

• An escape velocity vector _do that determines a conflict-free escape course for the ownship, i.e., let

= - <, then

g+tv 3_P for all times0<t<t'. (2.2)

• A recovery velocity vector @ that determines a conflict-free and on-time recovery co_arse for the

ownship, i.e., let v7' = @ - v_, then

g+ t'_d + (t - t')_J ' _ P for all times t' < t < t", and (2.3)

g+ + (t" - = J,. (2.4)

In other words, if the ownship flies the escape course from time 0 to t', and the recovery course from

time t' to t", then (1) it shall not be in conflict at any time (by (2.2) and (2.3)) and (2) it arrives at s" at

time t" (by (2.4)). We assume no cooperation from the intruder aircraft, i.e., the intruder does not need to

maneuver. The original situation is depicted in Figure 2.1, and the escape and recovery courses are depicted

in Figure 2.2. Henceforth, we call the ownship's change of the velocity vector from v_ to v3othe escape step,

and its change from _ to @ the recovery step.

The ownship's maneuvers shall be constrained in such a way that both _ and @ satisfy one of the

following conditions:

1. Change of vertical speed only. The ownship's vertical speed may change but neither its heading nor

, H and t/ Hits ground speed, i.e., vo_ = Vo_ = Vo_ ov = roy = Vov.

2. Change of ground speed only. The ownship's ground speed may change but neither its heading nor

' and' =kVo_,V' =kvov, andvo_ =Vo_,its vertical speed. Formally, there is a k > 0 such that %, ov
,, • ,,

there is a j > 0 such that Vo_ = JVo,, Vov = jVov, and t/o'_ = Vow.



FIG. 3.1. Escape/Recovery courses: Line case

3. Change of heading. In the two dimensional projection, the escape course and the recovery course

(each in absolute coordinates) form a triangle. By the triangle inequality, the escape course and the

recovery course together are longer than the original course. To arrive at the target point at time

t", the ownship has to compensate the longer way by a greater average ground speed as opposed to

its original ground speed. Hence, maneuvers where only heading changes are allowed cannot reach

the target point in time. In this case, we propose a change of heading combined with a change of

ground speed at time t'. For the escape step, the ownship's heading may change, but neither its

ground speed nor its vertical speed; for the recovery step in addition to a heading change, one must

/2 t2 2 2 ,l gild " Voz.allow for g change of ground speed as well. Formally, Vox + Voy = Vox + Voy , Vo_ = Vow, vo_ =

Furthermore, we require that the escape-recovery maneuvers are tangential to the lateral surface of the

protected zone. We conjecture that tangential maneuvers are optimal, among all maneuvers that satisfy the

same set of constraints, in the following sense. The amount of change in one step is expressed by the velocity

'_ v_ and Av 7' ,7, _ The effort of a maneuver is the sum of squares of itschange vectors A_d = v o - = Vo - Vo'.

velocity change vectors, i.e., IAv_l2+ lavV,I2. X maneuver is called optimal if its effort is less than, or equal

to, the effort of any other maneuver.

3. Correctness Criteria. In this section we use Y, _Y,t in an generic way, i.e., they do not necessarily

refer to the relative variables. We define the infinite cylinder" as the set of points

P_={W,>z) lx _+y_ <O_},

and we define the infinite slice as the set of points

S_ = {(x,y,z) llzI < H}.

The algorithm only considers two kinds of escape and recovery courses:

• Line case: Courses that are tangential to the lateral surface of the protected zone (Figure 3.1). That

is, for some point Y, g is tangent to Po+.

• Circle case: Courses that are incident to one of the disks of the protected zone without intersecting

2 2 = D 2, I<l -- H, and the moving pointits interior (Figure 3.2). That is, for some point g, s, + sy

either enters the infinite cylinder upon leaving the infinite slice or leaves the infinite cylinder upon

entering the infinite slice.

Note that the case where the lateral surface is touched and the touching point is incident with a circle is

counted as a line case, and that the case v_ = 0, Is_l = H is counted as a circle case.

Below we provide a rigorous proof that line and circle cases are correct, i.e., they describe conflict-fl'ee

courses. Since escape and recovery courses touch P, we state without proof that they are also optimal from

a geometric point of view. In order to provide the correctness proof, we first take a time reference relative

to the time of the tangent point in the line case and relative to the time of the incident point in the circle

case, and define vertical and horizontal separation criteria.



FIG. 3.2. Escape/Recovery courses: Circle cases

For the first criterion we consider only the vertical coordinate.

LEMMA 3.1 (Vertical separation). Let a moving point _ + tg be at time 0 at the surface of S_, i.e.,

Is_l = H. (1) If s;v_ >_0 holds then ls_ + tv_ I >_H for" all t >_O. (2) If s_v; <_0 holds then ls_ + tv_ I >_ H

for all t <_O.

Pro@

2=H 2 (s_+tv_) 21. We prove that (s_ + tv;) 2 >_ H 2, and so Is_ + tv_ I >_H, for all t _> 0. Since s_ , =

H 2 + 2ts_v_ + t2v_. By hypothesis, s_v_ >_ O. Thus, (s_ + tv_) 2 >_ H 2 for t _>0.

2. By substitution of -v_ for v_ and -t for t in (1).

D

REMARK 3.2. If V_ = 0 then we have vertical separation for" all times t.

For the second criterion we consider only the horizontal plane. We are going to need a technical definition.

2 = D 2 art entry point to the infinite cylinderDEFINITION 3.3 (Entry point, exit point). We call _, s_ +sy

(for" _g), if the derivative, with respect to t, of the squared horizontal distance (s_ + tv_) 2 + (sy + try) '2 at

time 0 is non-positive; and art exit point fl'om the infinite cylinder if it is non-negative (see Figure 3.3). If

the derivative is equal to zero then we have a tangent point, which is both art entry point and an exit point.

Formally, g"is an entry point if

S_Vx + SyVy < O, (3.1)

an exit point if

and a tangent point if

S_Vx + SyVy > O, (3.2)

S_Vx + suvy = 0. (3.3)

LEMMA 3.4 (Horizontal separation). Let a moving point _+ t_ be at time 0 at the lateral surface of P,

i.e., s_ + sy2 = D 2. (1) If _ is art exit point then (s, + tv_) 2 + (s u + tVy) 2 _> D e for" t _>O. (2) If _ is art entry

point then (s_ + tv_) 2 + (sy +tvy) 2 > D 2 for t <_ O.

Pro@

1. The point g'is an exit point, i.e.,, SxV_ + SyVy >_ O. Since s_2+ Sy2= D 2, (s_ + tv_) 2+ (Sy + tVy) 2 = D 2+

2t(s_, + s_v_) + t_(_ + _). By hypothesis, (S_x + s_v_) _>0. Thus, (s_ + tvJ + (s_+ tv_)_ >_0 2
for t > 0.

2. By substitution of -g for g and -t for t in (1).

D

REMARK 3.5. If _ is a tangent point we have horizontal separation for all times t.
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FIG. 3.3. Entry and exit points to/from an infinite cylinder

Finally, we provide correctness proofs for the line and circle cases.

THEOREM 3.6 (Line Case Correctness). Let _ + t_ be a moving point such that g is tangent to Po_.

Then, (Sx + tVx) 2 + (s_ + tvv) _ >_ 1) _ for aU ti,_cs t.

Proof. At tittle 0 we have a tangent point to the lateral surface of the infinite cylinder. Using the

horizontal separation criterion twice, we conclude that horizontal separation holds for all times.

THEOREM 3.7 (Circle Case Correctness). Let g+ t_ be a moving point such that s_ + s 2 = D 2, Is_l = H,

and cither (1) sxvx + SyVy <_ 0 and s_v_ >_ 0 or (2) s_vx + suvy >_ 0 and s_v_ <_ O. Then, for all timcs t,

either (a) horizontal separation: (Sx + tVx) 2 + (s v + tvv) 2 >_ D 2 or" (b) vertical separation: Is_ + tv_] >_ H.

Proof. In case (1) we get vertical separation for all t _> 0 and horizontal separation for all t _< 0. In

case (2) we get vertical separation for all t _< 0 and horizontal separation for all t _> 0. [5

4. Resolution and Recovery Algorithm. In this section we develop the algorithm for conflict resolu-

tion and recovery, namely RR3D. We present the algorithm as a set of formulas that describe escape-recovery

maneuvers, i.e., triples (t',%,%),.7 .7' where t' is a time of switch, vo'_ is a velocity vector that determines an

.7, is a velocity vector that determines a recovery course. The formulas are organizedescape course, and v o

according to the constraints that the escape-recovery maneuvers satisfy. As explained in Section 2, we con-

sider three constraints: change of vertical speed only, change of ground speed only, and change of heading

combined with a change of ground speed at time t _. For each of these constraints we distinguish several

cases according to the part of the surface of P that is touched during the escape and recovery courses. We

identify the following cases: line/line (Figure 4.1), line/circle (Figure 4.2), circle/line (Figure 4.3), one-circle

(Figure 4.4), circle/circle (Figure 4.5), escape-circle (Figure 4.6), and recovery-circle (Figure 4.7). As we will

see below, not all the cases are possible in all situations.

In all the cases, we use the following approach:

1. We find candidates to maneuvers by solving the equations given by the constraints and the case

analysis.

2. We disregard candidates that contradict the specification. This may require sanity checks with the

implicit meaning that only solutions satisfying them are considered any further.

3. Candidates that survive the last check are the maneuvers returned by the algorithm.

Correctness is guaranteed by construction. Furthermore, we aim for a set of candidates that is a superset

of the set of solutions.

In the algorithm, when we solve a quadratic equation with non-null coefi%ients, we assmne that the

discriminant is non-negative. If the discriminant happens to be negative, we tacitly infer that there are no



FIG. 4.1. Line/line (top view, perspective view, and side view)

FIG. 4.2. Line/circle (top view, perspective view, and side view)

FIG. 4.3. Circle/line (top view, perspective wew, and side view)

FIG. 4.4. One-circle cases (side views)
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FIG. 4.5. Circle-circle cases (side views)
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FIG. 4.6. Escape-circle cases (side views)
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solutions to the equation.

FIG. 4.7. Recovery-circle cases (side views)

4.1. Common Definitions. We first introduce a set of technical definitions that can be used as

procedures in an actual implementation of RR3D.

The times at which a moving point g + t_g intersects the lateral surface of the infinite cylinder are

determined by

(Sx + tvx) 2 + (sy + try) 2 = D 2. (4.1)

2 2 > O, then (4.1) reduces to a quadratic equationIf the ground speed is different fl'om zero, i.e., v x + vv

in t:

2_D 2:0. (4.2)

The discriminant A is defined as

' 2 _ D2) (4.3)

: + v,9 - (sxv -

If A _< 0 then the moving point does not intersect Poo. In particular, if A = 0 we have the tangent case.

DEFINITION 4.1 (Tangent condition). A moving point g+ t(g is tangent to Poo if and only if

D2 (%2 + v 2)_= (s,vy - svvx) 2. (4.4)

For a moving point that is tangent to Poo, the time r of closest approach in the horizontal plane is the one

solution of (4.2):



SxV x -H 8yVy
T-- (4.5)

v_ +v_

DEFINITION 4.2 (Entering and leaving Po_). IrA > 0, we get two solutions for (4.2)

Oi = -SxVx - SyVy -V_

v_ +v_ ' (4.6)

O" = -SxVx - SyVy +v/_
_ +v_ (4.7)

By definition, ®1 < 011. It is easy to check that ®1 is an entry point and that 011 is an exit point.

We may need (4.4) and (4.5) instantiated with the parameters of the escape and the recovery courses.

For the escape course we get the tangent condition

D2_ ,12 I2 1 2t_x + % ) = (sx_'_- sy_x), (4.8)

and the tittle of closest approach in the horizontal plane

TI _ sxv; + SyV; (4.9)
_12 __ 12

tx Vy

The moving point J' + (t - t')J I describes the recovery course in a translated time t - t". Therefore, for

the recovery course we get the tangent condition

D2(v_2 .2x II l/ II H 2+%)=(s/%-%v_), (4.10)

and the tittle of closest approach in the horizontal plane

It It 11 11
-}- SyVy

'1 s_vx t". (4.11)9- -- -H
Vtt2 4_ ,t_1/2

x ---y

DEFINITION 4.3 (Reaching altitude H or -H). If v_ _ 0 then the times when the ownship reaches

altitude H or" -H are the solutions of I& + tv_l = H for" t:

0' = - sign(v0H - & , (4.12)
Vz

0" = sign(v0H - & (4.13)
Vz

By definition, 0 1 < 0 II.

DEFINITION 4.4 (Time of switch). The time t' of switch firm the escape course to the recovery course

is given by (2.4) and _71 = _+ t'g. This time satisfies

t'(_;'- J,) = t"(v- J'),

or in coordinate notation

t'(V'x- <) = t"(vx - <),
I I 11 II

t" (vyt % -- %) = -- %),

t'(v2 - if) = t"(v_ - v").

(4.14)

(4.15)

(4.16)
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I 11.

It a[_d II i[]- terl_S of t I , v x , v x .The equations (4.14) and (4.15) allow us to express v v v,

t'% - t' v" (4.17)II

v x -- t__ _ t_

t"vv - t'v'v (4.18)1! I

Vy t II _ t I

4.2. Change of vertical speed only. We impose the constraint that only the vertical component of

the velocity vector may change. Formally,

'" and ' " (4.19)_l)lox = Vox = l/ox roy = roy = _Uoy.

If the relative ground speed is zero (v_ + v_ = 0) then either the ownship is inside the infinite cylinder

2 < D2), and there is no vertical solution, or else there is no predicted conflict. Otherwise, O' and

®" are defined as in equations (4.6) and (4.7), and we may have the following independent solutions.

• Escape-circle. If 0 < ®' < t" and I8_l _> H then there is an escape-circle solution (Figure 4.6). It

is given by t' = ®',

II

v" - sign(v_)H - 8_
oz = viz + 0 I-t" '

t11(Voz - _iz) - (t 11 - 01)(vl k - vi_)I

Voz = Viz jr
O'

IIt"(vo -vo )
- o' +v'L.

• Recovery-circle. If 0 < O" < t" and Is_l _> H then there is a recovery-circle solution (Figure 4.7).

It is given by t' = O",

- sign(v_)H - 8_/

Voz = Viz 4-
11

- - o"(vL -II

Voz = Viz 4-
t" - 0 I'

t"vo_ - O"v'o_
I

t" - 0 'I

One-circle. If 0 < O' and O" < t" then for both e E {-1, 1} there may be a one-circle solution.

Figure 4.4 shows the case where a one-circle solution exists for each e = 1 (left) and c = -1 (right).

If g8_ < H and es_ < H, then we compute the vertical speeds

cH - 8z
! I

VOZ = Viz Jr- 01 ,

,, cH - 8'.!

Voz = viz + 0'1 - t '-_'"

If v'_ 7_ V'o'_, then t' is given by (4.16)

t I tllfV H i ii
= I I Vo_) ",0% VO_)/(Vo_

In this case, there is a one-circle solution for c given by Vo;,'' Vo_,'' and t'.

We remark that there are no vertical solutions that touch the lines, neither circle-circle solutions.
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4.3. Change of ground speed only. We impose the constraint that only the ground speed of the

ownship changes in each step. Formally, there are factors k, j > 0, such that

' = kvox, ' = kvoy, ' (4.20)Vox Yoy Vo z z Vo z,

" " " " (4.21)%,. = J Vox, roy = jVoy, Voz = Voz.

Since absolute ground speeds are different from zero, either %, =/=0 or Vou _ O. In the first case we get

t'(k - j) = t"(1 - j) (4.22)

from (4.14). In the second case, i.e., Vov 7_ O, we get the same formula (4.22) fl'om (4.15).

Ifk =j then from (4.22), 0 = t"(1-j). Sincet" > 0, we havej = land sok = 1. So there is no

predicted conflict at tittle 0. Since this contradicts the premise, we must have k ¢ j. Therefore, the time t'

of switch can be obtained from (4.22) as

t' - t"(1 - j) (4.23)
/_.-j

We have the following independent solutions. For the cases involving an escape line course, we check for

sanity that 0 < r' < t', where r' is defined as in (4.9). For the cases involving a recovery line course, we

check for sanity that t' < r" < t" , where r" is defined as in (4.11). Furthermore, for the cases involving a

circle course, we assume that relative vertical speed is not zero, i.e., v_ 7_ 0; otherwise, there is no solution.

In all the cases, we check for sanity that k,j > O.

• Line/line. During the escape course and during the recovery course, the lateral surface of P is

touched (Figure 4.1).

In the tangent condition for the escape course (4.8), we instantiate using _d = [70 -_ and (4.20):

D2((kvo_ - Vix) 2 + (kVoy - viv) 2) = (s_(kvoy - viv) - sv(kVox - vi_)) 2. (4.24)

This reduces to a quadratic equation in k:

k2[D2(v2ox + V2oy) - (SxVoy - SvVox) 2] +

2k[-D"(Vo V .+ + - - +
2 2D (V x+ - - = 0.

This quadratic equation in k can be solved to obtain v'o_ and V'o_. If all coefficients in the quadratic

equation for k are zero then the aircraft are not in predicted conflict at tittle 0.

The tangent condition for the recovery course (4.10), instantiated using v7' = vTo' - _Y/and (4.21),

D2((jVo. - vix) 2 + (jVoy - viv) 2) = (s_(jVoy - viv) - s_(jvo_ - Vix)) 2, (4.25)

" and "can be reduced likewise to a quadratic equation in j. We solve it to obtain Vo_ roy.

The tittle t' of switch is obtained from (4.23).

Line/eirele. During the escape course, the lateral surface of P is touched. During the recovery

course, one of the two circles is intersected (Figure 4.2).

For the line case, we have to solve the tangent condition for the escape course (4.24), which we can

solve for k as in the line/line case.
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For the circle case, we get 0" by (4.13). We check for sanity that 0 < 0" < t". At time 0" the circle

is intersected:

(s_ + (Or' - t")(jVox - vix)) 2 + (s_ + (0" - t")(jVoy - viy)) 2 = D 2. (4.26)

This equation yields a quadratic equation in j that can be solved:

j2(O,, .,,,2_ 2 2 2-_ ) _vox+voy) +

,, _ (Or'2j(O" - t"_@"v,,_ o_ - (0" - t")vi_Vox + SuVou - t")viyVoy) +
,!

(s_ - (0" - t")vi_) 2 + (sy - (0" - t"_v.,_,_2 _ D 2 = 0. (4.27)

Using (3.1), we check for sanity that 0" is an entry point to the infinite cylinder:

(s_ + (0" - t")(jVox - vix))(jVox - Vix) d- (By d- (0 H -- t")(jVoy - Viy))(jVoy -- Viy) <_ O. (4.28)

The tittle t' of switch is obtained from (4.23). We check for sanity that t' < 0".

• Circle/line. The escape course intersects one of the circles, and the recovery course touches the

lateral surface, of P. This case is depicted in Figure 4.3.

For the circle, we get 0' by (4.12). We check for sanity that 0 < 0' < t".

The circle is intersected at time 0':

(Sx + O'(kvox - vix)) 2 + (sy + O'(kvou - viu)) 2 = D 2. (4.29)

This equation yields a quadratic equation in k that can be solved:

k2o'2(vL+ +

2kO' (sxVo_ - O'vixVo_. + SuVou - O'viuVou) +

(sx - O'vi_) 2 + (s, - O'viy) 2 - D 2 = 0. (4.30)

Using (3.2), we check for sanity that 0' is an exit point from the infinite cylinder:

(Sx + O'(kVox - v_x))(kVo_ - v_) + (sy + O'(kVoy - v_y))(kVoy - v_y) > 0. (4.31)

For the line, we have to satisfy the tangent condition for the recovery course (4.25), which can be

solved for j as in the line/line case.

The time t' of switch is obtained from (4.23). For sanity, we check that 0' < t'.

• Circle/circle. We may have a circle-circle solution (Figure 4.5) when times 0', 0", given by (4.12)

and (4.13), satisfy 0 < 0' and 0" < t" or, equivalently, when either (s_ < -H and H < s_)

or (s_' < -H and H < s_). We solve the two quadratic equations (4.27) and (4.30) for j and k

respectively. We check for sanity that time 0' defines an exit point from the infinite cylinder (4.31)

and that at time 0" there is an entry point (4.28).

The time t' of switch is obtained from (4.23). We check for sanity that 0' < t' < 0".

• Escape-circle. We have an escape-circle solution if there is only one intersection with a circle at

time 0" given by (4.13). This case is shown in side view in Figure 4.6. We check for sanity that

0 < 0" < t". At time 0" the circle is intersected (4.26). We solve the quadratic equation (4.27) for

j and check for sanity that at time 0" there is an entry point to the infinite cylinder (4.28).

The time of switch is given by t' = 0". The speed factor k of the escape step is obtained from (4.22)

as

k= j(O"-t") +t"
0 H
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Recovery-circle. We have a recovery-circle case if there is only one intersection with a circle at

time 0' given by (4.12). This case is shown in side view in Figure 4.7. We check for sanity that

0 < 0' < t". At time 0' the circle is intersected (4.29). We solve the quadratic equation (4.30) for k

and check for sanity that at time 0' there is an exit point from the infinite cylinder (4.31).

The time of switch is given by t' = 0'. The speed factor j of the recovery step is obtained from (4.22)

as

In this case there are no one-circle solutions.

4.4. Change of heading. W_ impose the constraint that for the escape step only the heading of

the velocity vector may change. For the recovery step the heading and the horizontal speed may change.

Formally,

,2 ,,2 2 2 ' " (4.32)Vox -}- ?Joy = Vox -}- Voy and Voz = Voz = Voz.

For the cases involving an escape line course, we assume that s is not in the infinite cylinder neither at

2 2 > D 2. We also check for sanity that 0 < r' < t', where r' is defined as in (4.9).its boundary, i.e., s, + sy

Symmetrically, for the cases involving a recovery line course, we assume that s" is not in the infinite cylinder

tt2 -- .2 D2neither at its boundary, i.e., s x + sy > and we check for sanity that t' < r" < t" , where r" is defined

as in (4.11). Furthermore, for the cases involving a circle course, we assume that relative vertical speed is

not zero, i.e., v_ # 0; otherwise, there is no solution. We have the following independent solutions.

• Line/line. The situation is shown in Figure 4.1. For the escape step we consider cases:

_2 ,2 2 t2 So there areCase v" = 0. Then the tangent condition (4.8) specializes to lav v = SxV v .

escape courses

,, , = -\/ e e 2 by (4.32), for each g E {-1, 1}, when v e e > ,2• _Uox _ Vix , roy c Vox Jr- roy -- Vix _ ox q- roy -- Vix

(sanity check) and D e = s_, and

,t ,t 2 2 2 V 2
• _box = Vix, ?Joy = Yiy, when Vox Jr- roy = vix Jr- zy"

Case %' _ 0. We mavo define a' = v_/%: ' In this case the tangent condition (4.8) reduces to

De(1 + a te ) = (s_a t - sy) '_,

and further to a quadratic equation in a':

a'e(D e - s_) + 2c_'s_sv + D e - sye = 0. (4.33)

If D e = s_2 then sy _ 0, because s is not at the boundarv_ of the infinite cylinder.. In this case,

D e 2
- Sy

ogt --

2SxSy

Otherwise, Equation (4.33) has solutions

i 2 _ D e--SxSy _- ctD s 2 _- 8y

Ogt

D e - s_

where s' C {-1, 1}.

Equation (4.32) and _ = _ - _er/yields a quadratic equation in v',:

e +v_v_ ,2 ,2 =0. (4.34)+ + + + -

t t t
W_ get v,' by solving (4.34) and v_ by v v = %a .
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For the recovery step we consider cases:

Case v_ = 0. W_ check for sanity that v" ¢ 0. In order to satisfy the tangent condition (4.10)

we must satisfy _ ''_ ,,2 ,,,2D_vv _ = s, v v . This gives two cases:

,11 ,11
* Lo x z Vix, Loy _ Viy.

& ,11 y2 D 2 11'2* _Cox vix, %v C {ylV'o "2 + # 0}, when _ 8. x .

From the time t' of switch we get the equation system

e'v; = t'%, (4.35)
I I II II

t u (Vyt % - v,) = - v_). (4.36)

From (4.35) we get t' as t' = t"v_/v'. We finally get v" by (4.18).
Y

II _11 II
Case v_ ¢ 0. We define c_" = vy/v x. The tangent condition (4.10) then reduces to

D_(1 + _"_) = (_" - %;"'_. (4.37)

If D 2 7_ sx"2, Equation (4.37) yields a quadratic equation in ct" with solutions:

V/ u2 _ D 2" "+d'D S'x'2+sy--SxSy

Off !

D 2 _ ._u2
_x

,,2 then " _ 0, because s" is not at the boundary of the infinitewhere c" C {-1, 1}. If D 2 = s_ sy

cylinder. In this case,

D 2 //2
-- 8y

OJ I --

The time t' of switch is given by the equation system (4.14) and (4.15). Replacing v_' with

v"_" and subtracting from (4.15) the a"-multiple of (4.14), we getx ,

t'(v' v - a"v') = t"(% - a"v_). (4.38)

' _ " ' From (4.38). t' is obtained asW_ check for sanity that vy a v x.

t' - t"(vv - a"Vx) (4.39)
! II !

Vy -- O_ V x

" by " " " The absolute ownship's velocity is obtained from" by (4.17) and vu vyW_ get v x = v x a .

the relative one.

Line/circle. The situation is depicted in Figure 4.2. The line case of the escape step is solved

' and ,' For the circle case of the recovery step,exactly as in the case line/line. Thus, we get v_ vy.

we determine the time of contact with the circle 0", given by (4.13). For sanity, we check that

r' < 0" < t", where r' is defined as in (4.9).

The horizontal distance to the origin at time 0" is D:

(Sx + t'V'x + (0" - t')v'!) 2 + (sy + t'v'y + (0" - t"')vy)"'2 = D 2. (4.40)

This equation reduces via (4.17), (4.18), and (2.1) to the quadratic equation in t'

t'_[(_" + (0" - t")v') _+ (_ + (o" - t")v'_)_- o _] +
l! II I II 112t'[-(_" + (o" - t'%',_,_t'%,_ + o'%) - % + (o" - t )v_)t (_ + o _) + t"o _]+

t"_((_ + o'%) _+ (_ + O"v_)_ - o _) = 0.
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Byconstructionofthelinecaseandr' 7_ 0" we get (s_ + (0" - t")v" ) 2 + (Sy + (0" - t")vy) 2 > D 2.

" and " are obtained as follows:We solve the quadratic equation to yield t'. Speeds %, Vov

tuv i iu _ x -- t Vx
Vox tu _ tl + Vix_

u tl_vy i 1--tVy

Voy -- tl I _ tt -}- Viy.

Using (3.1), we check for sanity that 0" is an entry point to the infinite cylinder:

II I1 I1 II(87+ (e1'- t")(v"x - V_x))(V'o'_,- vix)+ % + (e'I - t )(_'o_- _,i_))(Vo_- _i_)_<o. (4.41)

Circle/line. A circle/line maneuver is shown in Figure 4.3. For the circle case of the escape step,

we get the time 8' of contact with the circle, given by by (4.12). We check for sanity that 0 < 8' < t".

The escape course satisfies

(8x 4- O'(Vtox - Vix)) 2 4- (8y 4- O'(Vtoy - Viy)) 2 = D 2, (4.42)

which reduces to

- 2(8y - 01viy)O'v:y =

(8_ O'v_.)_+(8_ o'_ _ 2(8x _1_,_ _,_ ,_ _D_.- - iw + -O'vix)O'v_x +_ Vox+_ Voy

Squaring both sides and using

/
yields a quadratic equation in Vox

where

12 2 2 t2

roy _ Vox Jr- Voy -- Vox

12 1
Vox A + VoxB + C = O,

(4.43)

(4.44)

(4.45)

A = 40'2((8x - O'vix) 2 + (8y - Olviy)2),

B = 4(8, - 01v_)O'E,

C E 2 4(8 u O'v _O"elv 2 2-- -- iy] \ ox Jr- Voy)_

E (sx O'vix) 2+(s_ 01v _'2 ,,12 2 _12 2 _D 2.= -- -- iy] + {1 Vox + U roy

If A ..... 0, then sx O'vi_ and 8v = O'viy, and so B 0 and C E 2. If E 0, i.e., 0 '2 ,2 + 0'2Voy'2-- _OX

D e , then

(Sx 4- O'(Vox - Vix)) 2 4- (Sy 4- O'(Voy - Viy)) 2 = D 2,

so there is no predicted conflict. If E ¢ 0 then there is no solution.

If A ¢ 0, we get two solutions for v'ox which yields solutions for V'ov , via (4.44). We check for sanity

2 2 _ t2that Vox + Vou _ Vox.

Using (3.2), we check for sanity that 0' is an exit point from the infinite cylinder:

(8_ + 01(vlo_, - vix))(V'o_ - Vix) + (8v + 01(V'ov - viy))(V'o_ - viv) >_ O. (4.46)

For the line case of the recovery step, we have to satisfy- the tangent condition

2/ /12 u2_ iI u u 1/_2
_% + Vu ) = (8/% -- Ss%) .

We consider the following cases:
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" = vy/% and getCase v, 7_ 0. We substitute a" " "

D2(1 + c_,,2) = (S,,xCt,,_ sv),,,2.

This equation reduces the quadratic equation in a"

OZ.2 (D2 112x . II II 1/2-s x )+(* 2SxSy+D 2-sy =0.

If D 2 = sx"2 _hen sy" 7_ 0, because s" is not at the boundaryo of the infinite cylinder. In this case

c_" (D 2 ,,2 ,, ,,= - _y )/(2<_y).

Otherwise, we solve the quadratic equation for c_".
It It

The time of switch t' yields (4.39) and so t', %, vy as in the line/line case. We check for sanity
that 0' < t'.

= = " (4.18).' " 0. From (4.14) we get t' t"v_/v', and finally we get Vy byCase v_ ¢ 0 and %.

Circle/circle. Circle-circle solutions (Figure 4.5) may exist if the times 0',0", given by (4.12)

and (4.13), satisfy 0 < 0' and 0" < t" or, equivalently, if either (& < -H and H < s_) or

(s_ < -H and H < &).

' and ' as in the circle/line case.From (4.42) and (4.32) we get Vo, roy

At time 0" the circle is intersected:

(_"+ (0" - t")v") _+ (_ + (0" - t">")_; = D_

By (4.17) and (4.18) this reduces to the quadratic equation in t':

t'2 [(.5'_ -- (0'" -- _"")Vtx) 2 + (Syt' + (0" -- t,'"'X)Vy)'"2nJ+

t'[-2t"(_" + (o" - t")C)(_" + (o" - t,,v,,,_,__ 2t"%"+ (o" - t")v,,)%'"+ (o" - t">y)] +

t"_' " (0" ""_ " (0" - D_(t'' - t')_ = 0._+ -t">J+_ %+ -t'%) _

If v,' = -Sx/(O" " - t") and v v' = -Sy/(O" " - t") then this equation has no solution. Otherwise, we
I!

solve this equation for t' and we get v_ and vy from (4.17) and (4.18), respectively.

We check for sanity that 0' < t' < 0", that time 0' defines an exit point from the infinite cylin-

der (4.46), and that at time 0" there is an entry point (4.41).

gseape-eirele. Escape-circle solutions (Figure 4.6) may exist if there is only one intersection with

a circle at time 0" defined by (4.18). We check for sanity that 0 < 0" < t".

At time 0" the circle is intersected:

(_+0"(Cx -_,_))_ +(_;+0"(C_ - _))_ =DL

' and ' are derived as in the circle/line case, but for 0" instead of 0'. The time of switchSpeeds Vox roy

t' is given by t' = 0". The velocity vector of the recovery case is given by (4.14) and (4.15) as follows:

i i -- t'V. t Vox ox
Vox -- 0" - t" ' (4.47)

i i -- t'V
,, t Voy ov (4.48)

v°Y -- O" -- t"

We check for sanity that at time 0" there is an entry point to the infinite cylinder (4.41).
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Recovery-circle. Recovery-circle solutions (Figure 4.7) may exist if there is only one intersection

with a circle at time 0' defined by (4.12). We check for sanity of 0' that 0 < 0' < t".

At time t' = 0' the circle is intersected:

' ' ' ' - v 2 D 2"(Sx+ e (Vox- vix))2 + (By+ e (_o_ _)) =

' and v' exactly as in the circle/line case. We check for sanity that at timeWe derive solutions for Vox o,

o " and " are obtained0' there is an exit point from the infinite cvlinder (4.46). The values for Vox Voy

from (4.47) and (4.48), respectively.

In this case there are no one-circle solutions.

5. Conclusion and Future Work. We presented a resolution and recovery algorithm for two aircraft,

namely ownship and intruder. The algorithm outputs a choice of maneuvers for the ownship, which is

predicted to be in conflict with an intruder aircraft when flying towards a target point. Each maneuver

consists of an escape velocity vector, a recovery velocity vector, and a time of trajectory change t'. Together

they determine an escape course, a recovery course, and a new trajectory change point. If the ownship flies

the escape course from time 0 to time t' and then switches to the recovery course at time t', it arrives at the

original target point at the scheduled time, while maintaining minimum separation at all times.

We gave a rigorous mathematical description of the problem and proved that the recovery and resolution

algorithm (RR3D) is correct: given some initial assumptions, e.g., there is a predicted conflict and the aircraft

are not in violation of the minimum separation, the algorithm outputs a choice of conflict-free maneuvers

that lead the ownship to the target point at the scheduled time. We intend to check the correctness proof

using the PVS theorem prover [13].

The maneuvers returned by the algorithm are optimal in a geometric way, i.e., escape and recovery

courses are tangential to the intruder's protected zone. They differ in the constraints they satisfy. For

instance, one constraint requires that only a change of heading is allowed for the escape course. These

constraints, which are not limitations imposed by the aircraft, are there to reduce the number of solutions to

the problem. Our set of constraints is by no means exhaustive or unique. Other constraints may, however,

easily be added. Specifically, we are currently working on the following additional constraints:

• A change of heading and ground speed for the escape step such that the ground speed does not

,,2 ,,2 ,2 +vr_ and ' = Vo_ " This case yieldschange during the recovery step, i.e., Vo_ + Voy = Vo_ Vo_ = Vow.

surprisingly difficult systems of equations, including polynomials of degree 3, 4, and 6.

• Optimal solutions satisfying no constraints. These solutions may be difficult to implement by a

human pilot since they require a simultaneous change of several parameters of the aircraft (heading,

vertical speed, and ground speed). However, in the future, they could be suitable for a flight guidance

system.

A prototype of RR3 has been implemented in Java. Currently, we are conducting experiments and

simulations to study the applicability of RR3D as the inner loop of a strategic conflict detection and resolution

approach.

Acknowledgments. The idea to extend KB3D [4] with recovery courses is due to David Wing. We

acknowledge stimulating discussions with the DAG-TM team, Hanne Gottliebsen, and Victor Carrefio.
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