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Recent advances in modeling languages have made it feasible to formally specify and 
analyze the behavior of large system components. Synchronous data flow languages, such as 
Lustre, SCR, and RSML-e are well suited to this task, and commercial versions of these tools 
such as SCADE and Simulink are growing rapidly in popularity among designers of safety 
critical systems, largely due to their ability to automatically generate code from the models. 
At the same time, advances in formal analysis tools have made it practical to formally verify 
important properties of these models to ensure that design defects are identified and 
corrected early in the lifecycle. This report describes how such formal verification tools have 
been applied to the FCS 5000, a new family of Flight Control Systems being developed by 
Rockwell Collins Inc. 

I. Introduction 
ECENT advances in modeling languages have made it feasible to formally specify the behavior of large system 
components. Synchronous data flow languages, such as Esterel1, Lustre2, SCR3, and RSML-e (Ref. 4) seem to 

be particularly well suited to this task, and commercial versions of these tools such as SCADE5 and Simulink6 are 
growing rapidly in popularity among designers of safety critical systems, largely due to their ability to automatically 
generate code from models. At the same time, advances in formal analysis tools have made it practical to formally 
verify important properties of these models to ensure that design defects are identified and corrected early in the 
software lifecycle.7,8,9,10,11,12,13,14 

The FCS 5000 is a family of Flight Control Systems (FCS), developed by Rockwell Collins Inc (RCI), for use in 
business and regional jet aircraft. The mode logic of the Flight Guidance System (FGS) is an important component 
of the FCS 5000 architecture that determines which lateral and vertical flight modes are to be armed and active at 
any time. As discussed in several prior papers,9,11,12,13,14,15 the mode logic of the FGS is inherently difficult to design 
and verify. To address this, the FCS 5000 team has made use of advanced verification technologies developed by 
RCI, the University of Minnesota, and the NASA Langley Research Center under NASA’s Aviation Safety and 
Security Program (AvSSP). This paper describes how this technology has been used on the FCS 5000 to find and 
correct requirements and design errors early in the life cycle.  

The remainder of this paper is organized as follows.  Section II provides background information, including an 
overview of a FGS and descriptions of the modeling and analysis tools used in the project.  Section III describes 
how the models are translated into the analysis tools for verification.  Section IV shows how a single mode transition 
diagram is specified and how properties of it are verified. Section V discusses how two mode transition diagrams are 
composed and verified as a single entity. Section VI compares the scope of the full FCS 5000 effort to these 
examples and discusses the outcome of the verification to date.  Finally, Section VII provides concluding remarks 
and directions for further work. 
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II. Background 
This section provides a brief overview of a Flight Guidance System and descriptions of the modeling and 

verification tools used in the project. 

A. Overview of an FGS 
A Flight Guidance System (FGS) is a component of the overall Flight Control System (FCS). It compares the 

measured state of an aircraft (position, speed, and attitude) to the desired state and generates pitch and roll guidance 
commands to minimize the difference between the measured and desired state.  These guidance commands are both 
displayed to the pilot as guidance cues on the Primary Flight Display (PFD) and sent to the Autopilot (AP) that 
moves the control surfaces of the aircraft to achieve the commanded pitch and roll. 

The internal structure of the FGS can be broken down into the mode logic and the flight control laws. The flight 
control laws accept information about the aircraft's current and desired state and compute the pitch and roll guidance 
commands. The mode logic determines which lateral and vertical modes are armed and active at any given time. 
These in turn determine which flight control laws are generating guidance commands. While very complex, the 
mode logic consists almost entirely of Boolean and enumerated types. This makes it well suited for analysis using 
symbolic model checkers. We have used the mode logic of a FGS as an example in several previous 
studies.9,11,12,13,14 It is an excellent example because it is complex and representative of a class of problems (control 
logic consisting of Booleans and enumerated types) frequently encountered in the design of embedded control 
systems. 

B. Modeling and Verification Tools 
This section provides an overview of the modeling and verification tools used in the verification of the FCS 5000 

mode logic. The mode logic was modeled in Simulink® and analyzed using the NuSMV model checker. SCADE 
Suite™ and Reactis® were used in conjunction with software developed by RCI and the University of Minnesota to 
translate the Simulink models into NuSMV. The PVS and SAL tools from SRI International were also investigated 
as possible analysis tools. 
1. Simulink 

Simulink®, marketed by The Mathworks, is a popular platform for the modeling and simulation of dynamic 
systems.16 It provides an interactive graphical environment and a customizable set of block libraries that can be used 
to design, simulate, debug, implement, and test reactive systems. Users assemble a system specification by dragging 
and dropping blocks onto a pallet and connecting the outputs of one block to the inputs of another block. Blocks can 
be composed hierarchically from simpler blocks, allowing designers to organize complex system designs. New 
blocks can be defined by the developer and added to a reusable library. Blocks can also be parameterized. Control 
logic for representing system states and state transitions can be modeled with the integrated StateFlow® add-on. 
Simulink and StateFlow are both integrated with the MATLAB® environment, also marketed by The Mathworks, 
providing access to several additional tools for algorithm development, data analysis, data visualization, and 
numerical computation. Executable code can generated from a Simulink model using the Real-Time Workshop® 
add-on. An advantage of Simulink is that it can be simulated with fixed or variable-step solvers, allowing both the 
control system and the plant model (for example, the airframe) to be modeled within the same framework. 
2. SCADE 

SCADE is an environment for the development of safety-critical systems similar to Simulink. Originally 
developed for the design of aircraft systems, similar but separate versions are now marketed by Esterel Technologies 
for the automotive industry (SCADE Drive™) and the avionics industry (SCADE Suite™).5 SCADE also provides 
an interactive graphical environment that allows users to assemble system specifications by dragging and dropping 
blocks onto a pallet and connecting the outputs of one block to the inputs of another. Control logic for representing 
system states and state transitions can be modeled with the integrated Safe State Machine© (SSM) add-on. Since the 
SCADE tools were explicitly created for the development safety-critical software and hardware, SCADE supports 
only fixed step simulation. For the same reason, the features and blocks supported by SCADE and SSM are 
restricted to those with an unambiguous mathematical representation. An advantage of SCADE is that its models are 
translated into the Lustre language, a synchronous data flow language with a precise formal semantics.1 C source 
code can be generated from SCADE using the KCG™ code generator which has been qualified as a Level A 
software development tool in accordance with DO178B.17 The SCADE Suite also includes a gateway that can 
import Simulink models and a model checker called Design Verifier.  
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3. Reactis 
 Reactis® is an automated test-generation and property verification tool for Simulink/StateFlow models 
developed by Reactive Systems, Inc.18  It uses random and heuristic search to try to exercise the behavior of models 
up to a defined level of structural coverage.  Reactis supports several different coverage metrics including state-, 
condition-, branch-, boundary-, and MC/DC-level coverage.  The result of the search process is a suite of tests which 
can be used both for structural testing and validation of the model.   
 Reactis allows properties to be specified either using a Reactis-specific textual notation or as additional 
StateFlow machines, and will check whether all tests within a test suite satisfy the properties of interest.  Because 
Reactis uses random, rather than exhaustive, search, it can be used to generate tests and attempt to verify very large 
models that cannot be analyzed by exhaustive search tools such as model checkers.  On the other hand, it is not 
guaranteed that Reactis will generate all tests necessary to reach a level of structural coverage.  Furthermore, it is not 
possible to use the generated tests to prove whether a given property always holds of a model.   
 
4. NuSMV 

NuSMV is a symbolic model checker developed as a joint project between the Formal Methods group in the 
Automated Reasoning System Division at the Instituto Trintino di Cultura (ITC) - Center for Scientific and 
Technological Research (IRST), the Mechanized Reasoning Groups at the University of Genova and the University 
of Trento in Italy, and the Model Checking group at Carnegie Mellon University in the United States. NuSMV is a 
re-implementation and extension of SMV,19 the first model checker based on Binary Decision Diagrams (BDDs). 
NuSMV has been designed to be an open architecture for model checking, which can be reliably used for the 
verification of industrial designs, as a core for custom verification tools, as a test bed for formal verification 
techniques, and applied to other research areas.20 Properties to be verified in NuSMV are specified using either 
Computation Tree Logic (CTL) or Linear Time logic (LTL).21 

The advantage of using a model checker such as NuSMV is that it will check all possible combinations of inputs 
and state to determine if a property is true. We have used the NuSMV model checker to verify properties of models 
with over 10120 reachable states. 
5. PVS 

PVS is a theorem prover that has been developed at SRI International's Computer Science Laboratory. In 
comparison to other widely used verification systems such as HOL and ACL2, the distinguishing characteristic of 
PVS is that it supports a highly expressive specification language with an interactive theorem prover in which most 
of the lower-level proof steps are automated. The system consists of a specification language, a parser, a type 
checker, and an interactive proof checker. The PVS specification language is based on higher-order logic with a 
richly expressive type system so that a number of semantic errors in a specification can be caught during type 
checking. The PVS prover consists of a powerful collection of inference steps that can be used to reduce a proof 
goal to simpler subgoals that can be discharged automatically by the primitive proof steps of the prover. The 
primitive proof steps involve, among other things, the use of arithmetic and equality decision procedures, automatic 
rewriting, and BDD-based Boolean simplification.22,23 
6. SAL 

SAL (Symbolic Analysis Laboratory) is a framework for combining different tools to analyze sequential and 
concurrent systems.24 The heart of SAL is a language, developed in collaboration with Stanford, Berkeley, and 
Verimag, for specifying concurrent systems in a compositional way. The SAL framework contains tools for 
abstraction, invariant generation, program analysis (such as slicing), theorem proving, and model checking.  These 
tools can be used to separate different analysis concerns and calculate properties (i.e., perform symbolic analysis) of 
sequential and concurrent systems. SAL includes an explicit-state model checker, a BDD-based symbolic model 
checker, a SAT-based bounded model checker, and a SAT-based infinite bounded model checker which can 
symbolically analyze systems containing real numbers.  SAL can also be used as an interface to the PVS theorem 
prover.25 

III. Translating from Simulink to NuSMV 
The translation of Simulink models into NuSMV requires several steps. However, these are automated and 

normally completed without great difficulty. The translation process is illustrated in Fig. 1. Models are first created 
using MATLAB Simulink and/or StateFlow. These models then are translated into the Lustre formal specification 
language using one of two tool chains, depending on which path the user is more comfortable with. In one path, the 
Simulink/StateFlow models are imported into the SCADE Suite using the Simulink Gateway provided by Esterel 
Technologies. SCADE Suite is then used to translate the models into Lustre. In the second path, the 
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Simulink/StateFlow models are imported into Reactis and a Lustre file is generated using a translator developed by 
Rockwell Collins Inc and the University of Minnesota (hereafter RCI-UMN).  From Lustre, the models are 
translated into NuSMV, PVS, or SAL using translators developed by RCI-UMN. The Lustre models can also be 
imported into Design Verifier, a model checker available in SCADE Suite. 

The RCI-UMN translators produce highly optimized models most appropriate for the target language. For 
example, when translating to NuSMV, the translator produces a specification that is difficult for a human to read, 
but very efficient for proving properties. When translating to PVS, the resulting specification is optimized for 
readability and to support the development of proofs in PVS.  

Since the FCS 5000 mode logic consists only of Boolean and enumerated types, it is very efficient to verify 
properties about the mode logic using a BDD-based model checker such as NuSMV. SAL, PVS, and Design 
Verifier were also investigated and found to be acceptable alternatives. However, due to the speed and ease of use of 
NuSMV, the bulk of the FCS 5000 verification was done using it. A more detailed comparison of the pros and cons 
of verification using NuSMV and PVS can be found in Ref. 12. 

 

IV. An Example of a Single Mode Transition Diagram 
The mode logic of the FCS 5000 is specified using a format developed at RCI. These specifications are then 

modeled in Simulink, translated to NuSMV for analysis, and then implemented in C and C++ code. The actual 
specifications of the FCS 5000 are highly proprietary and cannot be described here. However, this section uses a 
simplified example to describe how a single mode transition diagram is specified and verified using NuSMV. 

A. Specification of the Lateral Mode Logic 
This section illustrates the RCI format for mode transition diagrams using a simple example, discusses some of 

the subtleties of how events are specified, and concludes with a brief discussion of the advantages and disadvantages 
of this style as compared to more traditional styles for specifying state transition diagrams. 
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Figure 1. Translation from Simulink to NuSMV
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1. Overview of the LAT Mode Transition Diagram 
An example mode transition diagram for a simplified version of the lateral mode logic is shown in Fig. 2.†† The 

lateral mode logic determines the active mode that is controlling the aircraft about its lateral axis. The lateral modes 
are listed across the bottom of the diagram. In this example, these are ROLL (hold current bank angle), HDG (hold 
selected heading), LAPPR (track a landing beacon during approach), and LGA (hold current heading during a go 
around).  

The events that cause transitions are listed down the left hand side (the notation for specifying events is 
explained more fully in the next section). For ease of reference, all events other than initialization (Power Up) are 
numbered on the right hand side. If a transition from a state is possible for a particular event, it is indicated by an 
arrow at the intersection of the line running up from the state and the line crossing horizontally from the event. For 
example, the arrow at the intersection of the ROLL state and the GA Switch event (Event 7) indicates that a transition 
from the ROLL state will be made when the GA Switch event occurs. The destination state is found by traversing the 
horizontal line until a black dot is reached and following the associated arrow down to the destination state.  For the 
example just described, the destination state is LGA.  

 
Sometimes an event can cause a transition to more than one destination state depending on the current state. In 

this case, the event is listed on the left once for each destination state. For example, the HDG Switch event (Event 3) 
causes a transition to the ROLL state when the system is in the HDG state, and a transition to the HDG state when in 
ROLL or LGA (Event 4). An event may also be listed more than once if it is associated with different guard 
conditions as illustrated by Event 5 (guard conditions will be described in the next section). 

If more than one event can occur in the same step, priority is given to the first event that can cause a transition as 
one moves upward from the current state. Thus, if both the HDG Switch event (Event 4) and the GA Switch event 
(Event 7) occur while in ROLL mode, Fig. 2 specifies that the transition associated with the GA Switch event will be 
taken and the transition associated with the HDG Switch event ignored. 

The initial system state is indicated by single horizontal arrow associated with the event of system initialization. 
In Fig. 2, this is the Power Up event and the initial system state is ROLL. 
2. Specifying Events 

Implied in Fig. 2 is a fairly rich notation for specifying events similar to that used in SCR.3 Events occur at the 
point in time when a Boolean expression over the system inputs and state changes from false to true. For example, 
the HDG Switch “event” occurs when the value of the HDG Switch “input” changes from false to true. If we let `X 
represent the value of input X just before the event, and X´ represent the value of X just after the event, then the 
HDG Switch event can be more precisely defined as the predicate 

                                                           
†† For purposes of illustration, this example has been considerably simplified and includes behavior that would not 
be implemented in an actual Flight Guidance System. For example, the logic here is always armed for Lateral 
Approach capture. In an actual system, this mode would first have to be enabled by the pilot. 

HDG Switch

HDG Switch [Not VAPPR]

GA Switch

PowerUp

SYNC Switch

LAPPR Capture

Chg Coupled-side

ROLL HDG LAPPR LGA

Event 1

Event 2

Event 3
Event 4
Event 5

Event 6
Event 7

VGA

HDG Switch

Event 8
Not VGA Event 9

Figure 2.  Example Lateral Mode Machine LAT
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NOT `HDG_Switch & HDG_Switch´ 

The Boolean expressions used in defining events can be arbitrarily complex. For example, if A and B are 
Boolean input signals, the event (A & B) can be rewritten, using distribution of the ` and ´ operators and De 
Morgan’s law, as  

NOT `(A & B) & (A & B)´  = 
NOT (`A & `B) & (A´ & B´) = 

(NOT `A OR NOT `B) & (A´ & B´) 

Thus, if A is true and B is false, the event (A&B) occurs when B becomes true. In Fig. 2, events are written as 
simple Boolean expressions and the requirement for a change from false to true of the Boolean expression is 
implied.  

Occasionally, it is necessary to refer not to the event of an input changing value, but to the actual value of the 
input. Such guard expressions are placed in square brackets and refer to the value of the expression just after the 
associated event‡‡.  Thus, in Fig. 2, Event 2, HDG Switch [Not VAPPR], is more precisely defined as 

NOT `HDG Switch & HDG Switch´ & NOT VAPPR´ 

It is also possible to define an event that consists solely of an expression in square brackets. In that case, the 
event is interpreted as occurring at each point in time when the expression is true. Such an event occurs continuously 
until the expression becomes false. 
3. Advantages and Disadvantages of this Format 

The format illustrated in Fig. 2 has both advantages and disadvantages over more conventional representations of 
state machines such as Statecharts.26 Its primary advantage is that it is easily understood and provides a very concise 
way of specifying a deceptively large number of transitions on a single diagram. This works particularly well when 
the states are highly connected by transitions. In fact, it was exactly this problem that prompted Leveson to 
introduce the concept of a transition bus.27 The format of Fig. 2 goes beyond this by refining the transition bus into 
individual “event buses” so that the events associated with the transitions between any two states are clearly visible. 
This format is also equivalent to the mode tables of SCR3 and CoRE28. However, its graphical presentation is more 
concise and easier to understand than the tabular presentations of SCR and CoRE.  

This format also has some disadvantages over conventional representations of state machines. It does not 
represent state hierarchy well and discourages developers from thinking in terms of meta-states. As a consequence, 
meaningful groupings of states may not be named and introduced into the developer’s lexicon.  Another 
consequence is that transitions have to be repeated for each state in a meta-state, where in Statecharts the transitions 
could be specified once for the meta-state.  

Finally, no commercial tools provide explicit support for this format. To cope with this problem, RCI has 
developed a proprietary method for encoding these diagrams as Simulink models. These Simulink models are then 
used for analysis, simulation, and possibly for automatic generation of  source code. 

B. Verifying Properties of LAT 
This section discusses how properties of a single mode machine such as LAT can be verified using a model 

checker such as NuSMV. The specification of LAT given in Fig. 2 is essentially the requirements for the lateral 
mode logic, so there is very little that can be cross checked to verify the correctness of Fig. 2 itself.  However, it is 
useful to verify that the Simulink model does correctly implement LAT. This can be checked by proving a set of 
properties that can be extracted directly from Fig. 2. These properties are also excellent specifications for test cases 
to verify that the generated code executing on the target platform performs correctly. 

To do this, we first convert the Simulink model to NuSMV as described in Section III, then prove various CTL 
properties over this translated model. For example, to check that the VGA event (Event 8) causes the model to 
transition from ROLL mode to LGA mode, we prove the CTL property  

AX AG( ROLL → AX( Event8 → LGA )) 

This property states that for all globally reachable (AG) states for which the mode is ROLL, the mode in all next 
states (AX) will be LGA if Event 8 occurs. It is necessary to preface each CTL formula with the AX operator to step 
                                                           
‡‡ This differs from the convention in SCR, where guard expressions are normally associated with the value just 
prior to the event. Using the value just after the event better matches the intention of the specifier in case the guard 
condition changes value at the exact moment of the event. It is also more naturally implemented in tools such as 
Simulink. 
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over the initial state as the values of the inputs and intermediate NuSMV variables are unspecified in the NuSMV 
representation of this state. 

In like fashion, to prove that the system transitions from ROLL mode to LGA mode when the GA Switch event 
(Event 7) occurs, we prove the CTL property 

AX AG( ROLL → AX( (Event_7 & !(Event_8 )) → LGA )) 

We must explicitly rule out the possibility of Event 8 since it has a higher priority than Event 7 and would mask the 
effect of Event 7. In the same way, to prove that the system transitions from ROLL mode to HDG mode when the 
HDG Switch event (Event 4) occurs, we check the CTL property 

AX AG(ROLL → AX((Event_4 &  !(Event_7 | Event_9 )) → HDG )) 

This process is repeated for each possible transition from ROLL mode. Finally, to verify that no other transitions 
from ROLL mode are possible, we check the CLT property  

AX AG( ROLL → AX( !(Event_2 |  Event_4 | Event_7 | Event_8 )  → ROLL )) 

stating that the system remains in ROLL mode if none of the events leading to a mode transition occur. A similar set 
of properties can then be checked for each of the other modes in LAT. 

Proving these properties of LAT does provide a useful check on the correctness of the Simulink model of LAT, 
but very little insight into the correctness of Fig. 2 itself. More interesting properties are discussed in the next section 
in which LAT is composed with the vertical mode machine, VER. 

V. An Example of Interacting Mode Transition Diagrams 
It is often desirable to specify several mode transition diagrams separately, then compose them into a single 

system, often with strong interactions between the components. However, this raises several problems for formal 
verification. To illustrate this, this section introduces a second mode transition diagram for the vertical mode logic, 
composes it with the lateral mode logic, and discusses some of the problems raised during formal verification. 

A. Specification of the Vertical Mode Logic 
In this section we introduce a second mode machine VER representing the vertical mode logic (Fig. 3). VER is 

very similar to the mode transition diagram LAT discussed in Section IV. However, while the modes of LAT control 
the aircraft about the lateral axis, the modes of VER control the aircraft about the vertical axis.  For example, PITCH 
mode holds the aircraft to a fixed pitch angle, AIRSPD holds the aircraft to a fixed airspeed by adjusting its pitch 
angle, VAPPR holds the aircraft to the vertical glide slope during approach, and VGA holds the aircraft to a fixed 
pitch angle during a go around.  

 

 

SPD Switch

GA Switch

PowerUp

SYNC Switch

VAPPR Capture [LAPPR]
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PITCH AIRSPD VAPPR VGA

Event 1

Event 2
Event 3

Event 4
Event 5

Event 6
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SPD Switch

Event 7

Not LAPPR

Event 8
Not LGA Event 9

 
Figure 3. Example Vertical Mode Machine VER
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B. Composing LAT and VER in Simulink 
Examination of LAT (Fig. 2) and VER (Fig 3) reveals that some of the events of LAT refer to the state of VER 

and vice versa. For example, LAT transitions in and out of LGA mode as VER transitions in and out of VGA mode 
(Events 8 and 9 of Fig. 2), and VER exhibits similar behavior relative to LAT. Pressing the HDG switch has no 
effect on LAT when it is in LAPPR mode if VER is in VAPPR mode (Event 5 of Fig. 2), and VER cannot enter 
VAPPR mode unless LAT is in LAPPR mode (Event 2 of Fig. 3). 

Clearly, there is an intent by the author to synchronize the states of LAT and VER. For example, it seems clear 
that the designer intends LAT to be in state LGA if and only if VER is in state VGA.  Similarly, VER should be in 
VAPPR only if LAT is in LAPPR.  These relationships can be stated more formally as the properties 

LGA ↔ VGA 
VAPPR → LAPPR 

However, our ability to enforce these properties depends critically on how LAT and VER interact. If they are 
composed synchronously, these relationships are much easier to maintain than if LAT and VER are composed 
asynchronously. When composed synchronously, both machines execute in lockstep and share a single clock. All 
inputs to the overall system are computed at the start of each step and held fixed until the step is completed. 
Communication between the two machines consists of providing the current mode of each machine as an input to 
the other machine. Of course, this leads to a cyclic dependency (algebraic loop) in which each machine defines its 
current state in terms of the current state of the other. This dependency must be broken by introducing a one step 
delay somewhere between the two machines. 

An example of the synchronous composition of LAT and VER is shown in the Simulink model of Fig. 8. The 
block labeled LAT implements the Simulink model depicted in Fig. 2 and the block labeled VER implements the 
analogous Simulink model for VER specified in Fig. 4. Note that LAT and VER share three inputs, Chg Coupled 
Side, SYNC Switch, and GA Switch, which they are assumed to see simultaneously and at the same time as their 
other inputs. In each step, LAT computes its next mode which is used by VER in the same step in the computation of 
its next mode.  The value of VER Mode from the previous step is in turn used by LAT in computing its next mode. 

 

 
The synchronous composition of LAT and VER as a single Simulink model can easily be implemented as a 

single block of code executing on a single processor.  A clear advantage of this is that the analysis of properties of 
the overall system (for example, showing that LGA ↔ VGA and VAPPR → LAPPR) can be done using the same 
techniques and tools as were used when verifying LAT. 

Figure 4. Synchronous Composition of LAT and VER 
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However, it may be necessary to implement LAT and VER as asynchronous processes executing on separate 
processing platforms, each with their own clock. This occurs when we need to meet system safety requirements by 
implementing redundant copies on isolated platforms, when we need to improve system throughput, or simply to 
take advantage of an existing system architecture. Such systems are often referred to as Globally 
Asynchronous/Locally Synchronous (GALS) architectures. 

An approach for modeling and formally analyzing such systems based on that of Ref. 29 was explored in 
Ref. 30. While relatively straightforward to model, systems with such unbounded asynchrony are far more difficult 
to analyze. For one thing, the desired properties are usually more difficult to specify. For example, the property 
LGA ↔ VGA will not hold at possible times since one machine may change state slightly before or after the other 
machine changes state. In addition, the number of reachable states grows dramatically compared to the synchronous 
case since all possible interleaving of the individual state machines have to be considered. While our simple 
example could be formally verified using this approach, analyzing the mode logic of a full FGS with unbounded 
asynchrony would likely exceed the capacity of current verification tools. 

Another alternative is to implement LAT and VER as asynchronous processes, but force them to observe a 
logical synchrony. By doing this, an analysis of the synchronous composition shown in Fig. 4 would also apply to 
the asynchronous implementation. However, this places the burden of implementing a mechanism for enforcing 
logical synchrony on the developer.  

Yet another approach is to compose the individual components synchronously with a single step delay in each 
direction between them. In Fig. 4 this would be accomplished by adding a one step delay (1/z) block on the signal 
from LAT to VER. Proof of a property of such a synchronous composition of two machines is not sufficient to prove 
that a property holds in the actual implementation as it does not consider the cases where the communication of state 
from one machine to the other takes two or more steps. However, it will find a very common class of errors where 
the property of interest fails to hold because one machine processes an external input before processing the state 
change from the other machine. This turns out to be a very effective debugging technique since the model checker 
will consider all possible combinations of inputs that might occur during the one step delay.  

C. Verification of LAT and VER 
There are several properties we wish to verify of LAT and VER using a model checker such as NuSMV. This 

section illustrates this process when LAT and VER are composed synchronously as shown in Fig. 4. 
1. Proving LGA ↔ VGA 

One desirable property mentioned earlier is that the system should in Lateral Go Around mode if and only if it is 
in Vertical Go Around mode, i.e., LGA ↔ VGA.  To check this, we first try proving the CTL formula 

AX AG(LGA ↔ VGA) 

Unfortunately, this turns out to be false as show by the counterexample of Table 1. 
 

 
In step 3, the GA switch is pressed, causing LAT to enter state LGA via Event 7 of Fig. 2. The change of LAT 

from ROLL to LGA causes VER to enter state VGA in step 3 due to Event 8 of Fig. 3 (Event 7 of  Fig.. 3 could also 

STEPS 1 2 3 4 
INPUTS     
 Chg_Coupled_Side 1 0 1 1 
 SYNC_Switch 1 0 1 1 
 GA_Switch 1 0 1 1 
 LAPPR_Capture 1 1 0 1 
 HDG_Switch 1 0 1 1 
 VAPPR_Capture 1 1 1 1 
 SPD_Switch 1 1 0 1 
OUTPUTS     
 LAT_Mode ROLL ROLL LGA LGA 
 VER_Mode PITCH PITCH VGA AIRSPD 

Table 1. Counterexample to AX AG(LGA ↔ VGA) 
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cause VER to enter state VGA, but it is overridden by the higher priority Event 8). In step 4, the SPD switch is 
pressed, causing VER to enter state AIRSPD via Event 5. However, LAT will not change to state LGA via Event 9 
of Fig. 2 until the next step due to the one step delay introduced between VER and LAT to break the cyclic 
dependency. 

Clearly, our property is wrong since the counterexample does describe the correct behavior of the composition 
LAT and VER. In reality, it is possible for our property to be wrong for one step due to the one step delay that must 
be introduced between VER and LAT.  However, it should never be the case that the property is wrong for two steps 
in a row. This can be stated as the CTL property 

AX AG((LGA ↔ VGA) | AX(LGA ↔ VGA)) 

This states that the property LGA ↔ VGA must either be true in the current state or it must be true in all 
possible next states. However, trying to prove this property results in yet another counterexample as shown in Table 
2. 

 
This counterexample starts out the same as the previous one. In step 5, we even see LAT transition to state 

ROLL via Event 9 as it realizes that VER exited VGA mode in the previous step. However, at the same time, VER 
transitions back into VGA mode via Event 7 when the GA switch is pressed. This causes the property LGA ↔ VGA 
to be false for both steps 4 and 5, but for very different reasons in each step. 

A moment’s reflection convinces us that if the pilot manages to press the GA button at precisely the right 
moments, he or she can keep the property LGA ↔ VGA false indefinitely.  However, this is highly unlikely and not 
what we are truly concerned about. What we really want to prove is that in the absence of new inputs the system will 
quickly stabilize to a state in which LGA ↔ VGA holds. To do this, we define a predicate EVENT to NuSMV that 
is true whenever any of the events of Fig. 2 or Fig. 3 occur. We can then restate our CTL property as  

AX AG((LGA ↔ VGA) | AX(!Event  → (LGA ↔ VGA))) 

This states that if the property LGA ↔ VGA isn’t true in a given state, it will be true in all next states providing 
no input event occurs in that next state. This property is what we wish to prove as it guarantees that in the absence of 
new inputs, the longest that our property can be false is one step. This property turns out be true. It is worth noting 
how much complication even a single step delay can introduce in the externally visible behavior of the overall 
system and in the properties we wish to prove. 
2. Proving VAPPR → LAPPR 

Another desirable property is that the system should be in Lateral Approach mode whenever it is in Vertical 
Approach mode, i.e., VAPPR → LAPPR.  To check this, we try proving the CTL formula 

AX AG(VAPPR → LAPPR) 

which does prove successfully. Of course, the reason for this is that there is not a one step delay between LAT and 
VER and VER responds immediately when LAT exits the LAPPR state. 

Table 2. Counterexample to AX AG((LGA ↔ VGA) | AX(LGA ↔ VGA)) 

  STEPS 1 2 3 4 5 
INPUTS       
 Chg_Coupled_Side 1 0 1 1 1 
 SYNC_Switch 1 0 1 1 1 
 GA_Switch 1 0 1 0 1 
 LAPPR_Capture 1 1 0 1 1 
 HDG_Switch 1 0 1 1 1 
 VAPPR_Capture 1 1 1 1 1 
 SPD_Switch 1 1 0 1 1 
OUTPUTS       
 LAT_Mode ROLL ROLL LGA LGA ROLL 
 VER_Mode PITCH PITCH VGA AIRSPD VGA 
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3. Proving Stabilization of Communicating Mode Machines 
A concern with communicating state machines is ensuring that it is not possible to enter an infinite cycle in 

which a change in one machine causes a change in the other machine, which in turn causes a change in the first 
machine, and so on in an infinite cascade of events. It is possible to check for such cycles using the model checker, 
but we must first develop some additional infrastructure. 

First, we are only interested in stabilization in the quiescent state in which no external inputs are driving the 
system.  The definitions necessary for this have already been developed in our earlier example where we defined the 
Boolean predicate EVENT to be true if any external input event occurs in a given step. We next define stabilization 
to mean that if no input event occurs, the lateral and vertical modes will not change. If we expect this to occur in a 
single step, we would like to write this in CLT as 

AX AG((!EVENT & LAT_Mode = l) → AX(!EVENT → LAT_Mode = l)) 
AX AG((!EVENT & VER_Mode = v) → AX(!EVENT → VER_Mode = v)) 

where l and v are logical variables representing the lateral and vertical modes in the two steps. Unfortunately, CLT 
does not support the use of such logical variables.  However, we can achieve the same effect by defining manifest 
constants l and v by adding the following NuSMV statements to our model: 

    VAR   l: 0..4;   v: 0..4; 
    ASSIGN   next(l) := l;  next(v) := v; 

These define NuSMV variables l and v that can take on the values 0 through 4 (the possible values of the state 
variables LAT_Mode and VER_Mode. The ASSIGN statements ensure that l and v cannot change their values from 
one step to the next. However, since we do not specify their initial value, they can take on any value in the initial 
state and can thus be used in a way similar to logical variables in a CTL statement. With this infrastructure in place, 
we can now check our two CLT properties and find that they do indeed hold, showing that our system does stabilize 
in a single step and does not have any infinite cycles.  

Another way to check for stabilization would be to use the UNTIL operator U of CTL.  Our two CTL 
stabilization properties would then be written as  

AX AG((!EVENT & LAT_Mode = l) → (A[LAT_Mode = l U EVENT])) 
AX AG((!EVENT & VER_Mode = v) → (A[VER_Mode = v U EVENT])) 

These properties state that if no event occurs in a reachable state, then the lateral mode and vertical mode will 
remain unchanged in all following reachable states until an input event occurs. However, U is the strong UNTIL 
operator of CTL, which requires that the predicate following U must eventually hold for each possible path.  Of 
course, there is a path in our system in which no additional input event ever occurs (e.g., the pilot never presses a 
button and a capture condition never occurs), and hence both properties fail.  What is needed is the weak UNTIL 
operator (W), which does not require the predicate following it to eventually hold. Our CTL properties can then be 
written and proven as  

AX AG((!EVENT & LAT_Mode = l) → (A[LAT_Mode = l W EVENT])) 
AX AG((!EVENT & VER_Mode = v) → (A[VER_Mode = v W EVENT])) 

Unfortunately, CTL does not support the weak UNTIL operator W.  However, the same logical formula can be 
written by making use of the identity 

P W Q ≡ (!P & Q) → (!E[!P U !(P | Q)]) 
Our CTL properties for stabilization can then be written as 

AX AG((!EVENT & LAT_Mode = l) → (!E[!EVENT U ! (LAT_Mode = l | EVENT)])) 
AX AG((!EVENT & VER_Mode = v) → (!E[!EVENT U ! (VER_Mode = v | EVENT)])) 

which are easily proven using the model checker. 

VI. Verification of the FCS 5000 Mode Logic 
In this section, we discuss the formal verification of the FCS 5000 mode logic currently underway. Details of the 

FCS 5000 design are proprietary and cannot be described here.  However, it is possible to discuss the scope of the 
effort, what information is being collected, and the number and sorts of errors found to date. 
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A. Scope of the Effort 
The FCS 5000 mode logic being analyzed consists of five mode transitions diagrams, each considerably larger 

than those shown in Fig. 2 and Fig. 3. There are 36 modes, 172 events, and 488 transitions. The events are typically 
guarded by Boolean expressions, and the guards of different events often share the same input values.  Changes in 
the state of each mode diagram affect at least one, and often more than one, of the other mode diagrams. While each 
individual diagram is relatively clear and straightforward to understand, grasping all the possible interactions 
between them can be quite difficult. 

The most interesting properties of the mode logic define relationships that must be maintained between the states 
of pairs of mode machines. For this reason, it is usually sufficient to analyze pairs of mode machines connected 
synchronously as discussed in Section V. The state of the other mode machines are treated as unconstrained inputs 
to the pair being analyzed, so the desired properties are shown to hold regardless of the state of the other mode 
machines.  

Unfortunately, because of the size of the mode transition diagrams, it is not feasible to analyze such pairs of 
mode machines if they are composed as two synchronous models executing completely asynchronously, i.e., where 
each is driven by its own clock and the clocks are not synchronized. For this reason, they were modeled as two 
communicating synchronous models with a one step delay in each direction as discussed in Section V.  Even in this 
constrained configuration, there are typically over 1020 reachable states (i.e., the cross product of the possible inputs 
and the states of the mode machines) that need to be checked in the verification. As discussed in Section V, model 
checking over this configuration is not sufficient to prove that the properties hold when the mode machines are 
implemented as asynchronous processes, but it is still a very useful debugging technique. For these reasons, the 
model checking was performed in addition to the traditional verification activities.  

B. Information Collected 
As errors were detected, they were logged and tagged with the date found, the individual that found the error, 

where the error was found, a description of the error, how the error was found, the severity of the error, and how the 
error was resolved. Most of these are straightforward, but the classification of how the error was found and the 
severity of the error merit more discussion. 

Errors were not just found through model checking. Simply studying the mode transition diagrams prior to 
modeling found some errors, which were classified as being found through “Inspection”. Other errors were found 
while actually translating the mode transition diagrams into Simulink. These were classified as being found through 
“Modeling”. Errors were also found by simulating (executing) the models, and of course, through model checking. 
The complete list is given in Table 3. 

 
Another desirable classification is some notion of the importance, or severity, of the error. However, this is 

surprisingly difficult to do in an objective way. For example, is an error in following documentation standards that 
requires thousands of hours to correct a trivial or major error? Is a coding error that could violate a system safety 
property, but is found in the first code review and requires only one line of code to be changed, a trivial or a major 
error? We have found it much easier to classify an error on how likely it is that it would have been detected through 
traditional verification techniques at some point during development. This classification scheme is shown in Table 4. 

 

Classification Description 
Inspection Error found by manual review or inspection of the specification. 
Modeling Error found during the process of creating the Simulink model. 
Simulation Error found while executing the Simulink model. 
Analysis Error found through model checking or other analysis of the Simulink model. 
 

Table 3. Classifications of Error Detection

Table 4 – Classifications of Error Severity 

Classification Description 
Trivial The error is trivial – it does not matter if it is detected    (i.e., spelling or punctuation errors). 
Likely It is very likely the error would have been detected by traditional verification techniques. 
Possible Is it possible the error would have been missed by traditional verification techniques. 
Unlikely It is very unlikely the error would have been detected by traditional verification techniques. 
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C. Errors Found 
The mode transition diagrams are being analyzed individually and in various combinations. To date, a total of 26 

errors have been recorded, which are summarized in Table 5 below. 

 
As Table 5 indicates, model checking of the mode transition logic has been quite effective at finding errors. This 

is even more remarkable since the project is still in the early stages of architectural design and requirements capture. 
It is well known that finding errors early in the lifecycle is far more valuable than finding them during integration 
testing.  It’s also worth noting that model checking and inspection tend to find the errors most likely to be missed by 
other techniques. This is not unexpected, since model checking allows us to apply a form of exhaustive testing. 
However, even more insight can be gained by considering the errors found when analyzing a single mode transition 
diagram versus the errors found when analyzing interacting mode transition diagrams. This is done in the following 
sections. 
1. Errors Found by Analysis of a Single Mode Transition Diagram 

The analysis of a single mode transition diagram is straightforward and is done as described in Section IV.B.  
Properties are extracted directly from the diagram for each transition and verified. As discussed in Section IV.B, 
these properties serve mainly to check that the manual translation of the mode transition diagrams into Simulink has 
been done correctly. In fact, these properties have found only one error, an incorrect implementation of the rising 
edge block in the initial system state (it defaulted to true if its input was true in the initial state). We view this as an 
indication of the ease with which the mode transition diagrams can be manually translated into Simulink.   

However, unlike the simple examples of Section IV.B, it was also often possible to identify more general 
properties that the developer had embedded in the logic of a single machine. As these properties identify more 
general requirements, they were useful checks that did result in the identification of several errors. 

An example was a property stating that when a particular event occurred, the system should always transition to 
ROLL mode. When this property was checked, it was discovered that the specifier had not defined a transition from 
ROLL mode back to itself when this event occurred. Since the objective was to be in ROLL mode immediately 
following the event, this seemed reasonable, even to the verifiers. However, the model checker revealed that if 
another lower priority event occurred at the same time, the system would take the lower priority event to a different 
state since there was no higher priority transition from ROLL back to itself to pre-empt it. The fix for this was 
simply to add another “arrow” to add the higher priority transition from ROLL back to itself.  

This was a very subtle error that was easy to miss through reviews since humans tend to focus on the normal 
case behavior and are biased towards considering only one input event at a time.  However, the model checker 
makes no such assumptions and considers all possible combinations of states and inputs. It’s also worth pointing out 
that since implementation of the diagrams is now a routine, almost mechanical task, the implemented code would 
have very likely exhibited this same behavior if the error had not been caught during testing or inspections. 

A summary of the errors found when analyzing a single mode transition diagram are shown in Table 6. It is 
worth noting that half of the errors were found through model checking, and that of these, two thirds could be 
missed by traditional verification activities, supporting our assertion that model checking tends to find errors missed 
by other techniques. It is also worth noting that simple inspection of the model found the two most serious errors. 
However, we believe that if these errors had not been found by inspection, they would have been found by model 
checking. 

Likelihood of Being Found by Traditional Methods  
Dectected By Trivial Likely Possible Unlikely Total 
Inspection   1 2 3 
Modeling  5 1  6 
Simulation      
Model Checking 2 1 13 1 17 
Total 2 6 15 3 26 

Table 5. Summary of Errors Found
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2. Errors Found by Analysis of Interacting Mode Transition Diagrams 

As discussed in Section V, verification of interacting mode transition diagrams is more difficult and is just 
getting underway. Even so, it has found several errors, which are summarized in Table 7. 

  From Table 7 it can be seen that analysis of interacting mode transition diagrams tend to find errors that are 
unlikely to be detected by traditional methods. This occurs because these properties check for relationships that are 
to be maintained between the mode transition diagrams. This is a difficult task for human beings, but one for which 
a model-checker is admirably suited. 

VII. Conclusions and Directions for Future Work 
We have discussed how the mode logic of the FCS 5000 Flight Control System is specified, modeled in 

Simulink, and formally verified using the NuSMV model checker. The mode logic is specified in a format 
developed at RCI that is easily understood and provides a very concise way of specifying a large number of 
transitions on a single diagram. It is particularly well suited for state machines that exhibit little hierarchy and in 
which the states are highly interconnected by transitions. It is, in effect, an enhancement of the “transition bus” 
proposed several years ago by Leveson.27 

To provide tool support for this format, RCI has developed a template for translating mode transition diagrams 
into Simulink. The primary advantage of this approach is that it is flexible and can be easily changed as the mode 
transition diagrams are changed. It also makes manual translation of the mode transition diagrams into Simulink a 
straightforward and simple task. 

We have also shown how the Simulink models of the mode transition diagrams can be automatically translated 
into NuSMV and analyzed using the NuSMV model checker. Properties can be easily extracted from the mode 
transition diagrams to verify that the Simulink model correctly implements the mode transition diagram. Since the 
code for the FCS 5000 mode logic will be auto-generated or manually implemented directly from the Simulink 
models, these properties serve as an important check that mode transition logic has been correctly implemented. 
These same properties can also be used as test cases to ensure that the actual object code executing on the target 
platform is correct.  

We also discussed the issues in composing interacting mode transition diagrams and formally verifying 
properties that must be maintained between them. Verification of such properties is important as they are 
particularly difficult to get right.  

Finally, we discussed the application of model checking to the FCS 5000 mode logic. While not completed, this 
has already found 26 errors in the early versions of the mode logic, many of which might not have been discovered 
through traditional verification techniques. Finding and correcting these errors early in the development life cycle is 
particularly valuable, as it avoids the rework that would be introduced if the errors were instead discovered during 

Likelihood of Being Found by Traditional Methods  
Dectected By Trivial Llikely Possible Unlikely Total 
Inspection   1 2 3 
Modeling  5 1  6 
Simulation      
Model Checking 2 1 6  9 

Total 2 6 8 2 18 

Table 6. Errors Found by Analysis of a Single Mode Transition Diagram 

Likelihood of Being Found by Traditional Methods  
Dectected By Trivial Likely Possible Unlikely Total 
Inspection      
Modeling      
Simulation      
Model Checking   7 1 8 

Total   7 1 8 

Table 7. Errors Found by Analysis of Interacting Mode Transition 



AIAA Guidance, Navigation and Control Conference and Exhibit, San Francisco, August 15-18, 2005. 

 
American Institute of Aeronautics and Astronautics 

 

15

integration or system test. The results so far suggests that verification of the properties that must be maintained 
between interacting mode transition diagrams are particularly valuable at finding errors. 

There are several directions for further work. Obviously, the remainder of the FCS 5000 mode logic needs to be 
verified and this activity will continue in the following months.  

The models that we are checking consist solely of Boolean and enumerated types in order to keep the reachable 
state space smaller than 10150 states. While every application we have looked at has large blocks of logic that meet 
these constraints (or can be manually abstracted to meet these constraints), many other domains intrinsically deal 
with integers or real numbers. Such infinite state systems cannot be analyzed with our existing tools. However, 
recent advances in model checkers that combine bounded model checking algorithms with decision procedures for 
integers and real numbers can deal with such infinite state system.25,31We would like to extend our translation 
framework to include such model checkers. 

Finally, while we are pleased with the results of the FCS 5000 verification, we recognize that we are using our 
tools as powerful debugging tools, not for true proof of correctness. Ideally, we would like to be able to prove the 
correctness of properties even when our models are composed asynchronously. A possible answer to this problem is 
to exploit the fact that these systems exhibit bounded, rather than unbounded, asynchrony. That is, the clock of each 
model is known to run at specific rate and with a bounded drift. In theory, this information could be used to 
constrain the reachable state space to a manageable size. We are currently exploring approaches to this and are 
encouraged by the results so far. 
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