
M. Luckcuck, M. Farrell (Eds.): Second Workshop
on Formal Methods for Autonomous Systems (FMAS2020)
EPTCS 329, 2020, pp. 23–30, doi:10.4204/EPTCS.329.3

From Requirements to Autonomous Flight:
An Overview of the Monitoring ICAROUS Project

Aaron Dutle1 Laura Titolo2 Dimitra Giannakopoulou3

César Muñoz1 Ivan Perez2 Anastasia Mavridou4

Esther Conrad1 Swee Balachandran2 Thomas Pressburger3

Alwyn Goodloe1

1NASA Langley Research Center, Hampton, Virginia
2National Institute of Aerospace, Hampton, Virginia

3NASA Ames Research Center, Moffett Field, California
4KBR Inc. / NASA Ames Research Center, Moffett Field, California

{aaron.m.dutle, cesar.a.munoz, esther.d.conrad, a.goodloe, laura.titolo, ivan.perezdominguez,
sweewarman.balachandran, dimitra.giannakopoulou, anastasia.mavridou, tom.pressburger}@nasa.gov

The Independent Configurable Architecture for Reliable Operations of Unmanned Systems
(ICAROUS) is a software architecture incorporating a set of algorithms to enable autonomous oper-
ations of unmanned aircraft applications. This paper provides an overview of Monitoring ICAROUS,
a project whose objective is to provide a formal approach to generating runtime monitors for au-
tonomous systems from requirements written in a structured natural language. This approach inte-
grates FRET, a formal requirement elicitation and authoring tool, and Copilot, a runtime verification
framework. FRET is used to specify formal requirements in structured natural language. These re-
quirements are translated into temporal logic formulae. Copilot is then used to generate executable
runtime monitors from these temporal logic specifications. The generated monitors are directly inte-
grated into ICAROUS to perform runtime verification during flight.

1 Introduction

The Independent Configurable Architecture for Reliable Operations of Unmanned Systems
(ICAROUS) [5] is a software architecture for enabling safe autonomous operation of unmanned air-
craft systems (UAS) in the airspace. The primary goal of ICAROUS is to provide autonomy to enable
beyond visual line of sight (BVLOS) missions for UAS without the need for constant human supervi-
sion/intervention. ICAROUS provides highly-assured functions to avoid stationary obstacles, maintain a
safe distance from other users of the airspace, and compute resolution and recovery maneuvers.

Hardware and software verification via formal methods offers the highest assurance of safety avail-
able for such cyber-physical systems. While there have been considerable advances in creating industrial-
scale formal methods (e.g., [6, 12, 23]), it is not yet practical to apply them to an entire complex system
such as ICAROUS. Formal verification is generally carried out on a model of a system rather than the
software itself, and so the properties verified may not hold if the model is inaccurate or if other faults
make the system behave unpredictably. Moreover, while there has been much progress made in verifi-
cation of neural networks in particular ([11, 13], increasingly autonomous systems employing machine
learning and similar methods are challenging for formal verification.

Runtime verification (RV) [10] is a verification technique that has the potential to enable the safe
operation of safety-critical systems that are too complex to formally verify or fully test. In RV, the
system is monitored during execution, and property violations can be detected and acted upon during the

http://dx.doi.org/10.4204/EPTCS.329.3

24 Monitoring ICAROUS

mission. RV detects when properties are violated at runtime, so it cannot enforce the correct operation
of a system, but is an improvement over testing alone, and can enhance testing by finding real cases of
requirement violation. Copilot [17] is a runtime verification framework developed by NASA researchers
and others.

While RV can be used to monitor and detect property violations, the actual properties to be monitored
must be determined and specified externally. Such safety requirements are generally written by hand in
natural language, which can lead to ambiguity as to their meaning or applicability. Additionally, when
runtime verification is used as a key safety component of an autonomous system, having clearly specified
requirements that are properly translated into executable monitors is critical. FRETISH [9] is a struc-
tured natural language developed by NASA to write unambiguous requirements. The associated tool,
FRET (Formal Requirements Elicitation Tool), provides a framework to write, formalize and analyze
requirements and automatically generate temporal logic formulae from them.

The Monitoring ICAROUS project, a work-in-progress joint effort at NASA, will demonstrate the
integration of robust requirements-based runtime verification applied to an autonomous flight system
for unmanned aircraft using FRET, Copilot, and ICAROUS. This project brings together work that the
NASA formal methods team has been doing for many years on requirements elicitation and specification,
runtime verification, and assured autonomous aircraft software.

Figure 1: The current interface for setting parameters in ICAROUS.

The concept of operation for the integrated system is simple. Prior to the start of an autonomous
flight with ICAROUS, an operator can set a collection of different mission and safety parameters (see
Figure 1). For example, the detect-and-avoid module can be specified to avoid other aircraft by at least
250 ft horizontally and 50 ft vertically. With integrated monitoring, the related implicit requirements
will become explicit ones, expressed in the structured natural language of FRETISH, and available to
be viewed and edited by the user. In addition, a method for specifying custom requirements similar to
the FRET interface will be available. These requirements expressed in FRETISH will be translated into
Copilot’s monitoring language, which will generate C code for the RV monitors. These monitors will be
integrated into ICAROUS, which will use them to determine requirements violations. A violation of a
monitor will alert the operator, who can use the information to return the aircraft to a safe state.

As a motivating example, the remainder of the paper will use the detect and avoid requirement “Re-
quirement 1: While flying, remain separated from an intruder aircraft by at least 250 ft horizontally or
50 ft vertically.” This safety property will be followed through the chain of tools employed, and illustrate

A. Dutle et al. 25

Figure 2: FRET editor, with the example requirement entered, and the Semantics pane visible.

the work to be done in the integration.

2 Tool Descriptions

FRET1 is an open-source tool developed at NASA for writing, understanding, formalizing, and analyzing
requirements. In practice, requirements are typically written in natural language, which is ambiguous
and, consequently, not amenable to formal analysis. Since formal, mathematical notations are unintuitive,
requirements in FRET are entered in a restricted natural language named FRETISH. FRET helps users
write FRETISH requirements, both by providing grammar information and examples during editing, but
also through textual and diagrammatic explanations to clarify subtle semantic issues.

Figure 2 illustrates FRET’s requirements elicitation interface, with the example Requirement 1 en-
tered. The “Rationale and Comments” field holds the original text requirement; the “Requirement De-
scription” field is where the FRETISH requirement is composed. Once a requirement is entered, the
“Semantics” pane shows a text description of the FRETISH requirement, displays a “semantic diagram”
showing a visual explanation of the requirement applicability over time, and provides translations from
FRETISH to Metric Future- and Past-time linear temporal logic (LTL) [14].

A FRETISH requirement description is automatically parsed into six sequential fields; scope, condi-
tion, component, shall, timing, and response, with the FRET editor dynamically coloring the text corre-
sponding to each field (Fig. 2). The mandatory component field specifies the component that the require-
ment applies to (aircraft). The shall keyword states that the component behavior must conform to the
requirement. The response field currently is of the form satisfy R, where R is a non-temporal Boolean-
valued expression (horizontal intruder distance>250 | vertical intruder distance>50). The (op-
tional) scope field states that the requirement is only assessed during particular modes, for the example,
in flight mode. The (optional) Boolean expression field condition states that, within the specified mode,

1https://github.com/NASA-SW-VnV/fret

https://github.com/NASA-SW-VnV/fret

26 Monitoring ICAROUS

the requirement becomes relevant only from the point where the condition becomes true. The (optional)
timing field specifies at which points the response must occur, in the example “always”, meaning at all
points in flight mode.

FRET automatically produces formulas in several formal languages, including Metric Future-time
LTL and Past-time LTL. FRET also offers an interactive visualizer, showing temporal traces of each of
the signals (variables) involved as well as the valuation of the requirement for each point in time.

Copilot2 is an open-source runtime verification framework for real-time embedded systems. Copi-
lot monitors are written in a compositional, stream-based language. The framework translates monitor
specifications into C99 code with no dynamic memory allocation and executes with predictable memory
and time, crucial in resource-constrained environments, embedded systems, and safety-critical systems.

The Copilot language has been designed to be high-level, easy to understand, and robust. To prevent
errors in the RV system that could affect systems during a mission, the language uses advanced pro-
gramming features to provide additional compile-time and runtime guarantees. For example, all arrays
in Copilot have fixed length, which makes it possible for the system to detect, before the mission, some
array accesses that would be out of bounds.

Copilot supports a number of logical formalisms for writing specifications including a bounded ver-
sion of Future-time Linear Temporal Logic [20], Past-time Linear Temporal Logic (PTLTL) [15], and
Metric Temporal Logic (MTL) [14]. Copilot also includes support libraries with functions such as ma-
jority vote, used to implement fault-tolerant monitors [19]. Requirement 1 expressed as a PTLTL Copilot
specification is as follows:

alwaysBeen (flightMode ==> (horizontalIntruderDistance > 250

|| verticalIntruderDistance > 50))

ICAROUS3 is an open-source software architecture developed at NASA to enable safety-centric
autonomous aircraft missions. It is a service-oriented architecture, where service applications provide
various capabilities such as path planning, sense and avoid, geofence containment, task planning, and
more, through a publish-subscribe middleware. Applications are logically organized into conflict detec-
tors, conflict resolvers, mission managers, and decision makers.

Conflict detectors are algorithms that check for imminent violation of constraints such as geofences,
conflicts due to other vehicles in the airspace, deviations from mission flight plan, etc. These conflict
detecting applications can also provide tactical resolutions, which provide a simple maneuver which will
prevent the corresponding conflict. Conflict resolvers compute resolutions to prevent imminent viola-
tion of specified constraints. Resolvers may handle multiple conflicts simultaneously, and can provide
strategic resolutions that are computed to prevent one or more constraint violations. A decision making
application receives conflict information from monitors and triggers resolvers to compute resolutions for
one or more conflicts. When resolving imminent constraint violation, outputs from mission applications
are ignored. The mission is resumed once all conflicts are resolved.

These services are connected through the NASA core Flight System (cFS) middleware,4 a platform-
independent reusable software framework and a set of reusable software applications. The three key
aspects to the cFS architecture are a dynamic run-time environment, layered software, and a component-
based design. These key aspects make cFS suitable for reuse on any number of embedded software
systems. The cFS middleware simplifies the flight software development process by providing the un-

2https://copilot-language.github.io/
3https://github.com/nasa/icarous
4https://cfs.gsfc.nasa.gov/

https://copilot-language.github.io/
https://github.com/nasa/icarous
https://cfs.gsfc.nasa.gov/

A. Dutle et al. 27

derlying infrastructure and hosting a runtime environment for development of project/mission specific
applications.

3 Integration

The integration of the three systems described in Section 2 requires several steps in order to create a
complete framework. The three major steps in the integration are as follows. The first step is developing
a method for ICAROUS-specific requirements and safety properties to be specified in FRET. Next, the
requirements expressed in FRETISH must be translated into Copilot. Finally, the monitors generated by
Copilot must be integrated into ICAROUS in a usable way. Each of these integration steps are discussed
in turn below, and the toolchain is depicted in Figure 3.

ICAROUS
requirements FRET

MTL
specification Copilot C monitor ICAROUS

Figure 3: Toolchain to automatically generate monitors for ICAROUS.

3.1 ICAROUS interface to FRET

In order to facilitate the use of FRET for ICAROUS-specific requirements, several things need to be
done. The first of these is a thorough accounting of all of the modes, systems, and signals available
within ICAROUS for a monitor to access.

In FRET, the specification of safety properties is completely independent of the system that is being
considered. This makes FRET very general and powerful in its ability to craft requirements, but makes
it somewhat cumbersome to use in the specific setting of ICAROUS. The variables that FRET uses to
refer to modes, systems, and signals in requirements are completely arbitrary, while being able to use
such a requirement as a monitor means that each of these variables must correspond to an actual system
or signal in ICAROUS. After each of these possible variables in ICAROUS is identified, along with
its datatype information, FRET can be restricted to using only information that can be obtained by the
system in specifying properties.

Another task to be completed is the generation of ICAROUS-specific templates for FRET. Many
of the safety requirements that an autonomous flight system will be expected to follow exhibit similar
patterns from flight to flight. For example, an autonomous operation may be required to stay below a
certain altitude ceiling. More specific requirements such as Requirement 1 are parametric requirements
that a detect-and-avoid (DAA) system is expected to obey based on settings in the DAA system. For
such requirements, a template can be given allowing the user to input particular values based on the
mission, and the associated requirement added to those to be monitored. Additionally, many of the
existing settings in an ICAROUS configuration carry with them implicit safety requirements. Setting the
max altitude parameter in the DAA system of ICAROUS can be interpreted as a requirement that the
aircraft never goes above the value set. Parsing these files can allow for the automatic generation of a
requirement from the associated template and the variable setting.

28 Monitoring ICAROUS

3.2 FRET to Copilot translation

The main integration step between FRET and Copilot is to take a requirement expressed in FRETISH,
and translate it into a Copilot monitor. A prototype tool named Ogma is being developed to create
Copilot monitors from languages such as FRETISH, SPEAR [7], and AGREE [4]. The tool can translate
the Past-time LTL formulas FRET generates, so it can process any requirements specified in FRETISH.
The resulting Copilot monitor can then be automatically translated into C99 code that checks that a
corresponding property holds during runtime. This conversion should occur transparently: users specify
FRETISH requirements, and automatically obtain C code compatible with ICAROUS.

3.3 Copilot Monitors in ICAROUS

The integration of Copilot-generated monitors into ICAROUS should be fairly straight-forward. Since
ICAROUS is already a service-oriented publish/subscribe architecture, the main issue is subscribing and
routing the appropriate signals to the monitors, and returning a signal to the user that indicates which
properties have been violated. To facilitate this integration, the Ogma tool automatically generates a cFS
application, responsible for subscribing to the appropriate ICAROUS applications, making data available
to Copilot, and handle runtime violations reported by Copilot.

A technical difficulty in this approach (mentioned in Section 3.1) is that the RV monitors are gen-
erated after requirements are specified, and then this C code is integrated into ICAROUS. Currently,
ICAROUS is installed on the aircraft once, and, generally, only settings are changed between flights.
With new monitors generated for each flight, ICAROUS must be configured, new monitors generated,
and then the system installed on the aircraft before flight. A partial solution would be to include para-
metric versions of common monitors, and have the parameters instantiated prior to flight. Alternatively,
a utility for including monitoring code could be added, since the RV service would not change.

4 Conclusion

The work described here is still in-progress. Additional work is being conducted tangential to this inte-
gration. The FRETISH language and semantics are being specified in the Prototype Verification System
(PVS) [16], to prove that the evaluation of a FRETISH statement is the same as the evaluation of the
LTL statement produced by FRET for all possible finite and infinite traces. Currently, the verification of
the translation is done through a systematic, rigorous testing framework for finite traces up to a certain
length. An embedding of FRETISH in PVS would also allow for formal reasoning about models of a
system such as ICAROUS with respect to specified requirements.

Related work on requirements specification, RV, and autonomous flight systems is omitted here. The
interested reader is directed to the corresponding sections of [8, 9] for requirements, [2, 10, 17, 18] for
runtime verification, and [1, 5] for autonomous flight systems. Work that has a similar flavor to the
integration of these tools includes [3], where the R2U2 [22] engine is used to monitor an automated
and intelligent UAS Traffic Management System for adherence to safety requirements during operation.
The specifications are written in the Mission-time Linear Temporal Logic (MLTL) [21], an extension of
MTL, in contrast with the present approach where the specifications are given using structured natural
language.

The Monitoring ICAROUS project will allow a user to obtain relevant requirements automatically or
defined using the structured natural language FRETISH, translate these requirements into runtime moni-
tors using Copilot, and seamlessly integrate these monitors into the autonomous flight system ICAROUS.

A. Dutle et al. 29

The framework supports simple requirements specification and analysis, with robust runtime verification,
while the translation and integration steps are performed in the background. Requirements-based runtime
monitoring demonstrates a real-world application of formal methods to increase the safety assurance of
complex automated systems.

References

[1] S. Balachandran, C. Muñoz, M. Consiglio, M. Feliú & A. Patel (2018): Independent Configurable Architec-
ture for Reliable Operation of Unmanned Systems with Distributed On-Board Services. In: Proceedings of
the 37th Digital Avionics Systems Conference (DASC 2018), pp. 1–6, doi:10.1109/DASC.2018.8569752.

[2] E. Bartocci, Y. Falcone, A. Francalanza & G. Reger (2018): Introduction to Runtime Verification. In: Lectures
on Runtime Verification - Introductory and Advanced Topics, Lecture Notes in Computer Science 10457,
Springer, pp. 1–33, doi:10.1007/978-3-319-75632-5 1.

[3] M. Cauwels, A. Hammer, B. Hertz, P. Jones & K. Y. Rozier (2020): Integrating Runtime Verification into
an Automated UAS Traffic Management System. In: International workshop on moDeling, vErification and
Testing of dEpendable CriTical systems, DETECT 2020, pp. 340–357, doi:10.1007/978-3-030-59155-7 26.

[4] D. D. Cofer, Gacek. A., S. P. Miller, M. W. Whalen, B. LaValley & L. Sha (2012): Compositional Verification
of Architectural Models. In: Proceedings of the 4th International NASA Formal Methods Symposium (NFM
2012), Lecture Notes in Computer Science 7226, Springer, pp. 126–140, doi:10.1007/978-3-642-28891-3 13.

[5] M. Consiglio, C. Muñoz, G. Hagen, A. Narkawicz & S. Balachandran (2016): ICAROUS: Integrated Con-
figurable Algorithms for Reliable Operations of Unmanned Systems. In: Proceedings of the 35th Digital
Avionics Systems Conference (DASC 2016), pp. 1–5, doi:10.1109/DASC.2016.7778033.

[6] Byron Cook (2018): Formal Reasoning About the Security of Amazon Web Services. In Hana Chockler &
Georg Weissenbacher, editors: Computer Aided Verification, Springer International Publishing, Cham, pp.
38–47, doi:10.1007/978-3-319-96145-3 3.

[7] A. W. Fifarek, L. G. Wagner, J. A. Hoffman, B. D. Rodes, M. A. Aiello & J. A. Davis (2017): SpeAR v2.0:
Formalized Past LTL Specification and Analysis of Requirements. In: Proceedings of the 9th International
NASA Formal Methods Symposium (NFM 2017), Lecture Notes in Computer Science 10227, pp. 420–426,
doi:10.1007/978-3-319-57288-8 30.

[8] D. Giannakopoulou, T. Pressburger, A. Mavridou, J. Rhein, J. Schumann & N. Shi (2020): Formal Require-
ments Elicitation with FRET. In: Joint Proceedings of REFSQ-2020 Workshops, Doctoral Symposium, Live
Studies Track, and Poster Track co-located with the 26th International Conference on Requirements Engi-
neering: Foundation for Software Quality (REFSQ 2020).

[9] D. Giannakopoulou, T. Pressburger, A. Mavridou & J. Schumann (2020): Generation of Formal Requirements
from Structured Natural Language. In: 26th International Working Conference on Requirements Engineer-
ing: Foundation for Software Quality, REFSQ 2020, Lecture Notes in Computer Science 12045, Springer,
pp. 19–35, doi:10.1007/978-3-030-44429-7 2.

[10] K. Havelund & A. Goldberg (2008): Verify Your Runs, pp. 374–383. Lecture Notes in Computer Science
4171, Springer, doi:10.1007/978-3-540-69149-5 40.

[11] K. Julian & M. Kochenderfer (2019): Guaranteeing Safety for Neural Network-Based Aircraft Collision
Avoidance Systems. 2019 IEEE/AIAA 38th Digital Avionics Systems Conference (DASC), pp. 1–10,
doi:10.1109/DASC43569.2019.9081748.

[12] R. Kaivola, R. Ghughal, N. Narasimhan, A. Telfer, J. Whittemore, S. Pandav, A. Slobodová, C. Taylor,
V. Frolov, E. Reeber et al. (2009): Replacing Testing with Formal Verification in Intel R©CoreTM i7 Processor
Execution Engine Validation. In: Computer Aided Verification, Springer, pp. 414–429, doi:10.1007/978-3-
642-02658-4 32.

http://dx.doi.org/10.1109/DASC.2018.8569752
http://dx.doi.org/10.1007/978-3-319-75632-5_1
http://dx.doi.org/10.1007/978-3-030-59155-7_26
http://dx.doi.org/10.1007/978-3-642-28891-3_13
http://dx.doi.org/10.1109/DASC.2016.7778033
http://dx.doi.org/10.1007/978-3-319-96145-3_3
http://dx.doi.org/10.1007/978-3-319-57288-8_30
http://dx.doi.org/10.1007/978-3-030-44429-7_2
http://dx.doi.org/10.1007/978-3-540-69149-5_40
http://dx.doi.org/10.1109/DASC43569.2019.9081748
http://dx.doi.org/10.1007/978-3-642-02658-4_32
http://dx.doi.org/10.1007/978-3-642-02658-4_32

30 Monitoring ICAROUS

[13] G. Katz, D. Huang, D. Ibeling, K. Julian, C. Lazarus, R. Lim, P. Shah, S. Thakoor, H. Wu, A. Zeljić, D. Dill,
M. Kochenderfer & C. Barrett (2019): The Marabou Framework for Verification and Analysis of Deep Neural
Networks. In I. Dillig & S. Tasiran, editors: Computer Aided Verification, Springer International Publishing,
Cham, pp. 443–452, doi:10.1007/978-3-030-25540-4 26.

[14] R. Koymans (1990): Specifying Real-time Properties with Metric Temporal Logic. Real-Time Syst. 2(4), pp.
255–299, doi:10.1007/BF01995674.

[15] F. Laroussinie, N. Markey & P. Schnoebelen (2002): Temporal Logic with Forgettable Past. In:
LICS02: Proceeding of Logic in Computer Science 2002, IEEE Computer Society Press, pp. 383–392,
doi:10.1109/LICS.2002.1029846.

[16] S. Owre, J. Rushby & N. Shankar (1992): PVS: A Prototype Verification System. In: Proceeding of the 11th
International Conference on Automated Deduction (CADE), Lecture Notes in Artificial Intelligence 607,
Springer, pp. 748–752, doi:10.1007/3-540-55602-8 217.

[17] I. Perez, F. Dedden & A. Goodloe (2020): Copilot 3. Technical Report NASA/TM2020220587, NASA
Langley Research Center, doi:10.13140/RG.2.2.35163.80163.

[18] L. Pike, A. Goodloe, R. Morisset & S. Niller (2010): Copilot: A Hard Real-Time Runtime Monitor. In: Pro-
ceedings of the First International Conference on Runtime Verification (RV 2010), Lecture Notes in Computer
Science 6418, Springer, pp. 345–359, doi:10.1007/978-3-642-16612-9 26.

[19] L. Pike, N. Wegmann, S. Niller & A. Goodloe (2013): Copilot: monitoring embedded systems. Innovations
in Systems and Software Engineering 9(4), pp. 235–255, doi:10.1007/s11334-013-0223-x.

[20] A. Pnueli (1977): The Temporal Logic of Programs. In: Proceedings of the 18th Annual Symposium on
Foundations of Computer Science, SFCS ’77, IEEE Computer Society, Washington, DC, USA, pp. 46–57,
doi:10.1109/SFCS.1977.32.

[21] T. Reinbacher, K. Y. Rozier & J. Schumann (2014): Temporal-Logic Based Runtime Observer Pairs for
System Health Management of Real-Time Systems. In: Proceedings of the 20th International Conference
on Tools and Algorithms for the Construction and Analysis of Systems (TACAS 2014), Lecture Notes in
Computer Science 8413, Springer, pp. 357–372, doi:10.1007/978-3-642-54862-8 24.

[22] J. Schumann, P. Moosbrugger & K. Y. Rozier (2015): R2U2: Monitoring and Diagnosis of Security Threats
for Unmanned Aerial Systems. In: Proceedings of the 6th International Conference on Runtime Verification
(RV 2015), Lecture Notes in Computer Science 9333, Springer, pp. 233–249, doi:10.1007/978-3-319-23820-
3 15.

[23] J. Souyris, V. Wiels, D. Delmas & H. Delseny (2009): Formal Verification of Avionics Software Products. In:
Proceedings of the 2nd World Congress on Formal Methods, FM ’09, Springer-Verlag, Berlin, Heidelberg, p.
532546, doi:10.1007/978-3-642-05089-3 34.

http://dx.doi.org/10.1007/978-3-030-25540-4_26
http://dx.doi.org/10.1007/BF01995674
http://dx.doi.org/10.1109/LICS.2002.1029846
http://dx.doi.org/10.1007/3-540-55602-8_217
http://dx.doi.org/10.13140/RG.2.2.35163.80163
http://dx.doi.org/10.1007/978-3-642-16612-9_26
http://dx.doi.org/10.1007/s11334-013-0223-x
http://dx.doi.org/10.1109/SFCS.1977.32
http://dx.doi.org/10.1007/978-3-642-54862-8_24
http://dx.doi.org/10.1007/978-3-319-23820-3_15
http://dx.doi.org/10.1007/978-3-319-23820-3_15
http://dx.doi.org/10.1007/978-3-642-05089-3_34

	Introduction
	Tool Descriptions
	Integration
	ICAROUS interface to FRET
	FRET to Copilot translation
	Copilot Monitors in ICAROUS

	Conclusion

