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The steep learning curve of formal technologies is a well-known barrier to the adoption of formal
verification tools in industry. This paper presents VSCode-PVS, a modern integrated development
environment for the Prototype Verification System (PVS). This new environment integrates the edit-
ing and proof management functionalities of PVS in Visual Studio Code, a popular code editor widely
used by software developers. VSCode-PVS provides functionalities that developers expect to find in
modern verification tools, but are not available in the standard Emacs front-end of PVS, such as
auto-completion, point-and-click navigation of definitions, live diagnostics for errors, and literate
programming. The main features and architecture of the environment are presented, along with a
comparison with other similar tools.

1 Introduction

Early detection of design anomalies and increased confidence that the system will operate as intended
are some of the benefits of the use of formal verification technologies in industry. However, outside
safety-critical domains such as avionics, the use of verification tools is still rather limited. One of the
reasons is the steep learning curve of verification technologies, which creates an initial cost that is often
deemed excessive with respect to the long term benefits.

The work presented in this paper aims to reduce the learning curve of the Prototype Verification
System (PVS) [10], a verification tool for formal modeling and analysis of system designs. The PVS
modeling language is based on higher-order logic. It supports basic types (boolean, int, real, etc), as
well as datatypes such as string, set, list. The proof engine is based on Gentzen’s sequent calculus,
and supports the use of proof strategies for automated analysis. The verification system provides an
evaluation environment, called PVSio [8], for animation of executable specifications.

PVS is a powerful analysis tool with a long history of success stories in a range of different do-
mains [9]. PVS is widely used at NASA Langley Research Center for the analysis of algorithms and
protocols for avionics systems1. Research groups have also applied PVS to the analysis of human-
machine interfaces in medical systems [6] and for co-simulation of Cyber-Physical Systems [12] and
semi-autonomous systems [13].

Becoming fluent with PVS, however, usually requires several weeks. Common difficulties faced by
developers are often rooted in the PVS front-end:

• Conceptual gap. The PVS front-end is based on the Emacs editor. Emacs does not provide
separate visual components for editing files, executing commands, and browsing the file system.
Rather, it provides buffers, abstract entities that can be used to interact with any resource. When

1https://shemesh.larc.nasa.gov/fm/fm-main-research.html
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a buffer is linked to a text file, e.g., a PVS specification, Emacs acts like a code editor. When
the buffer is linked to an interactive process, e.g., the PVS theorem prover, Emacs provides a
command-line interface for sending commands to the process. Developers need to learn the set of
commands for operating with buffers, as well as to recognize the buffers — the visual appearance
of different buffers is identical to the untrained eye.

• Knowledge gap. The PVS Emacs interface favors the use of the command line integrated in
Emacs. Developers need to learn several commands and keyboard shortcuts to be fluent when
editing, parsing, and analyzing PVS specifications. Means for efficient navigation of the libraries
are not provided in PVS Emacs. This can significantly slow down the development of PVS speci-
fications and proofs. For example, the NASA PVS Library 2 includes over 100,000 theorems and
definitions useful for modeling and analysis of different aspects of safety-critical systems. Without
appropriate tool support, finding anything within these libraries is a prohibitive task.

The main contribution of this work is VSCode-PVS, a new integrated development environment
designed to reduce substantially the conceptual and knowledge gaps faced by PVS users. A preliminary
but fully functional version of the new environment is presented, along with a comparison with other
environments. The environment is publicly available at GitHub3 under NASA’s Open Source Agreement.

The rest of this paper is organized as follows. Section 2 provides background information on the
standard PVS front-end, and on Visual Studio Code. Sections 3 and 4 introduce the architecture and
main features of the environment. Section 5 identifies a set of metrics that are general across the front-
end of different modeling and analysis tools, and uses these metrics to compare VSCode-PVS to other
environments. Section 6 presents related work. Finally, Section 7 concludes the paper.

2 Background

This section provides background information on PVS Emacs, the standard front-end of PVS, and Visual
Studio Code, the baseline technology used for the development of VSCode-PVS.

2.1 PVS Emacs

PVS Emacs is a text-based environment built on the Emacs editor to support user interaction with PVS.
Commands necessary to interact with the PVS system are invoked by typing the command name and its
arguments, if any, in the Emacs minibuffer. To enter a command in the minibuffer, users need to pre-fix
the command with the key sequence M-x, where M is usually the Alt key. An example is M-x typecheck,
which executes the PVS type-checker command on the PVS file opened in the Emacs editor. Over 100
commands are provided (see [11]). Additionally, an extensive list of keyboard shortcuts is implemented
to speed up command entry. For example, type-checking can be executed by typing M-x tc in the
minibuffer, or by performing the key sequence C-c C-t, where C- is the Ctrl key.

2.2 Visual Studio Code

Visual Studio Code is a cross-platform open-source code editor created in 2015 by Microsoft. The ed-
itor provides a rich graphical user interface that integrates the essential components typically used by
programmers: a source code editor that supports auto-completion, hovers, embedded mini-editors, and

2https://shemesh.larc.nasa.gov/fm/ftp/larc/PVS-library.
3https://github.com/nasa/vscode-pvs.
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contextual menus; an integrated graphical debugger, which allows the user to set break-points and per-
form step-by-step execution of source code; a tree-based view for browsing files in the file system; an
integrated terminal for executing commands; integration with source code management tools (e.g., Git).
The behavior of all these components can be extended or re-programmed to provide support for a spe-
cific programming language. The community has already created extensions for over 80 programming
languages, including C++, Java, JavaScript, and Python. Besides programming languages, there is also
a growing interest in integrating verification tools in Visual Studio Code. Examples include Dafny4 and
Lean5. Some of these extensions will be discussed further below, in Section 5.

3 VSCode-PVS

VSCode-PVS is a new integrated development environment for creating, evaluating and verifying PVS
specifications. The environment, shown in Figure 1, redefines the way developers interact with PVS,
and better aligns the PVS front-end to the functionalities provided by development environments used
by software developers. The main features provided by the environment are as follows:

• Syntax highlighting. PVS keywords and library functions are automatically highlighted.

• Autocompletion and code snippets. Tooltips suggesting function names and language keywords
are automatically presented when the user types a symbol in the editor. Code snippets are provided
for frequent modeling blocks, e.g., if-then-else.

• Hover information for symbol definitions. Hover boxes providing information about identifiers
are automatically displayed when the developer places the cursor over an identifier.

• Jump-to declaration. Navigation of symbol declarations can be performed with simple point-
and-click actions: the user places the cursor over the name of an identifier, and a click on the
name of the identifier while holding the Ctrl key down opens a window with the location where
the identifier is declared.

• Live diagnostics. Parsing is automatically performed in the background, and errors are reported
in-line in the editor. Problematic expressions are underlined with red wavy lines. Tooltips present-
ing the error details are shown when the user places the cursor over the wavy lines.

• In-line actionable commands. Actionable commands are available for PVS theorems. They are
rendered in-line in the editor, above the name of the theorem, and can be used to start a new prover
session for the theorem with a simple click action.

• Overview of PVS theories. The overall structure of a set of PVS theories is rendered using an
interactive tree-based view. It shows the set of PVS theories in the active workspace, as well as the
name and status (proved, unfinished, etc.) of the theorems defined in each theory. Point-and-click
actions can be used to jump to theory definitions and type-check the theories.

• Interactive proof tree visualizer and editor. An interactive tree-based view shows the proof
associated with a theorem. Point-and-click actions are provided for step-by-step execution of
proof commands. Functionalities for editing the proof are currently under development.

• Integrated PVS and PVSio Command Line Interfaces. Integrated command line interfaces
allow interaction with the theorem prover and the PVSio evaluator. Auto-completion is provided
for prover commands, as well as access to the commands history.

4https://github.com/DafnyVSCode/Dafny-VSCode
5https://github.com/leanprover/vscode-lean
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Figure 1: VSCode-PVS: (1) Main Editor; (2) Theory Explorer; (3) Proof Explorer; (4) Integrated PVS
Command Line Interface (CLI).

3.1 Architecture

The overall architecture of VSCode-PVS is depicted in Figure 2. It builds on the Language Server
Protocol (LSP), a tool-independent communication protocol for exchanging data and events between
two architectural elements: an editor front-end and a language server back-end.

The editor front-end is responsible for rendering visual feedback to the user, and transforms user
interactions with the editor into corresponding LSP events to be dispatched to the language server. The
language server defines the functions necessary to support the syntax and semantics of the language (e.g.,
in the case of PVS, parsing, typechecking, etc.) and continuously listens to LSP events. An example LSP
event is onHover. This event is triggered by the editor front-end when the user places the cursor over
an identifier in the text document. This event is sent to the language server, along with information on
the path of the text document and the location of the cursor in the document. The language server acts
upon this event, in this case, by sending the identifier’s definition back to the editor. The editor, in turn,
displays the server response to the user as a hover box. The language server can also generate events.
For example, an event sendDiagnostics, is used by the server to publish diagnostics information (e.g.,
parsing error).

The LSP protocol is extensible. It builds on Remote Procedure Calls (RPCs) and the JavaScript
Object Notation (JSON) format. It allows the definition of new event types to accommodate language-
specific features. In the case of PVS, this feature is used to implement commands necessary for interac-
tive analysis of PVS specifications, e.g., type-checking, discharging proof obligations, proving theorems,
etc. The LSP-based architecture has been chosen for the implementation of VSCode-PVS because it pro-
motes reuse of modules and facilitates sustainability of the overall development effort — LSP-compliant
editors can be connected to the Language Server back-end. All major code editors support the LSP,
which makes it relatively simple to connect the PVS language server to a different editor front-end. Fea-
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Figure 2: Overall architecture of VSCode-PVS.

tures implemented in the language server for standard LSP events become automatically available in the
connected editor.

3.2 The Editor Front-End

The PVS Editor front-end builds on Visual Studio Code6, an open-source code editor widely used by
software developers. The main software modules of the front-end are shown in Figure 3. They are
illustrated in the following.

Editor Extensions. These modules are used to tailor the functionalities of the textual editor provided
by Visual Studio Code to the PVS language. Functionalities implemented in these modules include:
decorators necessary for syntax highlighting; code snippets for rapid creation of PVS code blocks; code
folding; key bindings and contextual menus for PVS commands.

Explorer Extensions. These modules customize Explorer View, a graphical tree-based view integrated
in Visual Studio Code. A new module, Theory Explorer, introduces support for click-and-point naviga-
tion of PVS specifications. A second module, Proof Explorer, aims to support interactive visualization
and editing of proofs using click-and-point operations.

Integrated PVS Terminals. These modules seamlessly link the integrated terminal of Visual Studio
Code to the interactive read-eval-print loops of the PVS theorem prover and the PVSio [8] evaluator.
That is, in the prover terminal, developers can type proof commands for the theorem prover, and watch
the proof state returned by the prover directly in the terminal. Similarly, in the evaluator terminal,
developers can type ground expressions and thus execute fragments of a PVS specification.

VSCode APIs. This is a library provided by Visual Studio Code for extending and customizing the
functionalities of the editor. It includes communication primitives necessary to support the LSP.

3.3 The Language Server

The PVS Language Server includes the following modules (see Figure 4):

LSP Service Providers. These modules handle LSP events received by the language server. They
reconcile the APIs of PVS with the logic of the LSP. For example, Hover Provider, which is activated
when an onHover event is received, uses the APIs of PVS to gather the information to be shown in hover
boxes, and then sends the response to the editor front-end using the LSP format. Definition Provider
defines the logic necessary to support functions such as go-to definition and peek definition, which are
used in the editor front-end for point-and-click navigation of PVS specifications. CodeLens Provider
defines the logic behind actionable commands embedded in-line in the PVS specification — this is used

6https://code.visualstudio.com

https://code.visualstudio.com
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Figure 3: Inner architecture of the PVS editor front-end. Modules are represented as boxes. Communi-
cation between modules is indicated with arrows. Dashed line indicates under development.

to introduce in-line actionable prove commands at the location of theorem definitions. PVS Commands
Provider provides support for language-specific commands used for analysis of PVS specifications, e.g.,
type-check, show proof obligations, prove theorem. Diagnostics Provider is a background process that
continuously sends diagnostics information to the editor front-end to report syntax / type-checking errors.

LSP Connection Manager. This is a routing module for managing the exchange of events and data
with the client front-end. The module listens for client connections, receives LSP events from connected
clients, and dispatches the events to the appropriate service provider.

PVS Process Workers. These modules embed the functionalities of the PVS verification system in the
language server. Each worker executes a PVS instance in a self-contained execution environment. A pool
of workers supports parallel execution of multiple PVS instances — this is used for running background
services like parsing and type-checking. Furthermore, in contrast to PVS Emacs, VSCode-PVS supports
running simultaneously proofs of different formulas.

3.4 Implementation

VSCode-PVS is implemented in TypeScript7, an extension of JavaScript that supports type annotations.
Typescript programs can be statically checked for type correctness. A transpiler translates TypeScript
code into plain JavaScript, which allows the execution of TypeScript programs in standard JavaScript
engines. The editor front-end builds on the APIs of Visual Studio Code. The language server builds on
NodeJS8, a JavaScript environment that provides libraries necessary for creating web-services, including
functions for spawning processes and performing operations on file systems. Process workers use the
native Lisp interface of PVS to exchange commands and data with the PVS system. TSLint9, a static
analyzer for TypeScript, is routinely used for checking compliance with established coding conventions.

7https://www.typescriptlang.org
8https://nodejs.org
9https://palantir.github.io/tslint
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Figure 4: Inner architecture of the PVS Language Server.

Jasmine10 is used for testing the APIs of the developed modules.
The implementation effort to date amounts to 7K LoC (3K LoC for the editor front-end, and 4K

LoC for the language server). Most of the code developed for the editor front-end is associated with
the interactive tree-based views for visualizing theories and proofs. The server back-end required the
development of a Lisp interface to dialogue with PVS, as well as additional logic for LSP events that are
not directly supported by PVS, e.g., auto-completion for identifiers, hover information, live diagnostics.

4 Example use of VSCode-PVS

This section showcases the main features of VSCode-PVS for two representative tasks typically carried
out by PVS users. Tasks are provided in the form of short descriptions presenting the overall goal of the
task and the context within which the task is carried out. A comparison with the standard PVS Emacs
front-end is included in each task to better appreciate the improvements introduced by VSCode-PVS.

4.1 Task 1: Navigation of symbol declarations

Goal: Inspect function and type declarations from imported PVS files.

Context: When developing a new PVS specification or a new proof, users typically need to navigate
symbol declarations imported from other PVS theories. This is necessary, e.g., to inspect the structure of
complex datatypes defined in the PVS libraries.

Workflow with VSCode-PVS. The standard workflow for inspecting a symbol declaration involves
using the hover functionality (see Figure 5b). The user can place the cursor over the symbol definition,
and a tooltip will be automatically shown. The tooltip includes three main elements: a brief description of
the symbol (e.g., built-in type); a clickable link for jumping to the location of the declaration; a preview
of the symbol declaration. This standard workflow can always be adopted when a PVS specification type-
checks correctly. An alternative workflow is also available for theories that are still not type-checked,
e.g., because the user has not finished yet typing the content of the specification. In these cases, the

10https://jasmine.github.io
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resolution of symbol declarations can still be performed, but can be less accurate when symbol names are
overloaded. That is, when the symbol to be resolved is overloaded and the theory is not type-checked,
an array of candidate declarations is presented. In these cases, the peek declaration functionality is
employed (see Figure 5c). It opens a mini-editor and a file browser in the current editor window that can
be used to inspect the candidate declarations.

Workflow with Emacs. Symbol declarations can be inspected with the command show-declaration.
The command takes the name of the symbol as argument. The current location of the cursor can be
used to auto-complete the symbol name. The command opens a new Emacs buffer with a preview of
the declaration. The command goto-declaration can then be used to jump to the location of the
declaration. The command takes the name of the symbol as argument. When the theory is not type-
checked, a command find-declaration can be used to inspect a list of possible candidates. The
jump-to functionality is however not available in this case, and the user needs to manually open the file
(command C-c C-f followed by the filename) and scroll the text to the position of the declaration.

4.2 Task 2: Proving a theorem

Goal: Verify that a PVS specification satisfies given formal (mathematical) properties.

Context: For complex systems, it is important to analyze a system design before the actual system is
built. This helps developers gain confidence that the system design complies to given specifications, and
identify and fix potential design issues early in the development process, when the cost of design changes
is still relatively low. In safety-critical application domains, such as avionics and healthcare, such design
analysis is usually mandated by regulatory frameworks. Proving mathematical theorems that capture
properties of the intended characteristics and functionalities of the system is the core approach used in
formal methods. It provides means to check properties of a system design for all possible inputs in all
possible system states.

Workflow with VSCode-PVS. In-line actionable commands are provided next to each theorem. For
example, in Figure 1, an actionable command prove is shown in the main editor window, above the
theorem name at line 33). A click on the actionable command, triggers type-checking, and launches a
new prover sessions in the integrated PVS Command Line Interface (see Figure 1, lower-right panel).
Proof commands can be typed in the command line interface. The current proof is shown on the side,
using an interactive tree-based view, called Proof Explorer (see Figure 1, lower-left panel). Nodes in the
tree view can be collapsed/expanded to facilitate inspection of large proofs. Editing of the proof tree
from Proof Explorer is under development.

Workflow with Emacs. The user needs to type-check the file (M-x tc) and then start a theorem prover
session with the command M-x prove. The command opens a new Emacs buffer that can be used
to interact with the theorem prover. Proof commands are typed in this new buffer. A command M-x

x-show-current-proof can be used to start open a window showing the proof tree (see Figure 6d).
The proof tree cannot be edited, and it does not allow collapsing/expanding of proof branches.

5 Comparing VSCode-PVS to Other Analysis Tools

This section presents a comparison between VSCode-PVS and other similar environments. The follow-
ing verification environments are considered:

• PVS Emacs, the standard front-end of PVS;
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(a) Autocompletion. (b) Hover.

(c) Peek definitions.

Figure 5: Example functionalities of VSCode-PVS.

• Isabelle/jEdit [18, 19], the standard front-end of the Isabelle/HOL theorem proving system;
• SublimeHOL11, a front-end to the HOL4 theorem prover;
• CoqIDE, the default front-end of the Coq theorem proving systems;
• Proof General [1], a generic front-end for theorem provers;
• Lean [7], a new open-source theorem proving system from Microsoft;
• IntelliJ-Arend12, a new proof assistant under development at JetBrains research;
• KeYmaera-X [2], an interactive theorem prover for hybrid systems.

5.1 Metrics

A set of metrics has been defined to guide the comparison. The set of metrics is not exhaustive. Rather,
they capture core functionalities necessary to support common modeling and analysis tasks.

1. Autocompletion: ability to suggest keywords and identifiers while typing;
2. Hover information: ability to show informative pop-ups for keywords and identifiers;
3. Jump-to-definition: ability to open a file at the location of an identifier’s definition;
4. Refactoring: ability to rename identifiers;
5. Live diagnostics: ability to show diagnostics information while typing;
6. Animation: ability to evaluate executable specifications;
7. Proof visualizer: ability to visualize a proof tree.

11https://github.com/JamesShaker/SublimeHOL
12https://github.com/JetBrains/intellij-arend
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(a) CoqIDE: editor and side view for proof inspection. (b) Isabelle/jEdit.

(c) Lean. (d) PVS Emacs: editor and proof window.

(e) IntelliJ-Arend. (f) KeYmaera-X.

Figure 6: Screenshots of other analysis tools.
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5.2 Assessment

VSCode-PVS. Autocompletion is provided for language keywords, as well as for types and functions
defined in the standard PVS library (the prelude). Context-sensitive autocompletion is supported for
record types: items suggested by the editor range over record accessors (see Figure 5a). Hover infor-
mation is provided for identifiers. It shows a preview of the definition of the identifier, as well as an
hyperlink that can be used to jump-to the location of the definition (see Figure 5b). Live diagnostics
for syntax errors are automatically provided after a period of inactivity in the editor — syntax errors are
underlined with red wavy lines, and a tooltip with details on the error is provided when placing the cursor
at the error position. Integrated terminals can be used to animate specifications and prove theorems. An
interactive tree-based view allows for the visualization of proof trees and proof commands step-by-step.

PVS Emacs. The environment, shown in Figure 6d, provides syntax highlighting and a basic form of
jump-to-definition through commands and key bindings. A basic form of autocompletion is provided
for proof commands. The logic for hover information is not implemented. Diagnostics are obtained
on-demand, when the developer decides to parse or type-check the specification. Animation is provided
through an interactive read-eval-print loop. Proofs can be visualized in a tree-based view. Nodes in the
tree represent either proof sequents or proof commands. An interactive text-based view is used to show
proof tactics and allows the user to perform step-by-step execution of proof commands.

CoqIDE. The environment is shown in Figure 6a. It provides syntax highlighting. Autocompletion,
hover information, and jump-to-definition are not provided. Diagnostics are provided on-demand, when
the developer decides to attempt verification. A linear workflow is enforced: verification always starts
from the beginning of the file, and a marker is advanced in the editor to indicate what has been verified.
Everything above the marker is locked and cannot be modified. A side panel shows the proof state,
including current goal, tactic state, and error messages. Point-and-click operations allow step-by-step
execution of proof commands. The development of an alternative front-end, vscoq13, based on Visual
Studio Code was attempted in recent years. However, the implementation appear to have stopped at the
very early stages and does not provide significant new functionalities with respect to CoqIDE.

Proof General. The environment builds on Emacs, and its visual appearance is similar to PVS Emacs.
The main design goal of this environment is to facilitate the execution of proof commands and the
navigation of proof strategies. A plug-in based architecture allows the introduction of language-specific
extensions. Plug-ins for Coq and Isabelle/HOL are available. They provide syntax highlighting and
basic forms of autocompletion. Proof visualization builds on a tree-based view similar to that used in
PVS Emacs. Commands are provided for step-by-step execution of proof tactics.

SublimeHOL. The environment builds on the Sublime14 editor. It provides syntax highlighting for the
HOL4 specification language. A basic form of autocompletion is provided for keywords and mathemat-
ical symbols. Hover information, jump-to-definition and visualization of proof trees are not provided.
Interactive panels allow to exchange commands with HOL4 and edit/inspect the proof state.

Isabelle/jEdit. The environment, shown in Figure 6b builds on jEdit15. Context-sensitive autocomple-
tion is provided based on the syntax of the language, as well as on name-space information provided by
the prover engine. A dictionary-based spell-checker is used to suggest completion items for comments
and other sections in the specification that contain sentences in natural language. Hover information
shows the type of language symbols. Hover boxes can be detached from the current editor and turned

13https://github.com/siegebell/vscoq
14https://www.sublimetext.com
15http://www.jedit.org/
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into separate windows to facilitate navigation of file content. Live diagnostics are provided for errors
in the form of red wavy lines, along with hover information at the error location. A panel shows proof
information and allows to perform step-by-step evaluation of a proof method. A query panel enables the
filtering of information displayed for the proof state. A basic form of model animation can be achieved
through Isabelle’s counter-example finding functionality.

Lean. The environment is shown in Figure 6c. It builds on Visual Studio Code. Because of this, its
overall visual appearance is similar to VSCode-PVS. Context-sensitive autocompletion is provided for
language symbols. A reasoning engine is always active in the background and tries to autocomplete
expressions based on context information, in a manner similar to the hole functionality provided in
Haskell. Hover information shows the definition of identifiers. Navigation of definitions is supported
by the jump-to functionality and mini-editors rendered in line in the current editor. Live diagnostics are
provided for errors, in the usual form of red wavy lines at the location of the error, and a tooltip with
information about the error. Proof commands are embedded in the specification and can be activated
with point-and-click operations. Similarly to Coq and jEdit, the proof state is shown in a side panel.

IntelliJ-Arend. The environment builds on IntelliJ IDEA16. Autocompletion is provided for keywords
and identifiers. An auto import function is available that automatically imports library modules. Hover
information is used to present a description in natural language of identifiers, as well as a link to the
definition of the identifier (see Figure 6e). Refactoring allows to rename identifiers, and move definitions
across modules. Live diagnostics are presented for syntax errors. Additional diagnostics can be obtained
on-demand by type-checking the specification. Animation and proof visualization are not available.

KeYmaera-X. The environment is the successor of the KeYmaera IDE [16]. Web-based technologies
are used to implement the front-end (see Figure 6f). The main focus is on proof development. Only basic
functionalities are provided to support modeling tasks: syntax highlighting is provided only for language
keywords; hover information, jump-to definition and refactoring are not available. The prover interface
renders proofs in sequent form, with horizontal lines as in the Gentzen-style layout. An extensive set of
menus provides access to all proof commands. Heuristics are used to suggest proof tactics.

5.3 Results

An overview of the comparison is in Table 1. It can be seen that VSCode-PVS already provides several
features that other similar environment are still missing. Most of the environments are mainly designed
to provide an interface for exchanging proof commands with the theorem prover. Few environments
provide adequate support for modeling activities. For example, almost all environments currently lack
refactoring, and developers need to rely on search-and-replace functionalities of the editor when renam-
ing identifiers. However, this solution is not robust, as careful inspection is necessary for overloaded
identifiers. Two other important features commonly used during modeling activities are also missing in
most of the environments: animation of executable fragments and live diagnostics. Animation provides a
means to developers to test a specification, e.g., to check whether it correctly captures what the developer
wants to model. This functionality can be especially useful to software engineers that approach formal
verification, as it is congruent with the testing methods they routinely use for software. It also provides a
form a lightweight formal verification — properties can be checked for specific execution traces prior to
running the full formal proof. Live diagnostics promote immediate identification of specification errors.
This may facilitate understanding and resolution of errors, as a developer’s focus of attention is already
at the location of the error.

16https://www.jetbrains.com/idea/

https://www.jetbrains.com/idea/
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VSCode-PVS 1.0.12 VSCode

PVS-Emacs 6.0 Emacs

CoqIDE 8.9.0 N/A

SublimeHOL 2018 Sublime

Proof General 4.5 Emacs, Eclipse

Isabelle/jEdit 2019 jEdit

Lean 0.14.1 VSCode

IntelliJ-Arend 1.0.0 IntelliJ IDEA

KeYmaeraX 4.6.3 N/A

Table 1: Overview of the comparison results. The following symbols summarize the characteristics of a
feature: fully implemented ( ); basic implementation ( ); planned feature ( ); not available ( ).

6 Related Work

VSCode-PVS aims to align the functionalities of the PVS front-end to those of program analyzers such
as Dafny [3], or reasoning engines like Imandra [14]. The front-end of these tools provides all function-
alities typically available in modern IDEs for programming languages, including context-aware help and
an integrated debugger. Verification is carried out in the background, by continuously querying a pool of
solvers while the user types the code. Design solutions are adopted to keep the interface responsive and
provide an overall smooth programming experience to the user.

The verification technology used by VSCode-PVS is not automatic, as in the case of Dafny and
Imandra. However, when the PVS analysis targets routine tasks such as discharging proof obligations
necessary to prove type correctness, automatic analysis is usually feasible thanks to the powerful proof
strategies provided by PVS. This opportunity needs to be exploited, as it would allow the completion of
simple but time-consuming activities that developers need to carry out while creating a formal specifica-
tion. Appropriate mechanisms need to be developed to limit the use of CPU time and memory resources
that could make the interface not responsive. The split architecture adopted in VSCode-PVS and the
asynchronous nature of the LSP protocol facilitate the implementation of these mechanisms. The possi-
bility of creating an integrated debugger for executable fragments of a PVS specification is also another
interesting option that needs to be explored for VSCode-PVS. The Visual Studio Code editor provides
already the graphical elements necessary for interacting with the logic of the debugger, including break-
points, an interactive panel with the usual run/step-into/step-over commands, as well as an interactive
view for inspecting the value of variables, call stack, etc. These elements need to be customized for
the PVS language, and appropriate hooks need to be implemented in the back-end to provide the logic
necessary for debugging.

In [15], a Proof General plugin is developed that introduces syntax highlighting and autocompletion
for the Coq specification language. In [17], a generic user interface for theorem proving systems is
introduced. The editor front-end builds on jEdit, and a prototypical specification language for declaring
formal terms such as theories, terms, and context. This approach proves useful to implementing a generic
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version of basic front-end features such as autocompletion, abstract syntax display, error highlighting,
and tooltips. These and other similar efforts are certainly worth exploring. However, it is unclear if in
the long run they will stand against the rapid evolution of editors such as Visual Studio Code and Atom.

7 Conclusion and Future Directions

A new development environment for the PVS verification system has been presented that aims to align
the PVS front-end to that of main stream tools used by software developers. A split architecture is
adopted, where an editor front-end communicates with a server back-end. The back-end uses process
workers to adapt the APIs of PVS to the Language Server Protocol, a de-facto standard communication
protocol for code editors and analyzers. The editor front-end builds on the features of Visual Studio
Code, a modern open-source code editor.

VSCode-PVS is under active development. The environment is still in its infancy, but it already
advances the standard Emacs front-end of PVS in many respects — live diagnostics, context-sensitive
auto-completion, point-and-click navigation, interactive tree-based view for proof exploration.

Previous attempts carried out by others to develop a new front-end for PVS had little success. One
attempt aimed to integrate PVS in Eclipse. Difficulties were encountered to align the APIs provided by
PVS to the functionalities required for Eclipse, and the development was ultimately abandoned. Another
attempt involved the development of a Python front-end for PVS, using the wxPython17 graphic library.
A simple interface was created to exchange commands with PVS. Fragments of these implementations
can be found in the GitHub repository of PVS18.

Current work on the VSCode-PVS front-end focuses on the integration with the next release of
PVS, which provides a new XMLRPC interface that will improve performance and robustness of the
language server. The creation of an integrated debugger is also planned. It will align the functionalities
of the PVSio evaluator to those of debuggers used in programming languages. Integration with the
PVSio-web [5] prototyping environment is another future direction. PVSio-web enables the creation
of interactive prototypes based on formal models. The prototypes resemble the visual appearance of a
final system. They can be used to create scenario-based simulations that facilitate engagement between
PVS experts and developers that are not familiar with PVS or formal methods (see [4] for application
examples and success stories).
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