
Towards an Implementation of Differential Dynamic
Logic in PVS

J. Tanner Slagel
j.tanner.slagel@nasa.gov

NASA Langley Research Center
Hampton, Virginia, USA

César Muñoz∗
NASA Langley Research Center

Hampton, Virginia, USA

Swee Balachandran†
National Institute of Aerospace

Hampton, Virginia, USA

Mariano Moscato
National Institute of Aerospace

Hampton, Virginia, USA

Aaron Dutle
NASA Langley Research Center

Hampton, Virginia, USA

Paolo Masci
National Institute of Aerospace

Hampton, Virginia, USA

Lauren White
NASA Langley Research Center

Hampton, Virginia, USA

Abstract
This paper describes an ongoing effort to embed and verify
differential dynamic logic (dL) in the Prototype Verification
System (PVS). dL is a logic for specifying and formally rea-
soning about hybrid systems, i.e., systems that employ both
continuous and discrete dynamics. There are several benefits
of this effort. First, the embedding of dL in PVS offers an
independent formal verification of the semantics and infer-
ence rules of dL. Second, the embedding is fully operational
within PVS, giving PVS practitioners the ability to use dL in
the formal specification and verification of hybrid systems.
Third, the rich specification language, type system, and pow-
erful interactive prover of PVS can be used on dL objects. In
addition to the embedding and verification of dL, a custom
extension for Visual Studio Code has been developed, so that
a stylized dL syntax can be used to specify hybrid programs
and their properties.

CCS Concepts: • Theory of computation → Formal lan-
guages and automata theory; Logic; • Security and pri-
vacy→ Logic and verification.

Keywords: Differential Dynamic Logic, Prototype Verifica-
tion System, Formal Verification, Hybrid Systems

∗Currently at Amazon Web Services
†Currently at Xwing

ACM acknowledges that this contribution was authored or co-authored
by an employee, contractor, or affiliate of the United States government.
As such, the United States government retains a nonexclusive, royalty-free
right to publish or reproduce this article, or to allow others to do so, for
government purposes only.
SOAP ’22, June 14, 2022, San Diego, CA, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9274-7/22/06. . . $15.00
https://doi.org/10.1145/3520313.3534661

ACM Reference Format:
J. Tanner Slagel, CésarMuñoz, Swee Balachandran,MarianoMoscato,
Aaron Dutle, Paolo Masci, and Lauren White. 2022. Towards an Im-
plementation of Differential Dynamic Logic in PVS. In Proceedings
of the 11th ACM SIGPLAN International Workshop on the State Of
the Art in Program Analysis (SOAP ’22), June 14, 2022, San Diego, CA,
USA. ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/
3520313.3534661

1 Introduction
Hybrid Systems, which are characterized by the interplay
of continuous and discrete dynamics, are ubiquitous in the
safety-critical world. One example is automated aircraft nav-
igating through crowded urban canyons and intersections
which must avoid collisions with other aircraft and the sur-
rounding landscape [2, 3]. Another similar example is the
interaction of numerous groups of aircraft of many different
types in wildfire response andmitigation [30]. These systems
contain both continuous dynamics (e.g., the movement of
the aircraft over time) and discrete dynamics (e.g., entrance
into a defined operational airspace, an acceleration command
given to an aircraft).
Differential dynamic logic (dL) [21] offers a natural way

to model and reason about properties of such systems. dL
allows a Hybrid Program to be written as a model of a dis-
crete/continuous controller, and logical statements about the
program can be stated and proven using deduction rules. dL
was implemented first in the tool KeYmaera [25], and ex-
tended in KeYmaera X [7]. It has been used in verification of
a wide variety of safety-critical applications [11, 12, 14, 26].

This paper describes an ongoing effort to embed and verify
a fully-functional version of dL in the Prototype Verification
System (PVS), a formal specification language with a tightly
integrated interactive theorem prover. There are three main
parts of this work:

https://doi.org/10.1145/3520313.3534661
https://doi.org/10.1145/3520313.3534661
https://doi.org/10.1145/3520313.3534661

SOAP ’22, June 14, 2022, San Diego, CA, USA Slagel, Muñoz, Balachandran, Moscato, Dutle, Masci, and White

1. A formal verification of the soundness of dL in PVS,
which guarantees any statement proven using the de-
duction rules is correct;

2. A fully operational embedding of dL in PVS, includ-
ing capability for specification of hybrid programs,
writing logical statements about hybrid programs, and
deduction rules proving these statements;

3. Automation of proof rules and pretty-printing of dL
specifications to make the underlying formalization
and embedding invisible to the casual user.

One benefit of such an embedding is that a user famil-
iar with dL can specify and prove properties about hybrid
systems in a very similar manner to existing dL implementa-
tions, with an additional layer of assurance provided by the
PVS soundness proof. Another benefit is that the richness
of the PVS system can be used alongside the dL prover. For
example, properties about and relationships between entire
classes of hybrid programs can be verified using PVS outside
of dL.

There has been past work on verifying hybrid systems in
PVS [1, 28], and using other formal methods tools like Event-
B [6], Isabelle/HOL [8–10, 29], and Coq. Most similar to the
current work is a formalization of dL performed in HOL and
Coq [4], where a proof written in the dL language can be
verified by a sound proof checker. The work here also verifies
the axioms and rules of dL, and further implements them
as strategies in PVS. Using these strategies, properties of
hybrid programs can be verified interactively within the PVS
proof assistant, similar to KeYmaera/KeYmaera X. Also, since
this implementation of dL is in PVS, it has all the features
and automation capabilities of PVS such as advanced real
number reasoning [5, 15–19].

2 Prototype Verification System
The Prototype Verification System (PVS) is a formal specifica-
tion and verification tool developed by SRI International [20].
PVS has a strongly typed functional specification language
based on higher-order logic, which allows a user to write
functions and logical statements. PVS also includes a tightly
integrated interactive theorem prover, for the verification of
the specified statements. To prove a statement in PVS, the
user inputs proof commands to manipulate a logical sequent
in a sound way to produce a list of sequents, referred to
as branches, that conjunctively imply the original one. A
sequent is read as the conjunction of the antecedent (above
the turnstile) implying the disjunction of the consequent
(below the turnstile, see Figure 1). A user enters proof com-
mands until TRUE appears in the consequent, FALSE appears
in the antecedent, or the same formula appears in both the
antecedent and the consequent, for all branches. PVS allows
users to invoke previously proven lemmas in the prover, and
also includes a proof strategy language, where users can

Figure 1. An example of the PVS theorem prover

define proof strategies that combine commands and lemmas
in sophisticated ways.
For an example of the interactive theorem proving envi-

ronment see Figure 1, which displays usage of the (deriv)
strategy developed in the analysis library of NASAlib1, that
uses several lemmas to automate derivatives for a wide array
of functions.

3 Differential Dynamic Logic
Differential dynamic logic (dL) was first conceived by Platzer
in [21] and implemented in the original KeYmaera system
[25]. There have been several iterations on, and extensions of,
dL and KeYmaera since the original formulation [7, 22–24].
This section does not attempt to give a complete description
of dL or implementations, as this would be far beyond the
scope of this paper. Instead, a general description is given,
and a few specific examples that will be followed through the
paper are presented. For a complete formal description, see
[21]. For a tutorial on differential dynamic logic in KeYmaera,
see [27].

dL can be roughly divided into three main components:
hybrid program specification, differential logic itself, and the
deduction rules for the logic.

3.1 Hybrid Programs
Hybrid programs (HPs) are intended to describe systems
that have discrete and continuous behavior combined. The
two basic building blocks of HPs are discrete assignments
𝑥1 := 𝑡1, . . . , 𝑥𝑛 := 𝑡𝑛 where a variable 𝑥𝑖 is assigned real
value 𝑡𝑖 , for each 𝑖 such that 0 ≤ 𝑖 ≤ 𝑛, and continuous
evolution of an ordinary differential equation (ODE) {𝑥 ′

1 =

𝑓1, . . . , 𝑥
′
𝑖 = 𝑓𝑖 &𝐷}, where the first entries define the differ-

ential system (where 𝑓𝑖 is an expression that could contain
the values of 𝑥1, . . . , 𝑥𝑛), and the last (optional) entry 𝐷 gives
the domain of the system. These two basic block types can
be iteratively combined to produce more complex formulas,
using sequential composition of programs (;), nondetermin-
istic choice between two options (∪), testing of a first order
formula (?𝑃), and nondeterministic repetition (∗) of a block2.
1NASALib is a collection of PVS formalizations maintained by the NASA
Langley Formal Methods group: https://github.com/nasa/pvslib
2Implementations vary in their choice of combinators. For example, KeY-
maera X adds an explicit “if-then-else” combinator.

https://github.com/nasa/pvslib

Towards an Implementation of Differential Dynamic Logic in PVS SOAP ’22, June 14, 2022, San Diego, CA, USA

An example hybrid program is

((𝑎 := 𝑎 + 1); {𝑥 ′ = 𝑣, 𝑣 ′ = 𝑎})∗ (1)

This program increments the value of the variable 𝑎 by one,
then evolves the differential equation where 𝑎 is acceleration,
𝑣 is velocity, and 𝑥 is position. This evolution progresses
for some amount of time, and then repeats this program
a nondeterministic number of times. This example will be
used throughout the paper to explain dL and its embedding
in PVS.

3.2 Differential Logic
Differential logic formulas involve real numbers, hybrid pro-
grams, and several familiar logical connectors. The logic al-
lows for comparison of real numbers (using <, ≤,=, ≥, >,≠),
quantification (∀, ∃), negation (¬), conjunction (∧), disjunc-
tion (∨), and (bi)implication (⇒,⇔) for formulas, and unique
to hybrid programs, the operators all runs and some runs. The
formula [𝛼]𝜙 states that for all runs of the hybrid program
𝛼 , the formula 𝜙 holds. Similarly ⟨𝛼⟩𝜙 states that there is
at least one run of the program 𝛼 for which the formula 𝜙
holds.

Using differential logic allows properties of a hybrid pro-
gram to be written. For example, using the program in (1),

𝑥 ≥ 1 ∧ 𝑣 ≥ 0 ∧ 𝑎 ≥ 0 ⇒
[((𝑎 := 𝑎 + 1); {𝑥 ′ = 𝑣, 𝑣 ′ = 𝑎})∗] (𝑥 ≥ 1). (2)

states that if 𝑥 is at least one, and 𝑣 and 𝑎 are non-negative,
then for all runs of the program in (1), 𝑥 will remain at least
one.

3.3 Deduction Rules
To prove a statement about a hybrid program, the logic state-
ment can be written as a dL sequent. In the case of (2), this
looks like:

𝑥 ≥ 1, 𝑣 ≥ 0, 𝑎 ≥ 0 ⊢
[((𝑎 := 𝑎 + 1); {𝑥 ′ = 𝑣, 𝑣 ′ = 𝑎})∗] (𝑥 ≥ 1). (3)

Then, deduction rules of dL are applied to formally manip-
ulate the dL sequent in a way that is sound (the sequents
produced by the rule imply the truth of the original sequent).
A list of the complete syntax, semantics and rules of dL can be
found in [24], pages 637-6393. Here, two of the set of formal-
ized and proven rules are described, with their embedding
in PVS detailed in Section 4.

3.3.1 Discrete Loop. Formally, the dL-loop rule is given
by:

Γ ⊢ 𝐽 𝐽 ⊢ [𝛼] 𝐽 𝐽 ⊢ 𝑃
Γ ⊢ [𝛼∗]𝑃 ,

where Γ represents the antecedent formulas, 𝐽 represents
the invariant condition, 𝑃 represents the property trying to
be shown, and 𝛼 represents the hybrid program.

3dL Rule “Cheat Sheet": https://symbolaris.com/logic/dL-sheet.pdf

Intuitively, this rule is used to show that all runs of the
looped program 𝛼∗ satisfy a property 𝑃 , by using a property
𝐽 that is invariant through each pass through 𝛼 . The dL-
loop rule reduces the argument to three cases: the invariant
condition is held as a precondition to the hybrid program
(Γ ⊢ 𝐽), 𝐽 is indeed invariant to one application of the loop
(𝐽 ⊢ [𝛼] 𝐽), and the invariant conditions implies the desired
postcondition (𝐽 ⊢ 𝑃). Applying the dL-loop rule to the se-
quent in (3) with the instantiation Γ = (𝑥 ≥ 1, 𝑎 ≥ 0), 𝛼 =

((𝑎 := 𝑎 + 1); {𝑥 ′ = 𝑣, 𝑣 ′ = 𝑎}), 𝐽 = (𝑥 ≥ 1 ∧ 𝑣 ≥ 0 ∧ 𝑎 ≥ 0),
and 𝑃 = (𝑥 ≥ 1), yields the three sequents:

𝑥 ≥ 1, 𝑣 ≥ 0, 𝑎 ≥ 0 ⊢ 𝑥 ≥ 1 ∧ 𝑣 ≥ 0 ∧ 𝑎 ≥ 0 (4)
𝑥 ≥ 1, 𝑣 ≥ 0, 𝑎 ≥ 0 ⊢

[((𝑎 := 𝑎 + 1); {𝑥 ′ = 𝑣, 𝑣 ′ = 𝑎})]
(𝑥 ≥ 1 ∧ 𝑣 ≥ 0 ∧ 𝑎 ≥ 0)

(5)

𝑥 ≥ 1 ∧ 𝑣 ≥ 0 ∧ 𝑎 ≥ 0 ⊢ 𝑥 ≥ 1 (6)

The sequent (4) and (6) can be proven with rules of basic
propositional logic. This leaves the sequent in (5).

3.3.2 Differential Invariant. Formally, the differential
invariant rule is given by:

Γ, 𝑞(𝑥) ⊢ 𝑝 (𝑥) 𝑞(𝑥) ⊢ [𝑥 ′ := 𝑓 (𝑥)] (𝑝 (𝑥)) ′
Γ ⊢ [𝑥 ′ = 𝑓 (𝑥) &𝑞(𝑥)]𝑝 (𝑥),

where Γ represents the antecedent formulas, 𝑞(𝑥) represents
a set (or property) which the continuous dynamics 𝑥 ′ = 𝑓 (𝑥)
are restricted to, 𝑝 (𝑥) is the property trying to be shown,
and (𝑝 (𝑥)) ′ is the differential operator on 𝑝 that guarantees
that 𝑝 (𝑥) remains true through the evolution 𝑥 ′ = 𝑓 (𝑥), i.e.,
showing that 𝑝 (𝑥) is an invariant condition to the continuous
system 𝑥 ′ = 𝑓 (𝑥) &𝑞(𝑥).

Consider the following statement in dL4:

𝑥 ≥ 1, 𝑎 ≥ 0 ⊢ [{𝑥 ′ = 𝑣, 𝑣 ′ = 𝑎}& (𝑣 ≥ 0)] (𝑥 ≥ 1) (7)

To apply the differential invariant rule to (7) the user
would instantiate: Γ = (𝑥 ≥ 1, 𝑎 ≥ 0), (𝑥 ′ = 𝑓 (𝑥)) = {𝑥 ′ =
𝑣, 𝑣 ′ = 𝑎}, 𝑞(𝑥) = (𝑣 ≥ 0), and 𝑝 (𝑥) = (𝑥 ≥ 1), where,
(𝑝 (𝑥)) ′ = (𝑥 ′ ≥ 0). This yields the two sequents

𝑥 ≥ 1, 𝑎 ≥ 0, 𝑣 ≥ 0 ⊢ 𝑥 ≥ 1 (8)
𝑣 ≥ 0 ⊢ [{𝑥 ′ := 𝑣, 𝑣 ′ := 𝑎}] (𝑥 ′ ≥ 0). (9)

Note that the formula in (8) has 𝑥 ≥ 1 in both the an-
tecedent and the consequent and is therefore trivially true,
and the formula in (9) can be proven using the property that
[𝑥 ′ := 𝑣, 𝑣 ′ := 𝑎] (𝑥 ′ ≥ 0) = 𝑣 ≥ 0, which is also a rule of
dL. It should be noted that the computation of (𝑝 (𝑥)) ′ for
a general proposition 𝑝 (𝑥) that could include proposition
logical formulas and inequalities is nontrivial, and a specific
calculus must be implemented to ensure soundness of such
an approach [22].

4It can be shown that (7) implies (5) using other rules of dL. These details
are omitted for space limitations.

https://symbolaris.com/logic/dL-sheet.pdf

SOAP ’22, June 14, 2022, San Diego, CA, USA Slagel, Muñoz, Balachandran, Moscato, Dutle, Masci, and White

4 Embedding dL in PVS
The goal of this work is to have a fully operational and sound
implementation of dL in PVS. This section will provide an
overview of this embedding.

4.1 Hybrid Programs
To define Hybrid programs in PVS, the structure of variables
that will be input and output from the programs must be
defined. The variables and their values are represented as
a mapping env: [nat -> real], where variables are rep-
resented by their index i:nat and their value is given by
env(i). This mapping is called an Environment:
Environment : TYPE = [nat -> real].

For instance, taking x: nat = 0, y:nat = 1,
env: Environment = (LAMBDA(i:nat): 0)

WITH [(x) := 10, (y) := -sqrt(5)]

represents the environment where all variables are set to
zero, except the first variable (represented by the index 0)
which has value 10 and second variable (represented by the
index 1) who has value −

√
5.

Given the environment of variables, types for predicates,
quantified boolean expressions, and real valued functions
are defined:
BoolExpr : TYPE = [Environment -> bool]
QBoolExpr : TYPE = [real -> BoolExpr]
RealExpr : TYPE = [Environment -> real],

These types use higher order abstract syntax to represent
bounded variables. For instance,
val(i:nat): RealExpr

= LAMBDA(env:Environment): env(i).

For the discrete assignment and continuous evolution, a
list of ordered pairs is needed where each first entry is an
index of a variable and each second entry is the desired
assignment. To prevent double assignments or continuous
evolutions for the same variable, the condition that a variable
index may not be used twice is in the type of the list, i.e.,
that a variable can only be assigned once is enforced in the
following way:
MapExpr : TYPE = [nat,RealExpr]
mapexpr_inj(l:list[MapExpr]) : bool =

LET N = length(l) IN
FORALL(i:below(N),j:subrange(i+1,N-1)):
nth(l,i)‘1 /= nth(l,j)‘1

MapExprInj : TYPE = (mapexpr_inj)
Assigns : TYPE = MapExprInj
ODEs : TYPE = MapExprInj.

The syntax and semantics of hybrid programs can be de-
fined with these in place. Syntactically, hybrid programs are
a recursive data type defined in PVS as:
HP : DATATYPE BEGIN
ASSIGN(assigns:Assigns) : assign?

DIFF(odes:ODEs,be:BoolExpr) : diff?
TEST(be:BoolExpr) : test?
SEQ(stm1,stm2:HP) : seq?
UNION(stm1,stm2:HP) : union?
STAR(stm:HP) : star? END HP.

The semantics of a hybrid program defines how input envi-
ronments and output environments are related to each other
through different program constructs. This is done through
the semantic relation:
semantic_rel(hp:HP)(envi:Environment)
(envo:Environment): INDUCTIVE bool = ...,

which is inductively defined on the structure of the pro-
grams. Because of its size the full definition is not given here,
but a few cases are shown. For example, the semantics of
SEQ(stm1,stm2:hp) is given by:
(EXISTS (env:Environment):

semantic_rel(stm1(hp))(envi)(env) AND
semantic_rel(stm2(hp))(env)(envo))).

This says that two environments envi and envo are seman-
tically related through SEQ(stm1,stm2) when there is an
environment env semantically related (as an output) to envi
through stm1, and semantically related (as in input) to envo
through stm2. The semantics of a hybrid program of the
form ASSIGN(l: MapExprInj) is given by:
(FORALL(i:below(length(l))):
LET (k,re) = nth(l,i) IN
envo(k) = re(envi)) AND
FORALL(i:(not_in_map(l))): envo(i) = envi(i)).

This says that environments envi and envo are semantically
related through ASSIGN(l), meaning that envo is envi with
the proper assignments made at the right indices.

4.2 Basics of dL in PVS
Sequents of dL are embedded in PVS as predicates on two
lists of boolean expressions - one acting as the antecedent
and one acting as the consequent:
|-(Gamma, Delta: list[BoolExpr]): bool.

The semantics of the expression Gamma |- Delta state
that for each environment that satisfies the conjunction of
expressions in Gamma, one of the expressions in Delta is
true, in PVS written as:
FORALL (env: Environment):

(FORALL(i:below(length(Gamma))):
nth(Gamma,i)(env)) IMPLIES
(EXISTS (j:below(length(Delta))):

nth(Delta,j)(env))

There are a number of common boolean expression de-
fined in dL-PVS that allow first order logic statements in
the dL-PVS sequent. This includes all of the operations men-
tioned in Section 3.2 including <, ≤,=, ≥, >,≠, quantification,
negation, conjunction, disjunction, and (bi)implication for
formulas. In addition to these expressions, dL also uses the

Towards an Implementation of Differential Dynamic Logic in PVS SOAP ’22, June 14, 2022, San Diego, CA, USA

universal quantifier and existential quantifier for hybrid pro-
grams. These are denoted as ALLRUNS and SOMERUNS, respec-
tively. The boolean
SOMERUNS(hp:HP,P:BoolExpr)(env:Environment)

is true when there exists an envo:Environment that is an
output of the hybrid program hp with input env, such that
P(envo) is true. The boolean
ALLRUNS(hp:HP,P:BoolExpr)(env:Environment)

is truewhen P(envo) is true for every envo:Environment
that is an output of the hybrid program hp with
input env. Using the operators of dL-PVS, the logical state-
ment in (2) can be specified in PVS as:
hp_ex: LEMMA
LET alpha = STAR(SEQ(ASSIGN((: a, val(a)+1:)),
DIFF((:(x, val(v)), (v, val(a)) :)))) IN

(: :) |- (: DLIMPLIES((:val(x) >= cnst(1),
val(v) >= cnst(0), val(a) >= 0 :),
ALLRUNS(alpha, val(x) >= 1)) :)

4.3 Rules of dL in PVS
All the rules of dL have been specified and proven as lemmas
in PVS. This includes a number of basic propositional-logic-
based rules (such as dL-assert, shown in Figures 2 and 3),
but also the more specialized rules that are specifically tai-
lored for reasoning of hybrid systems. The rules discussed
in Section 3.3 are shown below as PVS lemmas.
In PVS the dL-loop rule was written as the following

lemma and proven
dl_loop : LEMMA
FORALL(Gamma: list[BoolExpr], J,P:BoolExpr, A:HP):

(Gamma |- cons(J)) AND (J |- P) AND
(J |- ALLRUNS(A,J)) IMPLIES
(Gamma |- cons(ALLRUNS(STAR(A),P))).

The differential invariant rulewas also specified and proven
dl_dI: LEMMA
FORALL (Gamma)(nnP,Q)(ode:ODEs):

(cons(Q,Gamma) |- cons(nqb_to_be(nnP))) AND
(Q |- ALLRUNS(ASSIGN_DIFT(ode)(nnP))) IMPLIES
(Gamma |- cons(ALLRUNS(DIFF(ode,Q),
nqb_to_be(nnP)), Delta)).

As a small example of the complexity of some of these spec-
ifications and proofs, note that for the differential invariant
rule, a deep embedding of boolean expressions was required
to define the appropriate derivative of such expressions in a
recursive and executable way. The function nqb_to_be(nnP)
represents the transformation from nnP, a representation of
a boolean expression written in this deep embedding to a
boolean expression. The function ASSIGN_DIFT(odes)(nnP)
represents the derivative of nnP with the derivative assign-
ments defined by the odes. The ASSIGN_DIFT(odes)(nnP)
expression corresponds to the term [𝑥 ′ := 𝑓 (𝑥)] (𝑝 (𝑥)) ′ in
the differential invariant rule in Section 3.3.2.

4.4 Extensions of dL in PVS
The operational implementation of dL in PVS is fully typed,
and allows specification and reasoning about hybrid pro-
grams based on properties of the hybrid programs rather
than particular instantiations. To illustrate these points con-
sider the following predicate behind?:
behind?(odes:ODEs)(env:Environment): bool =
FORALL(i:below(max_var(odes))):env(i) <
env(i+1).

This predicate is true when values of the environment are
increasing up to the index of the maximum variable used by
odes.

The subtype of hybrid programs called behind is defined
as all the hybrid programs that preserve behind?(odes):
behind: TYPE = hp: (diff?) |

(: behind?(odes(hp)) :) |-
(: ALLRUNS(hp,behind?(odes(hp))) :).

Similarly, the boolean expression slower?(odes:ODEs)
ensures that variables of lower index are going slower than
variables of higher index:
slower?(odes:ODEs)(env:Environment): bool =
FORALL(i:below(length(odes))): nth(odes,i)‘1 = i
AND FORALL(i:below(length(odes)-1)):
(nth(odes,i)‘2(env) < nth(odes,i+1)‘2(env)).

The subtype of hybrid programs called slow are hybrid
programs where variables of lower index go slower than
variables of higher index, regardless of starting values:
slow: TYPE
= hp: (diff?) | (: :) |- (: slower?(odes(hp)) :).

Using a JUDGEMENT in PVS (which is similar to a lemma,
but concerning relationships between types), the user can
state and prove that hybrid program type slow is a subtype
of behind:
slow_is_behind: JUDGEMENT slow SUBTYPE_OF behind.

This means that every hybrid program of type slow is also of
type behind. This JUDGEMENT shows that hybrid programs
of type (diff?) that have variables whose velocities and
positions are monotonic according to index are guaranteed
to preserve order of the variables. Notice that this property is
for an entire class of hybrid programs, not a defined one. An
instance of this class, which can be reasoned about in classical
dL, can take on a wide variety of forms. This illustrates a
benefit of dL embedded in PVS: the expressive language and
proof system provides avenues for reasoning about hybrid
programs or entire classes of them outside of dL.

5 Using dL-PVS
5.1 Implementation of dL rules as strategies
The formally verified dL deduction rules have been imple-
mented as strategies for use in the interactive theorem prover

SOAP ’22, June 14, 2022, San Diego, CA, USA Slagel, Muñoz, Balachandran, Moscato, Dutle, Masci, and White

Figure 2. Example of using the dl-loop strategy in PVS

of PVS. As the strategy language works using basic deduc-
tion rules and proven lemmas, these strategies are sound
with respect to PVS.

The lemma dl_loopwaswritten as a proof strategy (dl-loop
<inv>) where <inv> is the user defined invariant condition
to be used in application of this rule. Figure 2 shows the use
of the dl-loop strategy applied to prove the statement in
(3). After applying the rule with the correct invariant condi-
tion three subgoals are created that correspond to Equation 4
(discrete_loop_example.1), Equation 6 (discrete_loop_
example.2), and Equation 5 (discrete_loop_example.3).
Similarly, the strategy (dl-diffinv) captures the differ-

ential invariant rule specified and proven in the lemma
dl_dI, in addition to automated procedures to calculate
derivatives. Figure 3 shows this strategy being used to prove
the statement in Equation 7. Note that (dl-diffinv) auto-
matically calculates ALLRUNS(ASSIGN_DIFT(ode)(nnP)) =
(val(v) >= cnst(0)) and the proof is discharged without
user instantiation or user input about differentiation. The
cases generated in Figure 3 correspond to the expressions in
Equations 8 and 9.

5.2 dL-PVS in Visual Studio Code
A Visual Studio Code extension is under development that
will allow users of dL-PVS to specify hybrid programs in
a way that is aesthetically similar to the traditional syntax
of dL, see Figure 4. This capability will also be available
during proof sessions, allowing the user to reason about
hybrid programs in stylized syntax rather than through the

Figure 3. Example of using the differential invariant strategy
in PVS

Figure 4. Example of the Visual Studio Code extension for
specification of hybrid programs in dL-PVS

standard PVS interface. This work will be a continuation of
the completed Visual Studio Code extension for PVS [13].

6 Conclusions and Future Work
This paper gives an overview of the effort to implement an
operational embedding of dL in the theorem prover PVS.
At this stage, the rules of dL have been proven in PVS, and
many proof strategies are finished. The Visual Studio Code
extension for interaction with the system is in active devel-
opment. There are a number of directions for future work,
such as additional specification capabilities and rules associ-
ated with liveness properties that could give the embedding
of dL more capability. Specifically, reasoning about hybrid
programs with an arbitrary number of variables will require
additional work, as this ability is not part of the standard dL
rule suite. Additionally, introducing more automation into
the proving process, such as an automatic way to detect in-
variant conditions in hybrid programs, would benefit users
of dL-PVS.

Acknowledgments
Research by the National Institute of Aerospace authors is
supported by NASA under NASA/NIA Cooperative Agree-
ment NNL09AA00A.

Towards an Implementation of Differential Dynamic Logic in PVS SOAP ’22, June 14, 2022, San Diego, CA, USA

References
[1] Erika Ábrahám-Mumm, Ulrich Hannemann, and Martin Steffen. 2001.

Verification of hybrid systems: Formalization and proof rules in PVS.
In Proceedings Seventh IEEE International Conference on Engineering
of Complex Computer Systems. IEEE, 48–57. https://doi.org/10.1109/
ICECCS.2001.930163

[2] Swee Balachandran, Christopher Manderino, César Muñoz, and María
Consiglio. 2020. A decentralized framework to support uas merg-
ing and spacing operations in urban canyons. In 2020 International
Conference on Unmanned Aircraft Systems (ICUAS). IEEE, 204–210.
https://doi.org/10.1109/ICUAS48674.2020.9213973

[3] Swee Balachandran, César Muñoz, and María Consiglio. 2018. Dis-
tributed consensus to enable merging and spacing of UAS in an urban
environment. In 2018 International Conference on Unmanned Aircraft
Systems (ICUAS). IEEE, 670–675. https://doi.org/10.1109/ICUAS.2018.
8453460

[4] Brandon Bohrer, Vincent Rahli, Ivana Vukotic, Marcus Völp, and André
Platzer. 2017. Formally verified differential dynamic logic. In Proceed-
ings of the 6th ACM SIGPLAN Conference on Certified Programs and
Proofs. 208–221. https://doi.org/10.1145/3018610.3018616

[5] Marc Daumas, David Lester, and César Munoz. 2008. Verified real
number calculations: A library for interval arithmetic. IEEE Trans.
Comput. 58, 2 (2008), 226–237. https://doi.org/10.1109/tc.2008.213

[6] Guillaume Dupont. 2021. Correct-by-construction design of hybrid
systems based on refinement and proof. Ph.D. Dissertation. https:
//oatao.univ-toulouse.fr/28190/1/Dupont_Guillaume.pdf

[7] Nathan Fulton, Stefan Mitsch, Jan-David Quesel, Marcus Völp, and
André Platzer. 2015. KeYmaera X: An axiomatic tactical theorem prover
for hybrid systems. In International Conference on Automated Deduction.
Springer, 527–538. https://doi.org/10.1007/978-3-319-21401-6_36

[8] Jonathan Julian Huerta y Munive. 2020. Algebraic verification of hybrid
systems in Isabelle/HOL. Ph.D. Dissertation. University of Sheffield.
https://etheses.whiterose.ac.uk/28886/

[9] Jonathan Julián Huerta y Munive and Georg Struth. 2018. Verifying
hybrid systems with modal Kleene algebra. In International Conference
on Relational and Algebraic Methods in Computer Science. Springer,
225–243. https://doi.org/10.1007/978-3-030-02149-8_14

[10] Jonathan Julián Huerta y Munive and Georg Struth. 2022. Predicate
Transformer Semantics for Hybrid Systems. Journal of Automated
Reasoning 66, 1 (2022), 93–139. https://doi.org/10.1007/s10817-021-
09607-x

[11] Jean-Baptiste Jeannin, Khalil Ghorbal, Yanni Kouskoulas, Aurora
Schmidt, Ryan Gardner, Stefan Mitsch, and André Platzer. 2017. A
Formally Verified Hybrid System for Safe Advisories in the Next-
generation Airborne Collision Avoidance System. STTT 19, 6 (2017),
717–741. https://doi.org/10.1007/s10009-016-0434-1

[12] Yanni Kouskoulas, David W. Renshaw, André Platzer, and Peter
Kazanzides. 2013. Certifying the Safe Design of a Virtual Fixture
Control Algorithm for a Surgical Robot. In Hybrid Systems: Compu-
tation and Control (part of CPS Week 2013), HSCC’13, Philadelphia,
PA, USA, April 8-13, 2013, Calin Belta and Franjo Ivancic (Eds.). ACM,
263–272. https://doi.org/10.1145/2461328.2461369

[13] Paolo Masci and César A. Muñoz. 2019. An Integrated Development
Environment for the Prototype Verification System. In Proceedings Fifth
Workshop on Formal Integrated Development Environment, F-IDE@FM
2019, Porto, Portugal, 7th October 2019 (EPTCS, Vol. 310), Rosemary
Monahan, Virgile Prevosto, and José Proença (Eds.). 35–49. https:
//doi.org/10.4204/EPTCS.310.5

[14] Stefan Mitsch, Khalil Ghorbal, David Vogelbacher, and André Platzer.
2017. Formal Verification of Obstacle Avoidance and Navigation of
Ground Robots. I. J. Robotics Res. 36, 12 (2017), 1312–1340. https:
//doi.org/10.1177/0278364917733549

[15] MarianoMMoscato, César AMuñoz, and Andrew P Smith. 2015. Affine
arithmetic and applications to real-number proving. In International

Conference on Interactive Theorem Proving. Springer, 294–309. https:
//doi.org/10.1007/978-3-319-22102-1_20

[16] César Munoz and Anthony Narkawicz. 2013. Formalization of Bern-
stein polynomials and applications to global optimization. Journal of
Automated Reasoning 51, 2 (2013), 151–196. https://doi.org/10.1007/
s10817-012-9256-3

[17] Anthony Narkawicz and César Munoz. 2013. A formally verified
generic branching algorithm for global optimization. In Working Con-
ference on Verified Software: Theories, Tools, and Experiments. Springer,
326–343. https://doi.org/10.1007/978-3-642-54108-7_17

[18] Anthony Narkawicz and César Muñoz. 2014. A Formally Verified
Generic Branching Algorithm for Global Optimization. In Proceedings
of the 5th International Conference on Verified Software: Theories, Tools,
and Experiments (VSTTE 2013) (Lecture Notes in Computer Science,
Vol. 8164), Ernie Cohen and Andrey Rybalchenko (Eds.). Springer,
Menlo Park, CA, US, 326–343. https://doi.org/10.1007/978-3-642-
54108-7_17

[19] Anthony Narkawicz, César Munoz, and Aaron Dutle. 2015. Formally-
verified decision procedures for univariate polynomial computation
based on Sturm’s and Tarski’s theorems. Journal of Automated Reason-
ing 54, 4 (2015), 285–326. https://doi.org/10.1007/s10817-015-9320-x

[20] SamOwre, JohnM Rushby, and Natarajan Shankar. 1992. PVS: A proto-
type verification system. In International Conference on Automated De-
duction. Springer, 748–752. https://doi.org/10.1007/3-540-55602-8_217

[21] André Platzer. 2008. Differential dynamic logic for hybrid systems.
Journal of Automated Reasoning 41, 2 (2008), 143–189. https://doi.org/
10.1007/s10817-008-9103-8

[22] André Platzer. 2010. Differential-algebraic Dynamic Logic for
Differential-algebraic Programs. J. Log. Comput. 20, 1 (2010), 309–352.
https://doi.org/10.1093/logcom/exn070 Advance Access published on
November 18, 2008.

[23] André Platzer. 2017. A complete uniform substitution calculus for
differential dynamic logic. Journal of Automated Reasoning 59, 2 (2017),
219–265. https://doi.org/10.1007/s10817-016-9385-1

[24] André Platzer. 2018. Logical Foundations of Cyber-Physical Systems.
Springer, Cham. https://doi.org/10.1007/978-3-319-63588-0

[25] André Platzer and Jan-David Quesel. 2008. KeYmaera: A hybrid
theorem prover for hybrid systems (system description). In Interna-
tional Joint Conference on Automated Reasoning. Springer, 171–178.
https://doi.org/10.1007/978-3-540-71070-7_15

[26] André Platzer and Jan-David Quesel. 2009. European Train Con-
trol System: A Case Study in Formal Verification. In ICFEM (LNCS,
Vol. 5885), Karin Breitman and Ana Cavalcanti (Eds.). Springer, 246–265.
https://doi.org/10.1007/978-3-642-10373-5_13

[27] Jan-David Quesel, Stefan Mitsch, Sarah Loos, Nikos Aréchiga, and
André Platzer. 2016. How to model and prove hybrid systems with
KeYmaera: a tutorial on safety. International Journal on Software Tools
for Technology Transfer 18, 1 (2016), 67–91. https://doi.org/10.1007/
s10009-015-0367-0

[28] J Tanner Slagel, Lauren White, and Aaron Dutle. 2021. Formal verifica-
tion of semi-algebraic sets and real analytic functions. In Proceedings of
the 10th ACM SIGPLAN International Conference on Certified Programs
and Proofs. 278–290. https://doi.org/10.1145/3437992.3439933

[29] Georg Struth. 2021. Hybrid Systems Verification with Isabelle/HOL:
Simpler Syntax, Better Models, Faster Proofs. In Formal Methods: 24th
International Symposium, FM 2021, Virtual Event, November 20-26, 2021,
Proceedings, Vol. 13047. Springer Nature, 367. https://doi.org/10.1007/
978-3-030-90870-6_20

[30] Hannah S Walsh, Eleni Spirakis, Sequoia R Andrade, Daniel E Hulse,
and Misty D Davies. 2020. SMARt-STEReO: Preliminary concept of oper-
ations. Technical Report. https://ntrs.nasa.gov/citations/20205007665

https://doi.org/10.1109/ICECCS.2001.930163
https://doi.org/10.1109/ICECCS.2001.930163
https://doi.org/10.1109/ICUAS48674.2020.9213973
https://doi.org/10.1109/ICUAS.2018.8453460
https://doi.org/10.1109/ICUAS.2018.8453460
https://doi.org/10.1145/3018610.3018616
https://doi.org/10.1109/tc.2008.213
https://oatao.univ-toulouse.fr/28190/1/Dupont_Guillaume.pdf
https://oatao.univ-toulouse.fr/28190/1/Dupont_Guillaume.pdf
https://doi.org/10.1007/978-3-319-21401-6_36
https://etheses.whiterose.ac.uk/28886/
https://doi.org/10.1007/978-3-030-02149-8_14
https://doi.org/10.1007/s10817-021-09607-x
https://doi.org/10.1007/s10817-021-09607-x
https://doi.org/10.1007/s10009-016-0434-1
https://doi.org/10.1145/2461328.2461369
https://doi.org/10.4204/EPTCS.310.5
https://doi.org/10.4204/EPTCS.310.5
https://doi.org/10.1177/0278364917733549
https://doi.org/10.1177/0278364917733549
https://doi.org/10.1007/978-3-319-22102-1_20
https://doi.org/10.1007/978-3-319-22102-1_20
https://doi.org/10.1007/s10817-012-9256-3
https://doi.org/10.1007/s10817-012-9256-3
https://doi.org/10.1007/978-3-642-54108-7_17
https://doi.org/10.1007/978-3-642-54108-7_17
https://doi.org/10.1007/978-3-642-54108-7_17
https://doi.org/10.1007/s10817-015-9320-x
https://doi.org/10.1007/3-540-55602-8_217
https://doi.org/10.1007/s10817-008-9103-8
https://doi.org/10.1007/s10817-008-9103-8
https://doi.org/10.1093/logcom/exn070
https://doi.org/10.1007/s10817-016-9385-1
https://doi.org/10.1007/978-3-319-63588-0
https://doi.org/10.1007/978-3-540-71070-7_15
https://doi.org/10.1007/978-3-642-10373-5_13
https://doi.org/10.1007/s10009-015-0367-0
https://doi.org/10.1007/s10009-015-0367-0
https://doi.org/10.1145/3437992.3439933
https://doi.org/10.1007/978-3-030-90870-6_20
https://doi.org/10.1007/978-3-030-90870-6_20
https://ntrs.nasa.gov/citations/20205007665

	Abstract
	1 Introduction
	2 Prototype Verification System
	3 Differential Dynamic Logic
	3.1 Hybrid Programs
	3.2 Differential Logic
	3.3 Deduction Rules

	4 Embedding dL in PVS
	4.1 Hybrid Programs
	4.2 Basics of dL in PVS
	4.3 Rules of dL in PVS
	4.4 Extensions of dL in PVS

	5 Using dL-PVS
	5.1 Implementation of dL rules as strategies
	5.2 dL-PVS in Visual Studio Code

	6 Conclusions and Future Work
	Acknowledgments
	References

