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Abstract

This paper presents an introduction to capturing software requirements in the PVS formal language.

The object of study is a simplified digital autopilot that was motivated in part by the mode control

panel of NASA Langley's Boeing 737 research aircraft. The paper first presents the requirements

for this autopilot in English and then steps the reader through a translation of these requirements

into formal mathematics. Along the way deficiencies in the English specification are noted and

repaired. Once completed, the formal PVS requirement is analyzed using the PVS theorem prover.

and shown to maintain an invariant over its state space.
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1 Introduction

In this paper, the process of translating requirements into a formal language will be explored.

The chosen target specification language is SRI International's PVS Language[10], however, the

modeling techniques used in this paper can be used with other formal specification languages that

are based upon higher-order logic. The exposition is centered around the analysis of a simple

autopilot that is somewhat related to a early Boeing-737 autopilot. The requirements for this

autopilot are first given in English and then translated in a step-by-step manner into PVS. This

"requirements capture" process is discussed in detail.

All of the PVS language features that are used are explained thoroughly to make the paper

self-contained. More detailed information about PVS can be obtained from [9, 8, 14]. Also, several

tutorial introductions to PVS are available [6, 3, 16, 4, 11, 15].

2 Example Application

The techniques of formal specification and verification of an avionics subsystem will be demon-

strated on a very simplified example of a mode-control panel. An informal, English-language spec-

ification of the mode-control panel representative of what software developers typically encounter

in practice will be presented. The process of clarifying and formalizing the English specification

into a formal specification, often referred to as requirements capture, will then be illustrated.

2.1 English Specification of the Example System

This section presents the informal, English-language specification of the example system. The En-

glish specification is annotated with section numbers to facilitate references back to the specification
in later sections.

1. The mode-control panel contains four buttons for selecting modes and three displays for

dialing in or displaying values, as shown in Figure 1. The system supports the following four
modes:

attitude control wheel steering (azz_cws)

flight path angle selected (fpa_sel)

altitude engage (alz_eng)

calibrated air speed (cas_eng)

Only one of the first three modes can be engaged at any time. However, the cas_eng mode

can be engaged at the same time as any of the other modes. The pilot engages a mode by pressing

the corresponding button on the panel. One of the three modes, atz_cws, fpa_sel, or alz_eng,
should be engaged at all times. Engaging any of the first three modes will automatically cause the

other two to be disengaged since only one of these three modes can be engaged at a time.

2. There are three displays on the panel: and altitude [ALT], flight path angle [FPA], and

calibrated air speed [CAS]. The displays usually show the current values for the altitude, flight

path angle, and air speed of the aircraft. However, the pilot can enter a new value into a display by

dialing in the value using the knob next to the display. This is the target or "pre-selected" value

that the pilot wishes the aircraft to attain. For example, if the pilot wishes to climb to 25,000 feet,

he will dial 25,000 into the altitude display window and then press the alz_eng button to engage
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Figure 1: Mode Control Panel

the altitude mode. Once the target value is achieved or the mode is disengaged, the display reverts

to showing the "current" value.

3. If the pilot dials in an altitude that is more than 1,200 feet above the current altitude and

then presses the alZ_eng button, the altitude mode will not directly engage. Instead, the altitude

engage mode will change to "armed" and the flight-path angle select mode is engaged. The pilot

must then dial in a flight-path angle for the flight-control system to follow until the aircraft attains

the desired altitude. The flight-path angle select mode will remain engaged until the aircraft is

within 1,200 feet of the desired altitude, then the altitude engage mode is automatically engaged.

4. The calibrated air speed and the flight-path angle values need not be pre-selected before the

corresponding modes are engaged--the current values displayed will be used. The pilot can dial-in

a different target value after the mode is engaged. However, the altitude must be pre-selected

before the altitude engage button is pressed. Otherwise, the command is ignored.

5. The calibrated air speed and flight-path angle buttons toggle on and off every time they are

pressed. For example, if the calibrated air speed button is pressed while the system is already in

calibrated air speed mode_ that mode will be disengaged. However, if the attitude control wheel

steering button is pressed while the attitude control wheel steering mode is already engaged, the

button is ignored. Likewise, pressing the altitude engage button while the system is already in
altitude engage mode has no effect.

Because of space limitations, only the mode-control panel interface itself will be modeled in this

example. The specification will only include a simple set of commands the pilot can enter plus the



functionalityneededto support modeswitchingand displays.The actual commandsthat would
be transmittedto the flight-controlcomputerto maintainmodes,etc., arenot modeled.

2.2 Formally Specifying the Example System

In this section, we will describe the process of formally specifying the mode-control panel described

in English in the previous section. Quotes cited from the English specification will be annotated

with the corresponding section number in parentheses. The goal is to completely describe the

system requirements in a mathematical notation, yet not overly constrain the implementation.

This system collects inputs from the pilot and maintains the set of modes that are currently

active. Thus, it is appropriate to model the system as a state machine. The state of the machine

will include the set of modes that are active, and the pilot inputs will be modeled as events that

transition the system from the current state (So) to a new state (Sn):

Figure 2: State transition function

The arrow represents a transition function, nextstate, which is a function of the current state

and an event, say ev:

Sn = nextstate(Sc, ev).

The goal of the formal specification process is to provide an unambiguous elaboration of the

nexts'cate function. This definition must be complete; i.e., it must provide a next state for all

possible events and all possible states. Thus, the first step is to elaborate all possible events and

the content of the state of the machine. The system will be specified using the PVS specification

language [12, 16, 14, 8].

2.3 Events

The pilot interacts with the mode-control panel by pressing the mode buttons and by dialing pre-

selected values into the display. The pilot actions of pressing one of the four buttons will be named

as follows: press_att_cws, press_cas_eng, press_alt_eng, and press_fpa_sel. The actions of

dialing a value into a display will be named as follows: input_alz, input_fpa, and input_cas.

The behavior of the mode-control panel also depends upon the following inputs it receives from

sensors: al_c_reached, fpa_reached, and alt_gets_near. In PVS, the set of events are specified

as follows:

events: TYPE = { press_att_cws, press_cas_eng, press_alt_eng,

press_fpa_sel, input_alt, input_fpa, input_cas,

alt_reached, alt_gets_near, fpa_reached }

3



2.4 State Description

The state of a system is a collection of attributes that represents the system's operation. In the

example system, the set of active modes would certainly be a part of the system state. Also, the

values in the displays that show altitude, flight-path-angle and air-speed and the readings from

the airplane sensors would be included in the state. It is important to find a set of attributes

that enable a full description of the system behavior and an efficient method of representing these
attributes.

One possible approach to describing the system state for the example is to use a set to delineate

which modes are active. For example, { att_cws, cas_eng } would represent the state of the system

where both att_cws and cas_eng are engaged but alt_eng and fpa_sel are not engaged. The

alt_eng mode has the additional capability of being armed. Thus, a better approach to describing

the example system state is to associate with each mode one of the following values: off, armed,

or engaged. In PVS, a type or domain can be defined with these values:

mode_status: TYPE = {off, armed, engaged}

The state descriptor is as follows:

[# Y.RECORD

att_cws : mode_status,

cas_eng: mode_status,

fpa_sel : mode_status,
alt_eng: mode_status,
#3 Y.END

For example, the record

[att_cws=engaged, cas_eng=engaged, fpa_selffioff,alt_eng=off]

would indicatea system where both att_cws and cas_eng are engaged whilefpa_sel and alt_eng

are off. However, there isstilla problem with the statedescriptor.In the example system only

alt_eng can be armed. Thus, more restrictivedomains are needed for the modes other than

alt_eng. This can be accomplished by definingthe followingsub-type ofmode_status:

off_eng: TYPE = {mode: mode_status J mode = off 0R mode = engaged }

Thus, the type off_eng has two values:off and engaged. The statedescriptoristhus modified
to become:

[# Y.RECORD

att_cws : off_eng,
cas_eng : off_eng,

fpa_sel : off_eng,
alt_eng : mode_status
#] Y,END

The mode panel also maintains the state of the displays. To simplify the example, the actual

values in the displays will not be represented. Instead, the state descriptor will only keep track of

whether the value is a pre-selected value or the actual value read from a sensor. Thus, the following
type is added to the formalism:



disp_status: TYPE = {pre_selected, current }

and three additional fields are added to the state descriptor:

alt_disp: disp_status

fpa_disp: disp_status

cas_disp: disp_status

The behavior of the mode-control panel does not depend upon the actual va/ue of "altitude"

but rather on the relationship between the actual value and the pre-selected value in the display.

The following "values" of altitude are sufficient to model this behavior:

altitude_vals: TYPE = { away, near_pre_selected, at_pre_selected },

and the following is added to the state descriptor:

altitude: altitude_vals.

The final state descriptor is:

states: TYPE=[# X RECOKD

att_cws: off_eng,

cas_eng: off_eng,

fpa_sel: off_eng,

alt_eng: mode_status,

alt_disp: disp_status,

fpa_disp: disp_status,

cas_disp: disp_status,
altitude: altitude_vals

#] END

2.5 Formal Specification of nextstate Function

Once the state descriptor is defined, the next step is to define a function to describe the system's

operation in terms of state transitions. The nextstate function can be defined in terms of ten

sub-functions, one for each event, as foHows:

event: YAK events

st: VAK states

nextstate(st,event): states =

CASES event OF

press_att_cws:

press_alt_eng:

press_fpa_sel:

press_cas_eng:

input_alt

input_fpa

input_cas
alt_reached :

fpa_reached :

alt_gets_near:
ENDCASES

tran_att_cws(st),

tran_alt_eng(st),

tran_fpa_sel(st),

tran_cas_eng(st),

tran_input_alt(st),

tran_input_fpa(st),

tran_input_cas(st),

tran_alt_reached(st),

tran_fpa_reached(st),

tran_alt_gets_near(st)



The CASES statement is equivalent to an IF-THEN-ELSIF-ELSE construct. For example, if the

event is press_fpa_sel then nextszate(sz,event) = tran_fpa_sel(st). The next step is to
define each of these subfunctions.

2.5.1 Specifying the att_cws Mode

The tran_att_cws function describes what happens to the system when the pilot presses the

att_cws button. This must be specified in a manner that covers all possible states of the system.

According to the English specification, the action of pressing this button attempts to engage this

mode if it is off. Changing the att_cws field to engaged is specified as follows:

st WITH [att_cws := engaged].

The WITH statement is used to alter a record in PVS. This expression produces a new record

that is identical to the original record st in every field except att_cws. Of course, this is not all

that happens in the system. The English specification also states that, "Only one of the [ att_cws,

fpa_sel, or cas_eng] modes can be engaged at any time" (1). Thus, the other modes must become

something other than engaged. It is assumed that this means they are turned off. This would be
indicated as:

st WITH [att_cws := engaged, fpa_sel := off,

alt_eng := off].

The English specification also states that when a mode is disengaged, "...the display reverts to

showing the 'current' value" (2):

st WITH [att_cws :: engaged, fpa_sel :: off,

alt_eng :: off, alt_disp :: current,
fpa_disp := current].

Also, the English specification says that, "...if the attitude control wheel steering button is pressed

while the attitude control wheel steering mode is already engaged, the button is ignored" (5). Thus,
the full definition is:

tran_att_cws(st): states =

IF att_cws(st) = off THEN

st WITH [att_cws := engaged, fpa_sel := off,

alt_eng := off, alt_disp := current,

fpa_disp := current]
ELSE st XX IGNORE: state is not altered at all
ENDIF

The formal specification has elaborated exactly what the new state will be. The English spec-

ification does not address what happens to the ALT display or the FPA display when they are

pre-selected and the corresponding mode is not currently engaged. The English specification only

covers the situation where the corresponding mode is engaged. However, the formal specification

does explicitly indicate what will happen: the displays are returned to showing the current value.

The process of developing a complete mathematical specification often leads to the discovery of



ambiguitiesin the Englishspecification.In a realsystemdesignprocess,the developerwouldcom-
municatewith the systemdesignersto clarify what behaviorswereintendedfor thesecases.The
clarificationsfrom the systemdesignerswould thenbe incorporatedinto the formal specification
and a/soclarifiedin the accompanyingEnglishsystemdescription.If, for example,the systemde-
signersrespondedthat the pre-selecteddisplaysshouldonly remainthe sameif the corresponding
modeis off, the followingspecificationwouldbeappropriate:

tran_att_cws(st): states =

IF att_cws(st) = off THEN

st WITH [a%%_cws

alt_eng

alt_disp

fpa_disp

]
ELSE st _ IGNORE:

ENDIF

:= engaged, fpa_sel := off,

:= off,

:= IF alt_eng(st) = off THEN alt_disp(st)
ELSE current ENDIF

:= IF fpa_sel(st) = off THEN fpa_disp(st)
ELSE current ENDIF

state is not altered at all

We realize that this situation will arise in several other situations as well. In particular, when-

ever a mode (other than cas_eng) becomes engaged, should amy other "pre_selected" displays be

changed to current or should they remain pre_selected? We decide to consult the system design-

ers. They agreed that the displays should be returned to current and suggested that the following

be added to the English specification

6. Whenever a mode other than cas_eng is engaged, all other pre-selected displays

should be returned to current.

We have labeled this as requirement 6.

2.5.2 Specifying the cas_eng Mode

The tran_cas_eng function describes what happens to the system when the pilot presses the

cas_eng button. This is the easiest mode to specify because its behavior is completely independent

of the other modes. Pressing the cas_eng button merely toggles this mode on and off. The complete

function is:

tran_cas_eng(st): states =

IF cas_eng(st) = off THEN

st WITH [cas_eng := engaged]
ELSE

st WITH [cas_eng := off, disp_cas := current]
ENDIF

This specification states that if the cas_eng mode is currently off, pressing the button will engage

the mode. If the mode is engaged, pressing the button will turn the mode off. Thus, the button

acts like a switch. When cas_eng is disengaged the corresponding display, disp_cas, is returned

to current.



2.5.3 Specifying the fpa_sel Mode

The tran_fpa_sel function describes the behavior of the system when the fpa_sel button is

pressed. The English specification states that this mode "need not be pre-selected (4)". Thus,
whether the FPA display is pre-selected or not the outcome is the same:

IF fpa_sel(st) = off THEN

st WITH [fpa_sel := engaged, att_cws := off,

alt_eng := off, alt_disp := current]

Note that the fpa_sel mode engaged and the att_cws and alt_eng are turned off as well. This

was included because the English specification states that, "Engaging any of the first three modes

will automatically cause the other two to be disengaged" (1). Also note that this specification

indicates that alt_disp is set to current because the alt_eng mode has been disengaged. This

was done because the English specification states that, "Once the target value is achieved or the

mode is disengaged, the display reverts to showing the 'current' value" (2). If the alt_eng mode is

not currently active, the WITH update does not actually change the value, but merely updates that

attribute to the value it already holds.

Since PVS requires that functions be completely defined, we must also cover the case where

fpa_sel is already engaged. We consult the English specification and find The calibrated air speed

and fiight-path angle buttons toggle on and off every time they are pressed. (5). We interpret

this to mean that if the fpa_sel button is pressed while it is currently engaged, the mode will be

turned off. This is specified as follows:

st WITH [fpa_sel := off, fpa_disp := current]

Because the mode is disengaged, the corresponding display is returned to current. We realize that

we also must cover the situation where the alt_eng mode is armed and the fpa_sel is engaged.

In fact, section (3) of the English specification indicates that this will occur when one presses the

alt_eng button and the airplane is far away from the pre-selected altitude. However, Section (3)

does not tell is whether the disengagement of fpa_sel will also disengage the armed alt_eng mode.

We decide to consult the system designers. They inform us that pressing the fpa_sel button should

turn off both the fpa_sel and alt_eng mode in this situation. Thus, we modify the state update
statement as follows:

s% WITH [fpa_sel := off, alt_eng := off,

fpa_disp := current, alt_disp := current]

The complete specification is thus:

IF fpa_sel(st) = off THEN

st WITH [fpa_sel := engaged, att_cws := off,

alt_eng := off, alt_disp := current]
ELSE

st WITH [fpa_sel := off, fpa_disp := current,

alt_eng := off, alt_disp := current]
ENDIF

The perspicacious reader may have noticed that there is a mistake in this formal specification.

The rest of us will discover it when a proof is attempted using a theorem prover in the later section

entitled, "Formal Verification of the Example System."
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2.5.4 Specifying the alt_eng Mode

The alt_eng mode is used to capture a specified altitude and hold it. This is clearly the most

difficult of the four to specify since it has a complicated interaction with the fpa_sel mode.

The English specification states that, "The Mtitude must be pre-selected before the altitude

engage button is pressed" (4). This is interpreted to mean that the command is simply ignored if

an altitude has not been pre-selected. Consequently, the specification of tran_alt_eng begins:

tran_alt_eng(st) : states =

IF alt_disp(st) = pre_selected THEN

ELSE 7. IGNORE command

ENDIF

This specifies that the system state will change as a result of pressing the alt_eng button only if

the alt_disp ispre_selected.

We must now proceed to specify the behavior when the IF expression is true. The English

specification indicates that if the aircraft is more than 1,200 feet from the target altitude, this

request will be put on hold (the mode is said to be armed) and the fpa_sel mode will be engaged

instead. The English specification also says that, "The pilot must then dial in a flight-path angle

at this point" (3). The question arises whether the fpa_sel engagement should be delayed until

this is done. Another part of the English specification offers a clue, "The calibrated air speed

and flight-path angle values need not be pre-selected before the corresponding modes are engaged"

(4). Although this specifically addresses the case of pressing the fpa_sel button and not the

situation where the alt_eng button indirectly turns this mode on, we suspect that the behavior is

the same. Nevertheless, we decide to check with the system designers to make sure. The system

designers explain that this is the correct interpretation and that this is the reason the mode is

called "flight-path angle select" rather than "flight-path angle engage."

The behavior must be specified for the two situations: when the airplane is near the target and

when it is not. There are several ways to specify this behavior. One way is for the state specification

to contain the current altitude in addition to the target altitude. This could be included in the

state vector as two numbers:

target_altitude : number
actual_altitude : number

The first number contains the value dialed in and the second the value last measured by a sensor.

The specification would then contain:

IF abs(target_altitude - actual_altitude) > 1200 THEN

where abs is the absolute value function. If the behavior of the mode-control panel were dependent

upon the target and actual altitudes in a multitude of ways, this would probably be the proper

approach. However, in the example system the behavior is only dependent upon the relation of the

two values to each other. Therefore, another way to specify this behavior is by abstracting away

the details of the particular values and only storing information about their relative values in the

state descriptor record. In particular, the altitude field of the state record can take on one of the

following three values:

away the pre-selected value is > 1,200 feet away

near_pre_selected the pre-selected value is <= 1,200 feet away

at_pre_selected the pre-selected value = the actual altitude

9



The twodifferentsituationscanthenbe distinguishedasfollows:

IF altitude(st) /= away THEN

When the value is not away, the alt_eng mode is immediately engaged. This is specified as follows:

IF altitude(st) /= away THEN

st WITH [alt_eng := engaged, att_cws := off,

fpa_sel := off, fpa_disp := current]

Note that not only is the alt_eng mode engaged, but this specification indicates that several

other modes are affected as well. This was done because the English specification states that,

"Engaging any of the first three modes will automatically cause the other two to be disengaged"

(1). Thus, both att_cws and fpa_sel are turned off when alt_eng is engaged. This specification

also returns the FPA display to current as required in the English specification "Once the target

value is achieved or the mode is disengaged, the display reverts to showing the 'current' value."

(2).

Now the behavior of the system must be specified for the other situation, when the aircraft is

away from the target altitude. In this case fpa_sel is engaged and alt_eng is armed:

ELSE

st WITH [fpa_sel := engaged, att_cws := off,

alt_eng := armed]

As before, the azz_cws mode is also turned off.

So far we have not considered whether the behavior of the system should be different if the

alt_eng mode is already armed or engaged The English specification states that, "Pressing the

altitude engage button while the system is already in altitude engage mode has no effect" (5).

However, there is no information about what will happen if the mode is armed. Once again, the

system designers are consulted and we are told that the mode-control panel should ignore the

request in this case as well. Thus, the first IF expression should be augmented to include a test of

alt_eng(st) = off:

IF alz_eng(s_) = off AND alt_disp(s_) = pre_selected THEN

and the complete specification of tran_alt_eng becomes:

tran_alZ_eng(st): states =

IF alt_eng(sZ) = off AND alt_disp(st) = pre_selecZed THEN

IF altitude(st) /= away THEN %_ ENGAGED

st WITH [att_cws := off, fpa_sel := off, alt_eng := engaged,
fpa_disp := current]

ELSE _ ARMED

st WITH [att_cws := off, fpa_sel := engaged, alt_eng := armed]
ENDIF

ELSE

st _ IGNORE request
ENDIF

Note that the last ELSE takes care of both the armed and engaged cases.

10



2.5.5 Input To Displays

The next threeeventsthat canoccur in the system are input_air, input_fpa, and input_cas.

These occur when the pilot dials a value into one of the displays. The input_alz event corresponds

to the subfunction of nextstate named tran_input_alt. The obvious thing to do is to set the

appropriate fields as follows:

st WITH [alt_disp := pre_selected]

This is certainly appropriate when alt_eng is off. However, we must carefully consider the

two cases: (1) when the alt_eng mode is armed and (2) when it is engaged. In this case, the pilot

is changing the target value after the alt_eng button has been pressed. The English specification

required that the alt_eng mode be pre_selected before it could become engaged, but did not

rule out the possibilhy that the pilot could change the target value once it was armed or engaged.

We consult the system designers once again. They inform us that entering a new target altitude

value should return the alt_eng mode to off and the pilot must press the alt_eng button again

to re-engage the mode. We add the following to the English specification:

7. If the pilot dials in a new altitude while the alt_eng button is already engaged or

armed, then the alt_eng mode is disengaged and the att_cws mode is engaged. If the

alt_eng mode was armed then the fpa_sel should be disengaged as well.

The reason given by the system designers was that they didn't want the altitude dial to be able

to automatically trigger a new active engagement altitude. They believed it was safer to force the

pilot to press the alt_eng button again in order to change the target altitude.

Thus, the specification of tran_input_alt is:

tran_input_alt(st): states =

IF alt_eng(sZ) = off THEN

st WITH [alt_disp := pre_selected]

ELSIF alt_eng(st) = armed 0R alt_eng(st) = engaged THEN

st WITH [alt_eng := off, alt_disp := pre_selected,

att_cws := engaged,

fpa_sel := off, fpa_disp := current]

ELSE st Z_ no change needed already preselected
ENDIF

The other input event functions are similar:

tran_input_fpa(st): states =

IF fpa_sel(st) = off THEN st WITH
ELSE st

ENDIF

[fpa_disp := pre_selected]

tran_input_cas(st): states =

IF cas_eng(st) = off THEN st WITH
ELSE st

ENDIF

[cas_disp := pre_selected]

Ii



2.5.6 Other Actions

There are other events that are not initiated by the pilot but that still affect the mode-control

panel: changes in the sensor input values. As described previously, rather than including the

specific values of the altitude sensor, the state descriptor only records which of the following is true

of the pre-selected altitude value:

away

near_pre_selected

at_pre_selected

the pre_selected value is > 1,200 feet away

the pre_selected value is <= 1,200 feet away

the pre_selected value = the actual altitude

Events must be defined that correspond to significant changes in the altitude so as to affect the

value of this field in the state. Three such events affect the behavior of the panel:

alt_gets_near

alt_reached

alt_gets_away

the altitude is now near the pre_selected value

but not equal

the altitude reaches the pre_selected value

the altitude is no longer near the pre_selected value

The transition subfunction associated with the first event must consider the case where the

alt_eng mode is armed because the English spec states that " The flight-path angle select mode

will remain engaged until the aircraft is within 1,200 feet of the desired altitude, then the altitude

engage mode is automaticaUy engaged." (3)

tran_alt_gets_near(st): states =

IF alt_eng(st) = armed THEN

st WITH [altitude := near_pre_selected,

alt_eng := engaged,

fpa_sel := off, fpa_disp := current]
ELSE

st WITH [altitude:= near_pre_selected]
ENDIF

The subfunction associated with second event is similar, because we can't rule out the possibility

that the event air_reached may occur without ant_gets_near occurring first:

tran_alt_reached(st): states =

IF alt_eng(st) = armed THEN

st WITH [altitude := at_pre_selected, alt_disp := current,

alt_eng := engaged, fpa_sel := off, fpa_disp := current]
ELSE

st WITH [altitude:= at_pre_selected, alt_disp := current]
ENDIF

Note that in this case, the alt_disp field is returned to current because the English specification

states, "Once the target value is achieved or the mode is disengaged, the display reverts to showing

the 'current' value." (2).

The third event (i.e. air_gets_away) is problematic in some situations. If the alt_eng mode

is engaged, is it even possible for this event to occur? The flight-control system is actively holding

the altitude of the airplane at the pre-selected value. Thus, unless there is some major external
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eventsuchasa wind-shearphenomenon,this shouldneveroccur. Of course,a real systemshould
be able to accommodatesuchunexpectedevents. However,to shortenthis example,it will be
assumedthat suchaneventis impossible,andthusis not includedin the specificationasa possible
event1.

Thereis oneother eventcorrespondingto the flight-path anglebeing reachedfpa_reached.
This eventhasno impacton thebehaviorof the panelother than changingthe statusof the FPA
display.

tran_fpa_reached(st): states = st WITH [fpa_disp := current]

2.6 Initial State

The formal specification must include a description of the state of the system when the mode-

control panel is first powered on. One way to do this would be to define a particular constant, say

st0, that represents the initial state:

stO: states = (# att_cws := engaged, cas_eng := off,

fpa_sel := off, alt_eng := off,

alt_disp := current, fpa_disp := current,

cas_disp := current, altitude := away #)

Alternatively, one could define a predicate (i.e., a function that returns true or false) that

indicates when a state is equivalent to the initial state:

is_initial(st): bool =

att_cws(st) = engaged AND cas_eng(st) = off AND fpa_sel(st) = off

AND alt_eng(st) = off AND alt_disp(st) = current AND

AND fpa_disp(st) = current AND cas_disp(st) = current

Note that this predicate does not specify that the altitude field must have a particular value (e.g.

away) . Thus, this predicate defines an equivalence class of states, not all identical, in which the

system could be initially. This is the more realistic way to specify the initial state since it does not

designate any particular "altitude" value.

2.7 Formal Verification of the Example System

The formal specification of the mode-control panel is complete. But how does the system developer

know that the specification is correct? Unlike the English specification, the formal specification is

known to be detailed and precise. But it could be unambiguously wrong. Since this is a requirements

specification, there is no higher-level specification against which to prove this one. Therefore,

ultimately the developer must rely on human inspection to insure that the formal specification is

"what was intended." Nevertheless, the specification can be analyzed in a formal way. In particular,

the developer can postulate properties that he believes should be true about the system and attempt

to prove that the formal specification satisfies these properties. This process serves to reinforce the

belief that the specification is what was intended. If the specification cannot be proved to meet the

desired properties, the problem in the specification must be found or the property must be modified

1The situation where the alt_eng mode is not engaged or armed is not difficult to specify, but a/so does not add
anything pedagogica/ly significant to the specification.
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until the proof canbecompleted.In either case,the developer'sunderstandingof and confidence
in thesystemis increased.

In the Englishspecificationof the mode-controlpanel,therewereseveralstatementsmadethat
characterizethe overallbehaviorof the system.For example,"Oneof the three modes/at'c_cws,

fpa_sel, or alt_eng] should be engaged at a// times" (1). This statement can be formalized, and

it can be proved that no matter what sequence of events occurs, this will remain true of the system.

Properties such as this are often called system invariants. This particular property is formalized as
follows:

a__cws(s_) = engaged

OR fpa_sel(st) = engaged
OR alt_eng(st) = engaged

Another system invariant can be derived from the English specification: "Only one of the first

three modes/att_cws, fpa_sel, alt_eng] can be engaged at any time" (1). This can be specified

in several ways. One possible way is as follows:

(alt_eng(st) /= engaged OR fpa_sel(st) /= engaged)

AND (a_t_cws(st) = engaged IMPLIES

alt_eng(st) /= engaged AND fpa_sel(s_) /= engaged)

Finally, it would be prudent toinsure that whenever alt_engis armed, that fpa_selis engaged:

(alt_eng(st) = armed IMPLIES fpa_sel(st) = engaged).

All three of these properties can be captured in one predicate (i.e. a function that is true or false)
as follows:

valid_state(st): bool =

(att_¢ws(st) = engaged

OR fpa_sel(st) = engaged

OR alt_eng(st) = engaged)

AND (alt_eng(st) /= engaged OR fpa_sel(st) /= engaged)

AND (att_cws(st) = engaged IMPLIES

alt_eng(st) /= engaged AND fpa_sel(s_) /= engaged)

AND (alt_eng(st) =armed IMPLIES fpa_sel(st) = engaged)

The next step is to prove that this is always true of the system. One way to do this is to prove

that the initial state of the system is valid, and that if the system is in a valid state before an event,

then it is in a valid state after an event, no matter what event occurs. In other words, we must

prove the following two theorems:

initial_good: THEOREM is_initial(st) IMPLIES valid_s_ate(st)

nextsta_e_good: THEOREM valid_state(st) IMPLIES

valid_srate(nextsta_e(st,event))

These two theorems effectively prove by induction that the system can never enter a state that is

not valid. Both of these theorems are proved by the single PVS command GRIND. The PVS system

replays the proofs in 192 secs. on a Sparc 20 with 32 Megabytes of memory. The following proof
reduces the execution time to 57.0 secs:
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llll

(SKOSIMP*)

(EXPAND "nextstate")

(LIFT-IF)

(GROUND)

(("I" (HIDE -1) (GRIND))

("2" (HIDE -i 2) (GRIND))

("3" (HIDE -i 2 3) (GRIND))

("4" (HIDE -1 2 3 4) (GRIND))

("5" (HIDE -I 2 3 4 5) (GRIND))

("6" (HIDE -1 2 3 4 5 6) (GRIND))

("7" (HIDE -1 2 3 4 5 6 7) (GRIND))

("8" (HIDE -1 2 3 4 5 6 7 8) (GRIND))

("9" (HIDE -I 2 3 4 5 6 7 8 9) (GRIND))

("10" (HIDE i 3 4 5 6 7 8 9 10) (GRIND))))

As mentioned earher, the specification of fpa_sel contains an error. On the attempt to prove

the nextstate_good theorem on the erroneous version of fpa_sel described earher, the prover

stops with the following sequent:

nextstate_good :

-1

-2

I
1

2
3
4

fpa_sel(st!l) = engaged

press_fpa_sel?(event!l)

att_cws(st!l) = engaged

alt_eng(st!l) = engaged

press_att_cws?(event!l)

press_alt_eng?(event!1)

The basic idea of a sequent is that one must prove that one of the statements after the ]

is provable from the statements before it. In other words, one must prove:

-1 AND -2 ===> 1 OR 2 OR 3 OR 4

Immediately we see that formulas {3} and {4} are impossible, because press_fpa_sel? (event ! 1)

tells us that event!l = press_fpa_sel and not press_att_cws or press_air_eng. Thus, we

must establish {1} or {2}. However, this is impossible. But, there is nothing in this sequent to

require that att_cws(st!l) = engaged or alt_eng(st! 1) = engaged. Thus, it is obvious at this

point that something is wrong with the specification or the proof. It is clear that the difficulty

surrounds the case when the event press_fpa_sel occurs, so we examine tran_fpa_sel more

closely. We realize that the specification should have set att_cws to engaged as well as turning off

the fpa_sel mode and alt_eng mode:

tran_fpa_sel(st): states =

IF fpa_sel(st) = off THEN

st WITH [fpa_sel := engaged, att_cws

alt_disp := current]
ELSE

st WITH [fpa_sel := off, fpa_disp

att_cws := engaged,

alt_eng := off, alt_disp
ENDIF

:= off, alt_eng := off,

:= current,

:= current]
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This modification is necessary because otherwise the system could end up in a state where no

mode was currently active. After making the correction, the proof succeeds.

It should be pointed out that the predicate good must be sufficiently strong to make the induc-

tion go through. Alternatively one can prove theorems of the form:

reachable(st) IMPLIES good(st)

where reachable(st) is a predicate that delineates all states that are reachable from the initial

state. The predicate reachable is typically recursively defined, so the theorem in this form must

be proved by using induction explicitly.

3 A Different Decomposition

Many systems can be specified using the state-machine method illustrated in this chapter. However,

as the state-machine becomes complex, the specification of the state transition functions can become

exceedingly complex. Therefore, many different approaches have been developed to define the state

machine in a manner that is convenient for different applications. Some of the more widely known

are decision tables, decision trees, state-transition diagrams, state-transition matrices, Statecharts,

Superstate and R-nets [7].

Although these methods effectively accomplish the same thing--the delineation of the state

machine--they vary greatly in their input format. Some use graphical notation, some use tables,
and others use language constructs. Some industries have used table-oriented methods because

they believe that they are more readable for specifications that require a large number of pages.
An interesting new approach is being developed by the Naval Research Lab called the Software Cost

Reduction (SCR) method [5]. In the SCR method, a system is a collection of state machines (called
mode classes) operating in parallel. The states of the machines are called modes. The transition

of these state machines can be triggered by mode changes in other machines or by a change in an
input variable.

Some of the above methods decompose the specification by mode rather than by event. This

approach may be easier to comprehend and thus easier to validate by human inspection. To explore

this possibility, the auto-pilot will be re-specified in a manner that treats each mode in isolation.

Rather than decompose the state-transition function into subfunctions according to the triggering

event, we will decompose the function into subfunctions that describe each of the state components
(i.e., buttons, displays, etc.) in isolation from each other:

NEXTSTATE(sZ,evenZ): sZaZes :

st WITH [aZt_cws :: NEXT_ATT_CWS(st,event),

cas_eng := NEXT_CAS_ENG(st,event),
fpa_sel := NEXT_FPA_SEL(st,event),
alt_eng := NEXT_ALT_ENG(st,event),

cas_disp := NEXT_CAS_DISP(sz,evenZ),
fpa_disp := NEXT_FPA_DISP(st,event),

alt_disp := NEXT_ALT_DISP(st,event),
altitude := NEXT_ALTIIqJDE(st,event)]

Each of these subfunctions are then defined by a table. For example, the att_cws mode is defined
as follows:
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att_cws event new mode

off

engaged

press_att_cws

press_pa_el WHEN fpa_sel(s) = engaged

press_alt_eng WHEN alt_eng(s) = armed

press_alt_eng WHEN alt_eng(s) = engaged

ALL others

press_fpa_sel WHEN fpa_sel(s) = engaged

press_alt_eng WHEN alt_disp(s) = pre

AND alt_eng(s) = off

ALL others

engaged

engaged

engaged

engaged

off

off

off

engaged

The first column lists all possible states of att_cws prior to the occurrence of an event. The second

column delineates all of the events which change the state of the att_cws mode. The event can be

simple as in the first row (i.e. press_att_cws) or it may be restricted to trigger a transition only

when the state satisfies the predicate following the WHEN keyword. The third column lists the new

state of the att_cws mode after the occurrence of the event.

A still more compact table can be constructed using the PVS table syntax. Each of the triggering

events are listed as column headers:

The NEXT_ATT_CWS Mode

press_att_cws press_fpa_sel press_alt_eng input_nit ELSE

off engaged

engaged

Pfpa(st) off

engaged Pfpa(st)

Ia/t(st) off

Palt(st) engaged engaged

where

Palt(st) = IF alt_eng(st) = off AND alt_disp(st) = pre_selected

THEN off ELSE engaged ENDIF,

Pfpa(st) = IF fpa_sel(st) = engaged THEN engaged ELSE off ENDIF,

Ialt(s_) = IF alt_eng(st) = armed 0K alt_eng(st) = engaged THEN engaged
ELSE att_cws(st) ENDIF

The special function definitions are necessary when the behavior is dependent upon factors other

than the current event and the current value of the mode being defined. For example, when the

azt_cws behavior is dependent upon the current value of the alt_eng mode. In fact wherever there

is a WHEN clause, a special subfunction will have to be defined. Although this approach is not as

readable as the previous table, it is formalizable within PVS.

To make the tables more compact and usable, the following name changes will be made:
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old name new name

pre_selected
armed

engaged

near_pre_selected

at_pre_selected

press_att_cws

press_cas_eng

pre
arm

eng
near

at

P_cws

P_cas

press_fpa_sel

press_alt_eng

input_alt

input_fpa

input_cas
alt_reached

alt_gets_near

fpa_reached

P_fpa
P_alt

I_alt

I_fpa
I_cas

alt_re

alt_ne

fpa_re

3.1 Re-specifying the Autopilot in a Mode Decomposition Style

Using this approach, all of the modes can be defined:

The NEXT_ATT_CWS Mode

II P_cws P_fpa

off eng Pfpa(st)

eng eng Pfpa(st)

where

P_alt

off

Palt(st)

I_alt I ELSE

Ialt(st) off

eng eng

Palt(st) = IF alt_eng(st) = off AND alt_disp(s_) = pre_sel THEN off ENDIF,

Pfpa(st) = IF fpa_sel(st) = eng THEN eng ELSE off ENDIF,

Ialt(st) = IF alt_eng(st) = arm 0R alt_eng(s_) = eng THEN eng
ELSE att_cws(st) ENDIF

The NEXT_CAS_ENG Mode

[ l[ P_cas I I_cas I ELSE

off eng off off

eng off eng eng

The NEXT_FPA_SEL Mode

I II P_cwsIP_fpal
off off eng

eng Pcws(st) off

P_alt I_alt

Palt(st) off

Palt(st) Ialt (st)

I Idpa[

off

eng

where

alt_re altme ELSE

off off off

altr(st) altr(st) eng

18



Pcws(st) = IF att_cws(st) = off THEN off ELSE fpa_sel(st) ENDIF,

Palt(st) = IF alt_eng(st) = off AND alt_disp(st) = pre_sel THEN

IF altitude(st) (st)/= away THEN off

ELSE eng ENDIF,

ELSE fpa_sel(st) ENDIF,

IalZ(sZ) = IF alt_eng(sz) = arm 0R alt_eng(st) = eng THEN off

ELSE fpa_sel(st) ENDIF,

altr(st) = IF alt_eng(st) = arm THEN off

ELSE fpa_sel(st) ENDIF

The NEXT_ALT_ENG Mode

t II e_cws Ie-fp I e_ lt I I_ ltl ELSE
off off off Palt(st) off off

arm Pcws(st) off arm off els(st)

eng Pcws(st) off eng off eng

where

Palt(st) = IF alt_disp(st) = pre_sel THEN

IF altitude(st) /= away THEN eng ELSE arm ENDIF

ELSE alt_eng(st) ENDIF),

els(st) = IF event = alt_ne OR event = alt_re THEN eng

ELSE arm ENDIF,

Pcws(st) = IF art_awe(st) = off THEN off ELSE alt_eng(st) ENDIF

The NEXT_CAS_DISP Mode

] P_cas I_cas ELSE

current current Icas(st) current

pre_sel Pcas(st) Icas(st) pre_sel

where

Pcas(st) = IF cas_eng(st) = eng THEN current

ELSE cas_disp(st) ENDIF,

Icas(st) = IF cas_eng(st) = off THEN pre_sel

ELSE cas_disp(st) ENDIF

The NEXT_FPA_DISP Mode

[ II P_cws

ton,rooti/currentpre_sel Pcws(st)

P_fpa ] P_alt

current ] currentPfpa(st) Pit(st)

I-fpa

Ifpa(st)

Ifpa(st)

fpa_re I I_it

current I currentcurrent Iit(st)

it_re I it_he

current ] currentire(st) ire(st)

ELSE I

current

pre_sel

19



where

Pcws(st) = IF att_cws(st) = off THEN current

ELSE fpa_disp(st) ENDIF,

Pfpa(st) = IF fpa_sel(st) = eng THEN current

ELSE fpa_disp(st) ENDIF,

Palt(st) = IF alt_eng(st) = off AND alt_disp(st) = pre_sel AND
altitude(st) /= away THEN current

ELSE fpa_disp(st) ENDIF,

Ifpa(st) = IF fpa_sel(st) = off THEN pre_sel

ELSE fpa_disp(st) ENDIF,

Ialt(st) = IF alt_eng(st) = arm OR alt_eng(st) = eng THEN

current ELSE fpa_disp(st) ENDIF,

alre(st) = IF alt_eng(st) = arm THEN current

ELSE fpa_disp(st) ENDIF

The NEXT_ALT_DISP Mode

II P_cws
current current

pre_sel Pcws(st)

P_fpa I_alt alt_re ELSE

current Ialt(st) current current

current pre_sel current pre_el

where

Pcws(st) = IF att_cws(st) = off THEN current ELSE alt_disp(st) ENDIF,
Ialt(st) = IF alt_eng(st) = off THEN pre_sel

ELSIF alt_eng(st)(st) = pre THEN alt_disp(st)

ELSE pre_sel ENDIF

The NEXT_ALTITUDE Mode

1 II alt_ne ] alt_re I ELSE

away near at away

near near at near

at near at at

This method of specifying the autopilot can be shown to be equivalent to the former method, as
follows:

test: LEMMA nextstate(st,event) = NEXTSTATE(s_,event)
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3.2 Some Observations About Mode Decomposition

The second method of specifying the autopilot has the advantage that each of the input buttons

and displays are specified separately. Although conceptually this is a reasonable thing to do, it

resulted in a more complex formulation for this example problem. This approach would work nicely

where the interactions between the different modes (buttons and displays) were minimal. However,

in this example, where the interactions were extensive, the resulting tables were complex. The

presence of the extra functions such as Pfpa and Ialt clearly reveal these interactions. One could

argue that it is a good thing for interactions such as these to clutter up the specification because

it will serve as deterrent. But where such interactions are inevitable, this approach may lead to a

more complex presentation.

Another reason that this system may not lend itself well to the mode decomposition style is

that it is largely driven by external commands, i.e. from a pilot, rather that changes in variables

of other state-machines. This type of system is naturally described by enumerating the effect of a

pilot input (such as pressing the a'ct_cws button) on all of the different parts of the system state

in one place:

tran_att_cws(st): states =

IF att_cws(st) = off THEN

st WITH [att_cws := engaged, fpa_sel := off,

alt_eng := off,alt_disp := current,

fpa_disp := current]
ELSE st _ IGNORE: state is not altered at all

ENDIF

The mode-decomposition style approach specifies the result of a pilot input over many ta-

bles. For example, to understand the effect of the pilot pressing the P_cws button, every table

containing a column labeled P_cws must be consulted. This includes the tables for NEXT_hTT_CWS,

NEXT_.FPA_SEL, NEXT_hLT..ENG, NEXT._FPA_.DISPand NEXT..hLT_DISP. Also note that for each of these

tables except NEXT_hTT_CWS, a special function Pcws had to be defined, because the behavior is de-

pendent upon the current value of att_cws(s'c). The mode-decomposition style specification is

also larger--761 words rather than 373 words.

There is another factor that should be considered when making this comparison. Tables such

as these can be used by system engineers and human factors engineers to develop the original

requirements. We performed this exercise assuming that the requirements development phase had

already been completed, and the formalists were merely trying to "capture" these pre-existing

requirements. It may well turn out that the mode-decomposition style tables are more useful

in this type of activity because the expose the complexity in a more explicit manner. Only the

experience of applying these techniques to real systems will reveal the best approach.

It should also be noted that the conclusions of this section are based solely on the experience

from this one example. It is that quite different conclusions will be reached for other problems.

4 Some More Analysis

The previous verification section made the observation that it is necessary that the predicate good

be sufficiently strong in order for the proof to go through. To see this, we will weaken the predicate
as follows:
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good(st): bool = (atz_cws(sZ) = engaged 0R fpa_sel(s%) = engaged

0R alt_eng(s%) = engaged) AND

(alt_eng(s%) /= engaged OR fpa_sel(s%) /= engaged) AND

(att_cws(s%) = engaged IMPLIES

alt_eng(st) /= engaged AND fpa_sel(st) /= engaged)

This causes the proof of nextsZate_good

nextstaZe_good: THEOREM good(st) IMPLIES good(nextstate(st,event))

to terminate as follows:

-1
-2

I
1

armed?(alt_eng(st!l))
engagedT(att_cws(st!l))

engaged?(fpa_sel(st!l))

This sequent is concerned about an "unreachable" state, namely, a state where att_cws and

fpa_sel are engaged and alt_eng is armed. The problem is that the predicate good is no longer

filtering out the non-reachable states. This illustrates why this simple verification approach will

only work when the predicate good is only true for states that are actually reachable from the

initial state via a sequence of nextstate executions.

The following approach is more general:

n: VAR nat

ev: VAR events

psi: VAR states
reachable_in(n,sZ): RECURSIVE bool =

IF n = 0 THEN is_initial(st)
ELSE

(EXISTS psZ,ev: st = nextstate(psz,ev) AND

reachable_in(n-l,pst))
ENDIF MEASURE n

is_reachable(st): bool = (EXISTS n: reachable_in(n,st))

reachable_good: THEOREM is_reachable(st) IMPLIES good(st)

Using this approach, the predicate good can be any desired property and does not have to evaluate

to false for non-reachable states. Sometimes a non-recursive expression (call it reachable?) can
developed that logically follows from is_reachable.

reachable?(s%): bool = (atZ_cws(st) = engaged OR fpa_sel(st) = engaged
0R alt_eng(st) = engaged) AND

(alt_eng(s%) /= engaged 0R fpa_sel(st) /= engaged) AND

(att_cws(s%) = engaged IMPLIES

alt_eng(sZ) /= engaged AND fpa_sel(st) /= engaged) AND

(alt_eng(st) = armed IMPLIES fpa_sel(st) = engaged)

is_reach_implies: LEMMA is_reachable(st) IMPLIES reachable?(s%)
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Theoremsof the form is_reachable(st) IMPLIES good(st) follow triviallyfrom lemmas of the

form reachable? IMPLIES good(st).

Using our new approach, we can establish some additional properties about our specificationin

a straight-forward manner. Accordingly we scrutinize the English specificationfor some additional

global properties to test the formsd specification against. For example, the English specification

"Once the target value is achieved or the mode is disengaged, the display reverts to showing the

"current" value. (2)", leads to the following theorems:

safety1: THEOREM reachable?(sz) AND fpa_sel(st) = engaged AND

fpa_sel(nextstate(st,event)) = off IMPLIES

fpa_disp(nexzstaze(st,event)) = current

safezy2: THEOREM reachable?(st) AND alt_eng(st) = engaged AND

event /= input_alt AND

alt_eng(nextsZaze(sZ,event)) = off IMPLIES

alt_disp(nextstate(st,event)) = current

Note that the safezy2 theorem needs the additional premise that event /= input_air, because

input_air disengages the alt_eng mode but immediately preselects it again.

5 Other Methods

It would be interesting to compare the performance of model-checking techniques against the PVS

command GRIND for problems such as these where there is only a single finite state machine. The

GRIND command appears to be complete for such problems though I imagine that it will quickly

be overcome by computational complexity as the problem size increases. Some of the more widely

known methods are SMV [1], Mur¢ [2] and COSPAN [13]. These require that the state-space of

the machine be finite. Our example specification has a finite state space. However, if the values of

pre-selected and measured altitude had not been abstracted away, the state-space would have been

infinite.

6 Conclusions

The preceding discussion illustrates the process that one goes through in translating an English

specification into a formal one. Although the example system was contrived to demonstrate this

feature, the process demonstrated is typical for realistic systems, and the English specification for

the example is actually more complete than most because the example system is small and simple.

The formal specification process forces one to clearly elaborate the behavior of a system in

detail. Whereas the English specification must be examined in multiple places and interpreted in

order to make a judgment about the desired system's behavior, the formal specification completely

defines the behavior. Thus, the requirements capture process includes making choices about how to

interpret the informal specification. Traditional software development practices force the developer

to make these interpretation choices (consciously or unconsciously) during the process of creating

the design or implementation. Many of the choices are hidden implicitly in the implementation

without being carefully thought out or verified by the system designers, and the interpretations

and clarifications are seldom faithfully recorded in the requirements document. On the other hand,

the formal methods process exposes these ambiguities early in the design process and forces early

and clear decisions, which are fully documented in the formal specification.
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Appendix A: A Graphical View Of State Space

Figure 3 shows a picture of the state space of the auto-pilot with the cas_eng mode excluded. Note

[cws,fpa,alt]

cws

fpa

[O,E,O]

input_alt fpa [O,O,E] _ alt_gets_near

away

[O,E,A]

[O,E,O*]

alt

cws

input_alt

NOOPS: [E,O,O]: alt, cws

[E,O*,O]: cws, input_fpa, alt

[E,O,O*]: cws, input_alt

[E,O*,O*]: cws, input_fpa, input_alt

[O,E,O]: alt, input_fpa

[O,E,O*]: input_fpa, input_alt

[O,E,A]: alt, input_air, input_fpa

[O,O,E]: alt

[O,O*,E]: alt, input_fpa, input_ah

Figure 3: State Space Diagram
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that the state vector is [att_cws ,fpa_sel, alt_eng] and

E = engaged

P = pre-selecZed

A = armed

0 -- off

For example, [E,0 ,0] isthe statewhere att_cws = engaged, fpa_sel = off and alt_eng = off.

An asterisk is placed next to the letter to indicate that the corresponding display has been prese-

lected. For example, [E,0*,0] indicates that the fpa_sel mode is off and the FPA display has

been pre-selected.

Appendix B: Complete Listing of Specification

In these section a complete listing of the specification is given for the Example System.

example can also be retrieved via the internet at

url : hZZp ://atb-www. larc. nasa. gov/fm.html

The listings are included here for easy reference.

defs : THEORY

BEGIN

md_szazus: TYPE = off, armed,

off_eng: TYPE = md: md_stazus

engaged

I md = off OR md =engaged

disp_staZus: TYPE = pre_selected, current

alZitude_vals: TYPE = away, near_pre_selected, at_pre_selected

[# % RECORD

att_cws: off_eng,

cas_eng: off_eng,

fpa_sel: off_eng,

alt_eng: md_status,

alt_disp: disp_status,

fpa_disp: disp_status,

cas_disp: disp_status,

al_itude: altitude_vals

#]

states: TYPE =

This

events: TYPE = press_atZ_cws, press_cas_eng, press_fpa_sel, press_alt_eng,

input_alt, input_fpa, input_cas, alt_reached,

alt_gets_near, fpa_reached

event: VAR events
st: VAR states

nextstaZe(evenZ,sZ): states

END defs
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tran: THEORY
BEGIN

IMPORTINGdefs

event: VARevents
st: VARstates

tran_att_cws(st): states =

IF att_cws(st) = off THEN

st WITH [att_cws := engaged, fpa_sel := off, alZ_eng := off,

alt_disp := current, fpa_disp := current]
ELSE st _ IGNORE

ENDIF

tran_cas_eng(sZ): states =
IF cas_eng(st) = off THEN

st WITH [cas_eng := engaged]
ELSE

sz WITH [cas_eng := off, cas_disp := current]
ENDIF

tran_fpa_sel(st): states =

IF fpa_sel(st) = off THEN

st WITH [fpa_sel := engaged, att_cws := off, alt_eng := off,

alt_disp := current]
ELSE

st WITH [fpa_sel := off, fpa_disp := current,

atz_cws := engaged,

alt_eng := off, alt_disp := current]
ENDIF

tran_alt_eng(s%): states =
IF alZ_eng(sZ) = off AND alZ_disp(s%) = pre_selecZed THEN

IF altitude(st) /= away THEN _ ENG

st WITH [att_cws := off, fpa_sel := off, alt_eng := engaged,

fpa_disp := current]

ELSE _% ARM

st WITH [att_cws := off, fpa_sel := engaged, alZ_eng := armed]
ENDIF

ELSE

st Z_ IGNORE request
ENDIF

tran_input_alt(st): states =
IF alt_eng(st) = off THEN

st WITH [alt_disp := pre_selected]

ELSIF alt_eng(st) = armed 0R alZ_eng(st) = engaged THEN

st WITH [alt_eng := off, alt_disp := pre_selected,

atZ_cws := engaged,

fpa_sel := off, fpa_disp := current]

ELSE st _ no change needed already preselected
ENDIF

%ran_input_fpa(s%): states =
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IF fpa_sel(st) = off THEN st WITH [fpa_disp := pre_selected]
ELSE st

ENDIF

tran_input_cas(st): states =

IF cas_eng(st) = off THEN st WITH [cas_disp := pre_selected]
ELSE st

ENDIF

tran_alt_gets_near(st): states =

IF alt_eng(st) = armed THEN

st WITH [altitude := nsar_pre_selected,

alt_eng := engaged,

fpa_sel := off, fpa_disp := current]
ELSE

st WITH [altitude:= near_pre_selected]
ENDIF

tran_alt_reached(st): states =

IF alt_eng(st) = armed THEN

st WITH [altitude := at_pre_selected, alt_disp := current,

alt_eng := engaged, fpa_sel := off, fpa_disp := current]
ELSE

st WITH [altitude:= at_pre_selected, alt_disp := current]
ENDIF

tran_fpa_reached(st): states = st WITH [fpa_disp := current]

nextstate(st,event): states =

CASES event OF

press_att_cws: tran_att_cws(st),

press_alt_eng: tran_alt_eng(st),

press_fpa_sel: tran_fpa_sel(st),

press_cas_eng: tran_cas_eng(st),

input_alt : tran_input_alt(st),

input_fpa : zran_input_fpa(st),

input_cas : tran_input_cas(st),

alt_reached : tran_alt_reached(st),

fpa_reached : tran_fpa_reached(st),

alt_gets_near: tran_alt_gets_near(st)
ENDCASES

END tram

panel: THEORY
BEGIN

IMPORTING tran

event: VAR events

st: VAR states

stO: states = (#

att_cws := engaged,
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cas_eng := off,

fpa_sel := off,

alt_eng := off,

alt_disp := current,

fpa_disp := current,

cas_disp := current,

altitude := away

#) ;

good(st): bool = (att_cws(st) = engaged OR fpa_sel(st) = engaged

OR alt_eng(st) = engaged) AND

(alt_eng(st) /= engaged OR fpa_sel(st) /= engaged) AND

(att_cws(st) = engaged IMPLIES

alt_eng(st) /= engaged AND fpa_sel(st) /= engaged) AND

(alt_eng(st) = armed IMPLIES fpa_sel(st) = engaged)

is_initial(st): bool = att_cws(st) = engaged

AND cas_eng(st) = off

AND fpa_sel(st) = off

AND alt_eng(st) = off

AND alt_disp(st) = current

AND fpa_disp(st) = current

AND cas_disp(st) = current

stO_good: LEMMA good(stO)

initial_good: THEOREM is_initial(st) IMPLIES good(st)

nextstate_good: THEOREM good(st) IMPLIES good(nextstate(st,event))

nextstate_good2: THEOREM good(st) IMPLIES good(nextstate(st,event))

END panel
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