
NASA Technical Memorandum 108991 (Revised)An Elementary Tutorial on FormalSpeci�cation and Veri�cationUsing PVS 2Ricky W. Butler
September 1993 (revised June 1995)NASANational Aeronautics andSpace AdministrationLangley Research CenterHampton, VA 23681

AbstractThis paper presents a tutorial on the development of a formal speci�cation and its veri�cationusing the Prototype Veri�cation System (PVS). The tutorial presents the formal speci�cationand veri�cation techniques by way of a speci�c example|an airline reservation system. Theairline reservation system is modeled as a simple state machine with two basic operations. Theseoperations are shown to preserve a state invariant using the theorem proving capabilities of PVS.The technique of validating a speci�cation via \putative theorem proving" is also discussed andillustrated in detail. This paper is intended for the novice and assumes only some of the basicconcepts of logic. A complete description of user inputs and the PVS output is provided, andthus it can be e�ectively used while one is sitting at a computer terminal. PVS is free and canbe retrieved via anonymous FTP. For information about how to obtain and install PVS, seeWorld Wide Web at http://www.csl.sri.com/sri-csl-pvs.html.KEY WORDS: formal methods, formal speci�cation, veri�cation & validation,theorem provers, PVS, mechanical veri�cation

Contents1 Introduction 11.1 Some Preliminary Concepts : 11.2 Statement of The Example Problem : 12 Formal Speci�cation of the Reservation System 22.1 Creating Basic TYPE De�nitions : 22.2 Creating a PVS Speci�cation File : 32.3 De�nition of the Reservation System Database : 42.4 Aircraft Seat Layout : 52.5 Specifying Operations on the Database : 62.6 Seat Assignment Operations : 62.7 Specifying Invariants On the State Of the Database : : : : : : : : : : : : : : : : : : 82.8 PVS Typechecking and Typecheck Conditions (TCCs) : : : : : : : : : : : : : : : : : 93 Formal Veri�cations 123.1 Proof that Cancel assn Maintains the Invariant : 133.2 Proof that Make assn Maintains the Invariant : 243.2.1 Proof of MAe : 243.2.2 Proof of MAu : 333.2.3 Proof of Theorem : 443.3 Proof that the Initial State Satis�es the Invariant : 463.4 Proof of one per seat Invariant : 473.5 System Properties and Putative Theorems : 474 Summary 58

i

1 IntroductionThis paper carefully guides the reader through the steps of a formal speci�cation and veri�cationof the requirements for a simple system|an airline reservation system. This paper is intended forthe novice and is tutorial in nature. The goal is to explore a few important techniques and conceptsby way of example rather than to discuss interesting research issues.This tutorial is intended to be used while one is sitting at a computer terminal. Therefore,general discussions are limited to a few introductory comments. However, the commentary aboutthe example problem is extensive. The reader is referred to [1] for a detailed discussion aboutcontemporary issues in formal methods research.This tutorial presents the techniques of formal speci�cation and veri�cation in the contextof the Prototype Veri�cation System (PVS) developed by SRI International [2]. No specializedknowledge of logic or computer science is assumed, though it is necessary for the reader to havethe PVS documentation [3, 4, 5] in order to e�ectively use this tutorial. The tutorial also assumesthat the reader is familiar with Emacs, the text editor the serves as a front-end to the PVS system.This tutorial was revised in June 1995 to conform with the latest version of PVS, PVS version 2.0.PVS is free and can be retrieved via anonymous FTP. For information about how to obtain andinstall PVS, see World Wide Web at http://www.csl.sri.com/sri-csl-pvs.html.1.1 Some Preliminary ConceptsThe requirements speci�cation or high-level design of many systems can be modeled as a statemachine. This involves the introduction of an abstract representation of system state and a set ofoperations that operate on the system state. These operations transition a system from one stateto another in response to external inputs.The development of a state machine representation of the system requires the developmentof a suitable collection of type de�nitions with which to build the state description. Additionaltypes, constants, and functions are introduced as needed to support subsequent formalization of theoperations. Operations on the state are de�ned as functions that take the system from one state toanother or, more generally, as mathematical relations. Many times an invariant to the system stateis provided to formalize the notion of a \well-de�ned" system state. The invariant is shown to holdin the presence of an arbitrary operation on the state assuming that the invariant holds before theoperation begins. Other desired properties may be expressed as predicates over the system stateand operations, and can be proved as putative theorems that follow from the formalization.1.2 Statement of The Example ProblemIn the next sections we will demonstrate some of the techniques of formal speci�cation and veri�ca-tion by way of an example|an automated airline seat assignment system that meets the followinginformal requirements:1. The system shall make seat assignments for passengers on scheduled airline ights.2. The system shall maintain a database of seat assignments.3. The system shall support a eet having di�erent aircraft types.4. Passengers shall be allowed to specify preferences for seat type (e.g., window or aisle).5. The system shall provide the following operations or transactions:1

� Make a new seat assignment� Cancel an existing seat assignmentThis example problem was derived from an Ehdm speci�cation presented by Ben Di Vito at theSecond NASA Formal Methods Workshop [6].2 Formal Speci�cation of the Reservation SystemThis section provides a step-by-step elaboration of the process one goes through in developing aformal speci�cation of the example system. Much of the typing required to carry out this exer-cise can be reduced by retrieving the speci�cations from air16.larc.nasa.gov using anonymousFTP. The speci�cations are located in the directory pub/fm/larc/PVS-tutorial in a �le namedrevised-specs.dmp.2.1 Creating Basic TYPE De�nitionsWe begin our formal speci�cation by creating some names for the objects that our formal speci-�cation will be describing. We obviously will be talking about seats in an airplane and will needa way to identify a particular seat. We decide to represent an airplane's seating structure as atwo-dimensional array of \rows" and \positions". In PVS one writesrow: TYPEposition: TYPEto de�ne the two domains of values. Of course this speci�cation says nothing about what kind ofvalue \row" or \position" could be. We decide to number our rows and positions with positivenatural numbers. This is illustrated in �gure 1. Of course we really don't need an in�nite set of��@@@@����@@@@����@@@@����@@@@����@@@@����@@@@����@@@@����@@@@��@@����@@@@����@@@@����@@,,llll,,,,llll,,,,llll,,ll,,,,llll,,,,llll,,,,llll,,,,llll,,,,llll,,,,llll,,,,llll,,ll,,,,llll,,,,llll,,
nrows

nposits.654321 987654321row position
Figure 1: Model of Seating Arrangement In An Airplanenumbers since we know the largest airplane in our eet, and thus we assume the existence of two2

constants that delineate the maximum number of rows in any airplane and the maximum numberof positions for any row:nrows: posnat % Max number of rowsnposits: posnat % Max number of positions per rowWe now modify our speci�cation of \row" and \position":row: TYPE = {n: posnat | 1 <= n AND n <= nrows}position: TYPE = {n: posnat | 1 <= n AND n <= nposits}This de�nes row and position as subranges of the positive naturals (called posnat in PVS). Thenotation is very simple. The text before the | de�nes the parent type and the text after the | givesa predicate that de�nes the particular subset of the parent type that you are interested in. Thus,row is any positive natural number between 1 and nrows inclusive.2.2 Creating a PVS Speci�cation FileWe now put these together in a �le. We start up PVS and type M-x nf. PVS asks for a name forthe new �le. We answer \basic defs.pvs". PVS creates the following �le:basic_defs % [parameters]: THEORYBEGIN% ASSUMING% assuming declarations% ENDASSUMINGEND basic_defsWe remove all of the text after the % characters, and then add our type de�nitions1:basic_defs: THEORYBEGINnrows: posnat % Max number of rowsnposits: posnat % Max number of positions per rowrow: TYPE = {n: posnat | 1 <= n AND n <= nrows}position: TYPE = {n: posnat | 1 <= n AND n <= nposits}END basic_defsWe now issue the PVS typecheck command, M-x tc. PVS responds \basic defs typecheckedin 3 seconds. No TCCS generated".We now need to de�ne some other types that de�ne the ight number, aircraft type, a positionpreference (e.g. aisle or window) and an identi�er for passengers:1The only remaining keywords are THEORY, which delineates the start of a new module, and the BEGIN ENDkeywords, which surround the body of the speci�cation. 3

flight: TYPE % Flight identifierplane: TYPE % Aircraft typepreference: TYPE % Position preferencepassenger: TYPE % Passenger identifierWe add this text to our �le and typecheck again.2.3 De�nition of the Reservation System DatabaseWe are ready to de�ne the database that will maintain all of the reservations. For each ight, thesystem must maintain a set of seat assignments. We decide to represent each seat assignment as arecord that contains a passenger and his assigned seat. This can be formally represented in PVSusing the record constructor:seat_assignment: TYPE = [# seat: [row, position],pass: passenger #]The seat �eld of the record is of type [row, position], an ordered pair (or 2-tuple) of rowand position. The entire set of seat assignments for a ight can be represented using PVS's setconstructor, set.flight_assignments: TYPE = set[seat_assignment]This de�nes a set type that contains only elements of type seat assignment and assigns it thename flight assignments. Sets are de�ned in the PVS prelude, which can be displayed using theM-x vpf command. The sets module provides de�nitions for the basic set operations. Some ofthese operations are described in table 1.operation traditional notation or meaningmember 2union [intersection \difference nadd add element to a setsingleton constructs set with 1 elementsubset? �emptyset ;Table 1: A partial list of PVS set operationsThe complete ight-reservation database can now be modeled as a mapping from ight identi�erinto that ight's current set of seat assignments:flt_db: TYPE = function[flight -> flight_assignments]This de�nes a type that represents the domain of all possible databases. A particular database canbe represented by declaring a variable of this type:db: VAR flt_db 4

Initially, each ight has no assignments:initial_state(flt: flight): flight_assignments = emptyset[seat_assignment]We add this to our speci�cation and typecheck it.2.4 Aircraft Seat LayoutSince there is a maximum number of rows and seats per row, we must indicate whether a (row,position) pair exists for a given aircraft type. This can be accomplished through use of severalfunctions that are uniquely de�ned for di�erent plane types:seat_exists: function[plane, [row, position] -> bool]meets_pref: function[plane, [row, position], preference -> bool]Since we do not want to restrict our speci�cation to any particular plane type, we do not supplya de�nition (i.e., a function body) for these functions. They are left \uninterpreted." The in-tended meaning of these functions are as follows. The function seat exists is true only when theindicated seat (i.e. [row,position]) is physically present on the indicated airplane. The func-tion meets pref speci�es whether the particular seat is consistent with the particular preferenceindicated. The type of airplane assigned to a particular ight is given by the aircraft function:aircraft: function[flight -> plane]The description of the basic attributes of the system is now complete. The speci�cation is:basic_defs: THEORYBEGINnrows: posnat % Max number of rowsnposits: posnat % Max number of positions per rowrow: TYPE = {n: posnat | 1 <= n AND n <= nrows}position: TYPE = {n: posnat | 1 <= n AND n <= nposits}flight: TYPE % Flight identifierplane: TYPE % Aircraft typepreference: TYPE % Position preferencepassenger: TYPE % Passenger identifierseat_assignment: TYPE = [# seat: [row, position],pass: passenger #]flight_assignments: TYPE = set[seat_assignment]flt_db: TYPE = function[flight -> flight_assignments]initial_state(flt: flight): flight_assignments = emptyset[seat_assignment]% ==5

% Definitions that define attributes of a particular airplane% ==seat_exists: function[plane, [row, position] -> bool]meets_pref: function[plane, [row, position], preference -> bool]aircraft: function[flight -> plane]END basic_defs2.5 Specifying Operations on the DatabaseOur method of formally specifying operations is based on the use of state transition functions. Thefunction de�nes the value of system state after invocation of the operation in terms of the systemstate before the operation is invoked.To produce a modular speci�cation, we will place the operations in a new theory (i.e. a newmodule). This is accomplished in PVS by using the M-x nt command. We issue this commandand name the new theory ops. All of the de�nitions of the basic defs theory are made availableto this theory using the IMPORTING command:ops: THEORYBEGINIMPORTING basic_defsEND ops2.6 Seat Assignment OperationsThe �rst operation that we need is Cancel assn(flt,pas,db), which cancels the seat assignmentfor a passenger, pas, on ight flt in database db:a: VAR seat_assignmentCancel_assn(flt: flight, pas: passenger, db: flt_db): flt_db =db WITH [(flt) := {a | member(a,db(flt)) AND pass(a) /= pas}]The declaration of the function begins with its formal parameter list. Each argument is listed withits type. The return type of the function is given after the parameter list. This speci�cation usesthe PVS WITH construct. The WITH expression is used to de�ne a new function that di�ers fromanother function for a few indicated values. For example, f WITH [(1) := y] is identical to f,except possibly for f(1)2. Thus, all seat assignment sets for ights other than flt are unchanged.For ight flt, however, all assignments on behalf of passenger pas are removed (there should beat most one). As discussed earlier (i.e. see table 1), the function member is de�ned in the setsmodule of the PVS prelude.The second operation is Make assn(flt,pas,pref,db), which makes a seat assignment, ifpossible, for passenger pas on ight flt in database db. There are two conditions that shouldprevent us from carrying out this operation on the reservation database1. when there is no seat available that meets the passenger's speci�ed preference2. when the passenger already has a seat on the plane2The resulting function is not di�erent if f(1) = y. Formally f WITH [(1) := y](x) = IF x = 1 THEN y ELSEf(x) ENDIF 6

Condition (1) can be expressed in PVS as follows:(FORALL seat: meets_pref(aircraft(flt), seat, pref) IMPLIES(EXISTS a: member(a, db(flt)) AND seat(a) = seat)))This states that all seats that meet the passenger's preference (meets pref(aircraft(flt), seat,pref)) are already assigned to another passenger, i.e., there already exists a record a in the databasewith the speci�ed seat. Note that PVS departs from the traditional dot notation (e.g. a.seat)and uses seat(a) to dereference the seat �eld of record a. We can supply a name, pref filledfor this condition as follows:seat: VAR [row,position]pref_filled(db: flt_db, flt: flight, pref: preference): bool =(FORALL seat: meets_pref(aircraft(flt), seat, pref)IMPLIES (EXISTS a: member(a, db(flt)) AND seat(a) = seat))The second condition (i.e., the passenger already has a seat on the plane) can be de�ned as follows:pass_on_flight(pas: passenger, flt: flight, db: flt_db): bool =(EXISTS a: pass(a) = pas AND member(a,db(flt)))We are now ready to de�ne the operation that assigns a passenger to a particular ight,Make assn:Make_assn(flt:flight, pas:passenger, pref:preference, db:flt_db): flt_db =IF pref_filled(db, flt, pref) ORpass_on_flight(pas,flt,db) THEN dbELSE(LET a = (# seat := Next_seat(db,flt,pref), pass := pas #) INdb WITH [(flt) := add(a, db(flt))])ENDIFIn this speci�cation, if either of the two anomalous conditions is true, the database is not changed.The ELSE clause de�nes what happens otherwise. This clause uses PVS's LET construct. TheLET statement allows one to assign a name to a subexpression. This is especially useful when asubexpression is used multiple times in an expression. In our case, the subexpression a only occursonce|in the subexpression add(a, db(flt)), which creates a new set by adding the element a tothe set db(flt). The LET is used here to make the complete expression easier to read. The valueof the LET variable a is de�ned using a record constructor, i.e. (# ... #). In this case, the pass�eld is set equal to the formal parameter pas, and the seat �eld of the record is updated with theresult from another function, Next seat:Next_seat: function[flt_db, flight, preference -> [row,position]]This function selects the next seat to be given a passenger from all of the available seats. Anynumber of algorithms can be imagined that would make this selection, e.g. the seat with the lowestrow and position number available. However, since this is a high-level speci�cation, we decide toleave the particular selection algorithm unspeci�ed. Thus, we do not de�ne a body for this functionand leave it as an uninterpreted function. Nevertheless, we will need a general property about thisfunction in order for one of our proofs to go through3. We de�ne this property with an axiom:3The need for this property was not apparent until the proofs were in progress.7

db: VAR flt_dbflt: VAR flightpref: VAR preferenceNext_seat_ax: AXIOM NOT pref_filled(db, flt, pref) IMPLIESseat_exists(aircraft(flt),Next_seat(db,flt,pref))This axiom states that if a seat is available that matches the speci�ed preference, then the functionNext seat returns a [row, position] that actually exists on the airplane scheduled for ight flt.This axiom makes use of several variables. These will be used in subsequent PVS declarations.Now that we have de�ned the operations, we are faced with the question, \How do we know thatthe operations were speci�ed correctly?" One approach to this problem is to construct \putative"theorems. These are properties about the operations that should be true if we have de�ned themproperly. For example,pas: VAR passengerMake_Cancel: THEOREM NOT pass_on_flight(pas,flt,db) =>Cancel_assn(flt,pas,Make_assn(flt,pas,pref,db)) = dbThis states that if a particular passenger is not already assigned to a ight, then the result ofassigning that passenger to a ight and then canceling his reservation will return the database toits original state4. The process of attempting to prove such theorems can lead to the discovery oferrors in the speci�cation. The proof of this theorem will be given in a later section. Some otherexamples are:Cancel_putative: THEOREMNOT (EXISTS (a: seat_assignment):member(a,Cancel_assn(flt,pas,db)(flt)) AND pass(a) = pas)Make_putative: THEOREM NOT pref_filled(db, flt, pref) =>(EXISTS (x: seat_assignment):member(x, Make_assn(flt, pas, pref, db)(flt)) AND pass(x) = pas)2.7 Specifying Invariants On the State Of the DatabaseThe system state is subject to three types of anomalies:1. Assigning nonexistent seats to passengers2. Assigning multiple seats to a single passenger3. Assigning more than one passenger to a single seatPrevention of anomaly (1) can be formalized as follows:existence(db: flt_db): bool =(FORALL a,flt: member(a, db(flt)) IMPLIESseat_exists(aircraft(flt), seat(a)))Prevention of anomaly (2) can be formalized as follows:4We have used the alternate PVS syntax for logical implies: =>.8

uniqueness(db: flt_db): bool =(FORALL a,b,flt: member(a, db(flt)) AND member(b, db(flt))AND pass(a) = pass(b) IMPLIES a = b)Prevention of anomaly (3) can be formalized as follows:one_per_seat(db: flt_db): bool =(FORALL a,b,flt: member(a, db(flt)) AND member(b, db(flt))AND seat(a) = seat(b) IMPLIES a = b)The overall state invariant is the conjunction of the three. However, in order to simplify the dis-cussion we will work with the �rst two and leave the last invariant as an exercise5. The conjunctionof the �rst two can be captured in a single function as follows:db_invariant(db: flt_db): bool = existence(db) AND uniqueness(db)2.8 PVS Typechecking and Typecheck Conditions (TCCs)We combine the de�nitions for the operations and the invariants in a new theory called ops:ops: THEORYBEGINIMPORTING basic_defsa: VAR seat_assignmentCancel_assn(flt: flight, pas: passenger, db: flt_db): flt_db =db WITH [(flt) := {a | member(a,db(flt)) AND pass(a) /= pas}]seat: VAR [row,position]pref_filled(db: flt_db, flt: flight, pref: preference): bool =(FORALL seat: meets_pref(aircraft(flt), seat, pref)IMPLIES (EXISTS a: member(a, db(flt)) AND seat(a) = seat))pass_on_flight(pas: passenger, flt: flight, db: flt_db): bool =(EXISTS a: pass(a) = pas AND member(a,db(flt)))Next_seat: function[flt_db, flight, preference -> [row,position]]Make_assn(flt:flight, pas:passenger, pref:preference, db:flt_db): flt_db =IF pref_filled(db, flt, pref) ORpass_on_flight(pas,flt,db) THEN dbELSE(LET a = (# seat := Next_seat(db,flt,pref),pass := pas #) INdb WITH [(flt) := add(a, db(flt))])ENDIF5It is the easiest of the three invariants. 9

% ===% Variable Declarations% ===flt: VAR flightpas: VAR passengerdb: VAR flt_dbb: VAR seat_assignmentpref: VAR preferenceNext_seat_ax: AXIOM NOT pref_filled(db, flt, pref) IMPLIESseat_exists(aircraft(flt),Next_seat(db,flt,pref))% ===% Putative Theorems% ===Make_Cancel: THEOREM NOT pass_on_flight(pas,flt,db) =>Cancel_assn(flt,pas,Make_assn(flt,pas,pref,db)) = db% ===% Invariants% ===existence(db: flt_db): bool =(FORALL a,flt: member(a, db(flt)) IMPLIESseat_exists(aircraft(flt), seat(a)))uniqueness(db: flt_db): bool =(FORALL a,b,flt: member(a, db(flt)) AND member(b, db(flt))AND pass(a) = pass(b) IMPLIES a = b)one_per_seat(db: flt_db): bool =(FORALL a,b,flt: member(a, db(flt)) AND member(b, db(flt))AND seat(a) = seat(b) IMPLIES a = b)db_invariant(db: flt_db): bool = existence(db) AND uniqueness(db)% ===% THEOREMS% ===10

Cancel_db_inv: THEOREM db_invariant(db)IMPLIES db_invariant(Cancel_assn(flt,pas,db))MAe: THEOREM existence(db)IMPLIES existence(Make_assn(flt,pas,pref,db))MAu: THEOREM uniqueness(db)IMPLIES uniqueness(Make_assn(flt,pas,pref,db))Make_db_inv: THEOREM db_invariant(db) =>db_invariant(Make_assn(flt,pas,pref,db))initial_state_inv: THEOREM db_invariant(initial_state)When we issue the M-x tc command we notice that the system responds ops typechecked:1 TCCs, 0 Proved, 0 subsumed, 1 unproved. Unlike many high-level programming languages,PVS often requires theorem proving in order to guarantee that the speci�cation is type correct.This is the price one has to pay for the very powerful type structure of the language.M-x show-tccs opens up a window that displays the typecheck obligations:% Existence TCC generated (line 24) for% Next_seat: FUNCTION[flt_db, flight, preference -> [row, position]]%% unfinishedNext_seat_TCC1: OBLIGATION(EXISTS (x: [[flt_db, flight, preference] -> [row, position]]): TRUE);We position the cursor on the �rst obligation and type M-x pr. The PVS system responds byopening up a proof bu�er containing the following output:Next_seat_TCC1 :|-------{1} (EXISTS (x: [[flt_db, flight, preference] -> [row, position]]): TRUE)Rule?The system wants us to prove that there exists a function from the triple [flt_db, flight, preference]to the ordered pair [row, position]. The constant function that returns the ordered pair (1,1)should su�ce, but we have not yet de�ned such a function. Nevertheless, we can introduce anunnamed function using the LAMBDA notation available in PVS:(LAMBDA (x: [flt_db, flight, preference]): (1,1))The LAMBDA keyword merely indicates that a function without a name is being de�ned. Theexpressions immediately after a LAMBDA de�ne the parameters of the function. In this case, there isone parameter x of type [flt_db, flight, preference]. The body of the function follows the\:". In this case the body is (1,1) which is the contant ordered pair that indicates that row = 111

and position = 1. Now to tell the prover to use this function in formula {1}, we use the INSTcommand as follows:Rule? (INST 1 "(LAMBDA (x: [flt_db, flight, preference]): (1,1))")Instantiating the top quantifier in 1 with the terms:(LAMBDA (x: [flt_db, flight, preference]): (1,1)),this yields 2 subgoals:Next_seat_TCC1.1 (TCC):|-------{1} 1 <= npositsThe prover tells us that we now have two subgoals to prove. The �rst one named Next_seat_TCC1.1is displayed for us, Since this is a trivial result that follows directly from the declaration of nposits,we issue an ASSERT command:Rule? (assert)Simplifying, rewriting, and recording with decision procedures,This completes the proof of Next_seat_TCC1.1.Next_seat_TCC1.2 (TCC):|-------{1} 1 <= nrowsThe prover tells us that Next_seat_TCC1.1 is complete and displays the other subgoal. We issueASSERT again, and we receive:Rule? (assert)Simplifying, rewriting, and recording with decision procedures,This completes the proof of Next_seat_TCC1.2.Q.E.D.Run time = 1.77 secs.Real time = 25.04 secs.The prover produces Q.E.D. which informs us that we are done.3 Formal Veri�cationsIn this section we will walk-through the mechanical veri�cation of the invariant properties dis-cussed previously. This will be done using the basic commands of PVS and not the more powerfulstrategies. Although skilled PVS users would not approach the proofs in the manner presented12

here, working through these proofs can be an excellent learning experience for the novice. Once thebasic commands have been mastered, the reader should continue with the following more advancedtutorial that is based upon the same example used in this paper:J. M. Rushby and D. W. J. Stringer-Calvert "A Less Elementary Tutorial for the PVSSpeci�cation and Veri�cation System", SRI International Technical Report CSL-95-10,June 1995.The more advanced tutorial presents proofs of all of the theorems and lemmas using no more thantwo or three PVS commands.To establish that the state invariant is preserved by every operation, we must prove theoremsof the form: I(S1) � I(op spec(S1))where S1 is the state before the operation and I represents the state invariant. Note that op spec(S1)is the state of the system after the operation. For our example, the required theorems can be ex-pressed as follows:Cancel_assn_inv: THEOREM db_invariant(db) =>db_invariant(Cancel_assn(flt,pas,db))Make_assn_inv: THEOREM db_invariant(db) =>db_invariant(Make_assn(flt,pas,pref,db))3.1 Proof that Cancel assn Maintains the InvariantAlthough it is almost always advisable to search for a proof before engaging the theorem prover,the prover can be useful in the discovery of the proof. We shall use this approach on this example,since the theorem is shallow and not hard to understand. This section is meant to guide the PVSnovice through his �rst non-trivial use of the theorem prover. The goal is to gain some familiaritywith the capabilities of the system so that further reading in the user manuals is more productive.The proofs given in this tutorial are by no means the best way of proving these theorems. Theywere performed with the goal of walking the user through a large number of the PVS commands 6.The user begins a proof session by positioning the cursor on a proof and typing M-x pr. Thesystem responds with:Cancel_assn_inv :|-------{1} (FORALL (db: flt_db, flt: flight, pas: passenger):db_invariant(db) IMPLIES db_invariant(Cancel_assn(flt, pas, db)))The user then issues commands that manipulate the formula using truth-preserving operations.The goal, of course, is to simplify the formula to the point where the prover can identify the6All of these theorems can be proved using only a few of the more powerful PVS strategies. SeeJ. M. Rushby and D. W. J. Stringer-Calvert "A Less Elementary Tutorial for the PVS Speci�cationand Veri�cation System", SRI International Technical Report CSL-95-10, June 1995.13

formula as a tautology and thus a theorem. The user input in this paper can be identi�ed by therule? prompt. All of the inputs in this tutorial are only one line. Although PVS allows commandsto be entered in either lower or upper case, we will use upper-case letters exclusively to enhancereadability. However, the PVS language is case-sensitive and thus identi�ers within quotes mustbe the same as they appear in the speci�cation. The abbreviations for the commands (e.g. TABE) are case-sensitive.The �rst thing that one usually does when proving a formula containing quanti�ers (i.e. FORALLSor EXISTS) is to remove them. This is necessary because many of the PVS commands are onlye�ective when the quanti�ers have been removed. There are two basic strategies for removingquanti�ers: skolemization and instantiation. Some situations require skolemization and othersrequire instantiation. In this case we need to skolemize formula [1]7. In PVS this is accomplishedusing the SKOSIMP* command (TAB *):Rule? (SKOSIMP*)Repeatedly Skolemizing and flattening,this simplifies to:Cancel_assn_inv :{-1} db_invariant(db!1)|-------{1} db_invariant(Cancel_assn(flt!1, pas!1, db!1))To save the user from excessive amounts of typing, the PVS system provides abbreviated commands.Thus, the user could have typed TAB * which is the abbreviation for SKOSIMP*. We will follow thecommand name with the abbreviation in parentheses as an aid throughout this paper. Notice thatthe system has replaced the variable db with a new constant db!1. Similarly, the variables pas andflt have been replaced by pas!1 and flt!1, respectively8 .Clearly, no progress can be made until the meaning of db_invariant is exposed to the prover.This is done through use of the EXPAND command (TAB e), i.e. (EXPAND "db_invariant")9. Thesystem responds as follows:Rule? (EXPAND "db_invariant")Expanding the definition of db_invariant,this simplifies to:Cancel_assn_inv :{-1} existence(db!1) AND uniqueness(db!1)|-------{1} existence(Cancel_assn(flt!1, pas!1, db!1))AND uniqueness(Cancel_assn(flt!1, pas!1, db!1))7The basic idea of skolemization is that a formula like 8x : P (x) which asserts the validity of a predicate P for anarbitrary value of x, is equivalent to P (a) where a is a previously unused constant.8This may not have been your �rst choice for names, but it has the advantage that the name of the originalquanti�ed variable is easily retrieved from the skolem name.9The TAB e command is special in that the user moves the cursor to point to an instance of the identi�er that isto be expanded in the current sequent. This is done prior to typing TAB e. This saves the user from having to typein the identi�er. 14

The conjunction in formula {-1} can be broken into two separate formulas with the FLATTENcommand (or TAB f):Rule? (flatten)Applying disjunctive simplification to flatten sequent,this simplifies to:Cancel_assn_inv :{-1} existence(db!1){-2} uniqueness(db!1)|-------[1] existence(Cancel_assn(flt!1, pas!1, db!1))AND uniqueness(Cancel_assn(flt!1, pas!1, db!1))This is a probably a good place to discuss in more detail the nature of a \sequent". The systemhas broken the formula into three separate formulas labeled {-1}, {-2} and [1] separated by ahorizontal line. The basic idea is that all of the formulas labeled with positive numbers logicallyfollow from the formulas labeled with negative numbers. More precisely, the conjunction of theantecedent (i.e. negative) formulas logically implies the disjunction of the consequent (i.e. positive)formulas. The curly braces indicate recently changed formulas whereas the square brackets indicateunchanged formulas. In this instance we have:f�1g ^ f�2g �! [1]We now notice that formula {1} is the conjunction (i.e. AND) of two formulas. In order for theformula to be true, each of these must separately be true. To reduce the amount of text that wehave to think about at one time, it is helpful to break the proof into two separate steps. The PVSsystem lets us do this with the SPLIT command (TAB s):Rule? (SPLIT 1)Splitting conjunctions,this yields 2 subgoals:Cancel_assn_inv.1 :{-1} existence(db!1){-2} uniqueness(db!1)|-------{1} existence(Cancel_assn(flt!1, pas!1, db!1))The \1" in the command indicates that it should only be applied to formula 1. The systemresponds with Splitting conjunctions, this yields 2 subgoals: and presents us with the�rst subgoal.We then proceed to expand with de�nitions of existence and Cancel assn:Rule? (EXPAND "existence")Expanding the definition of existencethis simplifies to:Cancel_db_inv : 15

{-1} (FORALL (a: [# pass: passenger, seat: [row, position] #]), (flt: flight):member(a, db!1(flt)) IMPLIES seat_exists(aircraft(flt), seat(a)))[-2] uniqueness(db!1)|-------{1} (FORALL (a: [# pass: passenger, seat: [row, position] #]), (flt: flight):member(a, Cancel_assn(flt!1, pas!1, db!1)(flt))IMPLIES seat_exists(aircraft(flt), seat(a)))Rule? (EXPAND "Cancel_assn")Expanding the definition of Cancel_assn,this simplifies to:Cancel_assn_inv.1 :[-1] (FORALL (a: [# pass: passenger, seat: [row, position] #]), (flt: flight):member(a, db!1(flt)) IMPLIES seat_exists(aircraft(flt), seat(a)))[-2] uniqueness(db!1)|-------{1} (FORALL (a: [# pass: passenger, seat: [row, position] #]), (flt: flight):member(a,db!1WITH [(flt!1) :={a:[# pass: passenger,seat: [row, position] #]|member(a, db!1(flt!1))AND pass(a) /= pas!1}](flt))IMPLIES seat_exists(aircraft(flt), seat(a)))We note that the function member appears in several places in the formula. Although this functionis de�ned in the PVS prelude10, it must still be expanded in order for PVS to know what it means:Rule? (EXPAND "member")Expanding the definition of member,this simplifies to:Cancel_assn_inv.1 :{-1} (FORALL (a: [# pass: passenger, seat: [row, position] #]), (flt: flight):db!1(flt)(a) IMPLIES seat_exists(aircraft(flt), seat(a)))[-2] uniqueness(db!1)|-------{1} (FORALL (a: [# pass: passenger, seat: [row, position] #]), (flt: flight):db!1WITH [(flt!1) :={a:[# pass: passenger,10This can be inspected by typing M-x vpf or M-x vpt "sets"16

seat: [row, position] #]|db!1(flt!1)(a)AND pass(a) /= pas!1}](flt)(a)IMPLIES seat_exists(aircraft(flt), seat(a)))Notice that member(a,Db(flt)) has been changed to Db(flt)(a). This looks funny at �rst, butit is correct. In PVS, sets are represented as functions that map from the domain type of the setinto boolean11. This boolean-valued function is true only for members of the set, i.e. S(x) is trueif and only if x 2 S.Since the formula {1} once again has a FORALL quanti�er below the line, we issue a SKOSIMP*command (TAB *) to eliminate it:Rule? (SKOSIMP*)Repeatedly Skolemizing and flattening,this simplifies to:Cancel_assn_inv.1 :{-1} db!1WITH [(flt!1) :={a:[# pass: passenger,seat: [row, position] #]|db!1(flt!1)(a)AND pass(a) /= pas!1}](flt!2)(a!1)[-2] (FORALL (a: [# pass: passenger, seat: [row, position] #]), (flt: flight):db!1(flt)(a) IMPLIES seat_exists(aircraft(flt), seat(a)))[-3] uniqueness(db!1)|-------{1} seat_exists(aircraft(flt!2), seat(a!1))The WITH statement in formula {-1} can be reduced to an equivalent IF-THEN-ELSE using a LIFT-IFcommand (TAB l):Rule? (LIFT-IF -1)Lifting IF-conditions to the top level,this simplifies to:Cancel_assn_inv.1 :{-1} IF flt!1 = flt!2THEN({a: [# pass: passenger, seat: [row, position] #]| db!1(flt!1)(a) AND pass(a) /= pas!1})(a!1)ELSE db!1(flt!2)(a!1)11This approach is feasible in a higher-order logic and can be shown to be sound.17

ENDIF[-2] (FORALL (a: [# pass: passenger, seat: [row, position] #]), (flt: flight):db!1(flt)(a) IMPLIES seat_exists(aircraft(flt), seat(a)))[-3] uniqueness(db!1)|-------[1] seat_exists(aircraft(flt!2), seat(a!1))Formula [1] requires us to show that seat(a!1) exists on the aircraft associated with flt!2.Formula [-2] contains the function seat_exists, but it has a FORALL quanti�er. If we substitutea!1 and flt!2 for the universal (i.e. FORALL) variables) it will match [1]. We can make thissubstitution (or instantiation) using the INST command (TAB i):Rule? (INST -2 "a!1" "flt!2")Instantiating the top quantifier in -2 with the terms:a!1, flt!2,this simplifies to:Cancel_assn_inv.1 :[-1] IF flt!1 = flt!2THEN({a: [# pass: passenger, seat: [row, position] #]| db!1(flt!1)(a) AND pass(a) /= pas!1})(a!1)ELSE db!1(flt!2)(a!1)ENDIF{-2} db!1(flt!2)(a!1) IMPLIES seat_exists(aircraft(flt!2), seat(a!1))[-3] uniqueness(db!1)|-------[1] seat_exists(aircraft(flt!2), seat(a!1))Notice that the values to be substituted are enclosed in quotes.We now issue the GROUND command (TAB g). This command invokes the PVS decision proce-dures to analyze the sequent. When there are no quanti�ers left around and the formulas have beenreduced to the point where simple propositional reasoning is adequate, GROUND will automatically�nish o� the proof.Rule? (GROUND)Applying propositional simplification and decision procedures,This completes the proof of Cancel_assn_inv.1.Cancel_assn_inv.2 :[-1] existence(db!1)[-2] uniqueness(db!1)|-------{1} uniqueness(Cancel_assn(flt!1, pas!1, db!1))18

The GROUND command �nishes of the �rst subgoal and the system displays the other subgoal. Aswith the other subgoal we need to expand the de�nitions of Cancel_assn and uniqueness:Rule? (EXPAND "Cancel_assn")Expanding the definition of Cancel_assn,this simplifies to:Cancel_assn_inv.2 :[-1] existence(db!1)[-2] uniqueness(db!1)|-------{1} uniqueness(db!1WITH [(flt!1) :={a:[# pass: passenger,seat: [row, position] #]|member(a, db!1(flt!1))AND pass(a) /= pas!1}])Rule? (EXPAND "uniqueness")Expanding the definition of uniqueness,this simplifies to:Cancel_assn_inv.2 :[-1] existence(db!1){-2} (FORALL (a: [# pass: passenger, seat: [row, position] #]),(b: [# pass: passenger, seat: [row, position] #]), (flt: flight):member(a, db!1(flt)) AND member(b, db!1(flt)) AND pass(a) = pass(b)IMPLIES a = b)|-------{1} (FORALL (a: [# pass: passenger, seat: [row, position] #]),(b: [# pass: passenger, seat: [row, position] #]), (flt: flight):member(a,db!1WITH [(flt!1) :={a:[# pass: passenger,seat: [row, position] #]|member(a, db!1(flt!1))AND pass(a) /= pas!1}](flt))ANDmember(b,db!1WITH [(flt!1) :={a:[# pass: passenger,19

seat: [row, position] #]|member(a, db!1(flt!1))AND pass(a)/= pas!1}](flt))AND pass(a) = pass(b)IMPLIES a = b)We now issue another SKOSIMP* (TAB *) to remove the FORALL in formula [1]:Rule? (SKOSIMP*)Repeatedly Skolemizing and flattening,this simplifies to:Cancel_assn_inv.2 :{-1} member(a!1,db!1WITH [(flt!1) :={a:[# pass: passenger,seat: [row, position] #]|member(a, db!1(flt!1))AND pass(a) /= pas!1}](flt!2)){-2} member(b!1,db!1WITH [(flt!1) :={a:[# pass: passenger,seat: [row, position] #]|member(a, db!1(flt!1))AND pass(a) /= pas!1}](flt!2)){-3} pass(a!1) = pass(b!1)[-4] existence(db!1)[-5] (FORALL (a: [# pass: passenger, seat: [row, position] #]),(b: [# pass: passenger, seat: [row, position] #]), (flt: flight):member(a, db!1(flt)) AND member(b, db!1(flt)) AND pass(a) = pass(b)IMPLIES a = b)|-------{1} a!1 = b!1We need to expand member:Rule? (EXPAND "member")Expanding the definition of member,this simplifies to: 20

Cancel_assn_inv.2 :{-1} db!1WITH [(flt!1) :={a:[# pass: passenger,seat: [row, position] #]|db!1(flt!1)(a)AND pass(a) /= pas!1}](flt!2)(a!1){-2} db!1WITH [(flt!1) :={a:[# pass: passenger,seat: [row, position] #]|db!1(flt!1)(a)AND pass(a) /= pas!1}](flt!2)(b!1)[-3] pass(a!1) = pass(b!1)[-4] existence(db!1){-5} (FORALL (a: [# pass: passenger, seat: [row, position] #]),(b: [# pass: passenger, seat: [row, position] #]), (flt: flight):db!1(flt)(a) AND db!1(flt)(b) AND pass(a) = pass(b) IMPLIES a = b)|-------[1] a!1 = b!1To replace the WITH statements with the corresponding IF-THEN-ELSE statement, we issue aLIFT-IF (TAB l):{-1} IF flt!1 = flt!2THEN({a: [# pass: passenger, seat: [row, position] #]| db!1(flt!1)(a) AND pass(a) /= pas!1})(a!1)ELSE db!1(flt!2)(a!1)ENDIF{-2} IF flt!1 = flt!2THEN({a: [# pass: passenger, seat: [row, position] #]| db!1(flt!1)(a) AND pass(a) /= pas!1})(b!1)ELSE db!1(flt!2)(b!1)ENDIF[-3] pass(a!1) = pass(b!1)[-4] existence(db!1)[-5] (FORALL (a: [# pass: passenger, seat: [row, position] #]),(b: [# pass: passenger, seat: [row, position] #]), (flt: flight):db!1(flt)(a) AND db!1(flt)(b) AND pass(a) = pass(b) IMPLIES a = b)21

|-------[1] a!1 = b!1We see that formula [-5] contains the term a=b. Thus, we want to instantiate the variables a andb with a!1 and b!1. PVS provides a heuristic matching capability that often �nds the substitutionwe want. We decide to try it here. Therefore we issue the INST? (TAB ?) command:Rule? (INST?)Found substitution:b gets b!1,a gets a!1,Instantiating quantified variables,this simplifies to:Cancel_assn_inv.2 :[-1] IF flt!1 = flt!2THEN({a: [# pass: passenger, seat: [row, position] #]| db!1(flt!1)(a) AND pass(a) /= pas!1})(a!1)ELSE db!1(flt!2)(a!1)ENDIF[-2] IF flt!1 = flt!2THEN({a: [# pass: passenger, seat: [row, position] #]| db!1(flt!1)(a) AND pass(a) /= pas!1})(b!1)ELSE db!1(flt!2)(b!1)ENDIF[-3] pass(a!1) = pass(b!1)[-4] existence(db!1){-5} (FORALL (flt: flight):db!1(flt)(a!1) AND db!1(flt)(b!1) AND pass(a!1) = pass(b!1)IMPLIES a!1 = b!1)|-------[1] a!1 = b!1and we see that it gets exactly the substitutions that we desired. Nevertheless, formula [-5] stillcontains a universal quanti�er, so we issue another INST? (TAB ?) command:Rule? (INST?)Found substitution:flt gets flt!2,Instantiating quantified variables,this simplifies to:Cancel_assn_inv.2 :[-1] IF flt!1 = flt!2 22

THEN({a: [# pass: passenger, seat: [row, position] #]| db!1(flt!1)(a) AND pass(a) /= pas!1})(a!1)ELSE db!1(flt!2)(a!1)ENDIF[-2] IF flt!1 = flt!2THEN({a: [# pass: passenger, seat: [row, position] #]| db!1(flt!1)(a) AND pass(a) /= pas!1})(b!1)ELSE db!1(flt!2)(b!1)ENDIF[-3] pass(a!1) = pass(b!1)[-4] existence(db!1){-5} db!1(flt!2)(a!1) AND db!1(flt!2)(b!1) AND pass(a!1) = pass(b!1)IMPLIES a!1 = b!1|-------[1] a!1 = b!1Now we issue the GROUND command (TAB g):Rule? (ground)Applying propositional simplification and decision procedures,This completes the proof of Cancel_assn_inv.2.Q.E.D.Run time = 8.64 secs.Real time = 718.50 secs.Wrote proof file /airlab/home/rwb/fm/pvs/tutorial-reservation-sys/pvs2/ops.prfWith the appearance of \Q.E.D." we know we have succeeded. Using the PVS command M-xedit-proof we can see the total structure of the proof. PVS displays the completed proof asfollows:(""(SKOSIMP*)(EXPAND "db_invariant")(FLATTEN)(SPLIT 1)(("1"(EXPAND "existence")(EXPAND "Cancel_assn")(EXPAND "member")(SKOSIMP*)(LIFT-IF -1)(INST -2 "a!1" "flt!2") 23

(GROUND))("2"(EXPAND "Cancel_assn")(EXPAND "uniqueness")(SKOSIMP*)(EXPAND "member")(LIFT-IF)(INST?)(INST?)(GROUND))))This may be edited and rerun using the C-c C-c command.3.2 Proof that Make assn Maintains the InvariantIn this subsection we will prove the Make assn inv invariant:Make_assn_inv: THEOREM assn_invariant(db) =>assn_invariant(Make_assn(flt,pas,pref,db))However, we will perform the proof in a slightly di�erent manner this time|we will prove two lem-mas before we attack the theorem. We are doing this because we have noticed that assn invariantconsists of two separate properties, existence and uniqueness 12:MAe: THEOREM existence(db)IMPLIES existence(Make_assn(flt,pas,pref,db))MAu: THEOREM uniqueness(db)IMPLIES uniqueness(Make_assn(flt,pas,pref,db))Then, we will prove Make assn inv from these. The order of the proofs is not critical13.3.2.1 Proof of MAeWe begin with MAeMAe :|-------{1} (FORALL (db: flt_db, flt: flight, pas: passenger, pref: preference):existence(db) IMPLIES existence(Make_assn(flt, pas, pref, db)))As in the previous proof, we need to eliminate the universal quanti�er by skolemization:12This is not necessary for this proof, because the same result can be accomplished with SPLIT; however, this willenable us to illustrate the REWRITE command.13However, many times it is valuable �rst to prove that the main theorem follows from the lemmas so that onedoes not prove a useless lemma. 24

Rule? (SKOSIMP*)Repeatedly Skolemizing and flattening,this simplifies to:MAe :{-1} existence(db!1)|-------{1} existence(Make_assn(flt!1, pas!1, pref!1, db!1))Next, we expand the de�nition of existence:Rule? (EXPAND "existence")Expanding the definition of existence,this simplifies to:MAe :{-1} (FORALL (a: [# pass: passenger, seat: [row, position] #]), (flt: flight):member(a, db!1(flt)) IMPLIES seat_exists(aircraft(flt), seat(a)))|-------{1} (FORALL (a: [# pass: passenger, seat: [row, position] #]), (flt: flight):member(a, Make_assn(flt!1, pas!1, pref!1, db!1)(flt))IMPLIES seat_exists(aircraft(flt), seat(a)))We expand the de�nition of Make assn:(expand "Make_assn")Expanding the definition of Make_assn,this simplifies to:MAe :[-1] (FORALL (a: [# pass: passenger, seat: [row, position] #]), (flt: flight):member(a, db!1(flt)) IMPLIES seat_exists(aircraft(flt), seat(a)))|-------{1} (FORALL (a: [# pass: passenger, seat: [row, position] #]), (flt: flight):member(a,IF pref_filled(db!1, flt!1, pref!1)OR pass_on_flight(pas!1, flt!1, db!1) THEN db!1(flt)ELSE db!1WITH [(flt!1) :=add((# seat :=Next_seat(db!1,flt!1, pref!1),pass := pas!1 #),db!1(flt!1))](flt)ENDIF)IMPLIES seat_exists(aircraft(flt), seat(a)))25

In the previous theorem we had to expand member several times. So this time we decide to makethis automatic through use of the AUTO-REWRITE command (TAB A):(AUTO-REWRITE "member")Installing rewrite rule memberInstalling rewrite rule memberInstalling automatic rewrites:memberthis simplifies to:MAe :[-1] (FORALL (a: [# pass: passenger, seat: [row, position] #]), (flt: flight):member(a, db!1(flt)) IMPLIES seat_exists(aircraft(flt), seat(a)))|-------[1] (FORALL (a: [# pass: passenger, seat: [row, position] #]), (flt: flight):member(a,IF pref_filled(db!1, flt!1, pref!1)OR pass_on_flight(pas!1, flt!1, db!1) THEN db!1(flt)ELSE db!1WITH [(flt!1) :=add((# seat :=Next_seat(db!1,flt!1, pref!1),pass := pas!1 #),db!1(flt!1))](flt)ENDIF)IMPLIES seat_exists(aircraft(flt), seat(a)))Notice that AUTO-REWRITE does not immediately replace member with its de�nition. The rewritewill take place when one issues an ASSERT command. We issue another SKOSIMP* command (TAB*) to eliminate the universal quanti�ers in formula [1]:Rule? (SKOSIMP*)Repeatedly Skolemizing and flattening,this simplifies to:MAe :[-1] (FORALL (a: [# pass: passenger, seat: [row, position] #]), (flt: flight):member(a, db!1(flt)) IMPLIES seat_exists(aircraft(flt), seat(a))){-2} member(a!1,IF pref_filled(db!1, flt!1, pref!1)OR pass_on_flight(pas!1, flt!1, db!1) THEN db!1(flt!2)ELSE db!1WITH [(flt!1) :=add((# seat :=Next_seat(db!1,26

flt!1, pref!1),pass := pas!1 #),db!1(flt!1))](flt!2)ENDIF)|-------{1} seat_exists(aircraft(flt!2), seat(a!1))The universal quanti�er in {-1} must be removed by instantiation. We want the expressionseat_exists(aircraft(flt),seat(a))) in formula [-1] to match formula {1}, so a!1 should besubstituted for a and flt!2 for flt. We try INST? (TAB ?):Rule? (INST?)Found substitution:a gets a!1,flt gets flt!2,Instantiating quantified variables,this simplifies to:MAe :{-1} member(a!1, db!1(flt!2)) IMPLIES seat_exists(aircraft(flt!2), seat(a!1))[-2] member(a!1,IF pref_filled(db!1, flt!1, pref!1)OR pass_on_flight(pas!1, flt!1, db!1) THEN db!1(flt!2)ELSE db!1WITH [(flt!1) :=add((# seat :=Next_seat(db!1,flt!1, pref!1),pass := pas!1 #),db!1(flt!1))](flt!2)ENDIF)|-------[1] seat_exists(aircraft(flt!2), seat(a!1))It �nds the right substitutions, so we simplify with ASSERT:Rule? (ASSERT)member rewrites member(a!1, db!1(flt!2))to db!1(flt!2)(a!1)member rewritesmember(a!1,IF pref_filled(db!1, flt!1, pref!1)OR pass_on_flight(pas!1, flt!1, db!1) THEN db!1(flt!2)ELSE db!1WITH [(flt!1) :=add((# seat :=27

Next_seat(db!1,flt!1, pref!1),pass := pas!1 #),db!1(flt!1))](flt!2)ENDIF)to IF pref_filled(db!1, flt!1, pref!1)OR pass_on_flight(pas!1, flt!1, db!1) THEN db!1(flt!2)(a!1)ELSEdb!1WITH [(flt!1) :=add((# seat :=Next_seat(db!1,flt!1, pref!1),pass := pas!1 #),db!1(flt!1))](flt!2)(a!1)ENDIFSimplifying, rewriting, and recording with decision procedures,this simplifies to:MAe :{-1} IF pref_filled(db!1, flt!1, pref!1)OR pass_on_flight(pas!1, flt!1, db!1) THEN db!1(flt!2)(a!1)ELSEdb!1WITH [(flt!1) :=add((# seat :=Next_seat(db!1,flt!1, pref!1),pass := pas!1 #),db!1(flt!1))](flt!2)(a!1)ENDIF|-------{1} db!1(flt!2)(a!1)[2] seat_exists(aircraft(flt!2), seat(a!1))We notice that the rewrites of member take place at this time. We now notice that we have anIF THEN ELSE structure in formula f-1g. We decide to split into two subgoals based on the IFexpression using the SPLIT command (TAB s):Rule? (SPLIT -1)Splitting conjunctions,this yields 2 subgoals:MAe.1 :{-1} (pref_filled(db!1, flt!1, pref!1) OR pass_on_flight(pas!1, flt!1, db!1))AND db!1(flt!2)(a!1) 28

|-------[1] db!1(flt!2)(a!1)[2] seat_exists(aircraft(flt!2), seat(a!1))We issue the GROUND command (TAB g) to �nish o� the proof of the �rst subgoal:Rule? (ground)Applying propositional simplification and decision procedures,This completes the proof of MAe.1.MAe.2 :{-1} NOT(pref_filled(db!1, flt!1, pref!1)OR pass_on_flight(pas!1, flt!1, db!1))ANDdb!1WITH [(flt!1) :=add((# seat :=Next_seat(db!1,flt!1, pref!1),pass := pas!1 #),db!1(flt!1))](flt!2)(a!1)|-------[1] db!1(flt!2)(a!1)[2] seat_exists(aircraft(flt!2), seat(a!1))The ground procedures simplify the sequent to the point where PVS recognizes the formula astrue. PVS writes \This completes the proof of MAe.1" and turns our attention to MAe.2.Encouraged by our progress, we decide to expand add according to its de�nition:Rule? (EXPAND "add")Expanding the definition of add,this simplifies to:MAe.2 :{-1} NOT(pref_filled(db!1, flt!1, pref!1)OR pass_on_flight(pas!1, flt!1, db!1))ANDdb!1WITH [(flt!1) :={y:[# pass: passenger,seat: [row, position] #]| 29

(# seat := Next_seat(db!1, flt!1, pref!1),pass := pas!1 #)= yOR member(y, db!1(flt!1))}](flt!2)(a!1)|-------[1] db!1(flt!2)(a!1)[2] seat_exists(aircraft(flt!2), seat(a!1))The presence of a conjunction (i.e. AND) on the negative side of the sequent (e.g. {-1}) suggeststhe need for a FLATTEN to simplify the sequent:Rule? (FLATTEN)Applying disjunctive simplification to flatten sequent,this simplifies to:MAe.2 :{-1} db!1WITH [(flt!1) :={y:[# pass: passenger,seat: [row, position] #]|(# seat := Next_seat(db!1, flt!1, pref!1),pass := pas!1 #)= yOR member(y, db!1(flt!1))}](flt!2)(a!1)|-------{1} pref_filled(db!1, flt!1, pref!1){2} pass_on_flight(pas!1, flt!1, db!1)[3] db!1(flt!2)(a!1)[4] seat_exists(aircraft(flt!2), seat(a!1))To simplify the WITH expression of {-1} we issue a LIFT-IF (TAB l) followed by an GROUND (TABg): Rule? (LIFT-IF)Lifting IF-conditions to the top level,this simplifies to:MAe.2 :{-1} IF flt!1 = flt!2THEN({y: [# pass: passenger, seat: [row, position] #] |(# seat := Next_seat(db!1, flt!1, pref!1), pass := pas!1 #) = yOR member(y, db!1(flt!1))})(a!1)ELSE db!1(flt!2)(a!1) 30

ENDIF|-------[1] pref_filled(db!1, flt!1, pref!1)[2] pass_on_flight(pas!1, flt!1, db!1)[3] db!1(flt!2)(a!1)[4] seat_exists(aircraft(flt!2), seat(a!1))Rule? (GROUND)member rewrites member(y, db!1(flt!1))to db!1(flt!1)(y)Applying propositional simplification and decision procedures,this simplifies to:MAe.2 :{-1} flt!1 = flt!2{-2} (# seat := Next_seat(db!1, flt!1, pref!1), pass := pas!1 #) = a!1|-------[1] pref_filled(db!1, flt!1, pref!1)[2] pass_on_flight(pas!1, flt!1, db!1)[3] db!1(flt!2)(a!1)[4] seat_exists(aircraft(flt!2), seat(a!1))There is nothing in the antecedent formula that will make [1], [2], [3] or [4] true. Formula[4] asserts that the seat determined by seat(a!1) actually exists. But formula {-2} tells us thatseat(a!1) is obtained from the Next seat function. In our speci�cation, we left these functions asuninterpreted functions. Earlier we stated that we would need a property about these functions inorder to make the proofs go through. This is where we recognize this need. The desired propertyis also obvious|the property given in the Next seat ax axiom. We make this axiom available inthe sequent by use of the LEMMA command (TAB L):Rule? (LEMMA "Next_seat_ax")Applying Next_seat_ax wherethis simplifies to:MAe.2 :{-1} (FORALL (db: flt_db, flt: flight, pref: preference):NOT pref_filled(db, flt, pref)IMPLIES seat_exists(aircraft(flt), Next_seat(db, flt, pref)))[-2] flt!1 = flt!2[-3] (# seat := Next_seat(db!1, flt!1, pref!1), pass := pas!1 #) = a!1|-------[1] pref_filled(db!1, flt!1, pref!1)[2] pass_on_flight(pas!1, flt!1, db!1)[3] db!1(flt!2)(a!1)[4] seat_exists(aircraft(flt!2), seat(a!1))31

Whenever one introduces a lemma one usually must quantify the universal variables in this lemma:Rule? (inst?)Found substitution:pref gets pref!1,flt gets flt!1,db gets db!1,Instantiating quantified variables,this simplifies to:MAe.2 :{-1} NOT pref_filled(db!1, flt!1, pref!1)IMPLIES seat_exists(aircraft(flt!1), Next_seat(db!1, flt!1, pref!1))[-2] flt!1 = flt!2[-3] (# seat := Next_seat(db!1, flt!1, pref!1), pass := pas!1 #) = a!1|-------[1] pref_filled(db!1, flt!1, pref!1)[2] pass_on_flight(pas!1, flt!1, db!1)[3] db!1(flt!2)(a!1)[4] seat_exists(aircraft(flt!2), seat(a!1))We now issue a GROUND command:Rule? (ground)Applying propositional simplification and decision procedures,This completes the proof of MAe.2.Q.E.D.Run time = 8.55 secs.Real time = 1878.99 secs.Wrote proof file /airlab/home/rwb/fm/pvs/tutorial-reservation-sys/pvs2/ops.prfWe are happy to see the arrival of \Q.E.D." but then remember that MAu and the main theoremstill await us. The complete proof is displayed by M-x edit-proof as:(""(SKOSIMP*)(EXPAND "existence")(EXPAND "Make_assn")(AUTO-REWRITE "member")(SKOSIMP*)(INST?)(ASSERT) 32

(SPLIT -1)(("1" (GROUND))("2"(EXPAND "add")(FLATTEN)(LIFT-IF)(GROUND)(LEMMA "Next_seat_ax")(INST?)(GROUND))))3.2.2 Proof of MAuThis lemma is a little harder than MAe, but encouraged by past success we eagerly press on, issuingM-x pr on MAu:MAu :|-------{1} (FORALL (db: flt_db, flt: flight, pas: passenger, pref: preference):uniqueness(db) IMPLIES uniqueness(Make_assn(flt, pas, pref, db)))The �rst step is fairly routine by now|we eliminate the universal quanti�ers:Rule? (SKOSIMP*)Repeatedly Skolemizing and flattening,this simplifies to:MAu :{-1} uniqueness(db!1)|-------{1} uniqueness(Make_assn(flt!1, pas!1, pref!1, db!1))We now expand uniqueness:Rule? (EXPAND "uniqueness")Expanding the definition of uniqueness,this simplifies to:MAu :{-1} (FORALL (a: [# pass: passenger, seat: [row, position] #]),(b: [# pass: passenger, seat: [row, position] #]), (flt: flight):member(a, db!1(flt)) AND member(b, db!1(flt)) AND pass(a) = pass(b)IMPLIES a = b)|-------{1} (FORALL (a: [# pass: passenger, seat: [row, position] #]),(b: [# pass: passenger, seat: [row, position] #]), (flt: flight):member(a, Make_assn(flt!1, pas!1, pref!1, db!1)(flt))33

AND member(b, Make_assn(flt!1, pas!1, pref!1, db!1)(flt))AND pass(a) = pass(b)IMPLIES a = b)We remove the universal quanti�ers in formula f1g using SKOSIMP*:Rule?(SKOSIMP*)Repeatedly Skolemizing and flattening,this simplifies to:MAu :[-1] (FORALL (a: [# pass: passenger, seat: [row, position] #]),(b: [# pass: passenger, seat: [row, position] #]), (flt: flight):member(a, db!1(flt)) AND member(b, db!1(flt)) AND pass(a) = pass(b)IMPLIES a = b){-2} member(a!1, Make_assn(flt!1, pas!1, pref!1, db!1)(flt!2)){-3} member(b!1, Make_assn(flt!1, pas!1, pref!1, db!1)(flt!2)){-4} pass(a!1) = pass(b!1)|-------{1} a!1 = b!1We instantiate formula [-1] with the constants just created in the previous skolemization. Weknow what they are, so we do it the non-automatic way this time:Rule? (INST -1 "a!1" "b!1" "flt!2")Instantiating the top quantifier in -1 with the terms:a!1, b!1, flt!2,this simplifies to:MAu :{-1} member(a!1, db!1(flt!2))AND member(b!1, db!1(flt!2)) AND pass(a!1) = pass(b!1)IMPLIES a!1 = b!1[-2] member(a!1, Make_assn(flt!1, pas!1, pref!1, db!1)(flt!2))[-3] member(b!1, Make_assn(flt!1, pas!1, pref!1, db!1)(flt!2))[-4] pass(a!1) = pass(b!1)|-------[1] a!1 = b!1We realize we aren't going much further until we expand Make assn:Rule? (EXPAND "Make_assn")Expanding the definition of Make_assn,this simplifies to:MAu : 34

[-1] member(a!1, db!1(flt!2))AND member(b!1, db!1(flt!2)) AND pass(a!1) = pass(b!1)IMPLIES a!1 = b!1{-2} member(a!1,IF pref_filled(db!1, flt!1, pref!1)OR pass_on_flight(pas!1, flt!1, db!1) THEN db!1(flt!2)ELSE db!1WITH [(flt!1) :=add((# seat :=Next_seat(db!1,flt!1, pref!1),pass := pas!1 #),db!1(flt!1))](flt!2)ENDIF){-3} member(b!1,IF pref_filled(db!1, flt!1, pref!1)OR pass_on_flight(pas!1, flt!1, db!1) THEN db!1(flt!2)ELSE db!1WITH [(flt!1) :=add((# seat :=Next_seat(db!1,flt!1, pref!1),pass := pas!1 #),db!1(flt!1))](flt!2)ENDIF)[-4] pass(a!1) = pass(b!1)|-------[1] a!1 = b!1We are ready for member to be rewritten so we expand it:Rule? (EXPAND "member")Expanding the definition of member,this simplifies to:MAu :{-1} db!1(flt!2)(a!1) AND db!1(flt!2)(b!1) AND pass(a!1) = pass(b!1)IMPLIES a!1 = b!1{-2} IF pref_filled(db!1, flt!1, pref!1)OR pass_on_flight(pas!1, flt!1, db!1) THEN db!1(flt!2)(a!1)ELSEdb!1WITH [(flt!1) :=add((# seat :=Next_seat(db!1,flt!1, pref!1),pass := pas!1 #),35

db!1(flt!1))](flt!2)(a!1)ENDIF{-3} IF pref_filled(db!1, flt!1, pref!1)OR pass_on_flight(pas!1, flt!1, db!1) THEN db!1(flt!2)(b!1)ELSEdb!1WITH [(flt!1) :=add((# seat :=Next_seat(db!1,flt!1, pref!1),pass := pas!1 #),db!1(flt!1))](flt!2)(b!1)ENDIF[-4] pass(a!1) = pass(b!1)|-------[1] a!1 = b!1We would like to get rid of the WITH statements, so we issue a LIFT-IF command:Rule? (LIFT-IF)Lifting IF-conditions to the top level,this simplifies to:MAu :[-1] db!1(flt!2)(a!1) AND db!1(flt!2)(b!1) AND pass(a!1) = pass(b!1)IMPLIES a!1 = b!1{-2} IF flt!1 = flt!2THEN IF pref_filled(db!1, flt!1, pref!1)OR pass_on_flight(pas!1, flt!1, db!1)THEN db!1(flt!2)(a!1)ELSEadd((# seat := Next_seat(db!1, flt!1, pref!1), pass := pas!1 #),db!1(flt!1))(a!1)ENDIFELSE IF pref_filled(db!1, flt!1, pref!1)OR pass_on_flight(pas!1, flt!1, db!1) THEN db!1(flt!2)(a!1)ELSE db!1(flt!2)(a!1)ENDIFENDIF{-3} IF flt!1 = flt!2THEN IF pref_filled(db!1, flt!1, pref!1)OR pass_on_flight(pas!1, flt!1, db!1)THEN db!1(flt!2)(b!1)ELSEadd((# seat := Next_seat(db!1, flt!1, pref!1), pass := pas!1 #),db!1(flt!1))(b!1)ENDIF 36

ELSE IF pref_filled(db!1, flt!1, pref!1)OR pass_on_flight(pas!1, flt!1, db!1) THEN db!1(flt!2)(b!1)ELSE db!1(flt!2)(b!1)ENDIFENDIF[-4] pass(a!1) = pass(b!1)|-------[1] a!1 = b!1There are three IF expressions involving pass_on_flight. We decide to case split on this commonexpression to simplify the sequent into two smaller subgoals using the CASE command (TAB c):Rule? (CASE "pass_on_flight(pas!1, flt!1, db!1)")Case splitting onpass_on_flight(pas!1, flt!1, db!1),this yields 2 subgoals:MAu.1 :{-1} pass_on_flight(pas!1, flt!1, db!1)[-2] db!1(flt!2)(a!1) AND db!1(flt!2)(b!1) AND pass(a!1) = pass(b!1)IMPLIES a!1 = b!1[-3] IF flt!1 = flt!2THEN IF pref_filled(db!1, flt!1, pref!1)OR pass_on_flight(pas!1, flt!1, db!1)THEN db!1(flt!2)(a!1)ELSEadd((# seat := Next_seat(db!1, flt!1, pref!1), pass := pas!1 #),db!1(flt!1))(a!1)ENDIFELSE IF pref_filled(db!1, flt!1, pref!1)OR pass_on_flight(pas!1, flt!1, db!1) THEN db!1(flt!2)(a!1)ELSE db!1(flt!2)(a!1)ENDIFENDIF[-4] IF flt!1 = flt!2THEN IF pref_filled(db!1, flt!1, pref!1)OR pass_on_flight(pas!1, flt!1, db!1)THEN db!1(flt!2)(b!1)ELSEadd((# seat := Next_seat(db!1, flt!1, pref!1), pass := pas!1 #),db!1(flt!1))(b!1)ENDIFELSE IF pref_filled(db!1, flt!1, pref!1)OR pass_on_flight(pas!1, flt!1, db!1) THEN db!1(flt!2)(b!1)ELSE db!1(flt!2)(b!1)ENDIFENDIF 37

[-5] pass(a!1) = pass(b!1)|-------[1] a!1 = b!1We issue an ASSERT to clean-up after the case-split:Rule? (ASSERT)Simplifying, rewriting, and recording with decision procedures,this simplifies to:MAu.1 :[-1] pass_on_flight(pas!1, flt!1, db!1){-2} db!1(flt!2)(a!1){-3} db!1(flt!2)(b!1)[-4] pass(a!1) = pass(b!1)|-------{1} db!1(flt!2)(a!1) AND db!1(flt!2)(b!1)[2] a!1 = b!1This looks trivial so we issue another ASSERT:Rule? (ASSERT)Simplifying, rewriting, and recording with decision procedures,This completes the proof of MAu.1.MAu.2 :[-1] db!1(flt!2)(a!1) AND db!1(flt!2)(b!1) AND pass(a!1) = pass(b!1)IMPLIES a!1 = b!1[-2] IF flt!1 = flt!2THEN IF pref_filled(db!1, flt!1, pref!1)OR pass_on_flight(pas!1, flt!1, db!1)THEN db!1(flt!2)(a!1)ELSEadd((# seat := Next_seat(db!1, flt!1, pref!1), pass := pas!1 #),db!1(flt!1))(a!1)ENDIFELSE IF pref_filled(db!1, flt!1, pref!1)OR pass_on_flight(pas!1, flt!1, db!1) THEN db!1(flt!2)(a!1)ELSE db!1(flt!2)(a!1)ENDIFENDIF[-3] IF flt!1 = flt!2THEN IF pref_filled(db!1, flt!1, pref!1)OR pass_on_flight(pas!1, flt!1, db!1)THEN db!1(flt!2)(b!1)ELSE 38

add((# seat := Next_seat(db!1, flt!1, pref!1), pass := pas!1 #),db!1(flt!1))(b!1)ENDIFELSE IF pref_filled(db!1, flt!1, pref!1)OR pass_on_flight(pas!1, flt!1, db!1) THEN db!1(flt!2)(b!1)ELSE db!1(flt!2)(b!1)ENDIFENDIF[-4] pass(a!1) = pass(b!1)|-------{1} pass_on_flight(pas!1, flt!1, db!1)[2] a!1 = b!1The prover turns our attention to the second subgoal having �nished the �rst. We issue an ASSERT(TAB a) here to simplify the sequent:Rule? (ASSERT)Simplifying, rewriting, and recording with decision procedures,this simplifies to:MAu.2 :{-1} IF flt!1 = flt!2THEN IF pref_filled(db!1, flt!1, pref!1)THEN db!1(flt!2)(a!1)ELSEadd((# seat := Next_seat(db!1, flt!1, pref!1), pass := pas!1 #),db!1(flt!1))(a!1)ENDIFELSE db!1(flt!2)(a!1)ENDIF{-2} IF flt!1 = flt!2THEN IF pref_filled(db!1, flt!1, pref!1)THEN db!1(flt!2)(b!1)ELSEadd((# seat := Next_seat(db!1, flt!1, pref!1), pass := pas!1 #),db!1(flt!1))(b!1)ENDIFELSE db!1(flt!2)(b!1)ENDIF[-3] pass(a!1) = pass(b!1)|-------[1] pass_on_flight(pas!1, flt!1, db!1){2} db!1(flt!2)(a!1) AND db!1(flt!2)(b!1)[3] a!1 = b!1We are happy with the simpli�cation achieved. We set our attention on formula [1] and expandpass_on_flight: 39

Rule? (EXPAND "pass_on_flight")Expanding the definition of pass_on_flight,this simplifies to:MAu.2 :[-1] IF flt!1 = flt!2THEN IF pref_filled(db!1, flt!1, pref!1)THEN db!1(flt!2)(a!1)ELSEadd((# seat := Next_seat(db!1, flt!1, pref!1), pass := pas!1 #),db!1(flt!1))(a!1)ENDIFELSE db!1(flt!2)(a!1)ENDIF[-2] IF flt!1 = flt!2THEN IF pref_filled(db!1, flt!1, pref!1)THEN db!1(flt!2)(b!1)ELSEadd((# seat := Next_seat(db!1, flt!1, pref!1), pass := pas!1 #),db!1(flt!1))(b!1)ENDIFELSE db!1(flt!2)(b!1)ENDIF[-3] pass(a!1) = pass(b!1)|-------{1} (EXISTS (a: [# pass: passenger, seat: [row, position] #]):pass(a) = pas!1 AND member(a, db!1(flt!1)))[2] db!1(flt!2)(a!1) AND db!1(flt!2)(b!1)[3] a!1 = b!1We are ready to instantiate formula {1}, but then realize that we are going to need two instancesof it, one for a!1 and one for b!114. Thus, we will use the INST-CP command which saves theoriginal form of the formula in addition to the instantiated form:Rule? (INST-CP 1 "a!1")Instantiating (with copying) the top quantifier in 1 with the terms:a!1,this simplifies to:MAu.2 :[-1] IF flt!1 = flt!2THEN IF pref_filled(db!1, flt!1, pref!1)THEN db!1(flt!2)(a!1)ELSEadd((# seat := Next_seat(db!1, flt!1, pref!1), pass := pas!1 #),db!1(flt!1))(a!1)14It actually took me about an hour to �gure this out.40

ENDIFELSE db!1(flt!2)(a!1)ENDIF[-2] IF flt!1 = flt!2THEN IF pref_filled(db!1, flt!1, pref!1)THEN db!1(flt!2)(b!1)ELSEadd((# seat := Next_seat(db!1, flt!1, pref!1), pass := pas!1 #),db!1(flt!1))(b!1)ENDIFELSE db!1(flt!2)(b!1)ENDIF[-3] pass(a!1) = pass(b!1)|-------[1] (EXISTS (a: [# pass: passenger, seat: [row, position] #]):pass(a) = pas!1 AND member(a, db!1(flt!1))){2} pass(a!1) = pas!1 AND member(a!1, db!1(flt!1))[3] db!1(flt!2)(a!1) AND db!1(flt!2)(b!1)[4] a!1 = b!1Now we can instantiate it with b!1 as well:Rule?(INST 1 "b!1")Instantiating the top quantifier in 1 with the terms:b!1,this simplifies to:MAu.2 :[-1] IF flt!1 = flt!2THEN IF pref_filled(db!1, flt!1, pref!1)THEN db!1(flt!2)(a!1)ELSEadd((# seat := Next_seat(db!1, flt!1, pref!1), pass := pas!1 #),db!1(flt!1))(a!1)ENDIFELSE db!1(flt!2)(a!1)ENDIF[-2] IF flt!1 = flt!2THEN IF pref_filled(db!1, flt!1, pref!1)THEN db!1(flt!2)(b!1)ELSEadd((# seat := Next_seat(db!1, flt!1, pref!1), pass := pas!1 #),db!1(flt!1))(b!1)ENDIFELSE db!1(flt!2)(b!1)ENDIF 41

[-3] pass(a!1) = pass(b!1)|-------{1} pass(b!1) = pas!1 AND member(b!1, db!1(flt!1))[2] pass(a!1) = pas!1 AND member(a!1, db!1(flt!1))[3] db!1(flt!2)(a!1) AND db!1(flt!2)(b!1)[4] a!1 = b!1We expand add and member:Rule? (EXPAND "add")Expanding the definition of add,this simplifies to:MAu.2 :{-1} IF flt!1 = flt!2THEN IF pref_filled(db!1, flt!1, pref!1)THEN db!1(flt!2)(a!1)ELSE (# seat := Next_seat(db!1, flt!1, pref!1), pass := pas!1 #) = a!1OR member(a!1, db!1(flt!1))ENDIFELSE db!1(flt!2)(a!1)ENDIF{-2} IF flt!1 = flt!2THEN IF pref_filled(db!1, flt!1, pref!1)THEN db!1(flt!2)(b!1)ELSE (# seat := Next_seat(db!1, flt!1, pref!1), pass := pas!1 #) = b!1OR member(b!1, db!1(flt!1))ENDIFELSE db!1(flt!2)(b!1)ENDIF[-3] pass(a!1) = pass(b!1)|-------[1] pass(b!1) = pas!1 AND member(b!1, db!1(flt!1))[2] pass(a!1) = pas!1 AND member(a!1, db!1(flt!1))[3] db!1(flt!2)(a!1) AND db!1(flt!2)(b!1)[4] a!1 = b!1Rule? (EXPAND "member")Expanding the definition of member,this simplifies to:MAu.2 :{-1} IF flt!1 = flt!2THEN IF pref_filled(db!1, flt!1, pref!1)THEN db!1(flt!2)(a!1)ELSE (# seat := Next_seat(db!1, flt!1, pref!1), pass := pas!1 #) = a!1OR db!1(flt!1)(a!1) 42

ENDIFELSE db!1(flt!2)(a!1)ENDIF{-2} IF flt!1 = flt!2THEN IF pref_filled(db!1, flt!1, pref!1)THEN db!1(flt!2)(b!1)ELSE (# seat := Next_seat(db!1, flt!1, pref!1), pass := pas!1 #) = b!1OR db!1(flt!1)(b!1)ENDIFELSE db!1(flt!2)(b!1)ENDIF[-3] pass(a!1) = pass(b!1)|-------{1} pass(b!1) = pas!1 AND db!1(flt!1)(b!1){2} pass(a!1) = pas!1 AND db!1(flt!1)(a!1)[3] db!1(flt!2)(a!1) AND db!1(flt!2)(b!1)[4] a!1 = b!1Now we issue a GROUND command:Rule? (GROUND)Applying propositional simplification and decision procedures,This completes the proof of MAu.2.Q.E.D.Run time = 19.33 secs.Real time = 1141.86 secs.Wrote proof file /airlab/home/rwb/fm/pvs/tutorial-reservation-sys/pvs2/ops.prfM-x edit-pr displays the complete proof as follows:(""(SKOSIMP*)(EXPAND "uniqueness")(SKOSIMP*)(INST -1 "a!1" "b!1" "flt!2")(EXPAND "Make_assn")(EXPAND "member")(LIFT-IF)(CASE "pass_on_flight(pas!1, flt!1, db!1)")(("1" (ASSERT) (ASSERT))("2"(ASSERT) 43

(EXPAND "pass_on_flight")(INST-CP 1 "a!1")(INST 1 "b!1")(EXPAND "add")(EXPAND "member")(GROUND))))This completes the two lemmas.3.2.3 Proof of TheoremWe now must show that these two lemmas imply Make assn inv. We issue a M-x pr and issue theusual SKOSIMP* command (TAB *) to obtain:Make_assn_inv :{-1} db_invariant(db!1)|-------{1} db_invariant(Make_assn(flt!1, pas!1, pref!1, db!1))We expand db_invariant and atten the sequent:Rule? (EXPAND "db_invariant")Expanding the definition of db_invariant,this simplifies to:Make_assn_inv :{-1} existence(db!1) AND uniqueness(db!1)|-------{1} existence(Make_assn(flt!1, pas!1, pref!1, db!1))AND uniqueness(Make_assn(flt!1, pas!1, pref!1, db!1))Rule? (FLATTEN)Applying disjunctive simplification to flatten sequent,this simplifies to:Make_assn_inv :{-1} existence(db!1){-2} uniqueness(db!1)|-------[1] existence(Make_assn(flt!1, pas!1, pref!1, db!1))AND uniqueness(Make_assn(flt!1, pas!1, pref!1, db!1))Rather than use (LEMMA "MAe") (INST?) as before, we will illustrate the use of (REWRITE "MAe"):Rule? (REWRITE "MAe")Found matching substitution:db gets db!1, 44

pref gets pref!1,pas gets pas!1,flt gets flt!1,Rewriting using MAe,this simplifies to:Make_assn_inv :[-1] existence(db!1)[-2] uniqueness(db!1)|-------{1} TRUE AND uniqueness(Make_assn(flt!1, pas!1, pref!1, db!1))The REWRITE command (TAB R) has matched the existence(Make_assn(flt!1, pas!1, pref!1, db!1))term and rewritten it to TRUE. We repeat the process with lemma MAu:(rewrite "MAu")Found matching substitution:db gets db!1,pref gets pref!1,pas gets pas!1,flt gets flt!1,Rewriting using MAu,this simplifies to:Make_assn_inv :[-1] existence(db!1)[-2] uniqueness(db!1)|-------{1} TRUE AND TRUEwhich is obviously true so we issue ASSERT (TAB a):Rule? (assert)Simplifying, rewriting, and recording with decision procedures,Q.E.D.Run time = 5.01 secs.Real time = 662.10 secs.Wrote proof file /airlab/home/rwb/fm/pvs/tutorial-reservation-sys/pvs2/ops.prfNIL>The complete proof is: 45

(""(SKOSIMP*)(EXPAND "db_invariant")(FLATTEN)(REWRITE "MAe")(REWRITE "MAu")(ASSERT))It is generally preferable to use REWRITE rather than (LEMMA) (INST) whenever it succeeds.3.3 Proof that the Initial State Satis�es the InvariantIt is necessary to show that the initial state of the system satis�es the invariant. This together withthe invariant-preserving properties about the operations are su�cient to establish that the systemwill always preserve the invariant. The needed theorem for the initial state is:initial_state_inv: THEOREM db_invariant(initial_state)This theorem is easy to prove. In fact, the PVS strategy for proving TCCs proves it without help.This strategy is automatically invoked when one issues a M-x tcp command to prove the TCCs.However, this strategy is also available during interactive proof using the GRIND command (TABG): initial_state_inv :|-------{1} db_invariant(initial_state)Rule? (GRIND)initial_state rewrites initial_state(flt)to emptyset[seat_assignment]emptyset rewrites emptyset[seat_assignment](a)to FALSEmember rewrites member(a, emptyset[seat_assignment])to FALSEexistence rewrites existence(initial_state)to TRUEinitial_state rewrites initial_state(flt)to emptyset[seat_assignment]emptyset rewrites emptyset[seat_assignment](a)to FALSEmember rewrites member(a, emptyset[seat_assignment])to FALSEemptyset rewrites emptyset[seat_assignment](b)to FALSEmember rewrites member(b, emptyset[seat_assignment])to FALSEuniqueness rewrites uniqueness(initial_state)to TRUE 46

db_invariant rewrites db_invariant(initial_state)to TRUETrying repeated skolemization, instantiation, and if-lifting,Q.E.D.Run time = 1.36 secs.Real time = 7.43 secs.NIL>3.4 Proof of one per seat InvariantThe third invariant of the system has not been dealt with in the previous sections. As mentionedearlier, the proofs of these theorems are left to the reader for an exercise. The required theoremsfor the Cancel assn and Make assn operations areCancel_inv_one_per_seat: THEOREM one_per_seat(db)IMPLIES one_per_seat(Cancel_assn(flt,pas,db))Make_inv_one_per_seat: THEOREM one_per_seat(db)IMPLIES one_per_seat(Make_assn(flt,pas,pref,db))initial_one_per_seat: THEOREM one_per_seat(initial_state)An additional property about the uninterpreted function Next seat must be added to the speci�-cation in order to prove Make inv one per seat:Next_seat_ax_2: AXIOM (FORALL a: member(a,db(flt)) IMPLIESseat(a) /= Next_seat(db,flt,pref))3.5 System Properties and Putative TheoremsUsually there are several types of system properties that are of interest to formalize and prove:1. Properties about critical system operation derived from high level requirements2. Putative theorems used to con�rm our understanding of the speci�ed systemAn example of (2) is the property that if the system is in state db, and we make a seat assignmentand then immediately cancel it, we should return to the same system state:Make_Cancel: THEOREM NOT pass_on_flight(pas,flt,db) =>Cancel_assn(flt,pas,Make_assn(flt,pas,pref,db)) = dbThe proof of this theorem involves several new concepts not encountered in the previous proofs.The novice reader is encouraged to continue working at the terminal, while reading the followingproof. A key di�erence in this proof is the need to establish the equality of functions. This requiresthe use of \extensionality" axioms provided by PVS. We issue the M-x pr command:47

>Make_Cancel :|-------{1} (FORALL (db: flt_db, flt: flight, pas: passenger, pref: preference):NOT pass_on_flight(pas, flt, db)=> Cancel_assn(flt, pas, Make_assn(flt, pas, pref, db)) = db)As always we skolemize with the SKOSIMP* command (TAB *):Rule? (SKOSIMP*)Repeatedly Skolemizing and flattening,this simplifies to:Make_Cancel :|-------{1} pass_on_flight(pas!1, flt!1, db!1){2} Cancel_assn(flt!1, pas!1, Make_assn(flt!1, pas!1, pref!1, db!1)) = db!1We see that we must show that the database after modi�cation is the same as it was beforemodi�cation, whenever NOT pass_on_flight(pas!1, flt!1, db!1)15. But the database is afunction, so we must prove the equivalence of two functions. Whenever this is necessary theAPPLY_EXTENSIONALITY (TAB E) command must be used:Rule?(APPLY-EXTENSIONALITY 2)Applying extensionality,this simplifies to:Make_Cancel :|-------{1} Cancel_assn(flt!1, pas!1, Make_assn(flt!1, pas!1, pref!1, db!1))(x!1)= db!1(x!1)[2] pass_on_flight(pas!1, flt!1, db!1)[3] Cancel_assn(flt!1, pas!1, Make_assn(flt!1, pas!1, pref!1, db!1)) = db!1Notice that the new formula {1} is very similar to the old formula which has now become [3].The idea here is that if we can show that f1(x) = f2(x) for all values of x in its domain, then weknow that f1 = f2. We won't need the old formula any more so we hide it with the HIDE command(TAB h):Rule? (HIDE 3)Hiding formulas: 3,this simplifies to:15One can move a formula from one side of the sequent to the other by adding a NOT. Notice that this is preciselywhat the system has done. 48

Make_Cancel :|-------[1] Cancel_assn(flt!1, pas!1, Make_assn(flt!1, pas!1, pref!1, db!1))(x!1)= db!1(x!1)[2] pass_on_flight(pas!1, flt!1, db!1)Now from our previous experience, we remember that these functions are de�ned in terms of add andmember that we were forced to constantly expand. To make these expansions happen automaticallywhen we issue an ASSERT or GROUND command, we issue AUTO-REWRITE commands (TAB A) forthem:Rule? (AUTO-REWRITE "member")Installing rewrite rule memberInstalling rewrite rule memberInstalling automatic rewrites:memberthis simplifies to:Make_Cancel :|-------[1] Cancel_assn(flt!1, pas!1, Make_assn(flt!1, pas!1, pref!1, db!1))(x!1)= db!1(x!1)[2] pass_on_flight(pas!1, flt!1, db!1)Rule? (AUTO-REWRITE "add")Installing rewrite rule addInstalling rewrite rule addInstalling automatic rewrites:addthis simplifies to:Make_Cancel :|-------[1] Cancel_assn(flt!1, pas!1, Make_assn(flt!1, pas!1, pref!1, db!1))(x!1)= db!1(x!1)[2] pass_on_flight(pas!1, flt!1, db!1)We expand Cancel assn and Make assn:Rule? (EXPAND "Cancel_assn")Expanding the definition of Cancel_assn,this simplifies to:Make_Cancel :|-------{1} Make_assn(flt!1, pas!1, pref!1, db!1)49

WITH [(flt!1) :={a:[# pass: passenger,seat: [row, position] #]|member(a,Make_assn(flt!1, pas!1,pref!1, db!1)(flt!1))AND pass(a) /= pas!1}](x!1)= db!1(x!1)[2] pass_on_flight(pas!1, flt!1, db!1)Rule? (EXPAND "Make_assn")Expanding the definition of Make_assn,this simplifies to:Make_Cancel :|-------{1} IF pref_filled(db!1, flt!1, pref!1) THEN db!1ELSE db!1WITH [(flt!1) :=add((# seat :=Next_seat(db!1,flt!1, pref!1),pass := pas!1 #),db!1(flt!1))]ENDIFWITH [(flt!1) :={a:[# pass: passenger,seat: [row, position] #]|member(a,IF pref_filled(db!1, flt!1, pref!1)THEN db!1(flt!1)ELSEadd((# seat :=Next_seat(db!1,flt!1, pref!1),pass := pas!1 #),db!1(flt!1))ENDIF)AND pass(a) /= pas!1}](x!1)= db!1(x!1)[2] pass_on_flight(pas!1, flt!1, db!1)To prepare for a GROUND command we issue a LIFT-IF command (TAB l):50

Rule? (LIFT-IF)Lifting IF-conditions to the top level,this simplifies to:Make_Cancel :|-------{1} IF flt!1 = x!1THEN IF pref_filled(db!1, flt!1, pref!1)THEN {a: [# pass: passenger, seat: [row, position] #]| member(a, db!1(flt!1)) AND pass(a) /= pas!1}= db!1(x!1)ELSE {a: [# pass: passenger, seat: [row, position] #] |member(a,add((# seat := Next_seat(db!1, flt!1, pref!1),pass := pas!1 #),db!1(flt!1)))AND pass(a) /= pas!1}= db!1(x!1)ENDIFELSE IF pref_filled(db!1, flt!1, pref!1) THEN db!1(x!1) = db!1(x!1)ELSE IF flt!1 = x!1THEN {a: [# pass: passenger, seat: [row, position] #] |member(a,add((# seat := Next_seat(db!1, flt!1, pref!1),pass := pas!1 #),db!1(flt!1)))AND pass(a) /= pas!1}= db!1(x!1)ELSE db!1(x!1) = db!1(x!1)ENDIFENDIFENDIF[2] pass_on_flight(pas!1, flt!1, db!1)We now issue the GROUND (TAB g) command:Rule? (GROUND)member rewrites member(a, db!1(flt!1))to db!1(flt!1)(a)member rewrites member(a, db!1(flt!1))to db!1(flt!1)(a)add rewritesadd((# seat := Next_seat(db!1, flt!1, pref!1), pass := pas!1 #),db!1(flt!1))(a)to (# seat := Next_seat(db!1, flt!1, pref!1), pass := pas!1 #) = aOR db!1(flt!1)(a) 51

member rewritesmember(a,add((# seat := Next_seat(db!1, flt!1, pref!1), pass := pas!1 #),db!1(flt!1)))to (# seat := Next_seat(db!1, flt!1, pref!1), pass := pas!1 #) = aOR db!1(flt!1)(a)Applying propositional simplification and decision procedures,this yields 2 subgoals:Make_Cancel.1 :{-1} pref_filled(db!1, flt!1, pref!1){-2} flt!1 = x!1|-------{1} {a: [# pass: passenger, seat: [row, position] #]| db!1(flt!1)(a) AND pass(a) /= pas!1}= db!1(x!1)[2] pass_on_flight(pas!1, flt!1, db!1)We remember that sets in PVS are just functions into bool, so formula {1} involves the equalityof two functions. As before we invoke the APPLY-EXTENSIONALITY command (TAB E) to prove twofunctions equal:Rule? (APPLY-EXTENSIONALITY 1)Applying extensionality,this simplifies to:Make_Cancel.1 :[-1] pref_filled(db!1, flt!1, pref!1)[-2] flt!1 = x!1|-------{1} (db!1(flt!1)(x!2) AND pass(x!2) /= pas!1) = db!1(x!1)(x!2)[2] {a: [# pass: passenger, seat: [row, position] #]| db!1(flt!1)(a) AND pass(a) /= pas!1}= db!1(x!1)[3] pass_on_flight(pas!1, flt!1, db!1)We hide formula 2:Rule? (HIDE 2)Hiding formulas: 2,this simplifies to:Make_Cancel.1 :[-1] pref_filled(db!1, flt!1, pref!1)[-2] flt!1 = x!1|------- 52

[1] (db!1(flt!1)(x!2) AND pass(x!2) /= pas!1) = db!1(x!1)(x!2)[2] pass_on_flight(pas!1, flt!1, db!1)We expand pass_on_flight:Rule? (EXPAND "pass_on_flight")Expanding the definition of pass_on_flight,this simplifies to:Make_Cancel.1 :[-1] pref_filled(db!1, flt!1, pref!1)[-2] flt!1 = x!1|-------[1] (db!1(flt!1)(x!2) AND pass(x!2) /= pas!1) = db!1(x!1)(x!2){2} (EXISTS (a: [# pass: passenger, seat: [row, position] #]):pass(a) = pas!1 AND member(a, db!1(flt!1)))To match formula [2] with formula [1], we instantiate formula [2]'s existential quanti�er withx!2: Rule? (INST 2 "x!2")Instantiating the top quantifier in 2 with the terms:x!2,this simplifies to:Make_Cancel.1 :[-1] pref_filled(db!1, flt!1, pref!1)[-2] flt!1 = x!1|-------[1] (db!1(flt!1)(x!2) AND pass(x!2) /= pas!1) = db!1(x!1)(x!2){2} pass(x!2) = pas!1 AND member(x!2, db!1(flt!1))We now �nish o� this sequent with the GROUND command (TAB g):Rule? (GROUND)member rewrites member(x!2, db!1(flt!1))to db!1(flt!1)(x!2)Applying propositional simplification and decision procedures,This completes the proof of Make_Cancel.1.Make_Cancel.2 :{-1} flt!1 = x!1|-------{1} pref_filled(db!1, flt!1, pref!1){2} {a: [# pass: passenger, seat: [row, position] #] |53

((# seat := Next_seat(db!1, flt!1, pref!1), pass := pas!1 #) = aOR db!1(flt!1)(a))AND pass(a) /= pas!1}= db!1(x!1)[3] pass_on_flight(pas!1, flt!1, db!1)The prover now turns our attention to Make Cancel.2. We issue an (REPLACE -1 + RL) to makethe sequent easier for us to read16.Rule? (REPLACE -1 + RL)Replacing using formula -1,this simplifies to:Make_Cancel.2 :[-1] flt!1 = x!1|-------[1] pref_filled(db!1, flt!1, pref!1){2} {a: [# pass: passenger, seat: [row, position] #] |((# seat := Next_seat(db!1, flt!1, pref!1), pass := pas!1 #) = aOR db!1(flt!1)(a))AND pass(a) /= pas!1}= db!1(flt!1)[3] pass_on_flight(pas!1, flt!1, db!1)After replacing with a formula it is usually not needed again, so we hide it to cut down on theclutter:Rule? (HIDE -1)Hiding formulas: -1,this simplifies to:Make_Cancel.2 :|-------[1] pref_filled(db!1, flt!1, pref!1)[2] {a: [# pass: passenger, seat: [row, position] #] |((# seat := Next_seat(db!1, flt!1, pref!1), pass := pas!1 #) = aOR db!1(flt!1)(a))AND pass(a) /= pas!1}= db!1(flt!1)[3] pass_on_flight(pas!1, flt!1, db!1)We are faced with proving the equality of two sets (i.e. functions) again so we issue an APPLY-EXTENSIONALITYcommand (TAB E) and hide the old formula as usual:16The PVS decision procedures are powerful enough to handle this even if the REPLACE command is omitted.Nevertheless, often the discovery of a proof is easier when a REPLACE command is used in situations such as these.54

Rule? (APPLY-EXTENSIONALITY 2)Applying extensionality,this simplifies to:Make_Cancel.2 :|-------{1} (((# seat := Next_seat(db!1, flt!1, pref!1), pass := pas!1 #) = x!2OR db!1(flt!1)(x!2))AND pass(x!2) /= pas!1)= db!1(flt!1)(x!2)[2] pref_filled(db!1, flt!1, pref!1)[3] {a: [# pass: passenger, seat: [row, position] #] |((# seat := Next_seat(db!1, flt!1, pref!1), pass := pas!1 #) = aOR db!1(flt!1)(a))AND pass(a) /= pas!1}= db!1(flt!1)[4] pass_on_flight(pas!1, flt!1, db!1)Rule? (HIDE 3)Hiding formulas: 3,this simplifies to:Make_Cancel.2 :|-------[1] (((# seat := Next_seat(db!1, flt!1, pref!1), pass := pas!1 #) = x!2OR db!1(flt!1)(x!2))AND pass(x!2) /= pas!1)= db!1(flt!1)(x!2)[2] pref_filled(db!1, flt!1, pref!1)[3] pass_on_flight(pas!1, flt!1, db!1)We expand pass_on_flight:Rule? (EXPAND "pass_on_flight")Expanding the definition of pass_on_flight,this simplifies to:Make_Cancel.2 :|-------[1] (((# seat := Next_seat(db!1, flt!1, pref!1), pass := pas!1 #) = x!2OR db!1(flt!1)(x!2))AND pass(x!2) /= pas!1)= db!1(flt!1)(x!2)[2] pref_filled(db!1, flt!1, pref!1){3} (EXISTS (a: [# pass: passenger, seat: [row, position] #]):pass(a) = pas!1 AND member(a, db!1(flt!1)))55

and instantiate it as before:Rule? (INST 3 "x!2")Instantiating the top quantifier in 3 with the terms:x!2,this simplifies to:Make_Cancel.2 :|-------[1] (((# seat := Next_seat(db!1, flt!1, pref!1), pass := pas!1 #) = x!2OR db!1(flt!1)(x!2))AND pass(x!2) /= pas!1)= db!1(flt!1)(x!2)[2] pref_filled(db!1, flt!1, pref!1){3} pass(x!2) = pas!1 AND member(x!2, db!1(flt!1))We issue a GROUND command (TAB g):Rule? (GROUND)member rewrites member(x!2, db!1(flt!1))to db!1(flt!1)(x!2)Applying propositional simplification and decision procedures,this simplifies to:Make_Cancel.2 :|-------{1} db!1(flt!1)(x!2){2} ((# seat := Next_seat(db!1, flt!1, pref!1), pass := pas!1 #) = x!2AND pass(x!2) /= pas!1)= FALSE[3] pref_filled(db!1, flt!1, pref!1)We have now reached the point where one must know that PVS's decision procedures are notcomplete for equality over the booleans. Thus, it is necessary to convert the = in formula [2] to anIFF. This is done using the IFF command (TAB F):Rule? (IFF 2)Converting top level boolean equality into IFF form,Converting equality to IFF,this simplifies to:Make_Cancel.2 :|-------[1] db!1(flt!1)(x!2){2} (# seat := Next_seat(db!1, flt!1, pref!1), pass := pas!1 #) = x!2AND pass(x!2) /= pas!1IFF FALSE 56

[3] pref_filled(db!1, flt!1, pref!1)Now we �nish it o� with a GROUND:Rule? (ground)Applying propositional simplification and decision procedures,This completes the proof of Make_Cancel.2.Q.E.D.Run time = 14.19 secs.Real time = 2292.41 secs.Wrote proof file /airlab/home/rwb/fm/pvs/tutorial-reservation-sys/pvs2/ops.prfNIL>M-x edit-pr displays the following complete proof:(""(SKOSIMP*)(APPLY-EXTENSIONALITY 2)(HIDE 3)(AUTO-REWRITE "member")(AUTO-REWRITE "add")(EXPAND "Cancel_assn")(EXPAND "Make_assn")(LIFT-IF)(GROUND)(("1"(APPLY-EXTENSIONALITY 1)(HIDE 2)(EXPAND "pass_on_flight")(INST 2 "x!2")(GROUND))("2"(REPLACE -1 + RL)(HIDE -1)(APPLY-EXTENSIONALITY 2)(HIDE 3)(EXPAND "pass_on_flight")(INST 3 "x!2")(GROUND)(IFF 2)(GROUND)))) 57

We issue a M-x prt on the theory. All of the proofs are successful|the system reports:Proof summary for theory opsCancel_db_inv..proved - completeMAe..proved - completeMAu..proved - completeMake_db_inv..proved - completeMake_Cancel..proved - completeinitial_state_inv......................................proved - completeTheory totals: 6 formulas, 6 attempted, 6 succeeded.The following putative theorems are left as exercises for the reader:Make_putative: THEOREM NOT pref_filled(db, flt, pref) =>(EXISTS (x: seat_assignment):member(x, Make_assn(flt, pas, pref, db)(flt)) AND pass(x) = pas)Cancel_putative: THEOREMNOT (EXISTS (a: seat_assignment):member(a,Cancel_assn(flt,pas,db)(flt)) AND pass(a) = pas)The ambitious reader should add the following de�nition to the ops theory:Lookup(flt: flight, pas: passenger, db: flt_db): [row,position] =seat(choose({a | member(a,db(flt)) AND pass(a) = pas}))and proveLookup_putative: THEOREM NOT (pref_filled(db, flt, pref) ORpass_on_flight(pas,flt,db)) =>meets_pref(aircraft(flt),Lookup(flt, pas, Make_assn(flt,pas,pref,db)),pref)4 SummaryA speci�cation of an airline reservation system was formally speci�ed using PVS. A state-machineapproach was used to model this system. Two operations were de�ned and shown to maintainthe state invariant. These proofs were accomplished using the PVS prover and discussed in detail.The technique of validating a speci�cation via \putative theorem proving" was also discussed andillustrated in detail.References[1] Rushby, John: Formal Methods and Digital Systems Validation for Airborne Systems. NASAContractor Report 4551, 1993. 58

[2] Shankar, Natarajan; Owre, Sam; and Rushby, John: PVS Tutorial. Computer Science Labo-ratory, SRI International, Menlo Park, CA, Feb. 1993. Also appears in Tutorial Notes, FormalMethods Europe '93: Industrial-Strength Formal Methods, pages 357{406, Odense, Denmark,April 1993.[3] Shankar, N.; Owre, S.; and Rushby, J. M.: The PVS Proof Checker: A Reference Manual (BetaRelease). Computer Science Laboratory, SRI International, Menlo Park, CA, Feb. 1993.[4] Owre, S.; Shankar, N.; and Rushby, J. M.: The PVS Speci�cation Language (Beta Release).Computer Science Laboratory, SRI International, Menlo Park, CA, Feb. 1993.[5] Owre, S.; Shankar, N.; and Rushby, J. M.: User Guide for the PVS Speci�cation and Veri�cationSystem (Beta Release). Computer Science Laboratory, SRI International, Menlo Park, CA, Feb.1993.[6] Johnson, Sally C.; Holloway, C. Michael; and Butler, Ricky W.: Second NASA Formal MethodsWorkshop 1992. NASA Conference Publication 10110, Nov. 1992.

59

