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There are well-known techniques for handling physicalcomponent failure|using redundancy and voting. Thereliability assessment problem in the presence of physicalfaults is based upon Markov modeling techniques and iswell understood. The design fault problem is a muchgreater threat.There are 3 basic approaches to dealing with thedesign fault problem.1. Testing (Lots of it)2. Design Diversity (i.e., Software Fault-Tolerance: N-Version Programming, Recovery Blocks, etc.)3. Fault Avoidance (i.e., Formal Speci�cation and Ver-i�cation, Automatic Program Synthesis, ReusableModules)The problem with life testing is that in order tomeasure the ultra-reliability one must test for exorbi-tant amounts of time. For example to measure a 10�9probability of failure for a 1-hour mission one must testfor more than 109 hours (i.e., 114,000 years).There are many who advocate the use of design di-versity to overcome the limitations of testing. The ba-sic idea is to use separate design/implementation teamsto produce multiple versions from the same speci�ca-tion. Then, through the use of threshold voters ratherthan exact-match voters, one can mask the e�ect of a de-sign error in one of the versions while tolerating minorvariations in calculations between versions. The hope isthat the design 
aws will manifest errors independentlyor nearly so. By assuming independence one can ob-tain ultra-high estimates of reliability even though theindividual versions have failure rates on the order of10�4=hour. When one examines the case for tolerance ofphysical faults, one �nds that the only criterion that en-ables quanti�cation of ultra-reliability for hardware sys-tems with respect to physical failure is the independenceassumption. However, the independence assumption hasbeen rejected at the 99% con�dence level in several ex-periments for low reliability software.1, 2, 3, 4 Further-more, the independence assumption cannot be validatedfor high reliability software because of the exorbitant testtimes required.1



If one cannot assume independence one must mea-sure correlations. However, this is infeasible as well. Tomeasure correlations between versions would require asmuch testing time as life-testing the system because thecorrelations must be in the ultra-reliable region in orderfor the system to be ultra-reliable.It is not possible, within feasible amounts of testingtime, to establish that design diversity achieves ultra-reliability.5 Consequently, design diversity can create an\illusion" of ultra-reliability without actually providingit. Since we cannot quantify the reliability of ultra-reliable software, we must develop our systems in a man-ner that eliminates errors in the �rst place. In otherwords, we concentrate our e�orts on producing a correctdesign and implementation rather than on the process ofquanti�cation. Our con�dence in the software is derivedfrom our rigorous analysis rather than by experimenta-tion. The Characteristics of Formal MethodsCentral to formal methods is the use of mathemat-ical logic. Mathematical logic serves the computer sys-tem designer in the same way that calculus serves thedesigner of continuous systems|as a notation for de-scribing systems and as an analytical tool for calculatingand predicting the behavior of systems. In both designdomains, computers can provide speed and accuracy forthe analysis.Formal methods involves the speci�cation of a sys-tem using languages based on mathematical logic. For-mal methods provides a means for rigorous speci�cationof desired properties as well as implementation details.Mathematical proof may be used to establish that animplementation meets the desired abstract properties.The most rigorous application of formal methods is touse semi-automatic theorem provers to ensure the cor-rectness of the proofs. In principle, formal methods canaccomplish the equivalent of exhaustive testing, if ap-plied all the way from requirements to implementation.However, this requires a complete veri�cation, which israrely done in practice.The reason that correct software is di�cult to pro-duce, even with large amounts of testing, is at �rstsurprising|after all, we have been designing complexengineering systems for decades. Table 1 compares com-puter systems with classical systems and illustrates whythe traditional approach to validation is ine�ective. Un-like physical systems that are subject to physical fail-ure, in software, there's nothing to go wrong but thedesign. Our intuition and experience is with continuoussystems|but software exhibits discontinuous behavior.We are forced to separately reason about or test mil-

lions of sequences of discrete state transitions. Most ofthe design complexity in modern systems is in the soft-ware. The problem is that the complexity exceeds ourability to have intellectual control over it.The term formal in \formal methods" refers to theidea that a proof can be known to be valid based uponits \form." In other words, the validity of a proof canbe established by examining the syntax of an argumentwithout regard to its semantics. The following argument:That animal is a catAll cats are sneakyTherefore, that animal is sneakyis valid independent of the meaning of \animal", \cat"or \sneaky." Thus, the following equivalent argument isalso valid:That 
 is a 2All 2s are 3Therefore, that 
 is a 3Since the validity of a formal proof depends upon formonly, a computer program can be used to check the va-lidity of a proof without being supplied detailed domain-speci�c knowledge.Formal logic provides rules for constructing argu-ments that are sound because of their form and indepen-dent of their meaning. Formal logic provides rules formanipulating formulas in such a manner that only validconclusions are deducible from premises. The manipu-lations are called a proof. If the premises are true state-ments about the world, then the soundness theorems oflogic guarantee that the conclusion is also a true state-ment about the world. Assumptions about the world aremade explicit, and are separated from rules of deduction.Logic provides the foundation for all mathematics.But traditional applications of mathematics have beento continuous systems, where highly developed bodies oftheory (e.g., aerodynamics) remove practitioners fromhaving to reason from the elementary logical underpin-nings. But computer systems operate in a discrete do-main; their operation is essentially a sequence of deci-sions, and each application is new. Therefore we mustdevelop a speci�c theory about each one, directly inlogic.Formal methods can be roughly divided into twobasic components: speci�cation and veri�cation. For-mal speci�cation is the use of notations derived fromformal logic to (1) describe the assumptions about theworld in which a system will operate, (2) the require-ments that the system is to achieve and (3) a designto accomplish those requirements. Formal veri�cation isthe use of proof methods from formal logic to (1) ana-lyze speci�cations for certain forms of consistency andcompleteness, (2) prove that the design will satisfy the2



Classical Systems Computer Systemscontinuous state space discrete state spacesmooth transitions abrupt transitions�nite testing �nite testing inadequate,and interpolation OK interpolation unsoundmathematical modeling prototyping and testingbuild to withstand additional stress build to speci�c assumptionspredictable surprisingTable 1. Comparison of Classical Engineering Systems with Computer Systemsrequirements, given the assumptions, and (3) prove thata more detailed design implements a more abstract one.The mathematics of formal methods include (1) predi-cate calculus (1st order logic), (2) recursive function the-ory, (3) lambda calculus, (4) programming language se-mantics and (5) discrete mathematics|number theory,abstract algebra, etc.The following is a useful (�rst-order) taxonomy ofthe degrees of rigor in formal methods:Level-1: Formal speci�cation of all or part ofthe system.Level-2: Paper and pencil proof of correctness.Level-3: Formal proof checked by mechanicaltheorem prover.Level 1 represents the use of mathematical logic or aspeci�cation language that has a formal semantics tospecify the system. This can be done at several levelsof abstraction. For example, one level might enumer-ate the required abstract properties of the system, whileanother level describes an implementation, which is al-gorithmic in style. Level 2 formal methods goes beyondLevel 1 through use of pencil-and-paper proofs that themore concrete levels logically imply the more abstract-property oriented levels. Level 3 is the most rigorousapplication of formal methods. Here one uses a semi-automatic theorem prover to ensure that all of the proofsare valid. The Level 3 process of convincing a mechanicalprover is actually a process of developing an argumentfor an ultimate skeptic who must be shown every detail.One can also add a Level 0 to refer to software engineer-ing techniques that do not involve mathematical logic ina signi�cant way, such as statically testing for uninitial-ized variables and V&V activities such as formal inspec-tions. Intuitively, higher levels of rigor provide greatercon�dence but at greater cost.It is also important to realize that formal methodsis not an all-or-nothing approach. The application offormal methods to the most critical portions of a systemis a pragmatic and useful strategy. Although a complete

formal veri�cation of a large complex system is imprac-tical at this time, a great increase in con�dence in thesystem can be obtained by the use of formal methods atkey locations in the system.Formal Requirements AnalysisIn this section we will explore the process of writinga Level 1 formal speci�cation of requirements. This willbe done by way of example.Suppose we want to develop an electronic telephonebook, and we wish to write down the requirements forit using formal methods. We begin with some informalEnglish requirements:� Phone book shall store the phone numbers of a city� There shall be a way to retrieve a phone numbergiven a name� It shall be possible to add and delete entries fromthe phone bookMathematical Representation of a Phone BookThe �rst question that we face is how do we repre-sent the phone book mathematically? There appear tobe several possibilities:1. As a set of ordered pairs of names and numbers.Adding and deleting entries via set addition anddeletion.2. As a function whose domain is all possible namesand range is all phone numbers. Adding and delet-ing entries via modi�cation of function values.3. As a function whose domain is only names currentlyin the phone book and range is phone numbers.Adding and deleting entries via modi�cation of thefunction domain and values. (Z style)3



We decide to go with the second approach because itseems the simplest.In traditional mathematical notation, we would de-�ne the phone book as follows:Let N = set of namesP = set of phone numbersbook : N �! PThe set N represents all possible names, not just those inthe city. Similarly the set P represents all possible phonenumbers, not just those currently in service. How thendo we indicate that we do not have a phone number forall possible names, only for names of real people? Onepossibility is to to use a special number, that could neverreally occur in real life, e.g. 000-0000. We don't have tospecify the implemented value of this special number wecan just give it a name: p0 2 P .Now we can de�ne an empty phone book. In tradi-tional notation, we would write:emptybook : N �! Pemptybook(name) � p0Now we need to �gure out how to represent English re-quirement 2: \There shall be a way to retrieve a phonenumber given a name." We decide to use a function\FindPhone."FindPhone : B � N �! PFindPhone(bk; name) = bk(name)where B = set of functions : N �! P . Findphone re-turns a phone number when given a book and a name.Note that FindPhone is a higher-order function sinceits �rst argument is a function (i.e., its type is B).English requirement 3 stated, \It shall be possi-ble to add and delete entries from the phone book."We decide to model these activities with two functions\AddPhone" and \DelPhone":AddPhone : B �N � P �! BAddPhone(bk; name; num)(x) = � bk(x) if x 6= namenum if x = nameDelPhone : B �N �! BDelPhone(bk; name)(x) = � bk(x) if x 6= namep0 if x = nameThe speci�cation for AddPhone reads as follows: if youadd an entry to the phone book for name and then accessentry x, you get the original value bk(name) if x 6= nameand num otherwise. Similarly, DelPhone states: if youdelete the name entry from the phone book and thenaccess x, you get p0 if x = name and bk(x) otherwise.

We can now write the complete speci�cation:Let N = set of namesP = set of phone numbersbook : N �! Pp0 2 PB = set of functions : N �! PFindPhone : B �N �! PFindPhone(bk; name) = bk(name)AddPhone : B �N � P �! BAddPhone(bk;name; num)(x) = � bk(x) if x 6= namenum if x = nameDelPhone : B �N �! BDelPhone(bk;name)(x) = � bk(x) if x 6= namep0 if x = nameAt this point we realize that our work is not com-pletely satisfactory, for example:� Our speci�cation does not rule out the possibility ofsomeone having a \p0" phone number� We have not allowed multiple phone numbers pernameThe �rst question is an artifact of our particular spec-i�cation; however, the second question is a result of ade�ciency in the English speci�cation.Overcoming the De�cienciesThe �rst de�ciency is that our requirements do notrule out the possibility of someone having a \p0" phonenumber. One way to overcome this problem is to use a
ag to indicate when a phone number is valid. However,this would not help us at all with the second de�ciency|no way to store multiple phone numbers per name. Themost straight-forward solution to the second de�ciency isto make the phone book map into a set of phone numbersrather than just a single phone number. This also solvesde�ciency 1|the emptyset can be used to represent thesituation where there is no phone number instead of us-ing a p0 number. Thus, we have:Let N = set of namesP = set of phone numbersbook : N �! 2PP = set of functions : N �! 2Pbook : Pemptybook(name) � �The notation 2P represents the set of subsets of P . Thus,a book is a function from the set of names into a setof subsets of phone numbers (i.e., given a name it willreturn a set of phone numbers). The empty set � canbe used to represent the lack of a phone number for aname.4



The FindPhone;AddPhone and DelPhone func-tions can be modi�ed as follows:Let N = set of namesP = set of phone numbersbook : N �! 2PP = set of functions : N �! 2Pemptybook(name) � �FindPhone : B �N �! PFindPhone(bk; name) = bk(name)AddPhone : B �N �P �! BAddPhone(bk;name; num)(x) =� bk(x) if x 6= namebk(name) [ fnumg if x = nameDelPhone : B �N �! BDelPhone(bk;name)(x) = � bk(x) if x 6= name� if x = nameNotice that the function DelPhone deletes all of thephone numbers associated with a name. Should the sys-tem be able to just remove one phone number associatedwith the name? The English requirements as written donot cover this situation. Clearly, the requirements mustbe corrected. If the capability to remove one of the phonenumbers out of the set is needed, an additional function,say DelPhoneNum, must be de�ned:DelPhoneNum : B �N �P �! BDelPhoneNum(bk;name; num)(x) =� bk(x) if x 6= namebk(name) n fnumg if x = nameSeveral aspects of the formal speci�cation are sig-ni�cant. First, the speci�cation is abstract and doesnot resemble program code. For example, the func-tions are de�ned over in�nite domains. Second, theprocess of translating the requirements into mathemat-ics has forced us to enumerate many things that areusually left out of English speci�cations. Third, theformal process exposes ambiguities and de�ciencies inthe requirements. For example one must chose betweenbook : N �! P and book : N �! 2P as the de�nitionof the phone book.Formal Analysis of RequirementsAlthough formal analysis can be carried out us-ing pencil and paper, greater con�dence in the analysiscan be gained through use of a semi-automatic theoremprover, i.e. using Level 3 rigor. In order to use a the-orem prover, the speci�cation must be translated intothe formal speci�cation language used by the theoremprover. We will illustrate this process, using the PVS(Prototype Veri�cation System) theorem prover.6, 7, 8The speci�cation becomes:

names: TYPEph_number: TYPEIMPORTING sets[ph_number]book: TYPE = [names -> set[ph_number]]name: VAR namesemptybook(name): set[ph_number] = emptysetbk: VAR bookFindPhone(bk, name): set[ph_number] = bk(name)num: VAR ph_numberAddPhone(bk, name, num): book =bk WITH [name := add(num,bk(name))]DelPhone(bk, name): book =bk WITH [name := emptyset]A few observations should make the PVS syntax under-standable. The �rst two lines de�ne the types namesand ph_number. These represent the domains of namesand phone numbers, respectively. The IMPORTING com-mandmakes the PVS sets library available to the speci�-cation. The notation [names -> set[ph_number]] de-�nes a function whose domain is names and whose rangeis set[ph_number]. The notation bk WITH [name :=add(num,bk(name))] de�nes a new function identicalto bk except at the point name. The value of the newfunction at name is set equal to add(num,bk(name)), theoriginal set bk(name) with num added to it.We can now analyze our requirements by posingchallenges: \If this speci�cation is correct, the followingproperty should be true." For example, if I add a phonenumber to a name, then the set returned by FindPhoneshould contain that entry:num 2 FindPhone(AddPhone(bk;name; num); name)In PVS notation, we haveFind_Add_lem: LEMMAmember(num,FindPhone(AddPhone(bk,name,num),name))We issue the PVS prove command followed by a TCCcommand, a high-level strategy that is often able to auto-matically prove simple theorems. The system responds:Rewriting AddPhone(bk, name, num) to ...Rewriting FindPhone ...Rewriting member(num, bk(name)) to ...Rewriting add(num, bk(name))(num) to TRUE.Rewriting member(num, add(num, bk(name))) to TRUE.Trying repeated skolemization, instantiation,and if-lifting,5



Q.E.D.Run time = 3.80 secs.Real time = 10.48 secs.The PVS prover displays Q.E.D. which informs usthat the theorem has been successfully proved. We haveveri�ed that our de�nition of FindPhone satis�es ourexpectationy. Encouraged by our success, we try an-other:Del_Add_lem: LEMMADelPhone(AddPhone(bk,name,num),name) = bkThis time our PVS proof e�ort leaves us with:Del_Add_lem.1 :[-1] name!1 = x!1|-------{1} emptyset = bk!1(x!1)Rule?This is not provable because bk!1(x!1) (which is equalto bk!1(name!1)) is not necessarily equal to the emptyset. We realize that after DelPhone removes name fromthe phone book that bk(name)will be equal to the emptyset only for the case that there were no phone numbersfor name before the AddPhone function operates on thephone book. Thus, we must change the lemma to:Del_Add_lem: LEMMA emptyset(bk(name)) IMPLIESDelPhone(AddPhone(bk,name,num),name) = bkAt this point we have gained some additional insight intoour requirements. Several questions arise that should beaddressed in more detail in our requirements:� Should we add a \ChangePhone" function thatalters the phone numbers for an already existingname.� Should we change the de�nition of AddPhone toonly operate on non-existing names?� Should error messages be output from the func-tions?We will not pursue these questions further in thispaper, but have raised them to illustrate how the puta-tive theorem proving process can lead to a closer inves-tigation of the requirements.yOf course this is merely one of many properties we may wishto verify.

Revising the Informal English RequirementsOne important product from the formal speci�ca-tion process is that it enables us to revise our Englishspeci�cation in a way that removes ambiguities. Theoriginal speci�cation was� Phone book shall store the phone numbers of a city� There shall be a way to retrieve a phone numbergiven a name� It shall be possible to add and delete entries fromthe phone bookWe now revise them to read:� For each name in the city, a set of phone numbersshall be stored (Should we limit the number?)� There shall be way to retrieve the phone numbersgiven a name� It shall be possible to add a new name and phonenumber� It shall be possible to add new phone numbers toan existing name� It shall be possible to delete a name� It shall be possible to delete one of several phonenumbers associated with a name� The user shall be warned if a deletion is requestedon a name not in the city� The user shall be warned if a deletion of a non-existent phone number is requestedThere are many di�erent ways to formally specifysomething. No matter what representation you choseyou are making some decisions that bias the implemen-tation. The goal is to minimize this bias and yet becomplete. The process of formalizing the requirementscan reveal problems and de�ciencies and lead to a betterEnglish requirements document as well.Design Veri�cationIn this section we will brie
y explore the techniquesof design veri�cation. This will be done by continuingwith our phone book example. We decide to design ourphone book using a hash table. For simplicity we assumethat we have a hash function that will return a uniqueindex into a multi-dimensional array for each name inthe phone book. This is illustrated in Figure 1: Thehigh-level design of the phone book can be speci�ed inPVS as follows:6
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phone # 1phone # 2phone # 3phone # 3phone # 2phone # 1phone # 3phone # 2phone # 1phone # 3phone # 2phone # 1Fig. 1. Data Structure for Phone Book High-Level De-signindex: TYPE = {i: nat | i < max_names}nbufidx: TYPE = {i: nat | i <= max_numbers}nbufloc: TYPE = {i: posnat | i <= max_numbers}numbuf: TYPE = ARRAY[nbufloc -> ph_number]hashf: TYPE = function[names -> index]numlist: TYPE = [# last: nbufidx, nbuf: numbuf #]ibook: TYPE = ARRAY [index -> numlist]hash: hashfibk: VAR ibookname: VAR namesfindphone(ibk, name): numlist= ibk(hash(name))Similarly the high-level design for the \addphone" and\delphone" functions can be de�ned:addphone(ibk, name, num): ibook =IF last(ibk(hash(name))) >= max_numbersTHEN ibkELSE % book is not fullLET nl = ibk(hash(name)) INibk WITH [(hash(name)) :=(# nbuf := nbuf(nl)WITH [(last(nl)+1) := num],last := last(nl) + 1 #)]ENDIFdelphone(ibk, name): ibook =LET nl = ibk(hash(name)) INibk WITH [(hash(name)) := nlWITH [last := 0]]One then constructs a mapping function that re-lates the objects of the high-level design speci�cation

to the objects of the requirements-level speci�cation.In this case, we need a function that constructs therequirements-level phone book, a set of entries, from thehigh-level design data structure. We name this function,\bmap":bmap: function[ibook -> book] =(LAMBDA ibk:(LAMBDA name:(LET nl = ibk(hash(name)) INsmap(nbuf(nl),last(nl)))))This function is de�ned in terms of the recursive func-tion, \smap":smap: RECURSIVE function[numbuf,nbufidx-> set[ph_number]] =(LAMBDA nb,ii: IF ii = 0 THEN emptysetELSE add(nb(ii),smap(nb,ii-1))ENDIF)To show that the high-level design satis�es the require-ments, we prove homomorphisms of the form:Verif_condition: THEOREMNOT name_full(ibk,name) IMPLIESbmap(addphone(ibk, name, num)) =AddPhone(bmap(ibk),name,num)In other words, if we start with a phone book ibk, addname to it, and then map it up to the requirements levelwith bmap, we obtain the same result as �rst mappingibk up to the requirements level and then executingAddPhone. This is illustrated in Figure 2:6 6-- ibk'ibk bmap, num, num addphoneAddPhone book'book , name, namebmapFig. 2. Design Proof that High-Level Design addphoneFunction Implements Requirements-Level AddPhoneIntroduction to Code-Level Veri�cationPresentation of the entire code-level speci�cation,implementation and the corresponding formal veri�ca-tion is beyond the scope of this conference paper. How-ever, some of the concepts involved can be introduced by7



way of a single procedure that could be used in the imple-mentation of this phone book|an array search function.Let's begin with an English speci�cation of such aprocedure:The procedure searches an array \A" of length\N" for a value \X." If it �nds the element,then \Y" is equal to the \index" of the arrayelement that is equal to \X" on exit from thereturn. If there is no element of the array equalto \X" then Y is equal to \0" on exit.The following is a formal speci�cation of this procedure:pre-condition: N > 0post-condition:fX = A[Y ] ^ (1 � Y � N)g _ f(Y = 0)^ (8k : (1 � k � N) � A[k] 6= X)gThe \pre-condition" describes what must be true of theinput variables when the procedure is called and the\post-condition" presents a property on the output vari-ables that de�nes the behavior of the routine. The ^'srepresent logical or and _ represents logical and.This speci�cation could be implemented with a va-riety of di�erent search techniques, e.g. linear search,binary search etc. For simplicity a linear search algo-rithm is presented here:function Lookup(var A:array[1::N ] of integer; x : integer):1::N ;var i;m;n : 1::N ; label 11;f(1 < N) ^ sorted(A) ^ (A[1] � x < A[N ])gbegin m := 1; n := N ;f(m < n) ^ sorted(A) ^ (A[m] � x < A[n])gwhile m+ 1 < n dobegin i := (m+ n)div 2;if x < A[i] then n := ielse if A[i] < x then m := ielse begin Lookup := i; fA[Lookup] = xggoto 11 endend;f(m+ 1 = n) ^ sorted(A) ^ (A[m]� x < A[n])gif A[m] 6= x then f:9k:((1 � k � N) ^ (A[k] = x))ggoto 11else Lookup :=m;11: endf(A[Lookup] = x) _ (:9k:((1 � k � N) ^ (A[k] = x)))gwheresorted(A) = 8i; j:((1 � i < j � N) � (A[i] < A[j]))Note that the pre- and post-conditions have been addedto the text as comments. In addition a \loop invariant"has been supplied for each loop. This is a property thatis true about the loop whenever one reaches that pointin the loop. Once these annotations are made a set of\veri�cation conditions" can be automatically generatedusing a tool such as Penelope.9, 10 If these veri�cation

conditions (VC) can be shown to be theorems, then theprogram correctly implements the speci�cation.zFor this program and speci�cation, the following arethe set of veri�cations that would be produced:1: f(1 < N)^ sorted(A) ^ (A[1] � x < A[N ]g� f(1 < N)^ sorted(A) ^ (A[1] � x < A[N ])g2: fA[Lookup] = xg � fA[Lookup] = xg3: f(m+ 1 = n) ^ sorted(A) ^ (A[m] � x < A[n]) ^ (A[m] = x)g� fA[m] = xg4: fFailureg � fFailureg5: f(m+ 1 = n) ^ sorted(A) ^ (A[m] � x < A[n]) ^ (A[m] 6= x)g� f:9k:((1� k � N)^ (A[k] = x))g6: f(m < n) ^ sorted(A) ^ (A[m] � x < A[n]) ^ (m+ 1 < n)^(A[(m+ n) div 2] � x)^ (x � A[(m+ n) div 2])g� fA[(m+ n) div 2] = xg7: f(m < n) ^ sorted(A) ^ (A[m] � x < A[n]) ^ (m+ 1 < n)^(A[(m+ n) div 2] < x)^ (x � A[(m+ n) div 2])g� f(((m+ n) div 2) + 1 = n) ^ sorted(A)^(A[(m+ n) div 2] � x < A[n])g8: f(m < n) ^ sorted(A) ^ (A[m] � x < A[n]) ^ (m+ 1 < n)^(A[(m+ n) div 2] < x)^ (x < A[(m+ n) div 2])g� f(m+ 1 = (m+ n) div 2)^ sorted(A)^(A[m] � x < A[(m+ n) div 2])gThe overall process is illustrated in Figure 3.�
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Fig. 3. The VC generation processOne can see that the speci�cation above is very de-tailed and deals speci�cally with implementation vari-ables. In fact, code-level veri�cation is usually the mosttime-consuming of all of the formal methods, because ofthe amount of detail that must be handled. The for-mal speci�cation that drives the VC generation processcan be connected to the upper-level design speci�cationsto make a formal hierarchy as shown in Figure 4. Theupper-level proofs are accomplished using the techniquesof design proof described in the previous section.zOf course this is true in practice only if the semantics of thelanguage used for the VC generationmatch the actual semantics ofthe language employed and there are no bugs in the VC generatorand compiler.8
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Fig. 4. Hierarchical Speci�cation Used to ProveHigh-Level PropertyMaturity of Formal MethodsThe major drawback cited by critics is that formalmethods is too expensive and time-consuming to be prac-tically applied. While this criticism was perhaps truetwenty years ago, much progress has been made in de-velopment of formal methods languages, tools, and tech-niques.Most of the commercial application of formal meth-ods has occurred in Europe. Most noteworthy is the IBMCICS Project.11 This project applied formal methodsto an upgrade of a major on-line transaction-processingsoftware package. The size of the upgrade was 13,230lines of code. The project team claimed that 19 defectswere avoided as a result of using formal methods. Theyalso claimed a cost savings of 9% of total or $13 millionsaved. They used the Z speci�cation language at theLevel 1 level of rigor.Another noteworthy application of formal methodsis the Inmos/Oxford T800 Transputer Floating-PointUnit Project. This project involved the application offormal methods to the design of a hardware device. TheT800 Transputer Floating-Point Unit Project originallybegin with two separate, parallel developments: an in-formal development, supported by months of testingagainst other FPUs and a formal development using Z.Because the formal development moved far ahead of theinformal team, the informal e�ort was terminated. In-mos claims a saving of 12 months in the developmenttime. They received the Queen's Award for Technologi-cal Achievement 1990.Another successful application of formal methods

is the SACEM Railroad Signalling System.12 The ob-jective of this project was to increase tra�c movementby 25% (800,000 passengers/day). This involved 21,000lines of Modula-2 code of which 63% was safety-critical.They used Level 2 rigor, performing manual proofs onthe VCs. The validation e�ort for the total system was100 man-years. The development team believes that thesystem is safer as a result of the use of formal methods.Meanwhile in the United States, the National Se-curity Agency and the Defense Advanced ResearchProjects Agency (DARPA) have quietly funded quite alot of formal methods research, resulting in signi�cantadvances in theorem-proving tools (e.g., Gypsy, EHDM,SDVS) and in the complexity of systems that can beformal veri�ed (e.g., encryption devices, secure operat-ing systems, microprocessors).NASA Langley Research Center has established aresearch program aimed at bringing formal methodstechnology to a su�ciently mature level for practicaluse on life-critical systems by United States aerospaceand other industries and to facilitate the transfer ofthis technology through carefully orchestrated demon-stration projects. Our research e�orts are primarily con-centrated on the technically challenging areas of digital
ight-control systems design that are currently beyondthe state of the art. Demonstration projects are focussedon problem domains where current formalmethods tech-nologies are deemed adequate but techniques and ex-amples of how to apply them are absent. To overcomethe sizeable \learning curve" associated with adoptionof formal methods and their application to new problemdomains, these demonstration projects are accomplishedby establishing cooperative partnerships between indus-try and the developers of the formal methods tools andtechniques.Our software demonstration projects began withformal veri�cation of some simple utility routines ob-tained from the NASA Goddard Space Flight Center andthe NASA Lewis Research Center. This work was per-formed by Odyssey Research Associates (ORA) usingtheir Ada veri�cation tool named Penelope.13 Duringthis project, ORA demonstrated that the use of formalspeci�cation alone uncovered several errors in the rou-tines and that the subsequent formal veri�cation e�ortuncovered additional errors.10 In a second project, ORAformally speci�ed the mode-control panel logic of a Boe-ing 737 experimental research aircraft using Larch (thespeci�cation language used by Penelope).14We are participating with NASA Johnson SpaceCenter and the Jet Propulsion Laboratory (JPL) todemonstrate the use of formal methods for space ap-plications. In this project, we are working with spaceapplication experts from NASA Johnson, JPL, and IBMto9



� educate the application experts about the PVSprover and how to apply formal methods,� work jointly to develop a hierarchical set of formalspeci�cations of the Jet-Select function of the NASASpace Shuttle, ranging from pseudo-code level todetailed-design level to abstract high-level speci�-cation,� demonstrate how to prove that each level speci�ca-tion is a valid implementation of the level above,and� demonstrate how to prove that the requirements-level speci�cation meets a set of properties that thesystem is required to hold.Other demonstration projects related to software in-clude:� formal speci�cation and veri�cation of 
oating pointsoftware for calculating trajectories of a ballisticmissile;� formal speci�cation of guidance and control systemsoftware for a planetary lander;� design, speci�cation and veri�cation of an operat-ing system for a fault-tolerant, Reliable ComputingPlatform; and� development of a formal requirements de�nition lan-guage for 
ight-control software.This work along with the rest of NASA Langley's re-search in formal methods is discussed in an overviewpaper presented at Compass 91.15Since the Federal Aviation Administration (FAA)must approve any new methodologies for developing life-critical digital systems for civil air transports, their ac-ceptance of formal methods is a necessary precursor toits adoption by industry system designers. Therefore, wehave been working with the FAA and other regulatoryagencies to incorporate credit for formal methods intothe standards they set. We presented a tutorial to theFAA SWAT (SoftWare Advisory Team) at their request,and SRI International is currently writing a chapter forthe FAA Digital Systems Validation Handbook on for-mal methods. We were instrumental in including formalmethods as an alternate means of compliance in the DO-178B standard. LimitationsIt is important that the limitations of formal meth-ods be recognized. For many reasons, formal methodsdo not provide an absolute guarantee of perfection, even

if applied with Level 3 rigor. First, formal methods can-not guarantee that the top-level speci�cation is whatwas intended. Second, formal methods cannot guaran-tee that the mathematical model of a physical devicesuch as a hardware gate is accurate with respect to thephysics of the device. The formal veri�cation dependsupon the the validity of the models of the primitive ele-ments such as hardware gates. The mathematical modelof a gate is merely a representation of the physical de-vice. Some formal models just include logical properties.Other formal models include timing delays, but formalmodels typically do not include e�ects of temperature,EMI, manufacturing 
aws, etc. Third, often the formalveri�cation process is only applied to part of the system.Finally, there may be errors in the formal veri�cationtools themselves. Nevertheless, formal methods providea signi�cant capability for discovering/removing errorsin large portions of the design space.Concluding RemarksThis tutorial-style paper describes in simple termswhat formal methods is and how it can be applied tosoftware. We believe that formal methods tools andtechniques are already su�ciently mature to be practicaland cost-e�ective in the development and analysis of life-critical software systems. Several examples of formallyspeci�ed and veri�ed systems support our position. Theintellectual investment required to adopt formalmethodsis considerable. However, we see no acceptable alterna-tive; the use of computer software in life-critical appli-cations demands the use of rigorous formal speci�cationand veri�cation procedures.References[1] Knight, John C.; and Leveson, Nancy G.: Anexperimental evaluation of the assumptions of in-dependence in multiversion programming. IEEETransactions on Software Engineering, vol. SE-12,no. 1, Jan. 1986, pp. 96{109.[2] Scott, R. Keith; Gault, James W.; and McAllister,David F.: Fault-Tolerant Software ReliabilityMod-eling. IEEE Transactions on Software Engineering,May 1987.[3] Shimeall, T. J.; and Leveson, N. G.: An EmpiricalComparison of Software Fault-Tolerance and FaultElimination. IEEE Transactions on Software Engi-neering, Feb. 1991, pp. 173{183.[4] Knight, John. C.; and Leveson, Nancy. G.: A ReplyTo the Criticisms Of The Knight & Leveson Experi-10
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