
Design Strategy for aFormally Veri�ed Reliable Computing PlatformRicky W. ButlerJames L. CaldwellNASA Langley Research CenterHampton, VA 23665{5225 Ben L. Di VitoVigyan, Inc.,30 Research Drive,Hampton, VA 23666.June 28, 1991 �AbstractThis paper presents a high-level design for a reliable com-puting platform for real-time control applications. Thedesign tradeo�s and analyses related to the developmentof a formallyveri�ed reliable computing platform are dis-cussed. The design strategy advocated in this paper re-quires the use of techniques that can be completely char-acterized mathematically as opposed to more powerfulor more exible algorithms whose performance proper-ties can only be analyzed by simulation and testing. Theneed for accurate reliability models that can be relatedto the behavior models is also stressed. Tradeo�s be-tween reliability and voting complexity are explored. Inparticular, the transient recovery properties of the sys-tem are found to be fundamental to both the reliabilityanalysis as well as the \correctness" models.Key Words { Fault tolerance, formal methods, ma-jority voting, computer architecture, transient faultsIntroductionResearchers at NASA Langley Research Center (LaRC)have initiated a major research e�ort towards the devel-opment of a practical validation and veri�cation method-ology for digital y-by-wire control systems. The vali-dation process for such systems must demonstrate thatthese systems meet stringent reliability requirements.Flight critical components of commercial aircraft shouldhave a probability of failure of at most 10�9 for a 10 hourmission [1]. Under such severe reliability requirements,design errors, also referred to in the literature as genericerrors, can not be tolerated. Thus, the validation prob-lem for life-critical systems can be decomposed into two�presented at the 6th Annual Conference on Computer Assur-ance (COMPASS 91), June 24-28, 1991 in Gaithersburg, MD.

major tasks:1. Quantifying the probability of system failure due tophysical failure.2. Establishing that design errors are not present.Since current technology cannot support the manu-facturing of electronic devices with failure rates lowenough to meet the reliability requirements directly,fault-tolerance strategies must be utilized that enablethe continued operation of the system in the presence ofcomponent failures. The �rst task must therefore cal-culate the reliability of the system architecture that isdesigned to tolerate physical failures. The second taskmust not only establish the absence of errors in the con-trol laws and their implementation, but also the absenceof errors in the underlying architecture that executes thecontrol laws. We are exploring formal veri�cation tech-niques as the primary candidate for the elimination ofsuch errors.The major goal of this project is to produce a veri�edreal-time computing platform (both hardware and soft-ware) which is useful for a wide variety of control-systemapplications. This paper presents the design issues andtradeo�s that were made to facilitate the veri�cation of areliable computing platform that schedules and executesthe application tasks of a digital ight control system.The details of the veri�cation activity including detailedspeci�cations and proofs accomplished during the �rstphase of the project are available [2, 3].A Science of Reliable DesignMathematical reliability models provide the foundationfor a scienti�c approach to fault-tolerant system design.Using these models, the impact of architectural designdecisions on system reliability can be analytically evalu-ated. Reliability models are constructed that abstractlyaccount for all possible physical failures and all sys-tem recovery processes. In the analysis, physical fail-1

ures must be enumerated and their failure rates deter-mined. The fault arrival rates for physical hardware de-vices are available from �eld data or empirical models[4]. The fault recovery behavior of a system is depen-dent upon the particular fault-tolerant system architec-ture and must be determined by experimentation or byformal analysis.The justi�cation for building ultra-reliable systemsfrom replicated resources rests on an assumption of fail-ure independence among redundant units. This is a rea-sonable assumption when the redundant units are elec-trically isolated (i.e. located in separate chassis and us-ing di�erent power supplies). The alternative approachof modeling and experimentally measuring the degree ofdependence is infeasible, see [5]. The unreliability of asystem of replicated components with independent prob-abilities of failure can easily be calculated by multiply-ing the individual probabilities. Thus, the independenceassumption provides the means to obtain ultra-reliabledesigns using moderately reliable parts. Complex sys-tems constructed from components with interdependen-cies (e.g. due to shared memories, shared power sup-plies, etc.), can be modeled (assuming perfect knowledgeabout the failure dependencies) and the system relia-bility can still be computed. Of course, the reliabilitymodels can become very complex and the analysis in-tractable.The validity of a reliability analysis depends criticallyupon the accuracy of the reliability model. If the relia-bility model omits certain failure mechanisms or the rep-resentation of the recovery behavior is overly optimistic,the predicted probability of failure is inaccurate. Thismight occur, for example, if there are errors in the logi-cal design or in the implementation of the fault-recoverystrategy. Any validation methodology must address the\correctness" of the reliability model with respect tothe actual implementation. Ultimately, a mathemati-cal mapping between the implementation and the modelmust be constructed. Thus, the two validation tasks areessentially demonstrations of \correctness". Althoughthe quanti�cation task involves reliability models, ex-perimental data, and numerical calculation, model cor-rectness must also be established.The Role of Formal MethodsA major di�erence between the development e�ort pre-sented in this paper and most other e�orts is the useof formal methods1. This approach is born from the be-lief that the successful engineering of complex computingsystems will require the application of mathematically1The SIFT [6] project was the �rst attempt to apply formalmethods to the problems of digital ight control.

based analysis analogous to the structural analysis per-formed before a bridge or airplane wing is built. Theapplied mathematics for the design of digital systems islogic, just as calculus and di�erential equations providethe mathematical tools used in other engineering �elds.It is often assumed that the application of formalmethods is an \all or nothing" a�air. This is not thecase. Di�erent levels of application are both possibleand recommended. The following is a useful taxonomyof the degrees of rigor in applying formal methods:Level 0: No application of formal methods.Level 1: Formal speci�cation of the system.Level 2: Paper and pencil proof of correctness.Level 3: Formal proof checked by mechanicaltheorem prover.Signi�cant gains in assurance are possible in existingdesign methodologies by formalizing the operating as-sumptions and constraints, the speci�cation, and the im-plementation of a system in some formal mathematicalnotation. Experience shows that application of formalmethods to level 1 alone often reveals inconsistencies andsubtle errors that might not be caught until much laterin the development process if at all.The use of paper and pencil proof in the design pro-cess adds a second level of assurance in design correct-ness. The search for proofs forces explicit considerationof the relationships between the implementation and thespeci�cation and often reveals forgotten assumptions orincorrect formalizations.A proof of correctness is only as good as the prover.Even stronger evidence for correctness can be establishedby forcing proofs through a mechanical theorem prover.This is level 3 application of formal methods. The pro-cess of convincing a mechanical prover can be viewed asthe process of developing an argument for an ultimateskeptic who must be shown every detail.What is classi�ed here as level 1 and level 2 formalmethods are being widely applied in the U.K. In thesoftware domain, the U.K. Ministry of Defense has ten-tatively mandated application of formal methods for allsafety critical systems [7]. Our work can be classi�ed asa level 2 application of formal methods.A View of DigitalFlight Control SystemsThe control system architecture for aerospace vehi-cles can be viewed as hierarchical as shown in �gure 1.Each level in the hierarchy represents a di�erent aspectof the design process and entails di�erent validation andveri�cation issues. The top-level represents the aero-dynamic properties of a rigid body controlled by ma-neuverable surfaces. The second level represents the

Aerodynamic PropertiesjContinuous Di�erential Equations ModeljControl Law Block DiagramjApplication CodejOperating SystemjRedundant HardwareFigure 1: Digital Flight Control System Hierarchycontinuous-time feedback-control functions that operateon the aerodynamic vehicle. The third level representsthe block-diagram speci�cation of the control laws. Thefourth level represents the implementation of the controllaws in an executable programming language. The �fthlevel describes the system that dispatches the control-lawcode on a set of redundant hardware in a manner thatprovides fault tolerance. The sixth level represents thehardware components of the system. In this project, thedesign and veri�cation issues at the bottom two levels ofthe hierarchy are being explored.Figure 2 illustrates how the hierarchy above can befurther re�ned2.Traversing the horizontal hierarchy at the coarsestlevel of abstraction reveals the control application do-main, which is built on the reliable computing platform.These in turn view the state of the aircraft throughthe sensor/actuator network. Each of these abstractionsis decomposed into sublevels discussed below. The ra-tionale for choosing the major system interfaces at thepoints noted in �gure 2 is based on notions of reusabil-ity, a partitioning of the areas of technical expertise, andthe interfaces found in most computing systems in usetoday.The control application domain abstraction isolatesone of the two main application-speci�c aspects of thecontrol system. The most abstract view at this levelmight be a system of continuous di�erential equationsmodeling the control surfaces and aerodynamic proper-2In the graphical convention adopted here, non-overlappingboxes contained within another box denote horizontal hierarchyor system interfaces. The dependence of an interface on a resourceis indicated by placing the dependent box above the box denotingthe resource. Adjacent boxes at the same level within the hori-zontal hierarchy indicate independent resources. Thus, in �gure 2the operating system is dependent on the replicated processors forimplementation; however, the individual processors are not depen-dent on one another. Nested blocks denote vertical hierarchy orsuccessive levels of abstraction.

ties of the aircraft. Abstractions below this level includethe block-diagram speci�cation of the control laws andat the lowest level, implementation of the control lawsin an executable programming language on the underly-ing reliable computing platform. Obviously, correctnessat each level is as important as the correctness of thecomputing platform. Formal methods can have an im-pact on correctness in areas in the control applicationdomain; however, these issues are not addressed here.The reliable computing platform dispatches thecontrol-law code for execution on the underlying hard-ware and provides the interface to the network of sensorsand actuators. Traversing the hierarchy within the reli-able computing platform abstraction reveals two boxes,one representing the operating system and the other rep-resenting the underlying replicated processors. The op-erating system provides the interface to the bottom levelof the control application domain, the application code.The replicated processor level provides the physical in-terface to the sensor actuator network.The third component of the control system is the net-work of sensors and actuators. Like the control applica-tion domain, the sensor actuator network is highly ap-plication dependent. Because of the application-speci�cnature of this part of the system, we consider this compo-nent to be outside of the reliable computing platformanddo not speci�cally address it here, although attributesof the sensor actuator network must be included in anyoverall system reliability model.Requirements for aReliable Computing PlatformThe interface between the application code and op-erating system levels determines the functional require-ments for the reliable computing platform. The relia-bility requirements for aircraft applications have beendetermined by the regulatory agencies.We will not explicitly address performance require-ments here although they are a critical aspect for thesuccess of the system. Most of the functionality sup-porting the system's fault tolerance will be implementedin hardware to avoid the performance overhead su�eredby the implementation of SIFT [8].Functional RequirementsThe following is a summary of the most important re-quirements generated by typical aircraft control-law ap-

. . .P1 PrReplicated ProcessorsOperating System...Reliable Computing PlatformContinuous Di�erentialEquations Model...Application CodeControl Application DomainDigital Flight Control System -- ...AqA1Actuators...SpS1Sensors
Figure 2: Digital Flight Control System Architectureplication tasks:o Hard deadlineso Multi-rate cyclic schedulingo Upper bound on task execution timeo Intertask communicationThe hard-deadline requirement means that a task mustbe dispatched and complete within a strict time bound-ary. In particular, the time delay between reading asensor and sending a signal to an actuator, the transportdelay, must be strictly less than a predetermined value.The required periods of execution are di�erent for dif-ferent tasks. Thus, the system must perform multi-ratescheduling. Associated with each task is an upper boundon execution time. If a task receives input from anothertask that has the same execution period, the receivingtask must execute after the source task. Thus, withina \period-class", there is a precedence ordering on thetasks. The relationship between di�erent tasks with dif-ferent execution periods, is not constrained.Reliability RequirementsFault-tolerant architectures use replicated hardware re-sources and majority voting to enable continued opera-tion of the system in the presence of component failuresdue to physical faults. The operating system providesthe applications software developer a reliable mechanismfor dispatching periodic tasks on a fault-tolerant com-puting base that appears to him as a single ultra-reliableprocessor.

We are concerned with the most general type of faultybehaviors: Byzantine or malicious faults in which a pro-ducer can exhibit arbitrary behavior, or lie, to its con-sumers, sending each di�erent information. In our case,producers are processors or sensors and consumers areother processors or actuators.There are three basic fault-tolerance features to con-sider in the design of the reliable computing platform.o fault maskingo transient fault recoveryo fault detection and recon�gurationFault masking can be accomplished by actuator vot-ing alone. Voting internal state can also be used butis not essential for this function. Transient-error recov-ery requires internal voting. Fault detection can also beaccomplished by internal voting. However, alternate ap-proaches exist. For example, self-checking pairs can beused which shut-themselves down upon failure. In oursystem, there is no fault detection function since it isnon-recon�gurable. Therefore a minimal-voting strategyis used to ush the e�ects of transient faults. In othersystems where internal voting is used for fault detec-tion (and recon�guration), the minimal-voting strategyemployed here may not be appropriate. However, if afail-stop strategy such as self-checking pairs is used forfault-detection, the minimal voting approach may stillbe useful and e�cient.Field data indicates that transient faults are signi�-cantly more likely than permanent faults [?]. If all faultsare considered to be permanent, voting need only occur

..
PPHHbbQQ ��((...(((�����������%%%%%%@@@@QQQHHHXXXXhhhhhhincreased complexity dynamicschedulingreconfschedulingstaticreconfnon-reconfsimplex botherrorsdesignfailurephysicalPf

Figure 3: Balancing Reliability/Functionality Require-mentsat the actuators to mask faults. Similarly, if all por-tions of the dynamic state of the system were recoverablefrom sensor inputs then, eventually, the e�ects of tran-sient faults would be ushed from the system. Typically,most of the state of the system is held in the aircraft it-self, however there are data that can not be regeneratedfrom sensor inputs. For example, in a frame synchronousscheduling regime, the operating system must keep trackof which frame is scheduled for execution next. This iscritical data that must be stored in volatile memory andcan not be recovered from sensor inputs.Balancing the RequirementsThe drive for increased functionality is often pursuedwithout regard to its impact on system reliability. Thefailure probability of the system has two contributors:(1) physical failure and (2) design aws.3 The graphin �gure 3 shows the conjectured failure probability dueto each of these contributors as a function of systemcomplexity.The top curve represents the total probability of fail-ure. We have opted for a less complex system in orderto produce the best reliability.Previous E�ortsMany techniques for implementing fault-tolerancethrough redundancy have been developed over the pastdecade, e.g. SIFT [6], FTMP [9], FTP [10], MAFT [11].3Although it is infeasible to measure the contribution of thedesign aws in the ultrareliable regime, its e�ect can be discussedtheoretically.

The techniques di�er with respect to:o the unit of fault-isolation and recon�gurationo the voting strategyo the level of synchronizationo the veri�cation conceptIn FTMP, for example, the unit of recon�guration is amemory module or a CPU module. In SIFT, FTP andMAFT, the unit of recon�guration is an entire proces-sor. In a recon�gurable system, voting can be used todetect faults. In the architecture considered here it isassumed that faulty processors are not removed until af-ter the mission is over. The operating system does notutilize error reports from the voter. However, it may bedesirable to store these reports in memory for later useby ground maintenance personnel.Di�erences between previously developed systems nat-urally arose from di�erent design decisions. However,an often overlooked but signi�cant factor in the devel-opment process is the approach to system veri�cation.In SIFT and MAFT, serious consideration was given tothe need to mathematically reason about the system.In FTMP and FTP, the veri�cation concept was almostexclusively based on empirical testing. Obviously, theapproach advocated here is one of formal rigor in speci-�cation and veri�cation of the system.Although several fault-tolerant real-time computingbases have been designed for control applications [6, 9,10, 11], only the SIFT project attempted to use formalmethods. Although many positive theoretical advanceswere made, the SIFT operating system was never com-pletely veri�ed [12]. On the positive side, the conceptof Byzantine Generals algorithms was developed [13] aswas the �rst fault-tolerant clock synchronization algo-rithm with a mathematical performance proof [14].Unlike the SIFT models, which did not present an op-erational view of the scheduling function of the system,the models described in [2, 3] deal with this functionalityin some detail. The SIFT speci�cation was given fromthe perspective of an individual task. The speci�cationde�ned the behavior of a task given inputs from othertasks. However, it did not describe the required behav-ior of the scheduling system. It roughly stated that if atask were executed and given stable inputs, the outputwould be correct as long as the system had enough non-faulty hardware. Although there was an abstract notionof execution windows for the tasks, there was no spec-i�cation of the requirement that the operating systemmust dispatch tasks according to this schedule. Thus,the speci�cation approach was lacking in some impor-tant ways. Nevertheless, many of the design/veri�cationconcepts used in the SIFT project have been adopted inthis project.

Uniprocessor ModeljFault-tolerant Synchronous Replicated ModeljFault-tolerant Asynchronous Replicated ModeljHardware/Software ImplementationFigure 4: Hierarchical Speci�cation of the Reliable Com-puting PlatformDesign of theReliable Computing PlatformManagement of the replicated resources that imple-ment the required fault tolerance is a complex systemsproblem. The fundamental problem is the elimination ofall single-point failures. Clearly, a shared voter is insuf-�cient. The voter itself must be distributed! A seconddi�culty arises from the fact that a distributed votercan only mask errors if each replicate receives the sameinputs; thus, sensor values must also be distributed toeach processor in a fault-tolerant manner. This problemhas been called the interactive consistency or the Byzan-tine Generals problem and a number of algorithms havebeen developed to perform this function [13, 15]. Fi-nally, interactive consistency and voting in a hard real-time environment requires synchronized actions amongthe replicated processors, each of which has its own lo-cal clock subject to clock drift. A number of distributedclock synchronization algorithms have also been devel-oped [14]. How these algorithms can be incorporatedinto the fabric of a distributed system is at the heart offault-tolerant system design.Traditionally, the operating system has been imple-mented as an executive (or main program) that invokessubroutines implementing the application tasks. Com-munication between the tasks has been accomplished byuse of shared memory. This strategy is e�ective for sys-tems with nominal reliability requirements where a sin-gle processor can be used. For ultra-reliable systems,the additional responsibility of providing fault tolerancemakes this approach untenable.The operating system and replicated computer archi-tecture are designed together so that they mutually sup-port the goals of the reliable computing platform. Afour-level hierarchical decomposition of the reliable com-puting platform is shown in �gure 4.The design philosophy advocated in this paper is to de-sign the system in a manner that minimizes the amountof experimental testing required to validate the system

reliability models and maximizes the ability to math-ematically reason about correctness. Ultimately, thequanti�cation of system reliability must be made on thebasis of a mathematical model of the system and thecorrectness of the model must be demonstrated. Thecomplexity and number of parameters that must be mea-sured should be minimized in order to reduce the costof the veri�cation and validation process. The followingdesign decisions have been made for the initial versionof the system toward that end:o the system is non-recon�gurableo the system is frame-synchronouso the scheduling is static, non-preemptiveo internal voting is used to recover the state of a pro-cessor a�ected by a transient faultDiscussion of each point is deferred to following sections.Frame synchronous systems are common in aircraftcontrol applications with hard real-time deadlines as isstatic non-preemptive scheduling.The Uniprocessor ModelThe top level of the hierarchy describes the operatingsystem as a function that sequentially invokes applica-tion tasks. It extends the executive model by supportinga more sophisticated model of inter-task communication.This view of the operating system will be referred to asthe uniprocessor model. The uniprocessor model is for-malized as a state transition system and provides themost abstract speci�cation of the operating system.There are two major design issues at this level|thechoice of the scheduling strategy and the choice of inter-task communication strategy. There are many theoret-ical approaches to scheduling multi-rate periodic tasks.Scheduling can be classi�ed as either (1) preemptive ornon-preemptive or (2) dynamic or static. Unfortunately,the theoretical results cannot guarantee that the harddeadlines will be met for any of the non-static or pre-emptive algorithms capable of scheduling the real-timecontrol application tasks [16]. Consequently, all com-mercial aircraft control systems have been implementedusing a static, non-preemptive schedule table. The in-tertask communications problem is simpli�ed by the factthat tasks need only receive data produced by other tasksafter they have terminated. This can be implemented byuse of data bu�ers managed by the operating system.The non-preemptive, static approach simpli�es thedesign and veri�cation of the operating system. Insome ways, this merely transfers the burden of e�cientscheduling to the designer of the schedule table. How-ever, there are many ways to automate the generationof static schedule tables. It is envisioned that an o�-lineschedule generation program would be developed and

? ???
????...??? ??? ??? ???background T7T8 T6T6 T5T5 T2T2 T4T3T2T4T3T2 T1T1

Figure 5: Execution of tasks.formally veri�ed. The generated schedule table residesin the memory of the processors in the system. It is theresponsibility of the operating system to dispatch thetasks in accordance with the static tables.The static table consists of a sequence of \frames".Each frame contains a set of tasks which must be exe-cuted. The complete sequence of frames is referred toas a \cycle" or a \major frame". This cycle is repeat-edly executed in response to clock interrupts. Multi-ratescheduling is accomplished by placing a task in the tablein multiple places. This is illustrated in �gure 5.The Synchronous Replicated ModelThe second level in the hierarchy describes the operatingsystem as a synchronous replicated system where eachprocessor executes the same application tasks. The ex-istence of a global time base, an interactive consistencymechanism and a reliable voting mechanism are assumedat this level. The formal details of the model, speci�edas a state transition system, are described in [2]. Alsoat this level, a model of processor faults is developed.Su�ce it to say here that the fault model is a worstcase model in which nothing is known about any faultyprocessor.The replicated synchronous model implements theuniprocessor model by voting results computed on thereplicated processors. The correctness notion is basedon majority. As long as a majority of the processorsare working and a majority of them have been workingsince the start of the computation, then the replicatedmachine will produce the same results as the uniproces-

sor model.The primary design decisions at this level are whetherthe system is recon�gurable and where in the data pathvoting is to occur.There is ample evidence that robust implementationof online processor recon�guration is an extremely di�-cult problem. The Fault-Tolerant Processor (FTP) [10]and the Fault-Tolerant Multi-Processor (FTMP) [9] pro-vide two examples. A design aw has been discoveredin both FTMP and FTP which leads to the removal ofa good processor rather than the faulty processor in thepresence of a single injected fault [17, 18]. The FTP andFTMP are both highly respected and successful researche�orts that have pushed the state-of-the-art in fault tol-erant system design. These errors point to the fact thatexperienced computer architects, with expertise specif-ically in areas of fault-tolerant system design, are notimmune to the problem of design aws.4 From theseexperiences we conclude that the online fault-diagnosisand recon�guration problem is ripe for the applicationof formal methods and we intend to pursue this avenuein future research e�orts. However, for the initial e�ortreported on here we have chosen not to address recon-�guration.Voting can take place at a number of locations in thesystem and associated with each choice are various trade-o�s. Voting is dependent upon two system activities:(1) the redundant processing sites must synchronize forthe vote and (2) single source input data must be sentto the redundant sites using interactive consistency al-gorithms to ensure that each processor uses the sameinputs for performing the same computations. As men-tioned above, both these activities are assumed at thislevel of abstraction.Voting can take place at di�erent locations along thedata path with di�ering impacts on the level of clocksynchronization required. If voting takes place at theinstruction level, synchronization must be very tight. Ifoutputs are voted only after task execution is complete,loose synchronization is possible lessening the computa-tional burden required for clock synchronization. Thus,the design decisions made at this level impact the imple-mentation at lower levels of abstraction.If voting occurs only at the actuators and the internalstate of the system (contained in volatile memory) isnever subjected to a vote, a single transient fault canpermanently corrupt the state of a good processor. Thisis an unacceptable approach since �eld data indicatesthat transient faults are signi�cantly more likely than4It should be pointed out that CSDL never claimed to produceerror-free software. In fact, the Draper team speci�cally concen-trated on the physical failure problem. CSDL is aware of the designaw problem and has also become interested in pursuing formalmethods.

permanent faults [?]. An alternative voting strategy isto vote the entire system state. This approach purgesthe e�ects of transient faults from the system; however,the computational overhead for this approach may beprohibitive. We observe that voting need only occur forsystem state that is not recoverable from sensor inputs.This approach accomplishes recovery from the e�ects oftransient faults at greatly reduced overhead, but involvesincreased design complexity.The formal models presented in [2] provide a precisecharacterization of the minimumvoting requirements fora fault-tolerant system that purges the e�ects of tran-sient faults. There is a trade-o� between the rate of re-covery from transient faults and the frequency of voting.The more frequent the voting, the faster the recoveryfrom transients, but at the price of increased computa-tional overhead.Asynchronous Replicated SystemFault tolerance is achieved by voting results computedby the replicated processors operating on the same in-puts. Interactive consistency checks on sensor inputsand voting actuator outputs requires synchronization ofthe replicated processors. This implies the existence ofa global time base. In the absence of technology sup-porting manufacture of ultra-reliable clocks, electricallyisolated processors can not share a single clock. Thus,fault-tolerant implementation of the uniprocessor modelmust ultimately be an asynchronous distributed system.Reasoning about asynchronous distributed systems isnotoriously di�cult5. Serious validation problems haveappeared in previous e�orts due to the decision to dealwith the inherent asynchrony at the application level.The AFTI F16 provides a good example of the problemsthat can arise when asynchrony is present at the appli-cation level. There was a signi�cant problem with falsealarms caused by design oversights traced to the asyn-chronous computer operation [20]. Also the ability to sete�ective thresholds for the redundant sensor selection al-gorithms was seriously hampered. Thresholds should betight to �lter the e�ects of failed sensors. Unfortunately,the thresholds had to be set at 15% to eliminate falsealarms due to the asynchrony. But, with such a largethreshold a single channel failure can cause large air-craft transients. Thus, it is advantageous to deal withthe complexities due to asynchrony at the lowest possiblelevel in the system. This isolates the di�culties to a sin-gle clock synchronization function. With a fault-tolerantclock synchronization algorithm at the base of the oper-ating system, the rest of the operating system can be5In fact Lehman and Shelah [19] claim the analysis of suchsystems is an order of magnitude more di�cult than reasoningabout simply sequential systems

. . . ??
?Interactive ConsistencyDistribution Network. . .InterprocessorCommunication LinkInterprocessorCommunication Link ProcessorReplicateRProcessorReplicate1 Actuators

Sensors
Figure 6: Generic Hardware Architecturedesigned in a synchronous manner. The advantages ofthis approach are discussed in [21].At the asynchronous replicated system level, the as-sumptions of the synchronous model must be discharged.In, [22] Rushby and von Henke report on the formal veri-�cation of Lamport and Melliar-Smith's [14] interactive-convergence clock synchronization algorithm. This algo-rithm can serve as a foundation for the implementationof the replicated system as a collection of asynchronouslyoperating processors. Elaboration of the asynchronouslayer design will be carried out in Phase 2 of the researche�ort.Hardware/Software ImplementationFinal realization of the reliable computing platform isthe subject of the Phase 3 e�ort. The research activitywill culminate in a detailed design and prototype imple-mentation. The hardware architecture assumed for theimplementation of the replicated system is a N-modularredundant (NMR) system with a small numberN of pro-cessors. Single-source sensor inputs are distributed byspecial purpose hardware executing a Byzantine agree-ment algorithm. Replicated actuator outputs are alldelivered in parallel to the actuators, where force-sumvoting occurs. Interprocessor communication links allowreplicated processors to exchange and vote on the resultsof task computations. This is illustrated in �gure 6.

Overview of the Veri�cationIn [2, 3] we provide the details of the formal veri�cationof the reliable computing platform. The proof establishesthat the I/O behavior of the replicated model is identi-cal to the uniprocessor model. Our approach is based onstate machine concepts of behavioral equivalence, spe-cialized for this application. All of the proofs are ac-complished for all possible processor failures as long asa majority of them are working at all times.The major property that must be established in orderto prove that the replicated processor mimics the I/Obehavior of a uniprocessor is that the dynamic state ofthe system is recovered after a transient fault within abounded amount of time.The Reliability ModelsSince reliability is a driving inuence on the system de-sign it is essential that the design be faithfully capturedin the reliability model. The reliability analysis must besound and the parameters of the model must be measur-able.Three validation tasks are eliminated by not using re-con�guration. First, it is not necessary to perform fault-injection experiments to measure recovery time distri-butions for nonrecon�gurable systems. Second, fault la-tency is not a concern since it does not occur as a pa-rameter in the reliability model. Fault latency is only aconcern when one is trying to detect and remove a faultycomponent. In a recon�gurable system, non-correlatedlatent faults increase recovery time and correlated la-tent faults (in the worst case) reduce the reliability ofa recon�gurable system to that of a non-recon�gurablesystem. Finally, the complexity of the model is greatlyreduced|e.g., no recon�guration process, the interfaceto the sensors and actuators is static as opposed to dy-namic.Although the architecture presented here is parame-terized for an arbitrary number of replicated processors,interactive consistency requires at least four processorsto tolerate a single fault. Thus, a quadruplex is theminimum system con�guration. A simpli�ed reliabilitymodel for a quadruplex version of the system architec-ture is shown in �gure 7.The horizontal transitions represent transient fault ar-rivals. The vertical transitions represent permanent faultarrivals. These arrive at rate �T and �p respectively.The backwards arc represents the disappearance of thetransient fault and all errors produced by it. This is ac-complished by voting of internal state. The presence ofthis transition depends upon the proper design of theoperating system so that it can recover the state of a

6" !������������
������������ �������	 - ???
--�p 3�p3�T6 54 321 �3�p4�p

3�T4�T
Figure 7: Reliability Model of a Quadruplex
10�1210�310�1110�1010�910�810�710�610�510�410�5 10410�410�310�210�1 100 101 102 103pp N = 4ppp N = 7ppp N = 9Figure 8: Probability of failure for di�erent values of Nprocessor that has been a�ected by a transient6. Theprobability of system failure as a function of 1=� , thetime to recover the state, is shown in �gure 8.The model was solved using the STEM reliability anal-ysis program [23] for the following parameter values:�p = 10�4=hour, �T = 10�3=hour and mission timeT = 10 hours.The plot in �gure 8 shows the probability of failurecurve for three values of N .Surprisingly the inection points of the curve do notvary signi�cantly for the di�erent values of N . Conse-quently, the optimal value of � does not vary much as a6To simplify this discussion, the arrival of a second transientbefore the disappearance of the �rst transient has not been in-cluded in the model. A complete reliability analysis will includesuch events.

function of N .A Philosophical PointThe concept of system design driven by quantitativemodels is certainly not new [?]. However, there is an im-portant di�erence between the use of reliability modelsto predict ultra-reliability and other quantitative model-ing techniques. The de�nition of qualitative probabilityterms in [1][Par. 9, sec. e] isExtremely Improbable failure conditions arethose so unlikely that they are not anticipatedto occur during the entire operational life of allairplanes of one type.By this de�nition, such events should never be observed.Consequently it is impossible to test the robustness ofthese models against real empirical data. Some confusionarises because empirical data are used to measure someof the parameters of the reliability model. This is notthe same thing as an \end-to-end" test. In order to testthe accuracy of the reliability model itself, system failuretimes would have to be collected and compared againstthe predicted reliability. Unfortunately, one would haveto wait virtually forever to collect this data.Although relatively simple performance models canoften be shown empirically to reasonably predict sys-tem performance, there is no such luxury in the ultra-reliability business. Reliabilitymodels must be conserva-tive. This cannot be established empirically so itmust beestablished by formal reasoning and mathematical anal-ysis. References[1] FAA, \System Design and Analysis," Advisory Cir-cular AC 25.1309-1A, U.S. Department of Trans-portation, June 1988.[2] B. L. Di Vito, R. W. Butler, and J. L. Caldwell, II,\Formal design and veri�cation of a reliable com-puting platform for real-time control," NASA Tech-nical Memorandum 102716, Oct. 1990.[3] B. L. Di Vito, R. W. Butler, and J. L. Caldwell,\High level design proof of a reliable computingplatform," in 2nd IFIP Working Conference on De-pendable Computing for Critical Applications, (Tuc-son, AZ), pp. 124{136, Feb. 1991.[4] U.S. Department of Defense, Reliability Predictionof Electronic Equipment, Jan. 1982. MIL-HDBK-217D.

[5] D. Miller, \Making statistical inferences about soft-ware reliability," NASA Contractor Report 4197,Nov. 1988.[6] J. Goldberg et al., \Development and analysis of thesoftware implemented fault-tolerance (SIFT) com-puter," NASA Contractor Report 172146, 1984.[7] U. K. M. of Defense, \Requirements for the pro-curement of safety critical software in defense equip-ment," Interm Defense Standard 00-55, MOD, May1989. Draft.[8] D. L. Palumbo and R. W. Butler, \A perfor-mance evaluation of the software implemented fault-tolerance computer," Journal of Guidance, Control,and Dynamics, vol. 9, Mar. 1986.[9] A. L. Hopkins, Jr., T. B. Smith, III, and J. H. Lala,\FTMP|A highly reliable fault-tolerantmultipro-cessor for aircraft," Proceedings of the IEEE, vol. 66,pp. 1221{1239, Oct. 1978.[10] J. H. Lala, L. S. Alger, R. J. Gauthier, and M. J.Dzwonczyk, \A Fault-Tolerant Processor to meetrigorous failure requirements," Tech. Rep. CSDL-P-2705, Charles Stark Draper Lab., Inc., July 1986.[11] C. J. Walter, R. M. Kieckhafer, and A. M. Finn,\MAFT: A multicomputer architecture for fault-tolerance in real-time control systems," in IEEEReal-Time Systems Symposium, Dec. 1985.[12] \Peer review of a formal veri�cation/design proofmethodology," NASA Conference Publication 2377,July 1983.[13] L. Lamport, R. Shostak, and M. Pease, \TheByzantine Generals problem," ACM Transactionson Programming Languages and Systems, vol. 4,pp. 382{401, July 1982.[14] L. Lamport and P. M. Melliar-Smith, \Synchroniz-ing clocks in the presence of faults," Journal of theACM, vol. 32, pp. 52{78, Jan. 1985.[15] M. J. Fischer, \The consensus problem in unreliabledistributed systems (a brief survey)," Tech. Rep.YaleU/DCS/RR-273, Yale University, 1983. De-partment of Computer Science.[16] M. C. M. Elvany, \Guaranteeing deadlines inMAFT," in IEEE Real-Time Systems Symposium,(Huntsville, AL.), Dec. 1988.[17] P. A. Padillia, \Abnormal fault recovery charac-teristics of the Fault Tolerant Multi-Processor un-covered using a new fault injection methodology,"NASA Technical Memorandum 4218, Mar. 1991.

[18] S. D. Young and C. R. Elks, \A performance as-sessment of a Byzantine resilient fault-tolerant com-puter," in AIAA Computers in Aerospace VII Con-ference, (Monterey, CA), Oct. 1989.[19] D. Lehmann and S. Shelah, \Reasoning with timeand chance," Information and Control, vol. 53,pp. 165{198, 1982.[20] D. A. Mackall, \Experiences with a ight-crucialdigital control system," NASA Technical Paper2857, Nov. 1988.[21] L. Lamport, \Using time instead of timeout forfault-tolerant distributed systems," ACM Trans-actions on Programming Languages and Systems,vol. 6, pp. 254{280, Apr. 1984.[22] J. Rushby and F. von Henke, \Formal veri�cationof a fault-tolerant clock synchronization algorithm,"NASA Contractor Report 4239, June 1989.[23] R. W. Butler and P. H. Stevenson, \The PAWS andSTEM reliability analysis programs," NASA Tech-nical Memorandum 100572, Mar. 1988.

