
Twelfth USA/Europe Air Traffic Management Research and Development Seminar (ATM2017)

A Path Planning Algorithm to Enable Well-Clear Low Altitude UAS Operation
Beyond Visual Line of Sight

Swee Balachandran
National Institute of Aerospace

Hampton, VA, USA

Anthony Narkawicz, César Muñoz, María Consiglio
NASA Langley Research Center

Hampton, VA, USA

Abstract—The availability of reliable and efficient algorithms to
avoid obstacles, geofences, and other traffic is an essential
functionality for safe autonomous operation of Unmanned Aircraft
Systems (UAS) in low altitude airspace beyond visual line of sight.
This paper presents a path planning algorithm that enables UAS to
fly specified missions while accommodating real time traffic and
geofence constraints. This planning algorithm integrates a rapidly
exploring random tree planning technique with formally verified
algorithms for maintaining well clear with respect to traffic aircraft
and for detecting geofence conflicts. A simple heuristic that
determines when to terminate tree expansion leads to low average
computation times making this approach suitable for UAS with
limited onboard computing power.

Keywords – unmanned aircraft systems (UAS), detect and avoid
(DAA), geofencing, path planning, autonomous systems

I. INTRODUCTION
Advances in embedded hardware and sensors have made it
possible to build low cost Unmanned Aircraft Systems (UAS)
that can be used for a wide range of applications such as
package delivery, search and rescue, surveillance, infrastructure
inspection, and data gathering. As more UAS take to the skies
to perform these tasks, it is essential that they operate safely and
within approved airspace constraints. For beyond visual line of
sight (BVLOS) missions, where human intervention is
unavailable, the capability to autonomously navigate and avoid
obstacles, avoid keep-out geofences, stay within keep-in
geofences, and detect and avoid other traffic aircraft is
fundamental.

Mission planning when complete terrain and plan information
are known a priori can be done efficiently offline. However,
when traffic flight plans are unknown or when new constraints
are imposed on the mission in real time, the original flight plan
computed offline needs to be changed dynamically to
accommodate the new constraints. This paper presents a
planning algorithm that supports on-the-fly generation of local
flight plans for solving real time geofencing and traffic
constraints.

Large UAS, capable of flying in non-segregated airspace with
manned aircraft, are required to be equipped with Detect and
Avoid (DAA) systems [1] to aid remote pilots to comply with
federal regulations to “see and avoid” other aircraft. DAA
systems provide situational awareness in the form of traffic

alerts and maneuver guidance intended to aid remote pilots in
maintaining or regaining “well clear” separation with traffic
aircraft. Small UAS (sUAS), operating at low altitudes (at or
below 400 ft.) in uncontrolled airspace are also expected to
maintain safe separation from other users of the airspace. While
current safety regulations (FAA sUAS Rule (Title 14, Part
107)) [2] limit sUAS to remain within visual line-of-sight
(VLOS) of the pilot-in-command at all times, it is expected that
beyond visual line-of-fight (BVLOS) missions will have the
greatest potential for economic impact. New regulatory
guidelines are needed to help the implementation of these
missions but in the meantime, it is clear that these tactical,
contingency functions will have to be autonomously executed
by the on-board systems.

Autonomous maneuver execution requires the implementation
of new DAA functions that, for large UAS DAA systems were
the responsibility of the pilot-in-command (PIC). This new
functionality includes selecting a safe avoidance maneuver as
well as a safe and efficient return to path maneuver. After
execution of these maneuvers, the UAS must return to its
original flight plan without human intervention. In low altitude
airspace, in addition to avoiding other traffic, the UAS must
also satisfy geofence constraints and avoid obstacles.
Consequently, the integration of DAA algorithms with motion
planning algorithms is essential for the safe autonomous
BVLOS operation of UAS in low altitude airspace.

This paper presents the integration of a rapidly exploring
random tree planning technique with DAIDALUS (Detect and
Avoid Alerting Logic for Unmanned Systems) [3], a detect and
avoid algorithm, and PolyCARP (Algorithms and Software for
Computation with Polygons) [4], a geofence conflict detection
algorithm. This integration yields a path planning algorithm that
safely and efficiently computes alternate flight plans to resolve
conflicts with other air traffic while satisfying geofence and
obstacle constraints. A simple heuristic is used to determine
when to stop exploring the search space which in turn
significantly decreases the average computation time. The
resulting algorithm is suitable for UAS with limited onboard
computing resources. In cases where there is not enough time
to compute a complete path to the goal, the algorithm provides
a conflict free path to an intermediate goal state. Upon
completion of the intermediate goal, the path planning process
is repeated until the final goal is reached. The proposed

algorithm is applied to encounter scenarios involving multiple
traffic and various geofence geometries. Computation time
results for each of the encounter scenarios are presented.

The safety critical nature of several UAS applications mandates
a rigorous understanding of the properties of the integrated
approach. Consequently, the proposed planning algorithm uses
algorithms from DAIDALUS and PolyCARP, which have
correctness and safety properties that have been verified in the
Prototype Verification System (PVS) [5]. A generic version of
the path planning algorithm, which models random tree
generation over an arbitrary node type, is formally specified and
verified in PVS. The specific path planning algorithm presented
in this paper is a special instance of this generic algorithm.

The algorithm presented in this work is integrated as part of a
decision-making framework for UAS called ICAROUS
(Integrated Configurable Algorithms for Reliable Operations of
Unmanned Systems) [6]1. This paper is organized as follows.
Section II discusses related work. A brief overview of the key
components and tools used in this work are reviewed in Section
III. A detailed description of the path generation algorithm is
presented in Section IV. Case study results are presented in
Section V. The formalization of the proposed system in PVS is
discussed in Section VI. Section VII provides discussions and
future work. Finally, conclusions are provided in Section VIII.

II. RELATED WORK

A. Motion planning
The problem of finding a path from a given start configuration
to a final configuration has been explored in depth in the
literature [7, 8, 9, 10, 11, 12, 13, 14]. The various solution
techniques in the literature can be roughly classified into two
classes: graph based search methods and optimal control based
methods. The graph based search methods discretize the search
space into nodes. The nodes are connected based on some
relevant criteria, e.g., reachability, to create a tree that spans the
entire search space. This tree can then be searched for the
shortest path using a graph based search algorithm, e.g.,
Dijkstra, A*, depth/breadth first, etc. In the optimal control
based methods, the problem objective, e.g., shortest path,
shortest time, minimum fuel, is typically encoded as a cost
function. A parametric representation for the path or the control
inputs to the system is chosen. Then, an optimization algorithm
solves for the parameters that minimize the cost function
subject to various constraints on the environment and dynamics.

The graph based methods suffer from the curse of
dimensionality, i.e., the complexity of these algorithms
typically increases exponentially as the dimensionality of the
search space increases. The optimal control methods can be
difficult to solve analytically. Hence, they are often based on
numerical techniques. The presence of nonlinear constraints
makes the optimization problem harder to solve. Furthermore,
some minimization methods may yield locally optimal

1 https://github.com/nasa/ICAROUS

solutions. Certain optimal control techniques like Dynamic
Programming also suffer from the curse of dimensionality.

Sampling based methods such as Probabilistic Road Maps
(PRMs) [8] and Rapidly Exploring Random Trees (RRT) [10]
were introduced to alleviate the complexity challenges of graph
based search methods. These techniques have been used
successfully in several applications to generate motion plans in
real time. Some researchers have explored the application of
sampling based planners to problems involving moving
obstacles [11, 12].

B. Geofencing
Geofencing strategies for small UAS have been explored by
some authors [15, 16]. The main focus so far has been on
detecting geofence conflicts for remotely piloted UAS and
preventing these vehicles from violating geofence constraints
using predetermined maneuvers such as landing, return to
home, or bouncing back from the fence. For fully autonomous
operation, geofence conflict resolution must consider the
mission requirements and dynamically compute new flight
plans to avoid or go around geofences when possible.

C. Detect and Avoid
In the case of manned aircraft, several approaches have been
proposed for ground-based and, more recently, airborne
separation assurance systems (see, for example, [17]). Airborne
technology for collision avoidance such as TCAS (Traffic
Alerting and Collision Avoidance System) [18] has been
successfully adopted by the commercial aviation industry.
TCAS II, the second generation of TCAS, issues aural and
visual alerts that direct pilots to maintain or increase vertical
separation with intruders that are considered collision threats.
The TCAS II system is based on an interrogation mechanism
between transponders onboard the aircraft and a set of distance
and time thresholds that determine the type of resolution
advisories. A new generation of collision avoidance system,
called ACAS X (Advance Collision Avoidance System), has
been recently proposed [19]. In contrast to TCAS II, the alerting
and advisory logic on ACAS is based on numerical look up
tables optimized with respect to a probabilistic model of the
airspace.

For UAS, the final report of the Federal Aviation
Administration (FAA) Sense and Avoid (SAA) Workshop [20]
defines the concept of sense and avoid as “the capability of a
UAS to remain well clear from and avoid collisions with other
airborne traffic.” Based on this definition, the UAS Sense and
Avoid Science and Research Panel (SARP) made a
recommendation for a quantitative definition of UAS Well
Clear that uses distance and time functions similar to those used
in the TCAS II resolution advisory logic [21]. For large,
remotely piloted UAS, the RTCA Special Committee 228 has
developed minimum operational requirements for detect and

avoid that uses SARP’s well clear definition [22]. DAIDALUS
[3] is a NASA developed software that serves as a reference
implementation of the detect and avoid concept provided by the
RTCA SC-228 MOPS. This paper focuses on integrating detect
and avoid systems, such as DAIDALUS, into a motion planning
algorithm to facilitate low altitude autonomous UAS operations
beyond visual line of sight.

III. BACKGROUND
This section gives an overview of the main components of the
proposed path planning algorithms.

A. Rapidly Exploring Random Trees
Introduced by LaValle [10], a rapidly exploring random tree
(RRT) is a data structure that can be used for path planning.
Starting from an initial position, a tree is incrementally expanded
towards randomly chosen samples in the search space. The tree
expansion can be monitored at each iteration to ensure new
nodes being added to the tree are consistent with any imposed
constraints. If the random samples are chosen uniformly, each
expansion step biases the tree towards the unexplored regions.
Consequently, after several expansion steps, the tree spans the
search space uniformly. Figure 1 illustrates a RRT generated
from an initial position. The dark rectangles in the figure
represent geofence obstacles. The tree data structure can then be
utilized in conjunction with other graph based search algorithms
to find a path from the root to any given node in the tree. The
RRT data structure has many other properties that make it
suitable for path planning. Interested readers are referred to [10]
for more information.

Figure 1: Exploration of search space using RRT

B. DAIDALUS
The detect and avoid functionality needed to implement the
proposed path planning algorithm is provided by DAIDALUS
[3]. DAIDALUS is a software library that serves as a reference
implementation of the DAA concept described in the RTCA
SC-228 Minimum Operational Performance Standards (MOPS)
for Unmanned Aircraft Systems [1]. DAIDALUS source code
is available in both C++ and Java under NASA’s Open Source

Agreement. The DAIDALUS software library consists of
algorithms that predict well-clear violations between the
ownship and traffic aircraft, and provide maneuver guidance in
the form of range of maneuvers for the ownship to maintain or
regain well-clear status with respect to traffic aircraft. These
algorithms have been formally verified for logical correctness
in the PVS verification system.

Figure 2 illustrates DAIDALUS functionality on a notional
encounter. The solid area represents the well-clear volume that
the aircraft needs to avoid. This volume is defined by time and
distance thresholds and is generated assuming ownship
performance limits. In this notional encounter, the current
ownship trajectory is not predicted to be in conflict, but if the
ownship maneuvers to the right in the range of maneuvers
denoted by g, the aircraft will eventually lose well clear. The
range of maneuvers denoted by g is called a conflict band [23].
A typical progression of conflict bands is illustrated in Figure 3
on a nominal encounter. At time t0, aircraft are beyond threshold
limits and therefore no bands are computed. At time t1, the
aircraft are within threshold limits and a peripheral conflict
band is computed for the ownship. At time t2, the intruder
aircraft has maneuvered in the direction of the ownship and a
conflict band appears in the current path of the ownship. At time
t3, the aircraft have lost well clear. In this case, DAIDALUS
computes recovery bands, which is represented by the dashed
green range of maneuvers. Recovery bands enable the ownship
to regain well clear in a timely manner according to its
performance limits.

DAIDALUS is a highly configurable system, but its default
configuration was designed for large fixed wing UAS and high
altitude operations. For the integration proposed in this paper,
the well clear volume is defined as a cylinder of diameter 10m
and height 10m. The performance limits of the ownship were
also adapted to those of a small rotorcraft.

Figure 2: Maneuver guidance computation in DAIDALUS

Figure 3: Progression of conflict bands

C. PolyCARP
The geofencing capability used by the proposed path planning
algorithm is provided by PolyCARP [4]. PolyCARP is an open
source software library developed by NASA that contains
algorithms for detecting conflicts between a point moving at
constant velocity and a (possibly moving) polygon. A core
component of PolyCARP containment algorithm, with key
functions that are formally verified, that determines if a point is
definitively inside or definitively outside a polygon. This
containment algorithm is partially based on a ray casting
technique. Given a polygon region and an input position in a 2D
plane, a ray is cast from the point outward to infinity. If it
crosses an even number of edges of the polygon, it is outside;
otherwise, it is inside. This is shown in Figure 4. In the
containment algorithm, a parametric buffer distance is used to
perturb the original polygon because ray casting may cause the
ray to pass very close to some vertices, which can potentially
allow floating point errors to produce an incorrect
inside/outside result. The perturbation of the vertices away from
the cast ray, prior to counting the number of crosses, mitigates
this problem and the containment algorithm is correct assuming
that the accumulated computation errors are less than the buffer
and the point is less than the buffer distance away from an edge.

Figure 4: Ray casting

IV. PATH PLANNING
This section describes the integration of geofencing and detect
and avoid capabilities into a path planning algorithm that
efficiently computes a path from a given start configuration to
a final configuration. The computed path is free from geofence
and traffic conflicts.

A. Assumptions
The following assumptions are made to facilitate the
development of the system:

● The ownship has a velocity controller. This enables the
ownship to follow a commanded velocity.

● Complete information about all air traffic is available
to the ownship.

● All intruder vehicles travel with a constant velocity.
● Intruder vehicles do not have malicious intent.
● All geofences are represented as polyhedra.
● All obstacles are encoded as keep-out geofences.

B. Problem Statement
Let ℝ" represent the 3-dimensional Euclidean space. Let
𝑋$%&'% ∈ 	ℝ" represent the initial position of the ownship. Let
𝑋*+, ∈ ℝ" represent the goal position for the ownship. Let 𝑈 ∈
ℝ" represent a velocity command. Given 𝑋$%&'% and 𝑋*+,, the
goal is to compute a sequence of velocity commands
𝑈., . . . 𝑈+such that when applied to the ownship, yields a
trajectory connecting 𝑋$%&'% to 𝑋*+, that (a) satisfies dynamics
constraints of the ownship, (b) stays away from the well-clear
violations, and (3) respects geofence constraints. The sequence
of velocity control inputs is computed by randomly exploring
the search space and incrementally building a tree data structure
that spans both space and time.

C. Data structure
A tree is a collection of nodes that are connected by edges based
on the availability of a feasible path between nodes. Each node
contains information about the state of the ownship and intruder
vehicles at a given time. The ownship state is represented as a
vector of dimension 𝑛. The dimension 𝑛 of the ownship state
depends on how the dynamics of the vehicle are modeled. For
example, the ownship state could be represented by a 6-tuple
representing its 3-dimensional position and velocity vectors.
Assuming each intruder’s state is represented by a 𝑝-
dimensional vector, 𝑞 intruders can be represented by a 𝑝×𝑞
array. In addition to the ownship and traffic states, additional
data such as the control input applied at the node, cost, and
shortest distance to the goal node can also be stored within a
node. Information about the parent and children edges are also
stored within a node.

D. Tree Expansion
Let 𝛥𝑇 represent a fixed time interval allotted for the
computation of a path. The root node in the tree is initialized
with the initial position of the ownship and intruders projected
in time by 𝛥𝑇 to account for the motion of the ownship during
the computation process. At each iteration, a random
configuration 𝑋' ∈ ℝ" is generated from a uniform distribution.
Then, a node in the tree is selected whose ownship position 𝑋+
is closest to 𝑋' and such that there exists control inputs 𝑈 that
can move the ownship state from 𝑋+ closer to 𝑋' within the
interval [𝑡, 𝑡 + 𝑑𝑡]. Here 𝑡 represents the time at position 𝑋+.

The above step of propagating the ownship state 𝑋+ towards 𝑋'
involves two stages. First, the control input 𝑈 is computed. This
computation largely depends on how one models the underlying
dynamics of the ownship. Several approaches such as those
described in [12] can be adopted. The control input is applied
from 𝑡 to 𝑡 + 𝑑𝑡 to generate a new state 𝑋<. The computed
input 𝑈 is stored in the node corresponding to 𝑋+. As the
ownship position is propagated from 𝑡 to 𝑡 + 𝑑𝑡 according to
the modeled dynamics, the position of all the intruders are also
propagated from 𝑡 to 𝑡 + 𝑑𝑡.

E. Constraint Satisfaction
The segment from 𝑋+ to 𝑋< is checked for geofence violation
pointwise in time within the interval [𝑡, 𝑡 + 𝑑𝑡]. To ensure that
the new ownship position 𝑋< is not in conflict with any
intruders, well-clear guidance is computed using the functions
that are part of DAIDALUS. Using the position and velocity of
the ownship and intruders at time 𝑡 + 𝑑𝑡, DAIDALUS guidance
maneuvers ensures that the state of the ownship at 𝑋< is outside
the well clear volume of any intruder. Furthermore, it is checked
to ensure that the heading of the ownship at 𝑋< lies outside any
conflicting track angles that lead to a well clear violation.
Finally, the change in heading from 𝑋+ to 𝑋< is also checked
that it does not cross any conflicting track angles.

The new position 𝑋< is only reachable from 𝑋+ if the segment
from 𝑋+ to 𝑋< satisfies the above geofence and traffic conflicts.
If 𝑋< is reachable, then a new node with the state information
of the ownship and intruders at 𝑡 + 𝑑𝑡 is created and added to
the tree. If the above checks fail, 𝑋< is discarded.
Consequently, each node added to the tree is free from conflicts.
With the addition of each new node to the tree, the expansion
algorithm keeps track of the node 𝑁> that is closest to the goal
configuration.

With each iteration of the expansion step, the tree grows bigger
leading to uniform exploration of the search space. This
exploration phase is continued until a node is found that is
within some neighborhood of the goal position. The sequence
of inputs that must be applied from the root node to get to the
goal node can be obtained by backtracking to the root node from
the closest node to the goal 𝑁>.

F. Heuristic-Based Termination
Often, depending on the geometry of the search space, it may
not be necessary to explore the whole state space by growing
the tree incrementally until a neighborhood of the goal position
is reached. A simple heuristic to determine when to terminate
tree expansion is to check if a direct path to the goal exists at a
given node. More specifically, if one were to head directly
towards the goal from a given node, and the path along this
direction is free from traffic and geofence conflicts, then a
direct path to the goal exists. This heuristic can be used on the
nearest node used for tree expansion and/or on the closest node
𝑁>.

If it is not possible to compute a complete path to the goal
within the time allowed for computation 𝛥𝑇, the algorithm
returns the ownship position at the closest node 𝑁> as the
intermediate goal. The planning process can be reinitiated on
reaching the intermediate goal.

G. Pseudo-Code
The pseudo-code for the algorithm is presented below. For
convenience, a node at which the ownship’s position is 𝑋 is
referred to as node 𝑋.

1 Initialize tree root with initial position and

velocities of ownship and intruders.
2 Initialize closest node to goal N@ as an empty

node.
3 For i in 1 to NumIterations
4 Generate random sample XB
5 Find nearest node XC	 in tree
6 If direct path to goal node exists,
7 Add goal node as child of XC
8 Else
9 Find input U that move XC closer to XB
10 Propagate XCtowards XB with U to get XE
11 If segment from XC to XE satisfies

traffic and geofence constraints, then
 Store input U in node XC

12 Add XE as a child node of XC
13 Update closest node to goal N@
14
15

 If goal reached, then
 Terminate

16 Back track from closest node to goal N@ to the
root node, to obtain the path and control input
sequence

H. Decision-Making Logic
The above algorithm assumes that all intruders travel with a
constant velocity. If intruder vehicles change their trajectories,
then the resolution planned obtained using the proposed
algorithm may be obsolete if the new intruder trajectories lead
to future conflicts. Consequently, it is necessary to be able to
re-plan when new conflicts are imminent. Figure 5 illustrates a
simple decision sequence that provides the capability to re-
initiate the planning algorithm to ensure future conflicts are
resolved appropriately.

Figure 5: Decision making logic

V. CASE STUDY
The algorithm proposed in this work is agnostic to the vehicle
type. However, for the purpose of illustration, a quadrotor
vehicle is used. As mentioned earlier, it is assumed that the
quadrotor has an onboard velocity controller and hence the
quadrotor state is modeled as 𝑋	 = 	 [𝑥, 𝑣I, 𝑦, 𝑣K, 𝑧, 𝑣M]. Here 𝑥, 𝑦
and 𝑧 represent the position of the quadrotor in a local North-
East-Down (NED) coordinate frame. 𝑣I, 𝑣K and 𝑣M represent the
body velocities in the NED frame. The closed loop dynamics of
the quadrotor is described by an ordinary differential equation
of the form 𝑋 = 𝑓(𝑋, 𝑈) where 𝑈	 = 	 [𝑢I, 𝑢K, 𝑢M] represents
the velocity control inputs.

! 	= 	$%	
$% 	= 	−'% $%	–)% 	
* 	= 	 $+	
$+ 	= 	−'+ $+	–)+ 	
, 	= 	 $-	
$- 	= 	−'- $-	–)- 	

(1)

Here 𝑘I, 𝑘K, 𝑘M are positive constants. For an expressive set of
behaviors involving different modes of operation, the vehicle
dynamics may also be represented as a hybrid system. For
example, with a hybrid system model of a quadrotor dynamics,
one can compute paths where the quadrotor can hover at a given
position for a certain duration waiting for traffic related
conflicts to be resolved.

A random sample is generated in the search space as follows:

!" 	= 	 !%&' 		+) 0,1 ×(!%/0 	−	!%&')	
3" 	= 	3%&' 	+) 0,1 ×(3%/0 	−	3%&')	
4" 	= 	 4%&' 	+) 0,1 ×(4%/0 	−	4%&')	

(2)

Here 𝒰(0,1) represents a uniform distribution in the interval
[0,1]. The max, min values of 𝑥, 𝑦, 𝑧 represents the bounds
within which a random sample is generated.

The inputs that move the ownship position at the nearest node
𝑋+ towards the random sample 𝑋' can be found using an
optimization framework as discussed in [8]. For the simple
quadrotor illustration, a simple feedback input of the form 𝑈	 =
	𝑘(𝑋'	–	𝑋+) is considered. Here 𝑘 is a gain chosen to ensure
𝑈 ≤ 𝑈<&I	.

The ownship state 𝑋+ is propagated from time 𝑡 to 𝑡	 + 	𝑑𝑡 using
input 𝑈 and the closed loop dynamics represented by Eqn (1).
For the simplified closed loop dynamics considered in this
work, it is possible to compute the solution analytically.
However, more generally, one could use numerical integration
techniques such as the Euler method or the Runge-Kutta
method. Since each node also contains the position 𝑋X and
velocity 𝑉X of the intruder vehicles at time 𝑡, we can also project
the position of the intruder to time 𝑡 + 𝑑𝑡 using the linear
dynamics of the form:

𝑋X(𝑡 + 𝑑𝑡) 	= 	𝑋X(𝑡) 	+ 	𝑉X𝑑𝑡 (3)

This work assumes that the intruders move with a linear
velocity. However, if the flight plans of all the intruders are
known a priori, the above linear dynamics can be replaced with
models representing the intruder trajectories.

As the positions of the ownship and intruders are incrementally
projected from 𝑡 to 𝑡 + 𝑑𝑡, it is ensured that each intermediate
position between 𝑡 and 𝑡 + 𝑑𝑡 is free from geofence conflicts
pointwise in time. With the final positions and velocities of the
ownship and intruder at 𝑡 + 𝑑𝑡 obtained, it is verified that there
are no well clear violations and traffic conflicts as described in
the previous section.

The application of the proposed algorithm combined with the
decision-making logic in Figure 5 is illustrated in the Figures 6-
9. The ownship (blue triangle) is travelling through as sequence
of waypoints (indicated by the flight plan in black). The red
triangles indicate intruder vehicles while the blue polygons
indicate keep-out geofences. The conflict band output of
DAIDALUS is illustrated around the ownship. The red bands
indicate the ownship headings which can result in conflict with
the intruders. The solid magenta curves indicate the paths
explored by the algorithm. The dashed magenta line indicates
the direct path to the next waypoint that is obtained by the early
termination heuristic. Figures 6 and 8 illustrate two consecutive
encounters. The first encounter is resolved by turning to the left
and returning to the next waypoint after flying for a few
seconds. This provides enough time for the first intruder to
continue flying its course without entering a well clear violation
with the ownship. The ownship encounters the second intruder
before completing the previous resolution (see Figures 8-9).
Due to the decision-making logic discussed above, a new
resolution is generated to avoid the second intruder. The
computed resolutions ensure that the keep-out geofence
constraints are satisfied at all times.

Figure 6: Traffic encounter 1

Figure 7: Close up of encounter 1

Figure 8: Traffic encounter 2

Figure 9: Close up of encounter 2

The computation times for the proposed algorithm were
evaluated on two different hardware platforms suitable for
embedded applications. Results are summarized in Tables 1 and
2.

Table 1: Computation time results on Beagle Bone Black [24]

 Iterations used Nodes explored Time taken (s)
Encounter 1 5 5 1.5572
Encounter 2 7 6 1.5802
Encounter 3 16 13 2.6758

Table 2: Computation time results on Jetson TK1 [25]

 Iterations used Nodes explored Time taken (s)
Encounter 1 7 5 0.1324
Encounter 2 19 14 0.2822
Encounter 3 10 7 0.1671

VI. FORMALIZATION AND VERIFICATION
As noted in the Introduction, the safety critical nature of UAS
algorithms mandates a rigorous understanding of the properties
of the integrated approach. Consequently, many of the core
algorithms in DAIDALUS, PolyCARP, and ICAROUS have
been formally verified in the Prototype Verification System
(PVS) [5]. PVS is an interactive theorem prover consisting of a
specification language and a prover language. Algorithms are
first specified in the specification language; whose semantics
are similar to a functional programming language. However,
unlike a programming language, this specification language
allows correctness properties, in the form of theorems, to be
stated about these algorithms. The prover language is then used
to prove that the algorithms satisfy these theorems.

In the PVS development, priority is given to verifying
algorithms that have potential safety implications. The
previously verified algorithms in DAIDALUS therefore include
the conflict detection and bands algorithms. In PolyCARP,
verified algorithms include sub-functions of the ray casting

algorithm, including the function that determines whether a ray
crosses an edge, the function that determines if the input point
is within a buffer distance of an edge, and the function that
determines if a trajectory will intersect a polygon.

The Runge-Kutta approximation of the closed loop dynamics
of the quadrotor, presented in Section III, have been formalized
in PVS, as well as a function that checks the resulting path for
well-clear (using DAIDALUS) and collisions with obstacle
polygons (using PolyCARP). These algorithms are called as
functions of the path planning algorithm presented in this paper.
A generic version of the path planning algorithm has been
formalized and verified correct in the PVS theorem prover. It
allows random growth of trees to be modeled, where the type
of the node objects is arbitrary. There are generic correctness
properties that are checked before adding each new node to the
growth tree, and assuming that these correctness properties
satisfy certain soundness conditions, the final tree is proved to
satisfy a general safety property. An implementation of the
specific path planning algorithm presented in this paper is
underway where the node objects include multiple pieces of
information about the state of the aircraft. In this
implementation, the general safety property will reduce to a
property that all paths through the generated tree are well-clear
and avoid obstacle polygons.

VII. DISCUSSION
The selection of a suitable goal location for plan generation is
mission dependent and must be done in real time. A simple
approach would be to select the next conflict free waypoint in
the flight plan or an intermediate point in space on the current
flight plan’s leg as the goal node.

The available time 𝛥𝑇 for computing a solution is also problem
dependent. Based on the availability of sufficient 𝛥𝑇, one can
ignore the early termination strategy discussed in this paper and
focus on the tree expansion as desired. A graph based search
algorithm may also be used on the tree to determine an optimal
path. Certain scenarios may require using the early termination
heuristic to trade off optimality for a cheap conflict free
solution. Determining this tradeoff in real-time is a topic of
interest for future work. Future research directions will also
look into construing efficient exploration heuristics to select
new samples.

VIII. CONCLUSIONS
This paper presented a local path planning algorithm that
integrates a rapidly exploring random tree based search
algorithm with resolution and geofence conflict detection
algorithms that have formally verified components.
Termination of the tree expansion based on the availability of a
direct path to the goal position from a node on the tree leads to
quicker computation times. Initial software and hardware in the
loop tests show that the resulting algorithm is suitable for UAS
with low computation power given its capability to compute in

real-time motion plans that satisfy traffic and geofence
constraints.

REFERENCES

[1] RTCA, "Detect and avoid (DAA) minimum operational
performance standards (MOPS) for verification and
validation (DRAFT)," Paper No. 261-15/PMC-1400,
RTCA Inc, Washington, D.C, 2015.

[2] U. Government, "Electronic Code of Federal
Regulations," [Online]. Available: www.ecfr.gov.
[Accessed January 2017].

[3] C. Muñoz, A. Narkawicz, G. Hagen, J. Upchurch, A.
Dutle, M. Consiglio and J. Chamberlain, "DAIDALUS:
Detect and Avoid Alerting Logic for Unmanned
Systems," in Proceedings of the 34th Digital Avionics
Systems Conference (DASC 2015), Prague, Czech
Republic, 2015.

[4] A. Narkawicz and G. Hagen, "Algorithms for collision
detection between a point and a moving polygon, with
applications to aircraft weather avoidance," in 14th
AIAA Aviation Technology, Integration, and Operations
(ATIO) Conference, AIAA-2014-2859, Kissimmee,
Florida, 2015.

[5] S. Owre, J. Rushby and N. Shankar, "PVS: A Prototype
Verification System," in in Proceeding of the 11th
International Conference on Automated Deduction
(CADE), D.Kapur, Ed,. Lecture Notes in Artifical
Intelligence, vol, 607, Springer, pp 748-752. 1992.,
1992.

[6] M. Consiglio, C. Muñoz, G. Hagen, A. Narkawicz and
S. Balachandran, "ICAROUS Integrated Configurable
Algorithms for Reliable Operations of Unmanned
Systems," in Proceedings of the 35th Digital Avionics
Systems Conference (DASC 2016) , Sacremento, CA,
2016.

[7] J.-P. Laumond, "Robot Motion Planning and Control,"
in Lectures Notes in Control and Information Sciences,
vol. 229, Springer, 1998.

[8] L. Kavraki and J. Latombe, "Probabilistic Roadmaps for
Robot Path Planning," in Practical Motion Planning in
Robotics: Current Approaches and Future
DirectionsPractical Motion Planning in Robotics:
Current Approaches and Future Directions, K. Gupta
and A. del Pobil, Eds., John Wiley, 1998, pp. 33-53.

[9] Y. Hwang and N. Ahuja, "A Potential Field Approach
to Path Planning," IEEE Transactions of Robotics and
Automation, vol. 8, no. 1, pp. 23-32, February 1992.

[10] S. LaValle and J. Kuffner, "Randomized Kinodynamic
Planning," in Proceedings of the 1999 IEEE
International Conference on Robotics and Automation,
1999.

[11] D. Hsu, J. C. Kindel, J.-P. Latombe and S. Rock,
"Randomized Kinodynamic Motion Planning with
Moving Obstacles," in Proc. Workshop on Algorithmic
Foundations of Robotics (WAFR’00), Hanover, NH,
2000.

[12] E. Frazzoli, A. D. Munther and E. Feron, "Real-time
motion planning for agile autonomous vehicles,"
Journal of Guidance, Control, and Dynamics, vol. 25,
no. 1, pp. 116-129, 2002.

[13] L. Dubins, "On Curves of Minimal Length with a
constraint on average curvature and with prescribed
initial and terminal positions and tangents," American
Journal of Mathematics, vol. 79, pp. 497-516, 1957.

[14] D. Bertsekas, Dynamic Programming and Optimal
Control, Belmont, MA: Athena Scientific.

[15] M. Stevens and E. Atkins, "Multi-Mode Guidance for
an Independent Miltocopter Geofecing System," in 16th
AIAA Aviation Technology, Integration, and Operations
Conference., 2016.

[16] E. Dill, S. Young and K. Hayhurst, "SAFEGUARD: An
assured safety net technology for UAS," in Digital
Avionics Systems Conference (DASC).

[17] J. Kuchar and L. Yang, "A review of conflict detection
and resolution modeling methods," in IEEE
Transactions on Intelligent Transportation System,
1(4):179-189 , December, 2000.

[18] T. Williamson and A. S. Ned, "Development and
operation of the traffic alert and collision avoidance
system (TCAS)," in Proceedings of the IEEE 77.11,
1989.

[19] M. J. Kochenderfer, E. H. Jessica and P. C. James,
"Next generation airborne collision avoidance system,"
Lincoln Laboratory Journal, vol. 19, no. 1, pp. 17-33,
2012.

[20] "Final Report, FAA Sponsored Sense and Avoid (SAA)
for Unmanned Aircraft Systems (UAS) Workshop,"
2009.

[21] C. Muñoz, A. Narkawicz and J. Chamberlain, "A
TCAS-II resolution advisory detection algorithm," in
Proceedings of the 2013 AIAA Guidance, Navigation,

and Control Conference and Exhibit, no. AIAA-2013-
4622, Boston, Massachusetts, 2013.

[22] S. Cook, D. Brooks, R. Cole, D. Hackenberg and V.
Raska, "Defining Well Clear for Unmanned Aircraft
Systems," in Proceedings of the 2015 AIAA Infotech @
Aerospace Conference, Kissimmee, Florida, 2015.

[23] J. Hoekstra, R. Ruigrok, R. van Gent, J. Visser, B.
Gijsbers, M. Valenti, W. Heesbeen, B. Hilburn, J.
Groeneweg and F. Bussink, "Overview of NLR free
flight project 1997-1999, Tech Rep. NLR-CR-2000-
227," National Aerospace Laboratory (NLR), 2000.

[24] BeagleBoard.org Foundation, "Beagleboard," [Online].
Available:
http://beagleboard.org/static/beaglebone/latest/Docs/Ha
rdware/BONE_SRM.pdf. [Accessed 20 April 2017].

[25] Nvidia, "Nvidia Emedded Systems," Nvidia, [Online].
Available: http://www.nvidia.com/object/jetson-tk1-
embedded-dev-kit.html. [Accessed 20 April 2017].

