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Abstract—The availability of reliable and efficient algorithms to 
avoid obstacles, geofences, and other traffic is an essential 
functionality for safe autonomous operation of Unmanned Aircraft 
Systems (UAS) in low altitude airspace beyond visual line of sight. 
This paper presents a path planning algorithm that enables UAS to 
fly specified missions while accommodating real time traffic and 
geofence constraints. This planning algorithm integrates a rapidly 
exploring random tree planning technique with formally verified 
algorithms for maintaining well clear with respect to traffic aircraft 
and for detecting geofence conflicts. A simple heuristic that 
determines when to terminate tree expansion leads to low average 
computation times making this approach suitable for UAS with 
limited onboard computing power.  

Keywords – unmanned aircraft systems (UAS), detect and avoid 
(DAA), geofencing, path planning, autonomous systems  

I.  INTRODUCTION 
Advances in embedded hardware and sensors have made it 
possible to build low cost Unmanned Aircraft Systems (UAS) 
that can be used for a wide range of applications such as 
package delivery, search and rescue, surveillance, infrastructure 
inspection, and data gathering. As more UAS take to the skies 
to perform these tasks, it is essential that they operate safely and 
within approved airspace constraints. For beyond visual line of 
sight (BVLOS) missions, where human intervention is 
unavailable, the capability to autonomously navigate and avoid 
obstacles, avoid keep-out geofences, stay within keep-in 
geofences, and detect and avoid other traffic aircraft is 
fundamental. 
 
Mission planning when complete terrain and plan information 
are known a priori can be done efficiently offline. However, 
when traffic flight plans are unknown or when new constraints 
are imposed on the mission in real time, the original flight plan 
computed offline needs to be changed dynamically to 
accommodate the new constraints. This paper presents a 
planning algorithm that supports on-the-fly generation of local 
flight plans for solving real time geofencing and traffic 
constraints. 
 
Large UAS, capable of flying in non-segregated airspace with 
manned aircraft, are required to be equipped with Detect and 
Avoid (DAA) systems [1] to aid remote pilots to comply with 
federal regulations to “see and avoid” other aircraft. DAA 
systems provide situational awareness in the form of traffic 

alerts and maneuver guidance intended to aid remote pilots in 
maintaining or regaining “well clear” separation with traffic 
aircraft. Small UAS (sUAS), operating at low altitudes (at or 
below 400 ft.) in uncontrolled airspace are also expected to 
maintain safe separation from other users of the airspace. While 
current safety regulations (FAA sUAS Rule (Title 14, Part 
107)) [2] limit sUAS to remain within visual line-of-sight 
(VLOS) of the pilot-in-command at all times, it is expected that 
beyond visual line-of-fight (BVLOS) missions will have the 
greatest potential for economic impact. New regulatory 
guidelines are needed to help the implementation of these 
missions but in the meantime, it is clear that these tactical, 
contingency functions will have to be autonomously executed 
by the on-board systems.  
 
Autonomous maneuver execution requires the implementation 
of new DAA functions that, for large UAS DAA systems were 
the responsibility of the pilot-in-command (PIC). This new 
functionality includes selecting a safe avoidance maneuver as 
well as a safe and efficient return to path maneuver. After 
execution of these maneuvers, the UAS must return to its 
original flight plan without human intervention. In low altitude 
airspace, in addition to avoiding other traffic, the UAS must 
also satisfy geofence constraints and avoid obstacles. 
Consequently, the integration of DAA algorithms with motion 
planning algorithms is essential for the safe autonomous 
BVLOS operation of UAS in low altitude airspace. 
 
This paper presents the integration of a rapidly exploring 
random tree planning technique with DAIDALUS (Detect and 
Avoid Alerting Logic for Unmanned Systems) [3], a detect and 
avoid algorithm, and PolyCARP (Algorithms and Software for 
Computation with Polygons) [4], a geofence conflict detection 
algorithm. This integration yields a path planning algorithm that 
safely and efficiently computes alternate flight plans to resolve 
conflicts with other air traffic while satisfying geofence and 
obstacle constraints. A simple heuristic is used to determine 
when to stop exploring the search space which in turn 
significantly decreases the average computation time. The 
resulting algorithm is suitable for UAS with limited onboard 
computing resources. In cases where there is not enough time 
to compute a complete path to the goal, the algorithm provides 
a conflict free path to an intermediate goal state. Upon 
completion of the intermediate goal, the path planning process 
is repeated until the final goal is reached. The proposed 



algorithm is applied to encounter scenarios involving multiple 
traffic and various geofence geometries. Computation time 
results for each of the encounter scenarios are presented.  
 
The safety critical nature of several UAS applications mandates 
a rigorous understanding of the properties of the integrated 
approach. Consequently, the proposed planning algorithm uses 
algorithms from DAIDALUS and PolyCARP, which have 
correctness and safety properties that have been verified in the 
Prototype Verification System (PVS) [5]. A generic version of 
the path planning algorithm, which models random tree 
generation over an arbitrary node type, is formally specified and 
verified in PVS. The specific path planning algorithm presented 
in this paper is a special instance of this generic algorithm. 
 
The algorithm presented in this work is integrated as part of a 
decision-making framework for UAS called ICAROUS 
(Integrated Configurable Algorithms for Reliable Operations of 
Unmanned Systems) [6]1. This paper is organized as follows. 
Section II discusses related work. A brief overview of the key 
components and tools used in this work are reviewed in Section 
III. A detailed description of the path generation algorithm is 
presented in Section IV. Case study results are presented in 
Section V. The formalization of the proposed system in PVS is 
discussed in Section VI. Section VII provides discussions and 
future work. Finally, conclusions are provided in Section VIII. 

II. RELATED WORK 

A. Motion planning 
The problem of finding a path from a given start configuration 
to a final configuration has been explored in depth in the 
literature [7, 8, 9, 10, 11, 12, 13, 14]. The various solution 
techniques in the literature can be roughly classified into two 
classes: graph based search methods and optimal control based 
methods. The graph based search methods discretize the search 
space into nodes. The nodes are connected based on some 
relevant criteria, e.g., reachability, to create a tree that spans the 
entire search space. This tree can then be searched for the 
shortest path using a graph based search algorithm, e.g., 
Dijkstra, A*, depth/breadth first, etc. In the optimal control 
based methods, the problem objective, e.g., shortest path, 
shortest time, minimum fuel, is typically encoded as a cost 
function. A parametric representation for the path or the control 
inputs to the system is chosen. Then, an optimization algorithm 
solves for the parameters that minimize the cost function 
subject to various constraints on the environment and dynamics.  
 
The graph based methods suffer from the curse of 
dimensionality, i.e., the complexity of these algorithms 
typically increases exponentially as the dimensionality of the 
search space increases. The optimal control methods can be 
difficult to solve analytically. Hence, they are often based on 
numerical techniques. The presence of nonlinear constraints 
makes the optimization problem harder to solve. Furthermore, 
some minimization methods may yield locally optimal 

                                                             
1 https://github.com/nasa/ICAROUS 

solutions. Certain optimal control techniques like Dynamic 
Programming also suffer from the curse of dimensionality.  
 
Sampling based methods such as Probabilistic Road Maps 
(PRMs) [8] and Rapidly Exploring Random Trees (RRT) [10] 
were introduced to alleviate the complexity challenges of graph 
based search methods. These techniques have been used 
successfully in several applications to generate motion plans in 
real time. Some researchers have explored the application of 
sampling based planners to problems involving moving 
obstacles [11, 12].  
 

B. Geofencing 
Geofencing strategies for small UAS have been explored by 
some authors [15, 16]. The main focus so far has been on 
detecting geofence conflicts for remotely piloted UAS and 
preventing these vehicles from violating geofence constraints 
using predetermined maneuvers such as landing, return to 
home, or bouncing back from the fence. For fully autonomous 
operation, geofence conflict resolution must consider the 
mission requirements and dynamically compute new flight 
plans to avoid or go around geofences when possible.  
 

C. Detect and Avoid 
In the case of manned aircraft, several approaches have been 
proposed for ground-based and, more recently, airborne 
separation assurance systems (see, for example, [17]). Airborne 
technology for collision avoidance such as TCAS (Traffic 
Alerting and Collision Avoidance System) [18] has been 
successfully adopted by the commercial aviation industry. 
TCAS II, the second generation of TCAS, issues aural and 
visual alerts that direct pilots to maintain or increase vertical 
separation with intruders that are considered collision threats. 
The TCAS II system is based on an interrogation mechanism 
between transponders onboard the aircraft and a set of distance 
and time thresholds that determine the type of resolution 
advisories. A new generation of collision avoidance system, 
called ACAS X (Advance Collision Avoidance System), has 
been recently proposed [19]. In contrast to TCAS II, the alerting 
and advisory logic on ACAS is based on numerical look up 
tables optimized with respect to a probabilistic model of the 
airspace.  
 
For UAS, the final report of the Federal Aviation 
Administration (FAA) Sense and Avoid (SAA) Workshop [20] 
defines the concept of sense and avoid as “the capability of a 
UAS to remain well clear from and avoid collisions with other 
airborne traffic.” Based on this definition, the UAS Sense and 
Avoid Science and Research Panel (SARP) made a 
recommendation for a quantitative definition of UAS Well 
Clear that uses distance and time functions similar to those used 
in the TCAS II resolution advisory logic [21]. For large, 
remotely piloted UAS, the RTCA Special Committee 228 has 
developed minimum operational requirements for detect and 



avoid that uses SARP’s well clear definition [22].  DAIDALUS  
[3] is a NASA developed software that serves as a reference 
implementation of the detect and avoid concept provided by the 
RTCA SC-228 MOPS. This paper focuses on integrating detect 
and avoid systems, such as DAIDALUS, into a motion planning 
algorithm to facilitate low altitude autonomous UAS operations 
beyond visual line of sight. 
 

III. BACKGROUND 
This section gives an overview of the main components of the 
proposed path planning algorithms. 

A. Rapidly Exploring Random Trees 
Introduced by LaValle [10], a rapidly exploring random tree 
(RRT) is a data structure that can be used for path planning. 
Starting from an initial position, a tree is incrementally expanded 
towards randomly chosen samples in the search space. The tree 
expansion can be monitored at each iteration to ensure new 
nodes being added to the tree are consistent with any imposed 
constraints. If the random samples are chosen uniformly, each 
expansion step biases the tree towards the unexplored regions. 
Consequently, after several expansion steps, the tree spans the 
search space uniformly. Figure 1 illustrates a RRT generated 
from an initial position. The dark rectangles in the figure 
represent geofence obstacles. The tree data structure can then be 
utilized in conjunction with other graph based search algorithms 
to find a path from the root to any given node in the tree. The 
RRT data structure has many other properties that make it 
suitable for path planning. Interested readers are referred to [10] 
for more information. 

 
Figure 1: Exploration of search space using RRT 

B. DAIDALUS 
The detect and avoid functionality needed to implement the 
proposed path planning algorithm is provided by DAIDALUS 
[3]. DAIDALUS is a software library that serves as a reference 
implementation of the DAA concept described in the RTCA 
SC-228 Minimum Operational Performance Standards (MOPS) 
for Unmanned Aircraft Systems [1].  DAIDALUS source code 
is available in both C++ and Java under NASA’s Open Source 

Agreement. The DAIDALUS software library consists of 
algorithms that predict well-clear violations between the 
ownship and traffic aircraft, and provide maneuver guidance in 
the form of range of maneuvers for the ownship to maintain or 
regain well-clear status with respect to traffic aircraft. These 
algorithms have been formally verified for logical correctness 
in the PVS verification system.  
 
Figure 2 illustrates DAIDALUS functionality on a notional 
encounter.  The solid area represents the well-clear volume that 
the aircraft needs to avoid. This volume is defined by time and 
distance thresholds and is generated assuming ownship 
performance limits. In this notional encounter, the current 
ownship trajectory is not predicted to be in conflict, but if the 
ownship maneuvers to the right in the range of maneuvers 
denoted by g, the aircraft will eventually lose well clear. The 
range of maneuvers denoted by g is called a conflict band [23]. 
A typical progression of conflict bands is illustrated in Figure 3 
on a nominal encounter. At time t0, aircraft are beyond threshold 
limits and therefore no bands are computed. At time t1, the 
aircraft are within threshold limits and a peripheral conflict 
band is computed for the ownship. At time t2, the intruder 
aircraft has maneuvered in the direction of the ownship and a 
conflict band appears in the current path of the ownship. At time 
t3, the aircraft have lost well clear. In this case, DAIDALUS 
computes recovery bands, which is represented by the dashed 
green range of maneuvers. Recovery bands enable the ownship 
to regain well clear in a timely manner according to its 
performance limits.  
 
DAIDALUS is a highly configurable system, but its default 
configuration was designed for large fixed wing UAS and high 
altitude operations. For the integration proposed in this paper, 
the well clear volume is defined as a cylinder of diameter 10m 
and height 10m. The performance limits of the ownship were 
also adapted to those of a small rotorcraft.   
 
 

 
Figure 2: Maneuver guidance computation in DAIDALUS 



 
 

Figure 3: Progression of conflict bands 

C. PolyCARP 
The geofencing capability used by the proposed path planning 
algorithm is provided by PolyCARP [4]. PolyCARP is an open 
source software library developed by NASA that contains 
algorithms for detecting conflicts between a point moving at 
constant velocity and a (possibly moving) polygon. A core 
component of PolyCARP containment algorithm, with key 
functions that are formally verified, that determines if a point is 
definitively inside or definitively outside a polygon. This 
containment algorithm is partially based on a ray casting 
technique. Given a polygon region and an input position in a 2D 
plane, a ray is cast from the point outward to infinity. If it 
crosses an even number of edges of the polygon, it is outside; 
otherwise, it is inside. This is shown in Figure 4. In the 
containment algorithm, a parametric buffer distance is used to 
perturb the original polygon because ray casting may cause the 
ray to pass very close to some vertices, which can potentially 
allow floating point errors to produce an incorrect 
inside/outside result. The perturbation of the vertices away from 
the cast ray, prior to counting the number of crosses, mitigates 
this problem and the containment algorithm is correct assuming 
that the accumulated computation errors are less than the buffer 
and the point is less than the buffer distance away from an edge. 

 
Figure 4: Ray casting 

 

IV. PATH PLANNING 
This section describes the integration of geofencing and detect 
and avoid capabilities into a path planning algorithm that 
efficiently computes a path from a given start configuration to 
a final configuration. The computed path is free from geofence 
and traffic conflicts.  

A. Assumptions 
The following assumptions are made to facilitate the 
development of the system: 
 

●  The ownship has a velocity controller. This enables the 
ownship to follow a commanded velocity. 

●  Complete information about all air traffic is available 
to the ownship.  

●  All intruder vehicles travel with a constant velocity.  
●  Intruder vehicles do not have malicious intent. 
●  All geofences are represented as polyhedra. 
●  All obstacles are encoded as keep-out geofences. 

B. Problem Statement 
Let ℝ" represent the 3-dimensional Euclidean space. Let 
𝑋$%&'% ∈ 	ℝ" represent the initial position of the ownship. Let 
𝑋*+, ∈ ℝ" represent the goal position for the ownship. Let 𝑈 ∈
ℝ" represent a velocity command. Given 𝑋$%&'% and 𝑋*+,, the 
goal is to compute a sequence of velocity commands 
𝑈., . . . 𝑈+such that when applied to the ownship, yields a 
trajectory connecting 𝑋$%&'% to 𝑋*+, that (a) satisfies dynamics 
constraints of the ownship, (b) stays away from the well-clear 
violations, and (3) respects geofence constraints. The sequence 
of velocity control inputs is computed by randomly exploring 
the search space and incrementally building a tree data structure 
that spans both space and time. 
 

C. Data structure 
A tree is a collection of nodes that are connected by edges based 
on the availability of a feasible path between nodes. Each node 
contains information about the state of the ownship and intruder 
vehicles at a given time. The ownship state is represented as a 
vector of dimension 𝑛. The dimension 𝑛 of the ownship state 
depends on how the dynamics of the vehicle are modeled. For 
example, the ownship state could be represented by a 6-tuple 
representing its 3-dimensional position and velocity vectors. 
Assuming each intruder’s state is represented by a 𝑝-
dimensional vector, 𝑞 intruders can be represented by a 𝑝×𝑞 
array. In addition to the ownship and traffic states, additional 
data such as the control input applied at the node, cost, and 
shortest distance to the goal node can also be stored within a 
node. Information about the parent and children edges are also 
stored within a node.  
 



D. Tree Expansion 
Let 𝛥𝑇 represent a fixed time interval allotted for the 
computation of a path.  The root node in the tree is initialized 
with the initial position of the ownship and intruders projected 
in time by 𝛥𝑇 to account for the motion of the ownship during 
the computation process. At each iteration, a random 
configuration 𝑋' ∈ ℝ" is generated from a uniform distribution. 
Then, a node in the tree is selected whose ownship position 𝑋+ 
is closest to 𝑋' and such that there exists control inputs 𝑈 that 
can move the ownship state from 𝑋+ closer to 𝑋' within the 
interval [𝑡, 𝑡 + 𝑑𝑡]. Here 𝑡 represents the time at position 𝑋+. 
 
The above step of propagating the ownship state 𝑋+ towards 𝑋' 
involves two stages. First, the control input 𝑈 is computed. This 
computation largely depends on how one models the underlying 
dynamics of the ownship. Several approaches such as those 
described in [12] can be adopted. The control input is applied 
from 𝑡 to 𝑡 + 𝑑𝑡 to generate a new state 𝑋<. The computed 
input 𝑈 is stored in the node corresponding to 𝑋+. As the 
ownship position is propagated from 𝑡 to 𝑡 + 𝑑𝑡 according to 
the modeled dynamics, the position of all the intruders are also 
propagated from 𝑡 to 𝑡 + 𝑑𝑡.  
 

E. Constraint Satisfaction 
The segment from 𝑋+ to 𝑋< is checked for geofence violation 
pointwise in time within the interval [𝑡, 𝑡 + 𝑑𝑡]. To ensure that 
the new ownship position 𝑋< is not in conflict with any 
intruders, well-clear guidance is computed using the functions 
that are part of DAIDALUS. Using the position and velocity of 
the ownship and intruders at time 𝑡 + 𝑑𝑡, DAIDALUS guidance 
maneuvers ensures that the state of the ownship at 𝑋< is outside 
the well clear volume of any intruder. Furthermore, it is checked 
to ensure that the heading of the ownship at 𝑋< lies outside any 
conflicting track angles that lead to a well clear violation. 
Finally, the change in heading from 𝑋+ to 𝑋< is also checked 
that it does not cross any conflicting track angles. 
 
The new position 𝑋< is only reachable from 𝑋+ if the segment 
from 𝑋+ to 𝑋< satisfies the above geofence and traffic conflicts. 
If 𝑋< is reachable, then a new node with the state information 
of the ownship and intruders at 𝑡 + 𝑑𝑡 is created and added to 
the tree. If the above checks fail, 𝑋< is discarded.  
Consequently, each node added to the tree is free from conflicts. 
With the addition of each new node to the tree, the expansion 
algorithm keeps track of the node 𝑁> that is closest to the goal 
configuration. 
 
With each iteration of the expansion step, the tree grows bigger 
leading to uniform exploration of the search space. This 
exploration phase is continued until a node is found that is 
within some neighborhood of the goal position. The sequence 
of inputs that must be applied from the root node to get to the 
goal node can be obtained by backtracking to the root node from 
the closest node to the goal 𝑁>. 
 

F. Heuristic-Based Termination 
Often, depending on the geometry of the search space, it may 
not be necessary to explore the whole state space by growing 
the tree incrementally until a neighborhood of the goal position 
is reached. A simple heuristic to determine when to terminate 
tree expansion is to check if a direct path to the goal exists at a 
given node. More specifically, if one were to head directly 
towards the goal from a given node, and the path along this 
direction is free from traffic and geofence conflicts, then a 
direct path to the goal exists. This heuristic can be used on the 
nearest node used for tree expansion and/or on the closest node 
𝑁>. 
 
If it is not possible to compute a complete path to the goal 
within the time allowed for computation 𝛥𝑇, the algorithm 
returns the ownship position at the closest node 𝑁> as the 
intermediate goal. The planning process can be reinitiated on 
reaching the intermediate goal. 
 

G. Pseudo-Code 
The pseudo-code for the algorithm is presented below. For 
convenience, a node at which the ownship’s position is 𝑋 is 
referred to as node 𝑋. 
 
1 Initialize tree root with initial position and 

velocities of ownship and intruders. 
2 Initialize closest node to goal N@ as an empty 

node. 
3 For i in 1 to NumIterations 
4     Generate random sample XB 
5     Find nearest node XC	 in tree 
6     If direct path to goal node exists,  
7         Add goal node as child of XC 
8     Else 
9         Find input U that move XC closer to XB 
10         Propagate XCtowards XB with U to get XE 
11         If segment from XC to XE satisfies 

traffic and geofence constraints, then 
            Store input U in node XC    

12             Add XE as a child node of XC 
13     Update closest node to goal N@ 
14 
15 

    If goal reached, then 
           Terminate 

16 Back track from closest node to goal N@ to the 
root node, to obtain the path and control input 
sequence 

H. Decision-Making Logic 
The above algorithm assumes that all intruders travel with a 
constant velocity. If intruder vehicles change their trajectories, 
then the resolution planned obtained using the proposed 
algorithm may be obsolete if the new intruder trajectories lead 
to future conflicts. Consequently, it is necessary to be able to 
re-plan when new conflicts are imminent. Figure 5 illustrates a 
simple decision sequence that provides the capability to re-
initiate the planning algorithm to ensure future conflicts are 
resolved appropriately. 
 
 



 
Figure 5: Decision making logic 

V. CASE STUDY 
The algorithm proposed in this work is agnostic to the vehicle 
type. However, for the purpose of illustration, a quadrotor 
vehicle is used. As mentioned earlier, it is assumed that the 
quadrotor has an onboard velocity controller and hence the 
quadrotor state is modeled as 𝑋	 = 	 [𝑥, 𝑣I, 𝑦, 𝑣K, 𝑧, 𝑣M]. Here 𝑥, 𝑦 
and 𝑧 represent the position of the quadrotor in a local North-
East-Down (NED) coordinate frame. 𝑣I, 𝑣K and 𝑣M represent the 
body velocities in the NED frame. The closed loop dynamics of 
the quadrotor is described by an ordinary differential equation 
of the form  𝑋 = 𝑓(𝑋, 𝑈) where 𝑈	 = 	 [𝑢I, 𝑢K, 𝑢M] represents 
the velocity control inputs. 
 

! 	= 	$%	
$% 	= 	−'% $%	–	)% 	
* 	= 	 $+	
$+ 	= 	−'+ $+	–	)+ 	
, 	= 	 $-	
$- 	= 	−'- $-	–	)- 	  

 
 
 
 

(1) 

Here 𝑘I, 𝑘K, 𝑘M are positive constants. For an expressive set of 
behaviors involving different modes of operation, the vehicle 
dynamics may also be represented as a hybrid system. For 
example, with a hybrid system model of a quadrotor dynamics, 
one can compute paths where the quadrotor can hover at a given 
position for a certain duration waiting for traffic related 
conflicts to be resolved. 
 
A random sample is generated in the search space as follows: 
 

!" 	= 	 !%&' 		+ ) 0,1 ×(!%/0 	−	!%&')	
3" 	= 	3%&' 	+ ) 0,1 ×(3%/0 	−	3%&')	
4" 	= 	 4%&' 	+ ) 0,1 ×(4%/0 	−	4%&')	  

 
(2) 

 
Here 𝒰(0,1) represents a uniform distribution in the interval 
[0,1]. The max, min values of 𝑥, 𝑦, 𝑧 represents the bounds 
within which a random sample is generated. 
 

The inputs that move the ownship position at the nearest node 
𝑋+ towards the random sample 𝑋' can be found using an 
optimization framework as discussed in [8]. For the simple 
quadrotor illustration, a simple feedback input of the form 𝑈	 =
	𝑘(𝑋'	–	𝑋+) is considered. Here 𝑘 is a gain chosen to ensure   
𝑈 ≤ 𝑈<&I	. 

 
The ownship state 𝑋+ is propagated from time 𝑡 to 𝑡	 + 	𝑑𝑡 using 
input 𝑈 and the closed loop dynamics represented by Eqn (1). 
For the simplified closed loop dynamics considered in this 
work, it is possible to compute the solution analytically. 
However, more generally, one could use numerical integration 
techniques such as the Euler method or the Runge-Kutta 
method. Since each node also contains the position 𝑋X and 
velocity 𝑉X of the intruder vehicles at time 𝑡, we can also project 
the position of the intruder to time 𝑡 + 𝑑𝑡 using the linear 
dynamics of the form: 
 

𝑋X(𝑡 + 𝑑𝑡) 	= 	𝑋X(𝑡) 	+ 	𝑉X𝑑𝑡 (3) 
 
This work assumes that the intruders move with a linear 
velocity. However, if the flight plans of all the intruders are 
known a priori, the above linear dynamics can be replaced with 
models representing the intruder trajectories. 
 
As the positions of the ownship and intruders are incrementally 
projected from 𝑡 to 𝑡 + 𝑑𝑡, it is ensured that each intermediate 
position between 𝑡 and 𝑡 + 𝑑𝑡 is free from geofence conflicts 
pointwise in time. With the final positions and velocities of the 
ownship and intruder at 𝑡 + 𝑑𝑡 obtained, it is verified that there 
are no well clear violations and traffic conflicts as described in 
the previous section. 
 
The application of the proposed algorithm combined with the 
decision-making logic in Figure 5 is illustrated in the Figures 6-
9. The ownship (blue triangle) is travelling through as sequence 
of waypoints (indicated by the flight plan in black). The red 
triangles indicate intruder vehicles while the blue polygons 
indicate keep-out geofences. The conflict band output of 
DAIDALUS is illustrated around the ownship. The red bands 
indicate the ownship headings which can result in conflict with 
the intruders. The solid magenta curves indicate the paths 
explored by the algorithm. The dashed magenta line indicates 
the direct path to the next waypoint that is obtained by the early 
termination heuristic. Figures 6 and 8 illustrate two consecutive 
encounters. The first encounter is resolved by turning to the left 
and returning to the next waypoint after flying for a few 
seconds. This provides enough time for the first intruder to 
continue flying its course without entering a well clear violation 
with the ownship. The ownship encounters the second intruder 
before completing the previous resolution (see Figures 8-9). 
Due to the decision-making logic discussed above, a new 
resolution is generated to avoid the second intruder. The 
computed resolutions ensure that the keep-out geofence 
constraints are satisfied at all times. 
 



 
Figure 6: Traffic encounter 1 

 

 
Figure 7: Close up of encounter 1 

 
Figure 8: Traffic encounter 2 

 
 

 
Figure 9: Close up of encounter 2 

The computation times for the proposed algorithm were 
evaluated on two different hardware platforms suitable for 
embedded applications. Results are summarized in Tables 1 and 
2. 
 

Table 1: Computation time results on Beagle Bone Black [24] 

 Iterations used Nodes explored Time taken (s) 
Encounter 1 5 5 1.5572 
Encounter 2 7 6 1.5802 
Encounter 3 16 13 2.6758 

 
Table 2: Computation time results on Jetson TK1 [25] 

 Iterations used Nodes explored Time taken (s) 
Encounter 1 7 5 0.1324 
Encounter 2 19 14 0.2822 
Encounter 3 10 7 0.1671 

 

VI. FORMALIZATION AND VERIFICATION 
As noted in the Introduction, the safety critical nature of UAS 
algorithms mandates a rigorous understanding of the properties 
of the integrated approach. Consequently, many of the core 
algorithms in DAIDALUS, PolyCARP, and ICAROUS have 
been formally verified in the Prototype Verification System 
(PVS) [5]. PVS is an interactive theorem prover consisting of a 
specification language and a prover language. Algorithms are 
first specified in the specification language; whose semantics 
are similar to a functional programming language. However, 
unlike a programming language, this specification language 
allows correctness properties, in the form of theorems, to be 
stated about these algorithms. The prover language is then used 
to prove that the algorithms satisfy these theorems.  
 
In the PVS development, priority is given to verifying 
algorithms that have potential safety implications. The 
previously verified algorithms in DAIDALUS therefore include 
the conflict detection and bands algorithms. In PolyCARP, 
verified algorithms include sub-functions of the ray casting 



algorithm, including the function that determines whether a ray 
crosses an edge, the function that determines if the input point 
is within a buffer distance of an edge, and the function that 
determines if a trajectory will intersect a polygon.   
 
The Runge-Kutta approximation of the closed loop dynamics 
of the quadrotor, presented in Section III, have been formalized 
in PVS, as well as a function that checks the resulting path for 
well-clear (using DAIDALUS) and collisions with obstacle 
polygons (using PolyCARP). These algorithms are called as 
functions of the path planning algorithm presented in this paper. 
A generic version of the path planning algorithm has been 
formalized and verified correct in the PVS theorem prover. It 
allows random growth of trees to be modeled, where the type 
of the node objects is arbitrary. There are generic correctness 
properties that are checked before adding each new node to the 
growth tree, and assuming that these correctness properties 
satisfy certain soundness conditions, the final tree is proved to 
satisfy a general safety property. An implementation of the 
specific path planning algorithm presented in this paper is 
underway where the node objects include multiple pieces of 
information about the state of the aircraft. In this 
implementation, the general safety property will reduce to a 
property that all paths through the generated tree are well-clear 
and avoid obstacle polygons. 
 

VII. DISCUSSION 
The selection of a suitable goal location for plan generation is 
mission dependent and must be done in real time. A simple 
approach would be to select the next conflict free waypoint in 
the flight plan or an intermediate point in space on the current 
flight plan’s leg as the goal node.  
 
The available time 𝛥𝑇 for computing a solution is also problem 
dependent. Based on the availability of sufficient 𝛥𝑇, one can 
ignore the early termination strategy discussed in this paper and 
focus on the tree expansion as desired. A graph based search 
algorithm may also be used on the tree to determine an optimal 
path. Certain scenarios may require using the early termination 
heuristic to trade off optimality for a cheap conflict free 
solution. Determining this tradeoff in real-time is a topic of 
interest for future work. Future research directions will also 
look into construing efficient exploration heuristics to select 
new samples.    
 

VIII. CONCLUSIONS 
This paper presented a local path planning algorithm that 
integrates a rapidly exploring random tree based search 
algorithm with resolution and geofence conflict detection 
algorithms that have formally verified components. 
Termination of the tree expansion based on the availability of a 
direct path to the goal position from a node on the tree leads to 
quicker computation times. Initial software and hardware in the 
loop tests show that the resulting algorithm is suitable for UAS 
with low computation power given its capability to compute in 

real-time motion plans that satisfy traffic and geofence 
constraints. 
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