
JPF-Core-X: Tool Qualification Plan (TQP)

JPF-Core-X:

Tool Qualification Plan (TQP)

Contents

a Identification of the Tool 1

b Qualification Considerations 2

b.1. Proposed TQL . 2

b.2. Means of compliance . 2

c Functional Overview 3

d Tool Operational Environment 5

e Visibility of Tool Life Cycle Process Activities 6

f Tool Life Cycle 6

g Tool Qualification Data 6

h Additional Considerations 7

i Organizational Responsibilities 7

j Suppliers 8

1

JPF-Core-X: Tool Qualification Plan (TQP)

Introduction

This document is one of a several exemplar documents prepared as part of a research Case Study

whose objective is to simulate a Formal Methods Tool qualification exercise under DO-330. The

specific tool considered in this case study is the core module of Java PathFinder (JPF-Core). As

with any tool qualification exercise, the qualification is done with respect to a specific version of

the tool. Therefore, throughout this document, we refer to our version of JPF-Core as “JPF-Core-

X”, as described in Section a of the Tool Qualification Plan. This particular document provides

a representative example of the “Tool Qualification Plan” (TQP) for JPF-Core-X, and is written

according to the guidelines in DO-330 Section 10.1.2.

Because this is a research study, in which there is no actual qualifying organization and accom-

panying context, and because the tool under consideration is a research implementation without

specific versions, release control, user documentation, or standard configurations, some of the sec-

tions of an actual TQP will not be relevant. This document is thus a Framework for an actual TQP,

organized according to the DO-330 enumeration of required contents. Accordingly, some sections

will represent content that is concrete enough to be part of an actual TQP; some will discuss how

a more concrete implementation of this tool might fulfill the required contents; and some will not

be applicable for the purposes of this research simulation.

The sections that follow are organized according to sub-parts a) through j) of Section 10.1.2

in DO-330. In each section, we attempt to provide representative content of what should appear

in an actual TQP for a real qualification exercise. In addition, we offer supplemental meta-level

comments throughout the document.

Discussion

This is how a meta-level comment appears in the text. These comments are meant to provide

insight into our process of writing the document, and to suggest interesting or important

topics that relate to the qualification of formal methods tools.

a Identification of the Tool

DO-330

“Identification of the tool, and, if applicable, user configuration.” [DO330-10.1.2-a]

Discussion

Java PathFinder presents multiple challenges to tool identification for qualification purposes.

First, as a result of its long tenure as a research project, it has accumulated many related

capabilities at various maturity levels. For the most part, these capabilities are segregated by

the use of “modules” in the JPF source control repository. However, to be conservative, a tool

1

JPF-Core-X: Tool Qualification Plan (TQP)

qualification package should specify both which modules will be used and which capabilities

within the modules will be exercised. Second, as a non-commercial project there is no single

commercial entity which controls the release of a consistent, integrated, and well-tested tool.

Third, as an open-source tool, JPF is distributed as a set of source files, which depend on a

build environment to create a correct executable.
For the purpose of this case study, we propose the following approach to overcoming these

challenges. First, we identify a single code directory (i.e., module), “jpf-core” to be qualified.

Second, we specify a date, repository, tag, and changeset to unambiguously define a particular

tool release. We give this particular release the name JPF-Core-X and treat it as the tool to

be qualified. We do not attempt to solve the problem of specifying a build environment for

JPF-Core-X, but suggest that this is an interesting issue for qualification of tools which are

distributed as source.

Java PathFinder (JPF) is a model-checking tool that can perform explicit state model checking

to check for errors over all possible state values in all possible paths of the program. As such, JPF

can be used to verify the requirements of a system when those requirements are expressed in Java

source code.

The tool to be qualified for certification is “JPF-Core-X”. We obtained the core module of JPF

(JPF-Core) from the JPF mercurial repository maintained by NASA on March 1, 2016. We refer

to this version of the software as JPF-Core-X. On that date, JPF-Core-X was the tip tag on the

default branch of the repository at http://babelfish.arc.nasa.gov/hg/jpf/jpf-core. The

last changeset included in JPF-Core-X is 29:820b89dd6c97 committed on October 16, 2015.

b Qualification Considerations

DO-330

“Qualification considerations, including the proposed TQL and means of compliance with

the objectives of this document.” [DO330-10.1.2-b]

b.1. Proposed TQL

As described in the tool specific sections of the PSAC, section d, we propose to qualify JPF-Core-X

at TQL-4.

b.2. Means of compliance

The means of compliance with the objectives of DO-330 are set out in the Case Study Preparation

document Tables T-0 through T-10.

2

JPF-Core-X: Tool Qualification Plan (TQP)

c Functional Overview

DO-330

“A functional overview of the tool, its interfaces, and its architecture. Additionally, any

external components should be identified.” [DO330-10.1.2-c]

Discussion

This section overlaps with Section “a.1” in the TOR.

Discussion

JPF is a configurable environment with its own virtual machine designed to enable cus-

tomized verification of Java bytecode programs. The full JPF architecture includes a core

virtual machine with a basic set of verification tools (JPF Core), plus several optional ex-

tension modules that may be added to perform more customized analysis. As discussed in

Section a, however, this qualification exercise is for JPF-Core only.

Figure 1 shows JPF-Core-X’s inputs and outputs in the context of its proposed use in cer-

tification activities. As shown, JPF-Core-X consumes files containing properties to be verified

represented in its own input language and one or more files containing Java code representing

system LLRs. It’s output is presented to the user in the form of a report file.

A diagram of the architecture is shown in Figure 2. The JPF-Core-X installation resides and

runs on top of the native Java installation on the host OS. It is therefore a VM on top of a VM.

The JPF virtual machine then executes the Java application being tested. This Java source code

being checked by JPF-Core-X is also referred to as the System Under Test (SUT).

In general, a potential challenge with running an application on JPF-Core-X (especially large

scale applications) is that JPF-Core-X cannot execute Java libraries that use native code. Doing so

would prevent the tool from matching and/or backtracking the program states. The workaround

is to use native peers and/or model classes.

Native peers are Java classes that effectively replace native methods. The native peers are

executed by the real Java VM (not JPF-Core-X). Model classes are simple replacements of standard

classes, such as java.lang.Thread. The model classes provide alternatives for native methods which

are fully observable and backtrackable.

3

JPF-Core-X: Tool Qualification Plan (TQP)

JPF Properties &
Assertions

Representing HLRs

Manual
Encoding

Manual
Encoding

System Under Test:
LLRs as Java

Source

SuccessViolation Safe

High Level
Requirements

Source Code

JPF Model
Checking

Repair High or Low
Level Requirements,
or their encodings.

JPF Report

Inputs

Output

Tool

Source code generation
from LLRs is the next step
in the software life cycle
process.

JPF Report will indicate if the
system under test has any:
 1) deadlocks,
 2) race conditions, or
 3) assertions.

Figure 1: Flow of HLRs and LLRs for JPF-Core-X model checking. (draft graphic)

Figure 2: JPF Layered Architecture. Image taken from: http://babelfish.arc.nasa.gov/

trac/jpf/wiki/user/components

4

http://babelfish.arc.nasa.gov/trac/jpf/wiki/user/components
http://babelfish.arc.nasa.gov/trac/jpf/wiki/user/components

JPF-Core-X: Tool Qualification Plan (TQP)

d Tool Operational Environment

DO-330

“Description of the tool operational environment(s), and if different, the tool verification

environment(s).” [DO330-10.1.2-d]

JPF-Core-X is a pure Java application. As such, it runs on the Java virtual machine, which

itself can be run on Windows, OS X, or Unix operating systems. The minimal required Java version

is Java SE 7, which corresponds to JDK 1.7.

Discussion

In a real qualification, the exact set of OS versions for which the tool is qualified should be

listed. Note that there is nothing different or unique about defining the host OS requirements

for formal methods tools as compared to any other tool.

JPF-Core-X is provided with project configurations for both the NetBeans and Eclipse IDEs.

Either IDE may be used to define the project settings, edit the JPF properties, and run JPF.

Given that JPF-Core-X is generally a resource hungry application, it is recommended to run

with a minimum of 16 GB of RAM and a minimum 2.3 GHz dual-core processor. These recom-

mendations are based upon the observed performance of running JPF on applications that are

representative in size and complexity of the software to be certified. The actual memory usage will

depend on the actual application being tested.

Discussion

JPF, like all model checkers, tends to be a resource hungry application. In order to ensure the

tool can successfully complete evaluations of arbitrarily large applications, it must be given

sufficient resources in terms of CPU and memory. In a real qualification, the requirements

on these hardware resources should be evaluated for the specific application, and those

requirements should be reported in this section of the TQP.

Discussion

This section overlaps with Section “b” in the TOR.

5

JPF-Core-X: Tool Qualification Plan (TQP)

e Visibility of Tool Life Cycle Process Activities

DO-330

“Description of the means the applicant will use to provide the certification authority with

visibility of the activities of the tool life cycle processes so tool reviews can be planned.”

[DO330-10.1.2-e]

THIS SPACE INTENTIONALLY LEFT BLANK.

Discussion

For the purposes of the case study, the tool life cycle process activities have been identified

and described in the Tables T-0 through T-10 of the “Case Study Preparation Document.”

There is nothing about this section of the TQP of special interest in the case where the tool

to be qualified is a formal methods tool.

f Tool Life Cycle

DO-330

“Tool life cycle description and the qualification activities to be performed.” [DO330-10.1.2-

f]

THIS SPACE INTENTIONALLY LEFT BLANK.

Discussion

For the purposes of the case study, the tool life cycle process activities have been identified

and described in the Tables T-0 through T-10 of the “Case Study Preparation Document.”

There is nothing about this section of the TQP of special interest in the case where the tool

to be qualified is a formal methods tool.

g Tool Qualification Data

DO-330

“Tool qualification data to be produced.” [DO330-10.1.2-g]

The main qualification data to be produced will be presented in two documents:

1. Test Cases and Procedures

6

JPF-Core-X: Tool Qualification Plan (TQP)

2. Test Results

h Additional Considerations

DO-330

“Any additional considerations that may affect the qualification process, for example, deac-

tivated code, COTS tools, reuse, tool qualification (of other tools used to develop or verify the

tool), alternate means of qualification, tool service history, and means to ensure the deter-

minism of the tool per the last paragraph of section 2.0 of this document.” [DO330-10.1.2-h]

Discussion

JPF search functions could be configured to intentionally introduce non-determinism. How-

ever, this would only change the path taken internally to explore the state space, in an effort

to explore it faster. JPF should still cover all paths regardless of the search method. There-

fore, the output, which reports errors or confirms the absence of errors, should not change

even if the search process is non-deterministic. This is consistent with the requirement of

determinism specified in the last paragraph of section 2.0 of DO-330.

i Organizational Responsibilities

DO-330

“Organizational responsibilities within the tool life cycle processes. ” [DO330-10.1.2-i]

THIS SPACE INTENTIONALLY LEFT BLANK.

Discussion

There is nothing about this section of the TQP of special interest in the case where the tool

to be qualified is a formal methods tool.

7

JPF-Core-X: Tool Qualification Plan (TQP)

j Suppliers

DO-330

“If suppliers are used, a means of ensuring that supplier processes and outputs will comply

with approved tool plans and standards. ” [DO330-10.1.2-j]

THIS SPACE INTENTIONALLY LEFT BLANK.

Discussion

There is nothing about this section of the TQP of special interest in the case where the tool

to be qualified is a formal methods tool.

8

JPF-Core-X: Tool Qualification Plan (TQP)

References

9

	Identification of the Tool
	Qualification Considerations
	Proposed TQL
	Means of compliance

	Functional Overview
	Tool Operational Environment
	Visibility of Tool Life Cycle Process Activities
	Tool Life Cycle
	Tool Qualification Data
	Additional Considerations
	Organizational Responsibilities
	Suppliers

