Formal Methods Tool Qualification : Issues in Tool Assurance
18 September 2016

Formal Methods Tool Qualification (FMTQ)
Issues in Tool Assurance

Prepared for NASA
System-Wide Safety Assurance Technologies (SSAT)
Subtopic AFCS-1.3 Software Intensive Systems: Qualification of Formal Methods Tools
Contract NNL14AA06C

	Technical Point of Contact:
Lucas Wagner
Rockwell Collins
400 Collins Rd NE, MS 108-206
Cedar Rapids, IA 52498	
Telephone: (319) 295-5672
Lucas.Wagner@RockwellCollins.com
	Business Point of Contact:
Julie Issa
Rockwell Collins
400 Collins Rd. NE, MS 121-200
Cedar Rapids, IA 52498
Telephone: (319) 295-0511
Julie.Issa@RockwellCollins.com

[image: RClogo_col_rgb]
Rockwell Collins
400 Collins Rd. NE
Cedar Rapids, Iowa 52498

[bookmark: h.30j0zll][image:]

Abstract
We discuss three classes of formal methods: interactive theorem proving, model checking, and abstract interpretation, with emphasis on general characteristics and trust issues, i.e., aspects of the theory, implementation, and application of such tools that impact the trust one can place in their results.

Table of Contents
1	Introduction	6
1.1	Formal Methods Tools	6
1.1.1	Interactive Theorem Proving	7
1.1.2	Model Checking	8
1.1.3	Abstract Interpretation	9
1.2	Trust Proposition	10
1.2.1	Correctness of the approach	10
1.2.2	Implementation correctness	10
1.2.3	Quality of the artifact formalization	11
1.2.4	Correct properties	12
1.2.5	Out of scope issues	12
1.3	Analysis results and how to understand them	13
1.3.1	Interactive proof	13
1.3.2	Model checking	14
1.3.3	Abstract interpretation	14
2	Interactive Theorem Proving	14
2.1	What does an interactive theorem prover say?	15
2.1.1	Trusted Basis	15
2.1.2	Trusted Extension	16
2.1.3	Valid Model	16
2.1.4	Sound Logic	16
2.1.5	Correct Implementation	17
2.1.6	Correct Libraries	17
2.1.7	Trusted IO	17
2.2	Design for Soundness	17
2.2.1	Careful extension by experts	18
2.2.2	LCF Style	18
2.2.3	Proof objects	18
2.2.4	Metafunctions	19
2.2.5	Implementation verification	20
2.2.6	Logic Interpretation	20
2.3	System Trust Explanations	20
2.3.1	Isabelle	20
2.3.2	ACL2	21
2.3.3	Proof Power	21
2.3.4	HOL-4	21
2.3.5	PVS	22
2.3.6	Coq	23
2.4	Further Sources	23
3	Model Checking	23
3.1	Model Checking Techniques	23
3.1.1	Enumerative	23
3.1.2	Symbolic	25
3.1.3	Conclusion	27
3.2	Anticipated Tool Usage	27
3.2.1	Error detection	28
3.2.2	Proof	29
3.2.3	Conclusion	30
[bookmark: _GoBack]3.3	Potential User Errors	30
3.3.1	Input	30
3.3.2	Usage	31
3.3.3	Interpretation of Results	31
3.3.4	Interface Problems	31
3.4	Trust Proposition	32
3.4.1	Trusted Logic	32
3.4.2	Valid Model	32
3.4.3	Correct Translation	34
3.4.4	Correct Algorithms	35
3.4.5	Correct Implementation	35
3.4.6	Trusted Components and Libraries	35
3.4.7	Correct Platform	36
3.4.8	Correct Execution	36
3.4.9	Trusted IO	36
3.5	Techniques for Verifying Model Checkers	36
3.5.1	Peer Review and Traditional Testing	37
3.5.2	Formally Verified Model Checkers	37
3.5.3	Proof-Emitting Model Checkers	38
4	Abstract Interpretation	39
4.1	Undecidability, Automation, scaling	39
4.2	Static Analysis based on abstract interpretation	39
4.2.1	What does a static analyzer say?	40
4.2.2	Static analyzer trust proposition	40
4.2.3	Accurate evaluation model	40
4.2.4	Sound Abstraction and Sound Abstract Operations	40
4.2.5	Correct Implementation	40
4.2.6	Correct Platform	41
4.2.7	Trusted IO	41
4.3	Verification of Abstract Interpretation	41
References	42

[bookmark: _Toc445217170][bookmark: _Toc464542752]Introduction
The goal of working with a formal methods tool is to use a computer to reason about an “artifact under scrutiny”, for example a piece of mathematics, a C program, a Simulink model, etc. The aim of this document is to discuss the trust issues that arise in using formal methods tools, namely why and how should we trust them and their results. Since these tools are often used to establish the correctness of components of safety-critical systems, their trustworthiness is an important matter.

In order to guide the discussion, we introduce the Trust Proposition of a formal methods tool. The trust proposition is used to break a complex proposition—trusting a formal methods tool—down to smaller sub-components that affect trust. Using the trust proposition, we can analyze how trust is created, propagated, and (possibly) damaged by the tool in the creation of its results.

In this report we will discuss only interactive theorem provers, model checkers, and abstract interpretation tools. There are other technologies that fall under the category of formal methods tool, but these three are the most important at this point in time. (For example, we regard SMT technology as providing backend reasoning engines used by formal methods tools, and not as a stand-alone class of formal methods tool in its own right.)
Before getting to the discussion of the trust proposition, we first introduce the three classes of formal methods techniques.
[bookmark: _Toc445217171][bookmark: _Ref445382523][bookmark: _Toc464542753]Formal Methods Tools
Formal methods are a set of techniques, based on mathematical logic, used to reason about the behavior of software and hardware systems. In general, formal methods tools do not apply the actual artifact under consideration to selected inputs, as in testing. Instead, the artifact is modelled in a formal language, and the model is analyzed with respect to all possible inputs. While many types of analyses could technically be considered a formal method, usually when one refers to formal methods they are referring to one of three types of analysis approaches: theorem proving, model checking, or abstract interpretation.

Theorem proving tools feature highly expressive logics that can be used to describe a wide variety of systems and behaviors. Because of this expressive power, user interaction is key to the successful use of a theorem prover; the user typically guides the tool with high-level commands and strategies to obtain proofs.

Model checking is a method that involves the exhaustive verification of a formal property, often expressed in first order logic, or temporal logic, against a given model, expressed as a state transition system. Model checking tools are largely push-button, requiring little, if any, interaction from the user to establish a proof. However, the system under scrutiny must often be abstracted in the modelling process, in order to build the state transition system.

Lastly, abstract interpretation is a technique based on executing conservative abstractions of programs over abstract domains. The approach has a foundation in denotational semantics of programs [47]. Like model-checking, abstract interpretation tools are push-button in nature. This technique differs from model checking and theorem proving in that it focuses less on formally stated logical properties and more on the (sets of) values program variables can hold in the course of abstract execution. Once that information is computed, logical properties can be deduced.rm
[bookmark: _Toc445217172][bookmark: _Toc464542754]Interactive Theorem Proving
At the time of writing, the following are the primary examples of interactive theorem provers (ITPs): ACL2 [90], Agda [31], Coq [16], the family of HOL proof assistants [9][80][116], Isabelle/HOL [115], Mizar [73], and PVS [121].

These systems differ greatly in what they offer and how they work. However, some common features can be observed.

Generality and expressive power ITP systems are implementations of foundational logics aimed at supporting the formalization of mathematics. Most of the systems listed above implement higher order logics of one kind or another; however there are some exceptions: ACL2 implements first order logic (plus recursion and induction up to ε0) and Mizar implements Tarski-Grothendieck set theory.

Thus the expressive power of ITPs is virtually unlimited and allows great flexibility in writing specifications and describing computational behavior. For example, Coq has been used to reason about challenging theorems in pure mathematics and an optimizing C compiler [66][67][99], Isabelle/HOL has been used for reasoning about properties of programming languages [113] and HOL-4 has been used to describe detailed models of ISAs and to prove specific properties of individual programs running on a particular processor [64][109]. Every ITP can boast scores of such examples, demonstrating the wide spectrum of verification problems that can be tackled by ITPs.

Rich libraries, undecidability, and user guidance of proofs An ITP comes with a library of support theories, typically built up by years of effort, upon which further formalizations build. Since formalizations often draw from a library of decidable and undecidable theories, and moreover are embedded in an expressive foundational logic, full proof automation is not possible in general. Instead, all ITP systems provide powerful automated reasoning methods that allow proofs to proceed “in large steps” under user guidance. The central role of user guidance of proofs is a principal difference between theorem proving and other approaches, which typically offer “push-button” automation in restricted domains.
It should be emphasized, of course, that ITPs do provide decision procedures, model-checkers, powerful simplifiers, automated first order reasoners, etc. Sometimes these tools are an integral part of the guts of the ITP implementation, sometimes they are written as applications on top of a trusted kernel, and sometimes they are accessed by linkages with external SMT systems.

Soundness and extensibility Soundness is emphasized in ITP design and implementation. In many cases, the foundational logic of an ITP has been formally specified and proved sound, e.g., [117][122]. Some ITPs have even had their implementations proved correct [94], and such correctness proofs have been extended down to the machine code level [52]. Thus, research has shown that essentially all doubts about the correctness of an ITP can be removed, at least in principle.

ITP systems provide extension mechanisms for introducing new formal objects, e.g., types, functions, sets, etc., and also for dynamically adding new reasoning procedures. In many cases, this is tantamount to introducing new axioms into the ITP. Experience has shown this to be a perilous act since it is all too easy to introduce unsoundness. It is essential that the key soundness property of the logical system is preserved by such extension mechanisms.
[bookmark: _Toc445217173][bookmark: _Toc464542755]Model Checking
Model checking is one of the most successful techniques for exhaustively verifying a property specification against a given model. The mechanism for proving properties vary from tool to tool, some employing efficient strategies for brute force exploration (explicit-state) while other tools represent the model itself in a compact and efficient format for improved scalability (BDD-based) and yet others provide a proof of correctness based on induction.

Types of approaches Model checking tools usually optimize performance for a particular class of problems. Model checking tools exist for a wide variety of analysis problems, some useful for verifying hardware designs [34][38][57], others useful for verifying Simulink/Stateflow models [136], and yet others for verifying source code [18][19][93]. The artifact under analysis largely determines the appropriate technique.

Strengths and Weaknesses Its strongest selling point compared to other approaches is that model checking is a largely automatic process that requires very little intervention from human experts. This makes it particularly adequate in settings where formal assurance is desirable but the resources allocated to the task are limited. Because of its “push-button” aspect, model checking can be easily deployed in a traditional software (or hardware) development process by engineers that are not experts in formal verification.

However, the biggest weakness of model checking is that it scales exponentially with the state-space of the problem being analyzed. In industry, this generally means that it cannot be used to analyze entire systems of behaviors, but is best reserved for verifying components.

The purpose, for which a model checker is used, has a direct repercussion on the consequence of a wrong answer. A model checker can be used to find defects. Much like testing, the tool will only report erroneous states but is more likely to discover subtle bugs. In this case, a model checker will not be used to declare that a program is free of errors. The other mode of use is to rely on a model checker to verify that a system is correct with respect to a formal specification. We look in detail at what this means in terms of soundness in section 3.

Common uses Model checkers are already commonly used in industry, particularly for the development of critical systems. This is the case for hardware vendors like Intel, who has been using model checking since 1995 [7][61]in particular the model checker Mur-ᵠ [57]for software verification [56]. This is also the case for the avionics industry where model checking is used to verify e.g. flight control systems. Impressive industrial verification efforts have been achieved by industry leaders like NASA [81][82] with Java PathFinder and the Spin model checker [84], Rockwell Collins [104][105][106][142][143] with NuSMV [40] and Prover Plug-In [127], SRI with their own model checker SAL (Symbolic Analysis Lab- oratory) [54][129] or Airbus [26][98][137] with the SCADE Design Verifier [1][60]. Another model checker that is widely used in avionics industries is Uppaal [13] for the analysis of real time systems [20][28].

In all these cases, model checking is used as a mean to ensure certain correctness properties of the system at hand. More generally, formal methods are usually introduced in the development process as a mean to replace costly (unit and black box) testing [89][98][145]. At the same time they provide a greater level of confidence. For example, model checkers are able to consider exhaustive program behaviors for their analysis contrary to traditional testing which only examines a limited number of inputs and states.

So as a tool, a model checker bears an important responsibility for the validation of critical pieces of software. If a model checker gave incorrect answers, defective software (or hardware) could go into production and be shipped in safety critical systems. However, a model checker will never generate code that will be executed in a critical system so their impact is considered to be relatively low (compared to e.g. a compiler).
[bookmark: _Toc445217174][bookmark: _Toc464542756]Abstract Interpretation
Abstract interpretation [47] is a formal method that is used to statically analyze the behavior of computer programs. The true behaviors of a computer program are referred to as its concrete semantics. Using theory of sound approximation, a new, abstract representation of this program is constructed. The semantics of the program, in this abstract domain, can be analyzed quickly and efficiently through mathematical analysis, revealing potentially harmful variable assignments that could lead to run-time errors, violation of user assertions, and more.

Types of approaches Abstract interpretation tools can be designed to be both sound and unsound. If a tool over-approximates the program’s concrete semantics, thus containing all of the behaviors that occur in the concrete semantics, then it is sound. The benefit of using a sound approach is that if the tool reports no errors are found in the abstract domain, then there are no errors in the concrete program as well. However, because the abstract domain over-approximates the behaviors of the concrete program, it is possible for the abstract semantics to contain behaviors not present in the concrete semantics, and thus provide false alarms.

If a tool under-approximates the program’s concrete semantics, and then is it possible that the tool will fail to identify an error. In this case the approach is unsound. Unsound tools can be used to find bugs in programs, but not prove their absence.

Strengths and weaknesses Abstract interpretation scales up well for the analysis of large, complex programs. The analysis does not attempt to exhaustively analyze possible traces in the program; instead it analyzes the set of potential values program variables may take on in the abstract domain. This is in sharp contrast with model checking tools.

One drawback of this analysis technique is that because it is an approximation of the concrete program semantics, the analysis domain being analyzed may not (likely not) precisely reflect the true behaviors of the program. As dis- cussed earlier, sound tools may provide false alarms, and unsound tools may not identify errors. In a production environment, the consequence of false alarms is increased labor costs to investigate reported issues that may not exist in the actual software. On the other hand, unsound tools may fail to identify an error that does exist in the actual software. When using an unsound tool as a bug finding aid additional methods must be used to gain assurance that errors do not exist.

Common uses Tools that implement abstract interpretation can be used for many purposes; however the most common use is for the identification of run- time errors in source code. Division-by-zero, integer overflow, out-of-bounds array indexing, undefined logical shifting, improper memory access operations and similar errors can be identified using abstract interpretation.
[bookmark: _Toc445217175][bookmark: _Toc464542757]Trust Proposition
The Trust Proposition describes the collection of evidence used to evaluate whether a given formal methods tool is adequate to the task it is being applied to. Formal methods tools tend to be highly complex systems and address different visions of verification; however, the tools do share some high-level characteristics; consequently we provide a generic trust proposition, which can be tailored to address the specific assurance aspects of theorem proving, abstraction interpretation, and model checking.

Definition 1 (The Trust Proposition) The collection of evidence required to demonstrate that a formal methods tool provides trustworthy results.
There are four main categories contributing to the trustworthiness of results delivered by a formal methods tool:
The correctness of the approach;
The correctness of the implementation;
The accuracy of the formalization of the artifact being analyzed; and
The correctness of the properties being established.
[bookmark: _Toc445217176][bookmark: _Toc464542758]Correctness of the approach
The first consideration is the design of the approach underlying the tool, considered abstractly. In other words, is the mathematical basis of the tool actually correct? Is the reasoning system sound? Do the representations and algorithms work properly even when considered purely at an abstract, pre-implementation, level? The following series of questions are relevant:
1. Are the syntax and semantics of terms, formulas, inference rules, and definition mechanisms (should they exist) formally specified?
In order to argue the correctness of the approach, the mathematical basis of the approach needs to be specified apart from the implementation.
Is the analysis approach sound?
Different tools use different techniques to verify properties. The mechanism used to verify properties must be sound for the property and model combination it is applied to.
Do translations within the tool preserve semantics?
It is not uncommon for a formal analysis tool to take a model of one format and translate it into a different format. It is important that the precise semantics of the original model are preserved during this translation. The focus of this question is not on implementation correctness; instead the emphasis is on the expressive capabilities of the source language and the target language of the translation. Can the target language adequately capture the semantics of the source language? If not, is the tool designed to handle this limitation? Is this communicated to the user?

For example, if the tool translates floating point operations in a program to the corresponding operations over the real numbers, a significant shift in the background theory has taken place, and it may be that the correctness of this shift has to be argued.
[bookmark: _Toc445217177][bookmark: _Toc464542759]Implementation correctness
Given that the underlying approach is sound, this addresses whether it has been correctly implemented. This encompasses all of the implementation activities, and extends into use of off-the-shelf libraries.
1. Is the tool design correctly implemented?
1. This encompasses all the design implementation activities. Was the in- put correctly parsed? Were all translations correctly implemented? Did the developer correctly implement the analysis approach? Is the analysis result correctly reported to the user?
1. Are reused libraries trustworthy?
Many tools make use of publicly available libraries to perform various tasks, for example the Gnu Multi-Precision Arithmetic library [72], or the Open Message Passing Interface [63] used to communicate between different parallel processes. Does the user have confidence that these libraries are free from errors that might impact the soundness? Have these libraries been integrated correctly within the tool being built?
[bookmark: _Toc445217178][bookmark: _Toc464542760]Quality of the artifact formalization
Verification is about a formalization—a model—of an artifact under scrutiny and verification results will only be useful if the model is accurate enough that properties claimed about the model also hold on the artifact. It is crucial to note that this consideration connects the tool and the artifact. Thus it is a problem-specific consideration: for each new artifact to be verified, one must be sure that the model accurately reflects the artifact under scrutiny, and one has to ask questions of the following kind: How well does the model reflect reality? and Will properties proved on an abstraction apply to the artifact?

Usually it is up to the user to provide a model of the artifact and a set of properties useful for verifying its behavior. The validity of the model and the accuracy of the formal properties are key components in trust; in fact experience has shown that these are by far the leading causes of problems with formal methods tools.[footnoteRef:1] [1: Would be good to have some citation to back this up.]

A formal model can be wrong in any number of ways: it can be simply wrong, e.g., an ISA subtraction operation modeled via addition due to a cut-and-paste error; it can be wrong due to an erroneous choice when translating ambiguous natural language specifications; it can be wrong due to an erroneous choice in the underlying model of computation, e.g., using a synchronous model for an asynchronous system, or trying to address binary-level security exploits with a source-code level model, etc.

Problems of this sort can lead to misleading analysis results, where the analysis is correct, yet useless since the model or properties are wrong. These misleading results could identify errors that don’t actually exist or, worse yet, convince the user that a property is true when it is not.

Some things that must be considered regarding the model’s impact on the assurance of formal methods tools.
1. Is the model trustworthy?
The model should accurately represent the semantics of the artifact under scrutiny. When it does not, the discrepancies must be carefully considered and understood. For example, suppose the tool supports infinite precision rationales but not floating point arithmetic. If the tool was used to verify an algorithm over the rationales that was ultimately implemented on a processor that used floating point arithmetic, the analysis would not have captured the loss of precision, which could lead to incorrect results.

The notion of a valid model provides a bridge between the formal model and the real-world artifact. Essentially, if a model is valid, then proofs about the model will hold of the real-world artifact (extra caveats must be made explicit).

A model could be invalid for various reasons, e.g., when contradictory assumptions are made about the environment the artifact is expected to operate in. For example, if a model has an input X, a logical contradiction results if the user assumes that X < 4 and that X > 5 simultaneously. Obviously X cannot satisfy both of these assumptions. The handling of such situations varies from tool to tool, but in some instances it can allow the user to prove false, meaning that any property can be proven. The example above is unrealistically simple; in actual modelling, logical contradictions can arise from subtle interactions between assumptions and identifying them is not always a trivial task.

In order to mitigate modeling problems, the model and properties should be validated with respect to the original artifact. This can be done in a variety of ways: by inspection, through playback of analysis results on real-world instances of the artifact, by generating the model automatically from the artifact, or through the use of techniques such as smoke detectors or canary properties that alert the user when a model contains contradictory logic.

In general, automated creation of models is preferable to hand-generation, an automated translation to be bug free. For example, in the Gryphon toolchain used in Rockwell Collins [107], there were undiscovered bugs in the Stateflow translation for years. The Stateflow translation was based on a paper by Hamon and Rushby [75][76]. There were errors in the original paper, and also further errors in the implementation of the translation. The bugs were isolated by taking counterexamples from Gryphon translated models and running them on the actual Simulink/Stateflow model in Reactis.
[bookmark: _Toc445217179][bookmark: _Toc464542761]Correct properties
A property specifies a behavior against which the model will be verified. Expressing properties in formulas can be difficult, and some logics feature constructs that, when combined, are notoriously difficult to understand. For example, temporal logic can have very complicated corner conditions – it is not always obvious whether the property accurately captures what the user intended.

Novice users can often trust the results of analysis without giving critical thought to what those results truly mean. Consider the following invariant properties to be checked on a model that computes Boolean variables X, Y, Z. X is computed through some complex computation however a mistake is made in the model and X is always false.
P1 = X ⇒ Y
P2 = X ⇒ Z
In the analysis run, all of the properties were proven to be true. Why? Since X is always false, the logical implication X ⇒ Y and X ⇒ Z are both trivially true. The property is therefore true, but the user may not be aware that X is always false. In model checking, vacuity detection algorithms can be used to detect such problems [96].
[bookmark: _Toc445217180][bookmark: _Toc464542762]Out of scope issues
There are further issues concerning trustworthiness that apply not only to formal methods tools, but also to all software: correctness of compilation, correct execution by the machine, and freedom from security exploits.
Is the tool correctly compiled?
The compiler must correctly compile the libraries and the implementation of the tool. Note that correct compilation is a concern for all software, not just formal methods tools. However, one might argue that a formal methods tool requires a deep guarantee of correctness, indeed may need to be held to a higher standard than even safety-critical software and hardware, and thus correctness of compilation can be a significant component of the trust proposition.

Realistic compilers for languages such as C, with deep correctness properties, have become available [100], and abstract interpretation systems have been proved correct with respect to assembly-level execution [88], which shows that significant confidence can be obtained, albeit on research prototypes.

This problem can also be ameliorated by compiling the tool with more than one compiler (provided there is more than one compiler for the language).

Is the tool correctly executed by the machine?

This is of course also a concern for all software tools. However, hardware glitches and incorrect implementations of ISAs are uncommon in the environments where formal methods tools are executed. Moreover, if there were significant doubt about the correctness of the machine, then standard techniques could be used to resolve errors, e.g., running on multiple machines and checking results. Thus we feel these issues are very low risk and we declare it out of bounds for the remainder of the paper.

Is the software protected from security-related attacks?

For example, could an attacker subvert a formal methods tool, say by a binary-level exploit, in order to get it to generate incorrect results? The answer is almost certainly ‘yes’; however, the issues that come up in attempting to deal with this kind of uncertainty are widely shared. Moreover, there hasn’t been much incentive (to date!) for hackers to try to compromise formal methods tools; the present author hasn’t heard of any such exploits since he has started working in the field (over twenty years).
[bookmark: _Toc445217181][bookmark: _Toc464542763]Analysis results and how to understand them
The three classes of formal methods tools work from different mathematical bases and the semantics of their results are different, and in some cases, fairly subtle.
[bookmark: _Toc445217182][bookmark: _Toc464542764]Interactive proof
An attempt to prove a proposition in an ITP results in either success (the theorem is proved, perhaps with user guidance) or in a stalled proof attempt, in which the user is unable to prove the proposition, either because it is not true, and the system, being consistent, will not allow it to be proved; or, because the user is unable to guide the system to a proof, even though the proposition is in fact true. An ITP user attempting to prove a false property will get into a proof state where no further progress can be made; the ITP may not give any indication of what is wrong, or indeed if anything actually is wrong.

Unlike model-checking, an ITP does not naturally detect false properties and has been developed for Isabelle/HOL. Refute [140] searches for counter-models by reducing to boolean satisfiability, Nitpick [24] searches for counter-models by using the Kodkod relational model finder, and QuickCheck [35] is an adaptation of the Haskell QuickCheck random-testing tool to higher order logic. An important aspect of this work has been developing translations that extend the backend tools to handle specification constructs commonly used in higher order logic: (co)inductive datatypes, co(inductive) predicates, and recursive functions, for example.
[bookmark: _Toc445217183][bookmark: _Toc464542765]Model checking
A proof attempt by a model checker is fully automatic; the formal proof capabilities of the user are not a crucial input to obtaining a proof. The model checker is expected to behave in one of the following ways: (a) the proposition is proved; (b) the model checker returns a counterexample that can be used to falsify the proposition; or (c) the model checker runs out of available memory. This final possibility is not uncommon, since model checking typically suffers from the state explosion problem, stemming from the exponential increase in the number of states to be considered, as the size of the program (or hardware) increases. However, even in this case, some information can be gleaned, for example in bounded model checking one will know that the result is true for the number of steps (unrollings) taken before memory is exhausted, which could be useful information, even though only partial.

In case the model checker returns a counterexample, it may be important that the counter-example be executed on the actual system under analysis, since the model being checked is often an abstraction of the actual system.
[bookmark: _Toc445217184][bookmark: _Toc464542766]Abstract interpretation
Since abstract interpretation is aimed at fully automated analyses of program behavior it must deal with the fact that the properties it attempts to prove are undecidable. The way around the blockade uses a conservative approximation in order to achieve its goals. Thus program analyses based on abstract interpretation always terminate, but may give conservative answers. Following are possible outcomes of an abstract interpretation tool run:

True positive: the property is true in the semantics and the tool says it is true.
True negative: the property is false in the semantics and the tool says it is false. Some tools return counterexamples; in this case the counter- example, when executed, should falsify the property.
False positive: the property is true in the semantics and the tool says it is false. This is also called a “false alarm”.
False negative: the property is false in the semantics and the tool says it is true.

True positives and negatives are good news: the tool and the concrete semantics agree. On the other hand, a false positive is annoying since one must consult the original program and possibly think very hard before rejecting the verdict of the tool. A tool that allows false negatives is unsound and can’t be used to prove theorems; it can only be used as a bug finder. A tool that does not allow false negatives is sound. Such a tool allows false alarms, but a result saying “the property is true” can be trusted.

In practice, it is important to reduce the false alarm rate: a sound tool that, say, produces one false alarm per 100 instructions will produce 1000 false alarms in a program with 100,000 instructions. Thus the goal of a sound static analysis tool is to scale up to large programs and to reduce the number of false alarms, to zero if possible. By fine-tuning abstract operations, this has been reportedly achieved for some classes of programs [23].
[bookmark: _Toc464542767]Interactive Theorem Proving
An interactive theorem proving (ITP) system is a complex piece of software that bundles a great deal of functionality together. Beyond their core theorem proving task, which can employ highly complex algorithms, these systems provide rich interfaces for users, interaction with host operating systems, etc. And yet, ITP systems are claimed to provide very high assurance. It is our purpose to take a close look at this state of affairs and explain the justifications for this claim.
[bookmark: _Toc445217187][bookmark: _Toc464542768]What does an interactive theorem prover say?
The result of working with an ITP is a logical theory, which captures some formal reasoning about an ‘artifact under scrutiny’. The logical theory has the following pieces:
1. A set of support theories being built upon, e.g., numbers, lists, sets, etc.;
Newly introduced types, constants, definitions, and axioms, formalizing the artifact; and
Theorems establishing properties of the formalized artifact. Some systems retain only the theorem statements, while other systems also retain the formal proof objects justifying the theorems.
We call the concept of how this collection of evidence is to be understood and judged “in the real world” the trust proposition. Note that the crucial notion— trust—is not defined: it is a judgement arrived at by considering the assembled evidence. Much of our discussion will be oriented as to why and how a person could justify trust in an ITP. We will break the big proposition—trusting an ITP—down to sub-components that contribute to trust and analyze how trust is created, propagated, and (possibly) damaged by the ITP in the creation of the final logical theory.
Definition 2 (ITP trust proposition) Suppose we are given a logical theory, as above, meeting the following conditions:

1. Trusted Basis the support theories are trusted;
1. Trusted Extension the newly introduced types, constants, definitions, and axioms are trusted;
1. Valid Model the support theories plus newly introduced types, constants, definitions, and axioms accurately model the artifact under scrutiny;
1. Sound Logic the proof system is sound;
1. Correct Implementation the proof system and extension mechanisms are correctly implemented
1. Correct Libraries the libraries used in the implementation are them- selves correctly implemented;
1. Correct Platform the compiler correctly compiles the libraries and the implementation of the proof system; also the machine correctly runs the executable;
1. Trusted IO the input and output of the ITP can be trusted.
Then we expect the artifact under scrutiny will enjoy the specified properties.
Let us examine these conditions.
[bookmark: _Toc445217188][bookmark: _Toc464542769]Trusted Basis
The support theories are trusted. Most formalizations in ITPs build on a rich collection of base theories. If the base theories being built upon aren’t trustworthy, then trust in the formalization is damaged. An unsound axiom in a base theory can be exploited by humans or automated provers to apparently prove false assertions. Such unsoundness can easily lie undetected for quite some time: for example, in the early days of the HOL theorem prover, an axiomatization of the theory of lists was used for some years before Tom Melham found that it was unsound. As a result, the HOL system, and most other ITPs, have emphasized the use of soundness-preserving extension mechanisms over the unrestricted assertion of axioms.
It must be admitted that building a large set of base theories is a burdensome process: it would be compelling for a new ITP to just adopt some “standard” basis theories without justification. However, such theories cannot be trusted unless other techniques are used to assure that usage of a library doesn’t introduce inconsistency. One example of this is the use of proof objects by Open Theory to translate theories between HOL implementations [86]. Earlier work in this area has been done by Skalberg and Obua [118] in order to translate HOL-4 theories to Isabelle/HOL.

Decision procedures and theory solvers comprise another class of basis component: these fall under the Correct Implementation category and are discussed below.
[bookmark: _Toc445217189][bookmark: _Toc464542770]Trusted Extension
The newly introduced types, constants, definitions, and axioms are trusted. A major trust issue in modelling is the worry that, in the attempt to capture the artifact under scrutiny, an unsound axiom can be asserted. Then by exfalso quodlibet, interactive or automatic proof can lead to undependable results (simply everything becomes provable). This is a serious problem since even eminent researchers have been known to propose inconsistent axioms for what are thought to be simple theories.
As can be seen, the problems with trusting an extension are essentially the same as those in trusting basis theories: one wants to start from a trusted basis, do some modelling, and end up in a trusted extension.

Fortunately, soundness-preserving mechanisms for introducing new types, functions, relations, sets etc., are provided by most ITPs, for example principles of conservative extension [95]. Any extension built by conservative extension can be trusted to the same extent as the pre-extension system. On the other hand, if axioms are allowed to be directly introduced, their soundness is a global issue, i.e., has to be argued with respect to basically the entire rest of the formalization.

If axioms are to be used in formalization, some theorem provers track their usage by use of a tagging mechanism.
[bookmark: _Toc445217190][bookmark: _Toc464542771]Valid Model
The support theories plus newly introduced types, constants, definitions, and axioms accurately model the artifact under scrutiny. An important separate part of any verification is to show that the formalization actually corresponds to the artifact under scrutiny. Establishing this fidelity is the validation problem, which appears in every formal modelling framework.

Sewell et. al discuss the validation of formal models of network protocols [22], Fox and Myreen discuss it for the formalized ARM ISA [64], Goodloe et. al explore the issues in validating floating-point versions of verified real-number algorithms [68], and Monniaux [108] discusses more difficulties with validating floating point.
[bookmark: _Toc445217191][bookmark: _Toc464542772]Sound Logic
The proof system is sound
Soundness is a fundamental requirement for the proof system used in an ITP. An unsound proof system is useless. As a result, ITP developers make serious attempts to give formal syntax and semantics to the notions of type, term, formula, inference, and proof used in the ITP. However, some ITPs are more amenable than others to formal proofs of soundness. ITPs with relatively simple logics, e.g., HOL, have formal soundness proofs (both on paper and mechanized), while more complex logics do not as yet have formal soundness proofs. (This is not a criticism; rather, an acknowledgement that soundness proofs may not be a high priority for many ITP developers.)
[bookmark: _Toc445217192][bookmark: _Toc464542773]Correct Implementation
The proof system and extension mechanisms are correctly implemented.

If a proof system is sound, and its implementation is correct, then one can trust that theorems proved in the ITP have been obtained by a sequence of inference steps, each of which preserves soundness. Proving correctness of a proof system implementation is a challenging task. There are at least two approaches. In the first approach, the algorithms and data structures of the proof system are modelled in pure logic and correctness proofs performed in that setting. This is essentially what Harrison does for the core of HOL Light [79]. However, there is an important missing aspect to this work, which is modelling the data structures and algorithms of the implementation programming language. This adds considerable complexity, but recent work by Davis and Myreen [53] and Kumar, Myreen, and Owens [94] is overcoming that.
[bookmark: _Toc445217193][bookmark: _Toc464542774]Correct Libraries
The libraries used in the implementation are correctly implemented. All ITPs, even those following the LCF design, ultimately call upon library routines in the source programming language. For example, bignum libraries such as GNU MP can be used in order to provide concrete integers and efficient operations over them in proofs. Bugs in such libraries can cause problems in theorem provers. In some cases, library bugs merely evidence as failures in proofs, but it is plausible that some library bugs could be exploited to yield unsoundness.
[bookmark: _Toc445217194][bookmark: _Toc464542775]Trusted IO
The input and output of the ITP can be trusted.
ITPs often provide quite elaborate facilities for parsing and prettyprinting, which is quite convenient for users who wish to use install special notation as an aid to clear thinking. However, such facilities can also be abused. For example, it would be quite easy to have the system prettyprinter in HOL print false (F) as true (T), or swap the symbols for universal and existential quantification. In that case, a consumer could be mislead as to what properties are actually being proved in an ITP.
[bookmark: _Toc445217195][bookmark: _Toc464542776]Design for Soundness
There is a conflict between trustworthiness and extensibility. On one hand, users often want to extend the power of an ITP, e.g., by tapping into the power provided by third-party automated theorem proving software, or by writing their own proof procedures. On the other hand, such activity can obscure the trust story of the ITP, since the correctness of the combined or extended system then needs to be justified. The goal is to allow extensions of an ITP while preserving its trust proposition.

Some fundamental approaches to ITP extension have emerged. ITP developers and users typically use a selection of the following techniques:
1. Careful extension by experts
LCF style
Proof objects
Metafunctions
Implementation verification
Logic interpretation
We now give a little more detail on each of these. Of course, a given system may employ more than one of these approaches.
[bookmark: _Toc445217196][bookmark: _Toc464542777]Careful extension by experts
In this approach, the representations and procedures by which a theorem may be proved in an ITP are strictly controlled and may only be revised or extended by an expert, usually one of the system developers. Therefore, the correctness of an extension to the system depends on the expertise and care taken by the developers who implement the extension. ACL2 is a prime example of a system of this kind. (Of course, there is always ongoing activity in any implementation to improve the code and underlying algorithms. Moreover, all ITPs provide facilities for extending the logic by definitions, and for improving the power of automated procedures by adding lemmas. However, an ITP based on the Careful Extension model will typically not support the implementation of a new proof procedure, except by one of the developers.)

Some examples of such extensions:

In [33], Boyer and Moore discuss the issues involved with integrating a linear arithmetic decision procedure into the Boyer-Moore theorem prover, paying particular attention to the interplay between conditional rewriting and the decision procedure.
In [128] an integration of model-checking into PVS is described.
In [4], Armand, Gregoire, Spiwack, and Thery extend Coq by adding machine integers and arrays as primitive logical objects.
[bookmark: _Toc445217197][bookmark: _Toc464542778]LCF Style
This approach relies on the data abstraction facilities of the host programming language. An abstract datatype of theorems is the central concept, with the constructors of the abstract type being just the axioms and primitive rules of inference of the logic. Typically, the rules of inference in an LCF-style system are extremely simple—at the level of modus ponens, for example. The host programming language (ML is popular) is required to have a strong type system, so that arbitrary user-written proof procedures are guaranteed to ultimately reduce to primitive inferences; thus user code cannot compromise the soundness of the kernel implementation of the logic.

Isabelle, Proof Power, HOL Light, and HOL-4 are the main current examples of LCF-style systems. The reference manuals for these systems provide background and overviews of how the LCF style is implemented.

The requirement that all proof steps be justified by passing through a simple logical kernel can lead to relatively inefficient proof procedures in LCF style systems. The thesis of Boulton [29] proposes techniques to ameliorate the problem, and there is another good discussion of the issues in [78]. As mentioned, ML has to date been the programming language of choice when implementing an LCF style system. However, Pollack [125] offers reasons why a dependently-typed programming language may be preferable.
[bookmark: _Toc445217198][bookmark: _Toc464542779]Proof objects
In this approach, a theorem prover that successfully proves a formula also produces a proof object, which is a data structure. This data structure can then be analyzed to see if it is in fact a formal proof of the formula. Proof objects decouple the proof of a theorem from the system it is generated in. Thus, they provide an extremely high level of assurance: a proof object can be, for ex- ample, checked by multiple independently implemented proof checkers. Some provers only emit a witness, or certificate, from which a full formal proof may be synthesized.

A long-standing issue with proof objects is their size: naive data-structures representing proofs are too large. On the other hand, sophisticated representations make it harder to write proof checkers.

Several different ‘use-cases’ have been developed for proof objects:

Constructive logics, e.g., Coq [16] and Agda [31], which are justified by the Proofs-as-Programs principle, explicitly incorporate proofs in the logic of the ITP. A formula in such a logic is a type, and a proof that the type is inhabited amounts to a program that obeys the formula. Checking proof objects is the essential component in the correctness argument for such systems. Note that some systems, e.g., Coq, avoid some of the issues with the size of proof objects by treating evaluation as a single step.
Isabelle also provides proof objects [14], although they are not crucial to its trust story, as Isabelle is an LCF design.
A variety of SAT, FOL, and SMT provers generate proof objects, which are used to guide automatic proof generation in a variety of ITPs. This allows an ITP to extend its automation with the power of current automated provers without compromising the trust story [27][141].
Proof objects have also been used for translating theories between different implementations of HOL. Recent work in this area is the OpenTheory implementation of Hurd [86]. Earlier work in this area has been done by Skalberg and Obua [118] in order to translate HOL-4 theories to Isabelle/HOL.
[bookmark: _Toc445217199][bookmark: _Toc464542780]Metafunctions
This technique is originally due to Boyer and Moore [32], but has been rediscovered several times since. It is sometimes called reflection or partial reflection.[footnoteRef:2] [2: Note that this terminology overlaps with other usage of the word reflection, which is an overloaded term in this area. See Section 2.2.5.]

The approach is based on an internalization of the syntax and semantics of a subset[footnoteRef:3] S of the terms[footnoteRef:4] of the ITP’s logic. Suppose the subset S can be formalized as an object-logic datatype T, and that a given object-logic algorithm [3: S must be a proper subset of the formulas of the logic, by Tarski’s Undefinability of Truth Theorem.] [4: The metafunctions approach also works for formulas.]

		A : T → T
is formalized and proved—inside the theorem prover—to transform elements of T to other elements of T having the same semantics (think: normalization). This allows the following deduction: if a term t lying in S is encountered, it can be mapped to T, and then A is applied; the result can be translated from T back to a formula tl in the object logic and the theorem derived.
		˫t = t’
In an implementation, there are significant choices to be made about how to map terms between S and T and also in how to run A. For example, the execution of A can be done purely by deductive steps, but it can be far faster to compile and run the code for A in the metalanguage. However, in logics such as higher order logic, taking this speedy route can mean that the equality of t and t’ needs to be asserted as a new axiom since running the compiled code steps out of the inference kernel.

Howe [85] developed an approach similar to metafunctions in the Nuprl type theory, going as far as formalizing and verifying a term rewriter. Later work in the Nurpl group [2] explored more recondite aspects of reflection, where the logic featured an explicit rule of reflection. An approach to metafunctions in Coq was presented in [30] and it has become a heavily exploited technique, for example in Gonthier’s proof of the Four Color Theorem [66]. In Isabelle/HOL the metafunctions approach has been applied to incorporate a linear arithmetic decision procedure [39].
[bookmark: _Toc445217200][bookmark: _Toc464542781]Implementation verification
One way to trust an ITP extension is to prove it correct, as we saw with the metafunctions approach. However, that method essentially depends on the formalization of a subclass of terms. The lecture at TEITP by Kaufmann introduced a new technique, known as defattach, which can be understood as a methodology for refining the kernel code of an ITP. Using defattach allows users to safely override existing prover functionality, provided that the invariants specified for that functionality by the kernel developers are formally proved to be preserved. In this way, code to be ‘attached’ need not identify a set of terms comprising its domain, instead, it has to—provably—at least maintain the invariants of the old code.

Harrison verified a formal model of the HOL Light kernel [79] against an abstract set-theoretic specification. On the basis of that work, one could prove proof procedures to be correct, e.g., by showing that a proof procedure proves no more theorems than the kernel inference rules. Such approaches are also known as procedural reflection. Harrison’s paper on reflection [78] gives a comprehensive overview of the topic, with an extensive bibliography.

Another reflective approach is developed in Jared Davis’ Milawa prover [52], which is obtained by bootstrapping from a simple prover (so simple that it can be seen to be correct by inspection) to a system that provides a significant subset of the functionality of the ACL2 prover. Each of the eleven bootstrapping steps is formally shown to preserve the set of provable formulas and thus the final, complex, prover is just as trustworthy as the simple initial implementation.

The work of Harrison and Davis can be seen to be complementary: Harrison verifies a kernel, while Davis starts from an assumed correct kernel.
[bookmark: _Toc445217201][bookmark: _Toc464542782]Logic Interpretation
Instead of interpreting proofs, one can move to the level of logic interpretation. For example, in recent years a link between ACL2 and HOL-4 has been created. The link is achieved at both a physical level, so that results from one system can be shipped to the other, and at a logical level; the ACL2 logic has been given a formal model in HOL-4. A practical result of this embedding is that, if ACL2 proves a formula P in a theory T then there is also a HOL proof of P (translated to the HOL theory of ACL2) in T (also translated to HOL). The embedding thus constitutes a one-time heavyweight effort; subsequently, theories and theorems proved in ACL2 may be automatically translated to HOL without having to justify them by re-running proofs. An example of the application of this system is a proof of the correctness of a model-checking algorithm [69].
[bookmark: _Toc445217202][bookmark: _Toc464542783]System Trust Explanations
Here are explanations, by the developers, to major ITP systems’ approaches to trust.
[bookmark: _Toc445217203][bookmark: _Toc464542784]Isabelle
(Larry Paulson, with feedback from Burkhart Wolff):

Isabelle uses the LCF approach to soundness. There is a proof kernel although somewhat larger than that of a typical HOL system because it includes an implementation of higher-order unification. Isabelle can generate full proof terms that can be checked independently, although it normally generates minimal proof terms in order to save space. External reasoners can be used as trusted oracles, but all such uses are labelled as such in the proof term even if minimum terms are enabled. Isabelle includes computational reflection, and the results of computations can be accepted as theorems. This involves trusting about 2000 lines of code that describes how to translate executable fragments of higher-order logic into one of several functional programming languages. Of course, the corresponding language implementation must also be trusted. Isabelle proofs do not generate theorems from such computations unless the user asks for this explicitly, and such theorems are always labelled as coming from an oracle.
[bookmark: _Toc445217204][bookmark: _Toc464542785]ACL2
(Matt Kaufmann and J Moore):

The ACL2 code base consists of approximately 240,000 lines of code – 10.5 MB – as of July, 2010. There is no subset identified as a “trusted” code base. While more than 1/6 of the lines are comment lines, and the source code also contains documentation strings (generating more than 1700 pages if printed), nevertheless this is a large base of code to trust. Trust thus rests on the two individuals who maintain the system, who apply their experience (over 70 years combined in logic and automated reasoning) and passion towards producing a system that follows its careful logical foundations (see: http://www.cs.utexas.edu/users/moore/publications/acl2-papers.html#Foundations).

Users can extend the power of the system, but only (if the two system maintainers have done their job well) in ways that respect its foundations. Such extension facilities include a definitional principle, introduction of (witnessed) constrained functions, and a powerful but safe macro facility. Many trustworthy features are provided to extend the behavior of the automatic theorem prover, including the use of previously proved theorems as rules of various sorts, reflection principles, and both static and computed hints. Computation is used during proof.

Users have the power to connect to external tools (see for example http://www.cs.utexas.edu/users/sandip/publications/clauseprocessors/main.html), or even to subvert the system, provided they employ trackable “trust tags” that must be made explicit when verifying (“certifying”) a collection of input files (“books”). For maximum trust, ACL2 users should certify all books of a proof development, in an environment without other processes writing to the ACL2 or user space in the file system, and either without the use of trust tags or with explicit inspection of their uses.
[bookmark: _Toc445217205][bookmark: _Toc464542786]Proof Power
(Rob Arthan):

For the record, the ProofPower trust story is the LCF story, backed up by a formal specification (but no proof) of the HOL language, logic and critical properties of a proof tool. The support for Z in ProofPower is an example of an extension in the sense of a semantic embedding of a new object language with a trust story piggy-backing on the trust story of ProofPower-HOL. The trust story for both ProofPower-HOL and ProofPower-Z includes the fact that the system is interactively programmable, so an evaluator who wants to can really dig in and pick syntax to pieces, which, in principle, mitigates the risk of problems of the sort recently discussed in Freek Wiedijk’s (somewhat light-hearted) paper on what he calls "Pollack Consistency" [144]. In practice, the fact that you can easily code up things like reports on which definitions have been proved consistent and which have been given as axioms seems to be appreciated by commercial users. (Evaluators really like checklists!).
[bookmark: _Toc445217206][bookmark: _Toc464542787]HOL-4
(Konrad Slind):

HOL-4 is an implementation of the so-called LCF style, in which an abstract datatype is used to implement the primitive rules of inference of logic, higher order logic (HOL) in this case. On top of this kernel, arbitrary ML programming by arbitrarily naive users may be used to construct theorems. If the kernel is a correct implementation, only genuine HOL theorems may thereby result. The kernel is small enough that its correctness may be established by inspection, informal proof, or even formal proof.

Interfacing with an external proof tool is typically performed by translating witnesses provided by the external tool into HOL proofs, which are replayed through the HOL kernel, obtaining the desired proof. However, occasionally it is convenient to directly accept the judgement of an external tool. In those cases, one can create a "tagged" theorem, where the tag designates the external tool that has been applied. Tags accumulate through primitive inference steps, with the result that if a theorem th 1 results from primitive inference on a tagged theorem th 0 , then th 1 also becomes tagged. Consequently, only a theorem without a tag can be truly said to have been obtained purely by HOL inference steps.

HOL-4 provides persistent theories, in which the results of a theory development can be cached on disk, in a readable format. Since the disk representation of a theory can be maliciously edited, tags are also attached to definitions and theorems imported from a persistent theory.

In summary, one way to believe that a claimed theorem in HOL-4 has a formal proof in the HOL logic is to do the following:
1. Arrange all theories needed to prove the theorem in dependency order;
Execute the theories, one at a time, in a single session (to avoid using persistence);
Check that the theorem of interest is indeed proved, and also check that it has no tags attached.
Another way to believe that a claimed theorem in HOL-4 has a formal proof is to check a proof object created by a run of HOL-4. Some argue that checking such proof objects provides a stronger level of trust than an LCF-style kernel. Code supporting the generation and checking of proof objects has been implemented several times for HOL-4 but its use is not yet commonplace.
[bookmark: _Toc445217207][bookmark: _Toc464542788]PVS
(Natarajan Shankar):
PVS is primarily a research platform for experimenting with different modes of inference, the interaction between formal language and inference, as well as issues of trust and automation. Trust in PVS is not merely a matter of ensuring that the inference steps have been correctly implemented. PVS provides an expressive language for capturing mathematical concepts directly and precisely. The automation available in the form of typechecking and theorem proving is directed at making it easy to construct, debug, verify, and maintain proofs.

The PVS specification language is based on a higher-order logic enhanced with predicate subtypes, structural subtypes, dependent types, parametric theories, theory interpretations, and algebraic and coalgebraic datatypes. Type- checking a PVS expression generates proof obligations. These must be proved in order for the expression to be considered well-formed. Subtyping in PVS rules out undefined function applications, division by zero, out-of-bounds array accesses and updates, and misapplied datatype accessors. Theory interpretations can be used to instantiate abstract theories as well as to exhibit models of axiomatic theories. A large fragment of the PVS language is executable. The type system and operational semantics ensure that the execution of a well-typed PVS expression in this fragment cannot trigger a runtime error (other than by exceeding resource limits).

The PVS proof engine is built from a small set of primitive inference steps. Most of the inference steps are small, but a few involve deep combinations of decision procedures and rewriting. Larger proof strategies can be defined using the primitive ones. Several external proof tools for BDD-based simplification and model checking, monadic second-order reasoning, nonlinear arithmetic, and predicate abstraction have been added to PVS. These external tools are trusted, but the code used in defining strategies need not be trusted since the proofs can be expanded down to the primitive inference steps.
[bookmark: _Toc445217208][bookmark: _Toc464542789]Coq
(Laurent Thery):
Following Curry-Howard’s isomorphism, Coq logic is based on a typed lambda- calculus: the Calculus of Inductive Construction where propositions as seen as types and proofs as programs. Its trusted computing base consists of its type- checker only: it is the piece of code that asserts that a given program has a given type, i.e., that the program is a proof of the corresponding proposition. If each proved proposition in Coq comes along with its associated proof-object, this object is not a simple recording of all the primitive logical rules necessary to get to the proof. Due to the fact that proof-objects are really programs, they may also include computations. This makes it possible to have explicit proof-objects even for large applications. In particular, most of the trusted extensions that have been developed within Coq use this capability of replacing proof steps by computations. This is the so-called computational reflection [2]. A call to an external tool is then represented in proof-objects by a call to a certified checker that verifies the certificates or the traces that are generated by the external tools.
[bookmark: _Toc445217209][bookmark: _Toc464542790]Further Sources
Although we have given a few pointers into the literature, we have certainly not been exhaustive. However, here are a few other citations that may be useful.

In [8], Rob Arthan provides a formal specification in ProofPower of the requirements for an implementation of higher order logic.
In [126], Randy Pollack provides a careful, somewhat philosophical, discussion on the issues surrounding the checking of large proofs.
(Mentioned in Rob Arthan’s description of ProofPower.) In [144], Wiedijk discusses trust aspects surrounding the input and output of an ITP, arguing that seemingly innocuous features of the concrete syntax used by an ITP can affect trust, especially since the input and output ultimately have to be read by humans.
[bookmark: _Toc445217211][bookmark: _Toc464542791]Model Checking
[bookmark: _Toc445217212][bookmark: _Toc464542792]Model Checking Techniques
[bookmark: _Toc445217213][bookmark: _Toc464542793]Enumerative
Enumerative model checking algorithms are limited to analyzing finite programs. They essentially traverse the whole graph representing transitions over the state space of the program. For this they use many different search techniques. They are said to be enumerative because they consider exact individual states one-by- one (or almost) as opposed to symbolic techniques which consider sets of states at once.

Explicit state In the enumerative approach, explicit state (or stateful) search constructs and stores the states of the program to be analyzed in some sort of memory. Two main remarks can be made here. First, the actual states can be stored in various data-structures, usually a hash table for the set of visited states – essentially because a common operation is to query for membership – and a queue, stack, or heap for the states to visit. The search strategy is usually determined by this last structure. Secondly, instead of storing the entire state space upfront, model checkers normally construct the reachable state graph on the fly. This allows to only store the set of reachable states instead of the whole (and much larger) state space.

To trust an explicit state model checker, one has very little choice but to trust the whole model checker. This includes the exploration and search algorithm. In particular, we need to trust that all transitions are executed and represented correctly in the graph. We also need to trust that the data structures employed (hash table, queues, stacks, etc.) are correct. For instance, we don’t want to miss states because they were incorrectly dropped by the queue, or because the hashing and membership functions of the hash table were wrong.

Verifying safety properties on a reachability state graph is a linear process which constitutes in ensuring that every state satisfies the property. This check needs to be trusted, however to a lesser extent if we consider that the burden is on exploring the state space (and it usually is) rather that checking the property, something which can always be reverified afterwards.

For other more complex temporal properties, checks conducted after the construction of the reachability graph can rarely be trivialized. For instance the model checker Spin [84] implements an enumerative algorithm based on an automata theoretic framework. LTL properties (or rather their negation) are converted to Büchi automata and checked for intersection with the reachability graph. A simplified version of this model checker has recently been entirely re-implemented within the Isabelle theorem prover [123] and proven correct [59][112].

These tools generally use special techniques to control the state explosion problem inherent to this approach. Among them are reduction techniques like partial order reduction or symmetry reduction and compositional techniques like assume guarantee [87]. These are usually implemented at the heart of the model checker to scale down the number of visited states but now we also need to trust the meta-theorems that govern these optimizations and their correct application.

Bitstate Hashing To cut down on the space requirements, some model checkers sacrifice their soundness by only storing hashes of states instead of the exact states. Because of the collisions that may appear in the hash function (two different states can have the same hash value), some states, and in consequence parts of the reachability graph, can be missed. To mitigate the negative effects of not storing the states, these techniques require the use of hash functions with particular properties so as to guarantee a probability that a state will be missed.

As such, bitstate hashing is only used for bug-finding.

Stateless Another technique used in enumerative model checking is based on the observation that it is sometimes not necessary to even remember the states of the program. This is the case in some finite state concurrent programs where only the scheduler has an impact on the paths taken. In this case it is only necessary to explore all possible interleavings given as scheduler outputs. In between the calls to the scheduler, it suffices to execute the program and inspect its state at strategic points. The advantage of this technique is that programs can be instrumented for this framework independently of the language. This approach was pioneered by the model checker VeriSoft [65] and is also referred to as execution based model checking. The program must be restarted from scratch for each scheduler interleaving so there is no real sharing between traces. To counter this potential drawback, partial order reduction is very heavily used.

The main disadvantage of this technique is that only finite schedules can be explored and so generally only terminating programs can be handled.

To trust a model checker like VeriSoft one does not need to trust a translation between different formalisms because the program is executed directly. However it is vital to ensure that all sources of non-determinism are accurately accounted for in the use of the scheduler.
[bookmark: _Toc445217214][bookmark: _Toc464542794]Symbolic
Symbolic model checking was conceived to counter the effects of state explosion traditionally encountered in enumerative techniques. Instead of storing individual states in memory, this approach is based on the idea of using a single object to represent a set of states. One of the challenges is to find appropriate compact representations for sets of states [36]. In this section, we describe a few symbolic model checking techniques and highlight some of their peculiarities in regards to certification.

BDD based One such representation of the state transition relation is based on BDDs (Binary Decision Diagrams). This particular data-structure is used to represent compactly and reason on Boolean functions. McMillan reports on this technique in his thesis [103] and gives several graph based algorithms for the language of µ-calculus.

The use of compact data-structures to represent large sets of states also allows to grasp regularities and symmetries that naturally appear in circuits or other hardware systems. This and the fact that circuits are Boolean by essence has made symbolic BDD based model checking a widely used technique for the analysis of hardware.

In addition to the algorithms, one must now trust the implementation provided by the BDD library (be it external or ad hoc) used in the model checker. Note that there have been attempts at providing certified BDD libraries [139] in Coq but most industrial model checkers like NuSMV 2 [40] do not make use of such libraries. However, because the reachable state space can be represented more compactly than with traditional enumerative approaches, it is easier to dump it for future re-verification. The main drawback of BDD based approaches is that the size of the constructed diagram is directly (and very sensitively) impacted by the ordering chosen on Boolean variables. In the unfavorable case, the explosion can be exponential in the number of variables, negating the improvements brought by the approach while still being more complex than a simple enumeration.

Bounded Model Checking Biere et al. describe in [21] a technique which sacrifices soundness in favor of efficient bug finding called Bounded Model Checking (BMC). The idea of BMC is to look for counterexamples among program executions whose size is bounded by a number of steps k. Its main strength is to take advantage of modern SAT solvers to handle all the propositional reasoning. The original problem can be efficiently encoded in a propositional formula whose satisfiability directly yields a counterexample. If no error is found for traces of length k, the value of the bound k is incremented until a bug is found, or the problem becomes too hard.

Due to the fact that the encoding to propositional constraints captures precisely the semantics of circuits, model checkers of this family have been used to uncover subtle implementation bugs. BMC is most successful in exposing complex bugs and this is how it is traditionally used. As such, it does not pose a trust challenge because we are only interested in error traces. These usually take the form of initialization values for variables and a sequence of steps to reach an error state. They are small and can be replayed.

In some cases, an upper bound on k is known. This affirms the safety of the system with respect to a property. In this case, several meta arguments need to be trusted – or their correctness justified– if BMC is to be used as a proof technique.

k-Induction	Another extension of BMC for proof purposes is called k-induction and adds an induction check at each step (i.e. for each k). It differs from a classical induction scheme by the following point: when asked to check if the property is preserved by one step, we assume it to be true in the k-previous instants instead of only the single previous instant [55][130].

A lot of the techniques mentioned above have been extended to handle systems with an infinite number of states. This is the case for instance when the variables of the program are in infinite domains (e.g. mathematical integers) or the data-structures are unbounded (e.g. buffers, wait queues, unbounded memory). To handle these systems, we have the choice between two alternatives: directly manipulating representations of infinite sets of states, or constructing a finite abstraction of the system. For the software model checking we consider in this report, we will focus on the first approach. In this technique, an appropriate representation is first-order logic formulas. Previous techniques based on SAT solvers (only capable of handling finite domains encoded in propositional logic) were lifted to SMT solvers (Satisfisbility Modulo Theories). These solvers have a propositional engine at their core (a SAT solver) paired with methods for combining theories. Their power comes from the large number of built-in theories they support, such as linear arithmetic (on mathematical integers, or rational numbers), equality over uninterpreted functions, arrays, bitvectors, enumerated data-types, etc. Some of these solvers even support quantifiers (existential and universal) natively.

SMT-based k-induction for infinite systems is one of the model checking engines implemented in Kind 2, the model checker used as a case study for this report. Trusting the algorithm implemented in this model checkers demands that we trust in particular:

BMC, used for the base cases
the k-induction scheme used
the SMT solver(s)
etc.

This list is not exclusive but we can already see that the complexity of modern model checkers demands that we trust increasingly complicated components and all their interactions.

To make things worse, a lot of these model checkers also have parallel architectures with processes running different engines, each of them exchanging information on the fly.

PDR One of the other engines used in Kind 2 is a Property Directed Reachability (PDR) analysis. PDR is a process that tries to “connect” the unsafe states with the initial states by generalizing and keeping only what is necessary to discard spurious traces (blocking). It can also be viewed as a process that constructs an inductive invariant of the system, i.e. a subset of the state space:
1. For which the property is verified
That contains the initial states
That is closed by the transition relation.
In particular (2) and (3) imply that all reachable states verify this invariant.
There exists many variants of PDR. The first one was called IC3 and used a SAT solver at its core. It was tailored to the verification of hardware. The one implemented in Kind 2 lifts this algorithm and many of its optimizations to more expressive logics, and uses an SMT solver at its core.
The same remarks as k-induction can be made of PDR, except that PDR has an interesting property from a validation / certification standpoint. It constructs a witness of the safety of the system, i.e. a small object from which the safety can be easily inferred without the need for any kind of search.
[bookmark: _Toc445217215][bookmark: _Toc464542795]Conclusion
Table 31 found below summarizes characteristics of the different model checking techniques presented in this section (this list is obviously not exhaustive). The first half of table focuses on enumerative techniques whereas the second parts look at symbolic techniques. For each, we say whether they are used for finding bugs or proving their absence, examples of models that can be handled by these techniques and some tools that implement them. We also provide an estimate of the reachable state spaces that tools implementing a technique can handle (they make little sense for symbolic techniques whose majority can handle infinite spaces). Notice that these are reachable state space (as opposed to state space understood as the domain of states) and that they are not absolute numbers but rather depict the drastic evolution of model checking.
[bookmark: _Toc445217216][bookmark: _Toc464542796] Anticipated Tool Usage
In practice, model checking is effective both as a bug finding tool and as a verification tool. Contrary to test and simulation, model checking is able to explore the most intricate scenarios. This is especially true for concurrent asynchronous programs, which are notoriously difficult to grasp and reason about for the human mind. This is also true of synchronous programs which have many input parameters in possibly unbounded domains.
[bookmark: _Ref445731164][bookmark: _Toc445731341]Table 31, Model checking techniques
[image:]

Cofer and Miller report in a case study [43] that they found model checking in a DO-178C setting to be useful both to find errors of the designs of a flight guidance system (FGS), and to verify the absence of errors once the designs were corrected. They also give a more detailed account of the errors exposed by Kind in a NASA contractor report [44]. Out of the sixteen errors found by Kind 2, the authors estimate that only five of them were likely to be discovered by traditional verification, which clearly shows the interest of model checking. They especially stress the usefulness of the error traces returned by the model checker [footnoteRef:5] [5: Though not perfect: some traces can contain noise that do not pertain to the actual defect. However, modern model checkers are able to return smooth traces to limit this noise.]

We can then expect model checkers to be used in both modes. In the following, we give a brief overview of each mode and look at potential issues.
[bookmark: _Toc445217217][bookmark: _Toc464542797]Error detection
Finding a defect, i.e. a state that exhibits a behavior that escapes what the designers expected, is something for which model checkers are very useful. Their exhaustive nature makes them particularly apt at exploring intricate behaviors and corner cases that were not accounted for. Moreover, when such a defect is discovered, they traditionally provide an error trace, i.e. input values and pro- gram paths that falsify one of the desired properties. This trace is very helpful in practice for designers and developers as it allows the defective behaviors to be easily reproduced, and possibly corrected.

Potential Issues Suppose now that we have a model checker that returns erroneous results. In this case, there are two possible mistakes.

The first one is to find a defect that does not exist and return a spurious error trace. Usually this will be easily detected when a human tries to reproduce the bug and finds out that the trace is not possible. Even if no further checks were conducted, a program could be mistakenly declared as defective and as so would never be shipped. The impact of a completeness bug in a model checker that is only used for bug finding is relatively low and harmless.

The second possible mistake is to not report a defect that is actually present in the program. It could seem that this is a bigger problem, and it can be. If we have no guarantee on the result of the model checker but it is only used as a safeguard in addition to other techniques then it is not very problematic. We already know that the model checker will not report all bugs of the program. If, on the contrary, some coverage guarantees are obtained through the use of a model checker, then a soundness bug can be harmful. For example, a model checker could claim that there is no bug for program executions of less than ten instructions. Other analyses could rely on this fact and claim the program to be safe when in fact it is not.
[bookmark: _Toc445217218][bookmark: _Toc464542798]Proof
Because a lot of model checkers essentially conduct an exhaustive exploration of a program’s behaviors pertaining to some properties, they are also extensively used to prove that programs meet their specification. In this case, the user relies on the model checker to find defects, but also to show the absence of defects in the program. Their ability to consider all behaviors in exhaustive ways constitute a big advantage of model checking over testing. Theoretically, when such a model checker is able to verify the program, then we can be sure it satisfies its specification. Of course we lose this guarantee if the model checker is itself buggy.

Potential Issues Suppose that the model checker declares that the program has an error on a spurious trace. As before, this kind of mistake can be easily detected by simple a posteriori checks, e.g. by trying to replay the error trace in the real system. A completeness error is still relatively harmless because it would only prevent error-free software to be shipped. However, when used as a proving tool, it is perfectly reasonable to assume that a model checker is potentially the only tool used to verify a program. This means that completeness error could potentially block the development process.

Now, if an error of the analyzed program is not reported then the use of a model checker for proof purposes becomes dangerous. A critical error could go unnoticed because of a soundness bug, which could have potentially disastrous consequences depending on the severity of the error and the criticality of the system. For instance a safety error in the flight controller of an aircraft could result in a catastrophe.
[bookmark: _Ref506078912][bookmark: _Toc460646990][bookmark: _Toc495394202][bookmark: _Toc506876567][bookmark: _Toc529602603][bookmark: _Toc59346533][bookmark: _Toc445731342]Table 32, Severity of bugs in a model checker
[bookmark: _Toc445217219][bookmark: _Toc464542799]Conclusion
[image:]

We sum up this section with the Table 32 that gives the severity and impacts of bugs in the model checker depending on its mode of use. The configurations are given in ascending order of severity. We will concentrate on bugs that can be harmful and can impact the safety of the system. They are given below the red line in the table.

In other words we will focus on soundness bugs of the model checker, independently of its mode of use.
[bookmark: _Toc445217220][bookmark: _Toc464542800]Potential User Errors
The mode (error detection or proof) is adequately selected and identified for the desired analysis.
Example 1 (Kind 2) Kind 2 uses many engines in parallel that can be enabled or disabled at will (all engines are enabled by default). In particular one of these engines performs bounded model checking (BMC) to find bugs. If it is the only engine activated (with the option --enable BMC) then Kind 2 will not terminate. If given a bound for the analysis, Kind 2 will never say that a property is true with only BMC but instead will print a message like:

P1: true up to 561 steps

While errors can be present in the parsing and printing facilities of the model checker, they can also come from an incorrect usage of the tool. This is why formal methods tools need to be adequately documented. In particular, the user manual should be extensive in providing details on each operating mode and what it entails for the verification of a program. For instance some model checkers provide facilities to execute or interpret the model / program while performing checks. In this case the absence of errors detected by the model checker should not be interpreted as meaning the program is safe. We briefly review the potential user and interface errors in this section.
[bookmark: _Toc464542801]Input
The first task someone has to do to use a model checker is to give it a model or a program to analyze. The program should be in the fragment that is supported by the model checker (which should be clear from the documentation). If instead a model is given as a direct input, the user should make sure that the model indeed captures the behavior of what he is trying to verify. For instance, if using scalarset (a symmetrical subrange for which operations do not depend on the ordering of its elements) variables, the user should make sure that the feature is appropriate for his verification needs. Also, if using uninterpreted symbols/functions as a way to do under-specification, it should be clear what are the assumptions on these symbols. For example, is their domain always assumed to be infinite? Inhabited? Can an error arise when a domain only has one element?

The next task is to give a formal specification of the system to be analyzed. This specification can be a simple safety property, or a more complex behavioral property. It is important to make sure that the properties to be verified correspond exactly to what the user is trying to accomplish. More often than not, a program is proven to have a property but the property is wrong, trivial, or does not capture the behaviors one wants to ensure. Let’s take a function that given a list of integers returns a sorted version of this list. It’s not sufficient to state that the output list is sorted to verify the functional correctness of this function. We must also ensure that the output list is a permutation of the input list.
[bookmark: _Toc445217221][bookmark: _Toc464542802]Usage
The use and purpose of a model checking tool should be clear to a user from the start. This is achieved mainly by providing adequate documentation, and extensive examples that cover all the possible uses of the tool. When a user has determined that a particular model checker is the appropriate tool for the verification task he is attempting then he must make sure he is using it in the correct way.

For example, some model checkers for timed systems offer the possibility to switch between discrete and continuous time. It is important to first select the mode that is appropriate for the verification effort and to use the corresponding options of the tool.
[bookmark: _Toc445217222][bookmark: _Toc464542803]Interpretation of Results
Let’s take the example of a model checker which has an option to perform a bounded analysis (Kind 2 does this when given the only option --enable BMC).

It is incorrect to interpret the result saying that no bugs were found as meaning that the system is safe. It is however correct to interpret this result as meaning that the system is safe for executions of at most k steps where k is the bound reached by the analysis.

If a model checker reports that a program is safe, it does not mean that it is completely free from static bugs and runtime errors. It simply means that there are no executions which violate the given property. Even if this last point is clear, this can be true of systems which do nothing. If the user did not specify progress as one of the properties to be verified then it should not assume that the absence of errors reported by the model checker means that the program is bug free.

If the model is not precise enough, then assumptions are hidden inside the very specification. For instance a set of three instructions can be assumed to be executed atomically, while a violation of the property can happen after the execution of the first instruction, but not the third. So again, one should interpret the results of the analysis according to the model and its specification.
[bookmark: _Toc445217223][bookmark: _Toc464542804]Interface Problems
Sometimes model checkers are used as components within a larger process. When this is the case, it is important to ensure that the interface through which the interaction takes place is well defined.
If a model checker is called as an external tool in a single run that does not require back and forth interaction, then it does not bring new particular soundness concerns. It is still essential to follow a correct usage mode and to make sure that results are automatically parsed and interpreted in a correct way.

On the other hand, if the model checker is called through an interactive session it is vital to ensure the interface is expressive enough and correctly documented. For instance, commands can be sent to the model checker through a textual interface (e.g. trough standard input), results should be processed in the correct order and errors or warning should not be ignored. The same things apply if the model checker is used through API calls. Interactive tools can also maintain an internal state between calls and offer facilities to reset them. In this case, it is important to reset the model checker when needed and to understand what is removed from the context. An incorrect usage could lead to unsound results with respect to what is expected.
[bookmark: _Toc445217224][bookmark: _Toc464542805]Trust Proposition
Definition 3 (Trust proposition for a model checker)
1. Trusted Logic the logics used by the model checker are trusted.
Valid Model The model and properties accurately depict the system under scrutiny in the semantic given by the logic of the model checker.
Correct Translation The input system is correctly translated to its internal representation.
Correct Algorithms The model checking algorithms are sound for the models and properties expressible in the supported logic.
Correct Implementation The model checking algorithms are correctly implemented.
Trusted Components and Libraries If the model checker makes use of external libraries, their implementation is trusted, and if the model checker uses external tools, they are trusted to be correct.
Correct Platform The model checker and its components are correctly compiled to executable machine code. Also, the machine correctly runs the executable.
Trusted IO The parsing and output of the model checker are trusted and interpreted correctly.
The rest of this section describes in detail into each point of the trust proposition. When pertinent, we give an example for the logic based symbolic model checker Kind 2 at the end.
[bookmark: _Toc445217225][bookmark: _Toc464542806]Trusted Logic
The logics used by the model checker are trusted.

Most formal methods tools rely on some underlying logics. SAT or SMT based tools, like a lot of model checkers, use classical logic and a limited set of base theories. Those have been intensively studied, are widely used and very well defined. For instance, SAT based model checkers only rely on the correctness of propositional logic. SMT based tools use combinations of propositional logic, and background theories like equality over uninterpreted functions, linear (or non-linear) integer (and real) arithmetic, functional arrays, etc. Some tools offer the user the possibility to constrain some under-specified symbols by adding axioms in their models. Such axiomatizations are reflected in the logic and can render the base theories unsound.

Example 2 (Kind 2) Kind 2 is an SMT based model checker. It does not allow the use of all theories supported by the underlying SMT solvers but only a subset. At the moment, only quantifierfree combinations of propositional logic, equality over uninterpreted functions as well as linear and non-linear real and integer arithmetic. It does not allow the user to further specify some symbols by adding logic axioms.
[bookmark: _Toc445217226][bookmark: _Toc464542807]Valid Model
The model and properties accurately depict the system under scrutiny in the semantic given by the logic of the model checker.

The term model checking was originally coined by Clarke [41][42] to describe the technique of verifying if a program P is a model of a formula ᵠ (P |= ᵠ). In model checking, the formula ᵠ is usually expressed in a special modal logic called a temporal logic [120][124]. These logics allow to specify several kinds of properties, among which:
Safety: a bad configuration never happens, or
Liveness: an expected behavior will eventually happen.

Different temporal logics allow for different properties to be expressible. Generally, model checkers only support one logic, and can verify a subset of all expressible properties. For instance, some model checkers only allow the verification of safety properties and deadlock freedom.

The term model in the expression model checking can also refer to the idea that programs are commonly represented by an abstract model. Traditional models for programs include transition systems, finite-state automatons, Petri nets, etc.

To define the analysis we want to conduct with model checking, one must first be able to define (1) What are the models, and (2) What properties of these models are to be verified.

Models The models manipulated by model checkers are (low or high level) representations of systems and depend on the kind of program to be analyzed. For example, it is possible to translate RTL to finite-state machines. Contrary to programs, models are conceptually simple and have a well-defined semantic. Finite-state machines can be represented by e.g. Kripke structures. A Kripke structure over a set of predicates P is simply a tuple (S, I , R, L) where S is an infinite set of states, I ⊆ S is a set of initial states, R ⊆ S × S is a transition relation, and L : S → 2P is a labeling function (over the predicates P). A behavior is then defined in terms of states and transitions (i.e. a run or computation).

When performing model checking, it is of paramount importance to know what models are handled and how they are obtained. One possibility is for source programs or system descriptions to be translated (and sometime abstracted) to models. This allows for real implementations of systems to be verified. The other possibility is that the model is created early in the design process using some high-level modeling language. Verification is performed on the designs prior to implementation as a way to ensure that the design is sound. Traditionally in this setting, the real system is then implemented with the aid of the abstract model. In all cases, one must keep in mind that the model checking phase is always conducted on the model and that all properties are verified only for this model.

The limits imposed by the model are generally obvious. For instance, using finite-state automatons restricts the systems that can be analyzed to be themselves finite-state or to have a finite-state abstraction. On the other hand, a model that provides built-in support for clocks or continuous time will be particularly adapted to represent timed systems.

Properties Properties that can be analyzed depend essentially on the logic that is supported by the model checker. For reactive systems, it is important to reason on its temporal behaviors. In particular, concurrent systems with their intricate behaviors greatly benefit from temporal specifications.

For instance LTL (Linear Temporal Logic) allows one to represent infinite computations. The most basic form of temporal property is the class of safety properties. They characterize properties which say that a dangerous state can never happen. It is also one of the most commonly used kind of properties. Assertions written in source code essentially correspond to safety properties. In- variants, which are properties that must be true in every state of the program, are also safety properties (the safety property is that an invariant can never be violated). For instance a safety property of a concurrent system might be “It is not possible for two processes to have a simultaneous access to a shared variable.”

Another class of temporal properties is liveness properties which encompass the notion of termination. In an elevator control mechanism, one such liveness property could be that “If a user presses the elevator button then the elevator will eventually arrive.” Otherwise said, there is no computation in which the elevator indefinitely avoids the request of the user.

Example 3 (Kind 2) The model checker Kind 2 uses as models reactive pro- grams expressed in the synchronous language Lustre [37]. It also accepts arbitrary transition systems in a subset of first-order logic. In the later, the user has to make sure that the transition system accurately represents the artifact to be analyzed.

Kind 2 only supports safety properties. In the case of Lustre, they are usually expressed with the addition of an observer node that monitors the outputs of other nodes. On the other hand, the native input allows any (acceptable) formula to be given as safety property.
[bookmark: _Toc445217227][bookmark: _Toc464542808]Correct Translation
The input system is correctly translated to its internal representation.

When the model is constructed by hand, as is the case if model checking is used as an aid during the design phase, then it falls upon the user to make sure that it is accurate for his verification needs. In particular, if under- approximations are used to avoid encumbering the model checker with details that do not pertain to the property, they should be documented. For example, it is sometimes necessary to replace unbounded buffers by e.g. buffers of size 3, or an unknown number of concurrent processes by e.g. two processes if the tool does not support parameterized reasoning.

In other scenarios, model checkers embed translation facilities in order to directly analyze artifacts in other description formalisms. A program expressed in a high level programming language like Java, can be represented by a model that can be understood and analyzed by a state-of-the-art model checker like Spin. This is the general idea at the core of the tool Java PathFinder. Other tools like Slam [10][11] or Blast [18] perform a Boolean abstraction of a C program. Translations between different representations which do not have the same semantic expressive power often demand that approximations be employed. Some approximations are always safe because the abstracted system has more behaviors than the real system. These are over-approximations. On the other hand, under-approximations remove original behaviors to simplify the system. Some are precise; behaviors removed have no impact on the property to be verified. This is the case for property-directed slicing. Others like data reduction rely on meta-arguments and their correctness is more difficult to ensure.

Some model checkers will only accept already abstracted systems. The user has then the responsibility to ensure that the abstraction is correct. This is also a concern when performing under-approximations like program slicing.

Example 4 (Kind 2) The model checker Kind 2 takes as input reactive programs expressed in the synchronous language Lustre [37]. This program is then simplified and transformed to successive intermediate representations and finally translated to an internal transition system expressed in a subset of first order logic. Kind 2 can also be used with its native input format (a direct textual representation of its first order transition system), in which case there are no preprocessing or translation phases.
[bookmark: _Toc445217228][bookmark: _Toc464542809]Correct Algorithms
The model checking algorithms are sound for the models and properties expressible in the supported logic.

A basic requirement of a model checker is to use sound algorithms. The underlying approach should never report that a property is true when it may not be true.

Example 5 (Kind 2) For instance, the induction [62] and k-induction [130] principles for asserting invariance of properties — as used in Kind 2 — are known to be sound.
[bookmark: _Toc445217229][bookmark: _Toc464542810]Correct Implementation
The model checking algorithms are correctly implemented.

The implementation of a model checking algorithm in a tool should be free of defects that could compromise its soundness. The implementation can however use heuristics or have internal resource limitations that could make the model checker fail to report an answer or diverge on some inputs. If the algorithms are sound and the implementation is correct, then one is guaranteed that positive results reported by the tool are true of the given model in the underlying logic.

Verifying that an implementation of a model checker is correct is a very heavy task. These tools are usually very large and have multiple intricate optimizations and implementation details that make them effective on industrial size problems. Moreover most of them use external libraries and other reasoning engines (like SAT or SMT solvers) that are often even more complex than model checkers. There exist formal verification efforts of full model checkers using interactive theorem provers but they remain research prototypes [59][132]. Another possibility of dealing with the complexity of these tools is to make them produce certificates (much like some theorem provers can export proof objects) to be independently verified by a correct but small external checker. This is discussed in Section 3.5.

Example 6 (Kind 2)
[bookmark: _Toc445217230][bookmark: _Toc464542811]Trusted Components and Libraries
If the model checker makes use of external libraries, their implementation is trusted, and if the model checker uses external tools, they are trusted to be correct.

Most model checkers use external libraries in their implementation. They can provide useful data-structures (like GMP [71] for arbitrary precision arithmetic or CUDD [131] for decision diagrams) or features (like ∅mq [83] for parallel and distributed message passing in Kind 2).

Some model checkers even call external tools. These can range from translators (e.g. CIL [111] for transformation and normalization of C programs) to reasoning engines like SMT solvers or even other model checkers[footnoteRef:6] [6: This is the case for model checkers that extend or combine other model checkers]

Some of these external libraries and tools need not be trusted if the implementation of the model checker itself is not trusted (e.g. in the case where the model checker produces certificates, see Section 3.5).

Example 7 (Kind 2) Kind 2 calls external SMT solvers to decide the validity of first order logical formulas, but also to perform simplification by quantifier elimination.

It uses external libraries like ∅mq, Menhir, Camlp4 and the standard library of OCaml. Moreover its backend solvers themselves embark other libraries (e.g.many of them use GMP).
[bookmark: _Toc445217231][bookmark: _Toc464542812]Correct Platform
The model checker and its components are correctly compiled to executable machine code.
Compilers for well-established languages (like C, Java, OCaml, etc.) are traditionally “certified by usage ”. However, problems can still arise when using high levels of optimization. All compilers in their default setting provide some sort of optimization, and these are never disabled when compiling verification tools. The benefit brought by these optimizations is often non negligible for computationally heavy automated tools like model checkers. Moreover, an incorrect compilation that could trigger in turn a soundness bug in the model checker, while possible, is rather unlikely. The (low) risk of trusting off-the- shelf compilers could nonetheless be reduced by disabling optimizations and even eliminated by using certified compilers such as CompCert [101].

Example 8 (Kind 2) Kind 2 relies on the correctness of the standard OCaml compiler for its core but also on the system’s default C/C++ compiler for its external dependencies (plus all compilers used to compile the chosen SMT solvers).
[bookmark: _Toc445217232][bookmark: _Toc464542813]Correct Execution
The machine correctly runs the executable.

This potential problem is common to all verification techniques supported by software tools. However, a hardware error is even more unlikely to impact the soundness of an analysis than an incorrect optimization of a compiler.
[bookmark: _Toc445217233][bookmark: _Toc464542814]Trusted IO
The parsing and output of the model checker are trusted and interpreted correctly.

Model checkers can fail to return an answer because they enter an infinite loop or because part of the model is outside the supported fragment. They usually give explicit counter-examples when they find a bug and detail the validity of each property.
[bookmark: _Toc445217234][bookmark: _Toc464542815]Techniques for Verifying Model Checkers
Establishing the correctness of tools like model checkers is a difficult task, mostly due to the sheer size and complexity of these programs. In any case, peer review and testing should be part of the quality process used in the development of a model checker.

One way to ensure that a model checker (or any other formal tool) returns sound results is to certify it. This consists in providing strong arguments which demonstrate that the output of a specific tool is correct and can be trusted for assurance cases. For this, it is sometimes possible to show with mathematical arguments (proofs) that the tool is correct by construction. This means that it will only return correct results. For some other tools, it is possible to construct versions of them that augment their results with evidence. In this case the evidence needs to be evaluated each time the tool is executed so as to ensure the result is correct.
[bookmark: _Toc445217235][bookmark: _Toc464542816]Peer Review and Traditional Testing
Traditional testing, be it unit testing and/or integration testing, is a relatively easy way to eliminate simple and trivial implementation errors during the development process. Black box testing, when performed as a traditional verification technique, is more difficult. Indeed, it is very complicated to construct input problems for the model checker that will stress all of its components. Moreover, constructing a test that evaluates a particular feature of the model checker often demands to have an extensive knowledge of the internals of the tool.

Constructing relevant tests is still possible and vital, especially ones that are unsafe (with respect to their properties). They are a way to somewhat safeguard the implementation against the introduction of soundness bugs.
[bookmark: _Toc445217236][bookmark: _Toc464542817]Formally Verified Model Checkers
Two different lines of work coexist for the certification of verification tools. One approach focuses on verifying the program (here the model checker) correct once and for all. In this category, there exist several different approaches for proving a program correct. For some programming languages, it is possible to prove the code directly (e.g. using ESC Java, Frama-C, VCC, F* etc.), though this is a very tough job because such programs are often very complex, the proofs rapidly become convoluted and are unlikely to be automated. One advantage is that the performances of such programs can be close to the ones of their non-certified counterparts. One example of this kind of certification effort is the modern SAT solver versat which was developed and verified using the programming language Guru [119]. We are however not aware of similar results for model checkers.

Another possibility is to prove the algorithm correct in a descriptive language adapted to verification (e.g. interactive proof assistants like Coq, PVS or Isabelle) and obtain an executable program through a refinement process or a code extraction mechanism. In the recent years, certified software of this type have gained interest. Worth mentioning is the C compiler CompCert [101] or the operating system micro-kernel seL4 [92]. CompCert is written entirely in Coq and uses external oracles in some of the compilation passes. These oracles provide solutions (e.g. a coloring of a graph) that can be verified by a certified checker.

Although the first formal verification of a model checker in Coq for the modal µ-calculus [132] goes back to 1998; only recently have certified verification tools started to emerge. Blazy et al. have verified a static analyzer for C programs [25] to be used inside CompCert. Although this static analyzer is not on par with the performances of commercial tools, it is sufficient to enable safely some of the optimizations of a compiler. The most relevant works concerning model checking are probably [3] and [59].

In [3], Amjad shows how to embed BDD based symbolic model checking algorithms in the HOL theorem prover so that results are returned as theorems. This approach relies on the correctness of the backend BDD package.

Esparza et al. [59] have fully verified a version of the Spin model checker with the Isabelle theorem prover. Using successive refinements, they built a correct by construction model checker from high level specifications down to functional (SML) code.

Clearly, the advantage here is that the model checker is verified to be correct once and for all. Usually, a trade-off exists between an efficient program from a precise algorithm working on complex data structures, and a less concrete program from an algorithm where some data structures and operations are abstracted.
[bookmark: _Toc445217237][bookmark: _Toc464542818]Proof-Emitting Model Checkers
The other approach consists in producing, in addition to the final answer, a proof of the result also called a certificate. The first application of this technique to model checking is the work described in [110]. However, this is a very heavy task since model checkers are very optimized programs with a large number of components. In the second approach, certificates have to be checked after each run. Its advantage is to be far less intrusive; the only necessity is to instrument an already existing model checker. However, this approach is only applicable if certificates or proof objects are small and / or simple enough to be checked in a reasonable time after the fact.

An approach for the certification of SAT and SMT solvers is the work by Keller et. al [5][91]. Their idea consists in having the solver produce a detailed certificate in which each rule is read and verified by the composition of several small certified (in Coq) checkers. This approach also allows users importing proof terms from SMT solvers inside Coq [6].

In the world of SMT solvers, CVC4 [12] is also able to produce proof trees in a variant of the Edinburgh Logical Framework (LF) [77] extended with side conditions called LFSC [133]. The computational power brought by the use of side conditions allows efficient verification of very large proofs [134].

One recent of such application to model checking is Slab [58] which produces certificates in the form of inductive verification diagrams to be checked by SMT solvers. While less intrusive, this approach is only applicable if the certificates or proof objects are small and simple enough to be checked in a reasonable time after the fact. For parameterized model checking, Cubicle [45] generates certificates as Why3 files that can be independently checked by several SMT and automated theorem provers [46]. In this work, trust is claimed through the redundant use of solvers.

Definition 4 (Trust proposition for a certifying model checker)

1. Trusted Logic The logics used by the model checker are trusted.
Valid Model The model and properties accurately depict the system under scrutiny in the semantic given by the logic of the model checker.
Correct Certificate The certificate produced by the model checker is sufficient to convince that the properties are true of the system under scrutiny.
Correct Certificate Checker The program that checks the certificates is sound and correctly implemented.
Trusted IO The parsing and output of the certificate checker are trusted.
In the trust proposition for a certifying model checker, we are not interested in the correctness of the tool itself (algorithms, implementation, compilation, IO) but we rely on its ability to produce a correct gcertificate. The trust is thus shifted from an extremely complex piece of software — the model checker — to a smaller and simpler one, the certificate checker.
[bookmark: _Toc445217239][bookmark: _Toc464542819]Abstract Interpretation
Abstract interpretation is a form of automatic program analysis that supports both bug finding and also, in some systems, theorem proving. A key idea in abstract interpretation is to translate a program under analysis into a related program computing over an abstract domain. For example, in the interval do- main, the value of a program variable is not just a single concrete value, as in ordinary computation, but instead a set of values (the interval) in which the concrete value must lie. Abstraction allows sets of executions to be considered all at once; provided certain conditions are met; properties of the abstract program can be transferred back to the original. Abstract interpretation was introduced by the Cousot’s breakthrough paper of 1977 [47]; the research field has developed in sophistication and power ever since. In particular, the original theoretical underpinnings have been developed and implemented in various pow- erful static analyzers. Tools such as Astrée [48], PolySpace [102], Frama-C [51], and Fluctuat [70] have been used to analyze industrial codes and have even become embedded in some development processes. Although abstract interpretation provides a very general setting for program analysis, static analyzers are commonly applied to specific properties of code, e.g., absence of runtime errors.
[bookmark: _Toc445217240][bookmark: _Toc464542820]Undecidability, Automation, scaling
Since abstract interpretation is aimed at fully automated analyses of program behavior it must deal with the spectre of undecidability: the properties it attempts to prove are undecidable. The way around the blockade uses conservative over-approximation in order to achieve its goals. Thus program analyses based on abstract interpretation always terminate, but may give conservative answers. As mentioned in the Introduction, a sound tool gives conservative results: if it finds no problems, then the software is certainly free of the defects being sought. On the other hand, if it reports a problem then it can be the case that the problem is spurious (a false positive). The critical relationship in abstract interpretation is the tradeoff between the desire to scale up to large programs, which would tend to favor shallow-but-fast analyses, and the desire to limit the number of false positives, which would favor deeper but slower analyses.
[bookmark: _Toc445217241][bookmark: _Toc464542821]Static Analysis based on abstract interpretation
The basic components of a static analysis based on abstract interpretation are:
1. A concrete semantic domain,
Semantic rules modelling program behavior,
An abstract domain allowing the expression of properties on the concrete domain,
Logic links between abstract and concrete domains, describing how abstract objects represent concrete ones,
The specification of the analysis, under the form of constraints between abstract objects,
Correctness proofs showing that any solution to the analysis specification indeed represents an approximation of the concrete semantics,
A way to generate analysis constraints from the program syntax, and
A way to compute a solution of the analysis constraints.
If these components all fit together properly, then the results of the analysis can be trusted. The theory of abstract interpretation is well-established and provides a general framework that can be instantiated to automatically obtain sound static analyzers. However, obtaining correct instantiations is not easy. For example, in [50] Cuoq et. al. report on using the CSmith differential random tester to find bugs in Frama-C: bugs were found in the main plugins of the tool (value analysis, slicing, etc.), most reflecting the difficulty of analyzing C code.
[bookmark: _Toc445217242][bookmark: _Toc464542822]What does a static analyzer say?
Suppose we have a static analyzer A that is sound for a specific collection of runtime properties of a given programming language, e.g., division by zero and out-of-bound array access. Imagine that A analyzes program p and returns a list L of alarms. If L is empty, then A has proved that every concrete execution of p will not divide by zero and will not index outside the bounds of any array. Formally, this statement is based upon a model of program state and semantics of program execution, as well as a precise definition of erroneous operation.
[bookmark: _Toc445217243][bookmark: _Toc464542823]Static analyzer trust proposition
Definition 5 (Abstract interpretation trust proposition) Suppose we are given an abstract interpretation-based static analyzer, as above, meeting the following conditions:
1. Accurate evaluation model The concrete domain, and the semantics (the original operational semantics, and the collecting semantics) precisely model the actual evaluation of programs, including the notion of runtime error.
1. Sound Abstraction Mapping to the abstract domain preserves properties; also, the abstract operations are correct.
1. Correct Implementation The abstractions are implemented correctly, as is the abstract interpreter.
1. Correct Platform The libraries used in the implementation are correctly implemented; the compiler correctly compiles the libraries and the implementation of the static analyzer; and the machine correctly runs the executable.
1. Trusted IO The input and output of the static analyzer can be trusted. Then if we run the analyzer on a program and no alarms are returned, then we expect every run of the program to be free of the defined runtime errors.
Let us examine these conditions.
[bookmark: _Toc445217244][bookmark: _Toc464542824]Accurate evaluation model
Static analyzers based on semantics that accurately track such aspects as the use of machine words (instead of arbitrary-size integers, for example) and undefined behavior in evaluation (such as the complexities of signed arithmetic and shift in C, for example) provide a strong basis for obtaining a sound analyzer. However, such semantics are hard to develop, hard to validate against real-world C compilers, and hard to provide abstract counterparts for. Research in the semantics of real-world programming languages such as C [100][138] has provided formal models and compilers that can be used for this task. The relationship of such formal models with the models underlying heavily-used compilers such as gcc and Clang [97][135] continues to develop.
[bookmark: _Toc445217245][bookmark: _Toc464542825]Sound Abstraction and Sound Abstract Operations
At the theoretical level, there don’t seem to be any issues since the earliest publications on abstract interpretation [47]. The basic approach has been well- established for a long time. The questions asked here, namely, is the abstraction of a program sound? And do the transfer functions preserve the property? This can be shown at the level of mathematics, rather than implementation. This can give a misleading sense of confidence since the implementations of the abstractions and transfer functions must be correct.
[bookmark: _Toc445217246][bookmark: _Toc464542826]Correct Implementation
The real trust issues with abstract interpretation systems come in implementation. The basic problem of correctly implementing transfer functions over the abstract domain is not easy, especially with combinations of abstract domains. Herewith a lightly edited quote from a static analyzer implementer:
“First of all my own experience is that getting an abstract interpreter right is a [pain]. They’re really hard. Humans are not good at reasoning about sets of things. We cross-tested [analyzer X] vs. [analyzer Y] and each found plenty of bugs in the other.

“So at a basic level any non-proved abstract interpretation engine is going to be buggy. And a proved one might be buggy too of course, depending on the value of "proved".

“...So the principle of the situation, where no alarms means no bugs, is hard to live up to. So that is a major reason to not trust an abstract interpreter unless someone you really trust has explained to you in great detail the assumptions under which its results are sound.”

While this quote seems damning, it is only a single data point. After all, system implementers are famously harsh in their assessments of software in their domain of expertise. Abstract interpretation systems are obviously useful in practice, and some have been built using design principles that lead to increased confidence in their soundness. For example, the ASTRÉE system provides a parameterized and modular combination of abstract domains [49], as do some others [51][88]. This supports divide-and-conquer approaches to creating efficient and sound analyzers.

Going further, it would seem that in order to gain deeper confidence in an implementation, one would have to do a formal proof against a detailed machine model. This has recently been done for an academic, but reasonably fully-featured system, in [88], discussed below.
[bookmark: _Toc445217247][bookmark: _Toc464542827]Correct Platform
The libraries used in the implementation are correctly implemented.
There could be a chance that unsound results could appear as a result of buggy library software, in particular when using off-the-shelf constraint solvers. This is a standard problem for any kind of software, although the extra level of rigor assumed by our notion of soundness could require the verification of libraries.
[bookmark: _Toc445217248][bookmark: _Toc464542828]Trusted IO
The input and output of the tool can be trusted.
Static analyzers are fairly simple in their input and output behavior, since there is no user input into the modelling of the software in abstract domains. However one should take care that any program transformations on the input program before static analysis are correctness-preserving.
[bookmark: _Toc445217249][bookmark: _Toc464542829]Verification of Abstract Interpretation
Formal verification of static analyzers has progressed in two directions from abstract interpretation for simple WHILE languages such as reported by Bertot [15].

One direction of research makes the framework more abstract and general, in line with the order-theoretic foundations of the subject. For example, Chapter 13 of the recent book by Nipkow and Klein [114] gives formalization in Isabelle/HOL of the classical material, including widening and narrowing, paying close attention to the relatively difficult termination proofs for the abstract interpreter. The development is applied to the simple WHILE language but is formalized at a quite general level (complete lattices, least pre-fixpoints, etc.)

Another direction of research pursues the analysis of more realistic languages. In [17], Besson et. al verify a static analyzer for a simple bytecode language with dynamically allocated arrays and infinite precision arithmetic. They focus on the interval abstract domain and prove the soundness of an array-bounds checker.
The Verasco static analyzer [88] operates on a realistic fragment of C99 (omitting however recursion and dynamic allocation). Verasco establishes the absence of run-time errors in the analyzed programs. It is completely formalized in Coq, where the correctness is proved, and subsequently extracted to OCaml. Verasco enjoys a modular architecture that supports the extensible combination of multiple abstract domains, both relational and non-relational. For example it reportedly employs the following abstract domains: integer intervals and congruence’s, floating point intervals, points-to sets, convex polyhedra, and symbolic equalities. Verasco integrates with the CompCert formally-verified C compiler so that not only the soundness of the analysis results is guaranteed with mathematical certitude, but also the fact that these guarantees carry over to the compiled code. Thus Verasco represents a qualitative advance in verified static analyzers. However, it is early days yet for Verasco, since its performance is mediocre (taking minutes to analyze hundreds of lines of C).
[bookmark: _Toc464542830]References
[bookmark: _Ref445382814]Abdulla, P., Deneux, J., Stålmarck, G., Ågren, H., and Åkerlund, O. Designing safe, reliable systems using Scade. In Leveraging Applications of Formal Methods, T. Margaria and B. Steffen, Eds., vol. 4313 of Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2006, pp. 115–129.
[bookmark: _Ref445818981]Allen, S., Constable, R., Howe, D., and Aitken, W. The semantics of reflected proof. In Fifth annual IEEE symposium on Logic in Computer Science (Philadelphia, USA, June 1990), pp. 95–107.
[bookmark: _Ref445820487]Amjad, H. Programming a symbolic model checker in a fully expansive theorem prover. In Theorem proving in higher order logics. Springer, 2003, pp. 171–187.
[bookmark: _Ref445818591]Armand, Gregoire, B., Spiwack, and Thery, L. Extending Coq with imperative features and its application to SAT verification. In Interactive Theorem Proving: ITP 2010 (2010), M. Kaufmann and L. Paulson, Eds., vol. 6172 of Lecture Notes in Computer Science, Springer, pp. 83–98.	WWW:http://hal.archives-ouvertes.fr/docs/00/51/18/05/ PDF/fastcoq.pdf.
[bookmark: _Ref445820573]Armand, M., Faure, G., Grégoire, B., Keller, C., Théry, L., and Wener, B. Verifying sat and smt in coq for a fully automated decision procedure. In PSATTT’11: International Workshop on Proof- Search in Axiomatic Theories and Type Theories (2011).
[bookmark: _Ref445820596]Armand, M., Faure, G., Grégoire, B., Keller, C., Théry, L., and Werner, B. A modular integration of sat/smt solvers to coq through proof witnesses. In Certified Programs and Proofs. Springer, 2011, pp. 135–150.
[bookmark: _Ref445804156]Arons, T., Elster, E., Fix, L., Mador-Haim, S., Mishaeli, M., Shalev, J., Singerman, E., Tiemeyer, A., Vardi, M., and Zuck, L. Formal verification of backward compatibility of microcode. In Computer Aided Verification, K. Etessami and S. Rajamani, Eds., vol. 3576 of Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2005, pp. 185–198.
[bookmark: _Ref445819557]Arthan, R. On formal specification of a proof tool. http://www.lemma-one.com/papers/16.pdf.
[bookmark: _Ref445802205]Arthan, R. Proof Power Homepage, 2014. WWW:http://www.lemma-one.com/ProofPower/index/.
[bookmark: _Ref445820169]Ball, T., Levin, V., and Rajamani, S. K. A decade of software model checking with slam. Communications of the ACM 54, 7 (2011), 68–76.
[bookmark: _Ref445820170]Ball, T., and Rajamani, S. K. The slam toolkit. In Computer aided verification (2001), Springer, pp. 260–264.
[bookmark: _Ref445820610]Barrett, C., Conway, C. L., Deters, M., Hadarean, L., Jovanović, D., King, T., Reynolds, A., and Tinelli, C. Cvc4. In CAV (2011), Springer, pp. 171–177.
[bookmark: _Ref445810117]Bengtsson, J., Larsen, K., Larsson, F., Pettersson, P., and Yi, W. UPPAAL—a tool suite for automatic verification of real-time systems. Springer, 1996.
[bookmark: _Ref445818703]Berghofer, S., and Nipkow, T. Proof terms for simply typed higher order logic. In Theorem Proving in Higher Order Logics: 13th International Conference, TPHOLs 2000 (2000), J. Harrison and M. Aagaard, Eds., vol. 1869 of Lecture Notes in Computer Science, Springer-Verlag, pp. 38–52.
[bookmark: _Ref445821032]Bertot, Y. Theorem proving support in programming language semantics. Tech. Rep. RR-6242, INRIA, 2007.
[bookmark: _Ref445802166]Bertot, Y., and Caste’ran, P. Interactive Theorem Proving and Program Development: Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical Computer Science, An EATCS Series. Springer, 2004.
[bookmark: _Ref445821065]Besson, F., Cachera, D., Jensen, T. P., and Pichardie, D. Certified static analysis by abstract interpretation. In Foundations of Security Analysis and Design V, FOSAD 2007/2008/2009 Tutorial Lectures (2009), A. Aldini, G. Barthe, and R. Gorrieri, Eds., vol. 5705 of Lecture Notes in Computer Science, Springer, pp. 223–257.
[bookmark: _Ref445803977]Beyer, D., Henzinger, T. A., Jhala, R., and Majumdar, R. The software model checker blast. International Journal on Software Tools for Technology Transfer 9, 5-6 (2007), 505–525.
[bookmark: _Ref445803979]Beyer, D., and Keremoglu, M. E. Cpachecker: A tool for configurable software verification. In Computer Aided Verification (2011), Springer, pp. 184–190.
[bookmark: _Ref445810141]Bhattacharyya, S., Miller, S., Yang, J., Smolka, S., Meng, B., Sticksel, C., and Tinelli, C. Verification of quasi-synchronous systems withuppaal. In Digital Avionics Systems Conference (DASC), 2014 IEEE/AIAA 33rd (2014), IEEE, pp. 8A4–1.
[bookmark: _Ref445819971] Biere, A., Cimatti, A., Clarke, E. M., Strichman, O., and Zhu, Y. Bounded model checking. Advances in Computers 58 (2003), 117–148.
[bookmark: _Ref445810603]Bishop, S., Fairbairn, M., Norrish, M., Sewell, P., Smith, M., and Wansbrough, K. Rigorous specification and conformance testing techniques for network protocols, as applied to TCP, UDP, and Sockets. In Proceedings of SIGCOMM (2005), ACM.
[bookmark: _Ref445731805]Blanchet, B., Cousot, P., Cousot, R., Feret, J. Mauborgne, L., Miné, A., Monniaux, D., and Rival, X. A static analyzer for large safety-critical software. In Proceedings of the ACM SIGPLAN 2003 Con- ference on Programming Language Design and Implementation 2003, San Diego, California, USA, June 9-11, 2003 (2003), R. Cytron and R. Gupta, Eds., ACM, pp. 196–207.
[bookmark: _Ref445810495]Blanchette, J. C., and Nipkow, T. Nitpick: A counterexample generator for higher-order logic based on a relational model finder. In Interactive Theorem Proving (ITP 2010) (2010), M. Kaufmann and L. Paulson, Eds., vol. 6172 of LNCS, Springer, pp. 131–146.
[bookmark: _Ref445820468]Blazy, S., Laporte, V., Maroneze, A., and Pichardie, D. Formal verification of a c value analysis based on abstract interpretation. In SAS (2013), vol. 7935, Springer, pp. 324–344.
[bookmark: _Ref445810043]Bochot, T., Virelizier, P., Waeselynck, H., and Wiels, V. Model checking flight control systems: The Airbus experience. In Software Engineering - Companion Volume, 2009. ICSE-Companion 2009. 31st Inter- national Conference on (May 2009), pp. 18–27.
[bookmark: _Ref445818855]Böhme, S., and Weber, T. Fast LCF-style proof reconstruction for Z3. In Interactive Theorem Proving, First International Conference, ITP 2010, Edinburgh, UK, July 11-14, 2010. Proceedings (2010), M. Kaufmann and L. C. Paulson, Eds., vol. 6172 of Lecture Notes in Computer Science, Springer, pp. 179–194.WWW: http://www.cl.cam.ac.uk/~tw333/publications/boehme10fast.html.
[bookmark: _Ref445810147]Boudjadar, J., Larsen, K. G., Kim, J. H., and Nyman, U. Compositional schedulability analysis of an avionics system using uppaal. In International Conference on Advanced Aspects of Software Engineering (2014).
[bookmark: _Ref445818609]Boulton, R. Efficiency in a Fully-Expansive Theorem Prover. PhD thesis, University of Cambridge, May 1994. Technical Report Number 337, University of Cambridge Computer Laboratory.
[bookmark: _Ref445818995]Boutin, S. Using reflection to build efficient and certified decision procedures. In Proceedings of TACS’97 (1997), no. 1281 in LNCS, Springer-Verlag, pp. 515–529
[bookmark: _Ref445802135] Bove, A., Dybjer, P., and Norell, U. A brief overview of Agda a functional language with dependent types. In Theorem Proving in Higher Order Logics, 22nd International Conference, TPHOLs 2009. Proceedings (2009), vol. 5674 of Lecture Notes in Computer Science, Springer, pp.73–78. WWW: http://wiki.portal.chalmers.se/agda/uploads/Main.Othertutorials/AgdaOverview2009.pdf.
[bookmark: _Ref445818945]Boyer, R., and Moore, J. S. Metafunctions: Proving Them Correct and Using Them Efficiently as New Proof Procedures. Academic Press, 1981.
[bookmark: _Ref445818563]Boyer, R. S., and Moore, J. S. Integrating decision procedures into heuristic theorem provers: A case study of linear arithmetic. Machine Intelligence 11 (1988), 83–124 http://www.cs.utexas.edu/~moore/publications/linear.pdf.
[bookmark: _Ref445803434]Brayton, R., and Mishchenko, A. Abc: An academic industrial- strength verification tool. In Computer Aided Verification (2010), Springer, pp. 24–40.
[bookmark: _Ref445810510]Bulwahn, L. The new Quickcheck for Isabelle. In Certified Programs and Proofs (CPP) (2012), vol. 7679 of LNCS, Springer, pp. 92–108.
[bookmark: _Ref445819904]Burch, J. R., Clarke, E. M., McMillan, K. L., Dill, D. L., and Hwang, L. J. Symbolic model checking: 1020 states and beyond. In Proceedings of the Fifth Annual IEEE Symposium on Logic in Computer Science, 1990. LICS’90 (June 1990), pp. 428–439.
[bookmark: _Ref445820143]Caspi, P., Pilaud, D., Halbwachs, N., and Plaice, J. A. LUSTRE: A declarative language for real-time programming. In Proceedings of the 14th ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages (New York, NY, USA, 1987), POPL ’87, ACM, pp. 178–188.
[bookmark: _Ref445803440]Cavada, R., Cimatti, A., Dorigatti, M., Griggio, A., Mariotti, A., Micheli, A., Mover, S., Roveri, M., and Tonetta, S. The nuxmv symbolic model checker. In Computer Aided Verification (2014), Springer, pp. 334–342.
[bookmark: _Ref445819031]Chaieb, A., and Nipkow, T. Proof synthesis and reflection for linear arithmetic. Journal of Automated Reasoning 41, 1 (2008), 33–59. http://www4.in.tum.de/~nipkow/pubs/jar08.pdf.
[bookmark: _Ref445809965]Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, F., Pis- tore, M., Roveri, M., Sebastiani, R., and Tacchella, A. Nusmv 2: An opensource tool for symbolic model checking. In Computer Aided Verification (2002), Springer, pp. 359–364.
[bookmark: _Ref445821376]Clarke, E. M. 25 years of model checking. Springer-Verlag, Berlin, Heidelberg, 2008, Ch. The Birth of Model Checking, pp. 1–26.
[bookmark: _Ref445821379] Clarke, E. M., and Emerson, E. A. Design and synthesis of synchronization skeletons using branching-time temporal logic. In Logic of Programs, Workshop (London, UK, UK, 1982), Springer Verlag, pp. 52–71.
[bookmark: _Ref445820074]Cofer, D., and Miller, S. Do-333 certification case studies. In NASA Formal Methods. Springer, 2014, pp. 1–15.
[bookmark: _Ref445820087]Cofer, D., and Miller, S. P. Formal methods case studies for do-333. Tech. Rep. NASA/CR-2014-218244, NASA Langley Research Center, NASA Langley Research Center Hampton, Virginia 23681, USA, 2014.
[bookmark: _Ref445820684]Conchon, S., Goel, A., Krstić, S., Mebsout, A., and Zaïdi, F. Cubicle: A parallel SMT-based model checker for parameterized systems. In CAV (2012), P. Madhusudan and S. A. Seshia, Eds., vol. 7358 of Lecture Notes in Computer Science, Springer, pp. 718–724.
[bookmark: _Ref445820697]Conchon, S., Mebsout, A., and Zaïdi, F. Certificates for parameterized model checking. In Formal Methods (June 2015), N. Bjørner and F. de Boer, Eds., vol. 9109 of Lecture Notes in Computer Science, Springer, pp. 126–142.
[bookmark: _Ref445802032]Cousot, P., and Cousot, R. Abstract interpretation: A unified lattice model for static analysis of programs by construction or approximation of fixpoints. In Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages (New York, NY, USA, 1977), POPL ’77, ACM, pp. 238–252.
[bookmark: _Ref445820756]Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux, D., and Rival, X. The astreé analyzer. In Programming Languages and Systems, 14th European Symposium on Programming, ESOP 2005, Held as Part of the Joint European Conferences on Theory and Practice of Software, ETAPS 2005, Edinburgh, UK, April 4-8, 2005, Proceedings (2005), S. Sagiv, Ed., vol. 3444 of Lecture Notes in Computer Science, Springer, pp. 21–30.
[bookmark: _Ref445820960]Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux, D., and Rival, X. Combination of abstractions in the Astrée static analyzer. In Eleventh Annual Asian Computing Science Conference (ASIAN’06) (Tokyo, Japan, Dec. 6–8 2007), M. Okada and I. Satoh, Eds., vol. 4435 of Lecture Notes in Computer Science, Springer, Berlin, pp. 1–24.
[bookmark: _Ref445820837]Cuoq, P., Monate, B., Pacalet, A., Prevosto, V., Regehr, J., Yakobowski, B., and Yang, X. Testing static analyzers with randomly generated programs. In NASA Formal Methods - 4th International Symposium, NFM 2012, Norfolk, VA, USA, April 3-5, 2012. Proceedings (2012), A. Goodloe and S. Person, Eds., vol. 7226 of Lecture Notes in Computer Science, Springer, pp. 120–125.
[bookmark: _Ref445820788]Cuoq, P., Signoles, J., Baudin, P., Bonichon, R., Canet, G., Correnson, L., Monate, B., Prevosto, V., and Puccetti, A. Ex- perience report: Ocaml for an industrial-strength static analysis frame- work. SIGPLAN Not. 44, 9 (Aug. 2009), 281–286.
[bookmark: _Ref445803021]Davis, J. A Self-verifying Theorem Prover. PhD thesis, University of Texas, Austin, December 2009. WWW: http://www.cs.utexas.edu/ users/jared/milawa/Documentation/dissertation.pdf.
[bookmark: _Ref445818136]Davis, J., and Myreen, M. The reflective milawa theorem prover is sound (down to the machine code that runs it). Journal of Automated Reasoning 55, 2 (2015), 117–183.
[bookmark: _Ref445810010]De Moura, L., Owre, S., Rueß, H., Rushby, J., Shankar, N., Sorea, M., and Tiwari, A. Sal 2. In Computer aided verification (2004), Springer, pp. 496–500.
[bookmark: _Ref445820010]de Moura, L., Rueß, H., and Sorea, M. Lazy theorem proving for bounded model checking over infinite domains. In Proceedings of the 18th International Conference on Automated Deduction (July 2002), vol. 2392 of Lecture Notes in Computer Science, Springer-Verlag, pp. 438–455.
[bookmark: _Ref445809844]Dill, D. L. A retrospective on murᵠ. In Grumberg and Veith [74], pp. 77–88.
[bookmark: _Ref445803447]Dill, D. L., Drexler, A. J., Hu, A. J., and Yang, C. H. Protocol verification as a hardware design aid. In ICCD (1992), pp. 522–525.
[bookmark: _Ref445820670]Dräger, K., Kupriyanov, A., Finkbeiner, B., and Wehrheim, H. Slab: A certifying model checker for infinite-state concurrent systems. In TACAS (2010), vol. 6015, Springer, pp. 271–274.
[bookmark: _Ref445819815]] Esparza, J., Lammich, P., Neumann, R., Nipkow, T., Schimpf, A., and Smaus, J.-G. A fully verified executable ltl model checker. In CAV (2013), vol. 8044, Springer, pp. 463–478.
[bookmark: _Ref445810095]] Esterl Technologies. 	SCADE	Design	Verifier. http: //www.esterel-technologies.com/products/scade- suite/verify/design-verifier/.
[bookmark: _Ref445804161]Fix, L. Fifteen years of formal property verification in intel. In Grumberg and Veith [74], pp. 139–144.
[bookmark: _Ref445820251]Floyd, R W. Assigning meanings to programs. In Proc. Symp. In Applied Mathematics (1967), vol. 19, pp. 19–32.
[bookmark: _Ref445810302]Forum, M. MPI: A message-passing interface standard. Tech. rep., Knoxville, TN, USA, 1994.
[bookmark: _Ref445802807]Fox, A., and Myreen, M. A trustworthy monadic formalization of the ARMv7 instruction set architecture. In Interactive Theorem Proving, vol. 6172 of LNCS. Springer, 2010, pp. 243–258.
[bookmark: _Ref445819886]Godefroid, P. Verisoft: A tool for the automatic analysis of concurrent reactive software. In Proceedings of the 9th International Conference on Computer Aided Verification (London, UK, UK, 1997), CAV ’97, SpringerVerlag, pp. 476–479.
[bookmark: _Ref445802657]Gonthier, G. Formal proof–the four-color theorem. Notices of the American Mathematical Society 55, 11 (2008).
[bookmark: _Ref445802666]Gonthier, G., Asperti, A., Avigad, J., Bertot, Y., Cohen, C., Garillot, F., Roux, S. L., Mahboubi, A., O’Connor, R., Biha, S. O., Pasca, I., Rideau, L., Solovyev, A., Tassi, E., and Théry, L. A machine-checked proof of the odd order theorem. In Interactive Theorem Proving - 4th International Conference, ITP 2013, Rennes, France, July 22-26, 2013. Proceedings (2013), pp. 163–179.
[bookmark: _Ref445810629]Goodloe, A., Muñoz, C., Kirchner, F., and Correnson, L. Verification of numerical programs: From real numbers to floating point numbers. In NASA Formal Methods, G. Brat, N. Rungta, and A. Venet, Eds., Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2013, pp. 441–446.
[bookmark: _Ref445819205]Gordon, M., Kaufmann, M., and Ray, S. The right tools for the job: Correctness of cone of influence reduction proved using ACL2 and HOL4. Journal of Automated Reasoning (2010), 1–16. 10.1007/s10817-010-9169- y.
[bookmark: _Ref445820801]Goubault, E., and Putot, S. Static analysis of finite precision computations. In Verification, Model Checking, and Abstract Interpretation, R. Jhala and D. Schmidt, Eds., vol. 6538 of Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2011, pp. 232–247.
[bookmark: _Ref445820336]Granlund, T., et al. The gnu multiple precision arithmetic library. TMG Datakonsult, Boston, MA, USA 2, 2 (1996).
[bookmark: _Ref445810289]Granlund, T., and the GMP development team. GNU MP: The GNU Multiple Precision Arithmetic Library, 6.0.0 ed., 2014. http:// gmplib.org/.
[bookmark: _Ref445802307] Group, M. Mizar Homepage, 2014. WWW: http://www.mizar.org/.
 Grumberg, O., and Veith, H., Eds. 25 Years of Model Checking -History, Achievements, Perspectives (2008), vol. 5000 of Lecture Notes in Computer Science, Springer.
[bookmark: _Ref445810366] Hamon, G. A denotational semantics for stateflow. In Proceedings of the 5th ACM International Conference on Embedded Software (New York, NY, USA, 2005), EMSOFT ’05, ACM, pp. 164–172.
[bookmark: _Ref445810367]Hamon, G., and Rushby, J. M. An operational semantics for stateflow. STTT 9, 5-6 (2007), 447–456.
[bookmark: _Ref445820624]Harper, R., Honsell, F., and Plotkin, G. A framework for defining logics. Journal of the ACM (JACM) 40, 1 (1993), 143–184.
[bookmark: _Ref445819079]Harrison, J. Metatheory and reflection in theorem proving: A survey and critique. Technical Report CRC-053, SRI Cambridge, Millers Yard, Cambridge, UK, 1995. WWW: http://www.cl.cam.ac.uk/~jrh13/ papers/reflect.html.
[bookmark: _Ref445819060]Harrison, J. Towards self-verification of HOL Light. In Proceedings of the third International Joint Conference, IJCAR 2006 (Seattle, WA,2006), U. Furbach and N. Shankar, Eds., vol. 4130 of Lecture Notes in Computer Science, Springer-Verlag, pp. 177–191. WWW: http://www. cl.cam.ac.uk/~jrh13/papers/holhol.html.
[bookmark: _Ref445802212]Harrison, J. HOL Light Tutorial, November 2014. WWW:http://www.cl.cam.ac.uk/ jrh13/hol-light/tutorial.pdf.
[bookmark: _Ref445809873]Havelund, K., Lowry, M., and Penix, J. Formal analysis of a space- craft controller using spin. Software Engineering, IEEE Transactions on 27, 8 (2001), 749–765.
[bookmark: _Ref445809875]Havelund, K., and Pressburger, T. Model checking java programs using java pathfinder. International Journal on Software Tools for Technology Transfer 2, 4 (2000), 366–381.
[bookmark: _Ref445820371]Hintjens, P. ZeroMQ: Messaging for Many Applications. "O’Reilly Media, Inc.", 2013.
[bookmark: _Ref445809888]Holzmann, G. J. The model checker spin. IEEE Trans. Softw. Eng. 23, 5 (May 1997), 279–295.
[bookmark: _Ref445818968]Howe, D. Computational metatheory in Nuprl. Tech. Rep. 88-899, CornellUniversity,1988.http://ecommons.library.cornell.edu/ bitstream/1813/6739/1/88-899.pdf.
[bookmark: _Ref445810551]Hurd, J. The OpenTheory standard theory library. In Third International Symposium on NASA Formal Methods (NFM 2011) (Apr. 2011), M. Bobaru, K. Havelund, G. J. Holzmann, and R. Joshi, Eds., vol. 6617 of Lecture Notes in Computer Science, Springer, pp. 177–191.
[bookmark: _Ref445819840]Jhala, R., and Majumdar, R. Software model checking. ACM Computing Surveys 41, 4 (Oct. 2009), 1–54.
[bookmark: _Ref445810440] Jourdan, J.-H., Laporte, V., Blazy, S., Leroy, X., and Pichardie, D. A formally-verified C static analyzer. In 42nd symposium Principles of Programming Languages (2015), ACM Press, pp. 247–259.
[bookmark: _Ref445810183]Kaivola, R., Ghughal, R., Narasimhan, N., Telfer, A., Whittemore, J., Pandav, S., Slobodová, A., Taylor, C., Frolov, V.,Reeber, E., et al. Replacing testing with formal verification in intelˆ{\scriptsize\ circledR} coretm i7 processor execution engine validation. In Computer Aided Verification (2009), Springer, pp. 414–429.
[bookmark: _Ref445802075]Kaufmann, M., and Moore, J. S. ACL2 Homepage, July 2014. WWW: http://www.cs.utexas.edu/users/moore/acl2.
[bookmark: _Ref445820580]Keller, C. A Matter of Trust: Skeptical Communication between Coq and External Provers. PhD thesis, École Polytechnique, June 2013.
[bookmark: _Ref445820441]Klein, G., Elphinstone, K., Heiser, G., Andronick, J., Cock, D., Derrin, P., Elkaduwe, D., Engelhardt, K., Kolanski, R., Norrish, M., Sewell, T., Tuch, H., and Winwood, S. sel4: Formal verification of an os kernel. In ACM SIGOPS (New York, NY, USA, 2009), SOSP, ACM, pp. 207–220.
[bookmark: _Ref445803985]Kroening, D., and Tautschnig, M. Cbmc–c bounded model checker. In Tools and Algorithms for the Construction and Analysis of Systems. Springer, 2014, pp. 389–391.
[bookmark: _Ref445803009]Kumar, R., Arthan, R., Myreen, M. O., and Owens, S. HOL with definitions: Semantics, soundness, and a verified implementation. Interactive Theorem Proving: Fifth International Conference, ITP 2014 (2014).
[bookmark: _Ref445810587]Kumar, R., Arthan, R., Myreen, M. O., and Owens, S. HOL with definitions: Semantics, soundness, and a verified implementation. In Interactive Theorem Proving-5th International Conference, ITP 2014, Held as Part of the Vienna Summer of Logic, VSL 2014, Vienna, Austria, July 14-17, 2014. Proceedings (2014), G. Klein and R. Gamboa, Eds., vol. 8558 of Lecture Notes in Computer Science, Springer, pp. 308–324.
[bookmark: _Ref445810386]Kupferman, O., and Vardi, M. Y. Vacuity detection in temporal model checking. International Journal on Software Tools for Technology Transfer 4, 2 (2003), 224–233.
[bookmark: _Ref445820905]Lattner, C., and Adve, V. Llvm: A compilation framework for lifelong program analysis & transformation. In Proceedings of the International Symposium on Code Generation and Optimization: Feedback-directed and Runtime Optimization (Washington, DC, USA, 2004), CGO ’04, IEEE Computer Society, pp. 75–.
[bookmark: _Ref445810048]Laurent, O., Michel, P., and Wiels, V. Using formal verification techniques to reduce simulation and test effort. In FME 2001: Formal Methods for Increasing Software Productivity. Springer, 2001, pp. 465–477.
[bookmark: _Ref445802685]Leroy, X. Formal verification of a realistic compiler. Communications of the ACM 52, 7 (2009), 107–115.
[bookmark: _Ref445810424]Leroy, X. Formal verification of a realistic compiler. Communications of the ACM 52, 7 (2009), 107–115.
[bookmark: _Ref445820389]Leroy, X. A formally verified compiler back-end. J. Autom. Reason. 43, 4 (Dec. 2009), 363–446.
[bookmark: _Ref445820772]Math Works. PolySpace Webpage.
[bookmark: _Ref445819925]McMillan, K. L. Symbolic Model Checking: An Approach to the State Explosion Problem. PhD thesis, Pittsburgh, PA, USA, 1992. UMI Order No. GAX92-24209.
[bookmark: _Ref445809935]Miller, S., Anderson, E., Wagner, L., Whalen, M., and Heimdahl, M. Formal verification of flight critical software. Proceedings of the AIAA Guidance, Navigation and Control Conference and Exhibit (2005), 15–18.
[bookmark: _Ref445809937]Miller, S. P., Tribble, A. C., and Heimdahl, M. P. Proving the shalls. In FME 2003: Formal Methods. Springer, 2003, pp. 75–93.
[bookmark: _Ref445809938]Miller, S. P.,Whalen, M. W., and Cofer, D. D. Software model checking takes off. Commun. ACM 53, 2 (Feb. 2010), 58–64.
[bookmark: _Ref445810340]Miller, S. P.,Whalen, M. W., and Cofer, D. D. Software model checking takes off. Commun. ACM 53, 2 (Feb. 2010), 58–64.
[bookmark: _Ref445810645]Monniaux,D. The pitfalls of verifying floating-point computations. ACM Trans.Program. Lang. Syst. 30, 3 (May 2008), 12:1–12:41.
[bookmark: _Ref445802830]Myreen, M. Formal verification of machine-code programs. PhD thesis, University of Cambridge, 2009.
[bookmark: _Ref445820549]Namjoshi, K. S. Certifying model checkers. In CAV (2001), Springer, pp. 2–13.
Necula, G. C., McPeak, S., Rahul, S. P., and Weimer, W. Cil: Intermediate language and tools for analysis and transformation of c programs. In Compiler Construction (2002), Springer, pp. 213–228.
[bookmark: _Ref445819824]Neumann, R. Using promela in a fully verified executable ltl model checker. In Verified Software: Theories, Tools and Experiments. Springer, 2014, pp. 105–114.
[bookmark: _Ref445802758]] Nipkow, T., and Klein,G. Concrete Semantics with Isabelle/HOL. Springer, 2014.
[bookmark: _Ref445821051]Nipkow, T., and Klein,G. Concrete Semantics with Isabelle/HOL.Springer, 2014.
[bookmark: _Ref445802274]Nipkow, T., Paulson, L., and Wenzel, M. Isabelle/HOL: a proof assistant for higher-order logic, August 2014.http://isabelle.in.tum.de/documentation.html.
[bookmark: _Ref445802219]] Norrish, M., and Slind, K. HOL-4 Manuals, 1998-2014. http://hol.sourceforge.net/.
[bookmark: _Ref445802981]Norrish, M., and Slind, K. The HOL System: Logic, 1998-2015. At http://hol.sourceforge.net/.
[bookmark: _Ref445810569]Obua, S., and Skalberg, S. Importing HOL into Isabelle/HOL. In IJCAR (2006), U. Furbach and N. Shankar, Eds., vol. 4130 of Lecture Notes in Computer Science, Springer, pp. 298–302.
[bookmark: _Ref445820413]Oe, D., Stump, A., Oliver, C., and Clancy, K. Versat: A verified modern sat solver. In Verification, Model Checking, and Abstract Interpretation, V. Kuncak and A. Rybalchenko, Eds., vol. 7148. Springer, 2012, pp. 363–378.
[bookmark: _Ref445821407]Owicki, S., and Lamport, L. Proving liveness properties of concurrent programs. ACM Trans. Program. Lang. Syst. 4, 3 (July 1982), 455–495.
[bookmark: _Ref445802610]Owre, S., Rushby, J. M., Shankar, N., and Stringer-Calvert, D. PVS System Guide. SRI Computer Science Laboratory, November 2001. http://pvs.csl.sri.com/documentation.shtml.
[bookmark: _Ref445802992]] Owre, S., and Shankar, N. The formal semantics of PVS. Technical Report CR-1999-209321, NASA, 1999. http://shemesh.larc.nasa.gov/fm/papers/Owre-CR-1999-209321-Semantics-PVS.pdf.
[bookmark: _Ref445819775]] Paulson, L. C. Isabelle: A generic theorem prover, vol. 828. Springer Science & Business Media, 1994.
[bookmark: _Ref445821410]Pnueli, A. The temporal semantics of concurrent programs. In Proceedings of the International Symposium on Semantics of Concurrent Computation (London, UK, UK, 1979), Springer-Verlag, pp. 1–20.
[bookmark: _Ref445818629]Pollack, R. On extensibility of proof checkers. In Types for Proofs and Programs (LNCS 996) (Baastad, Sweden, June 1994). http://homepages.inf.ed.ac.uk/rpollack/export/extensibility.ps.gz.
[bookmark: _Ref445819576]Pollack, R. How to believe a machine-checked proof. Tech. Rep. RS-97-18, University of Aarhus Department of Computer Science, 1997. WWW:http://www.brics.dk/RS/97/18/BRICS-RS-97-18.pdf.
[bookmark: _Ref445809985]Prover Technology. Prover Plug-In Product Description. http://www.prover.com/products/prover_plugin/.
[bookmark: _Ref445818578]Rajan, S., Shankar, N., and Srivas, M. An integration of model- checking with automated proof checking. In Computer-Aided Verification, CAV ’95 (Liege, Belgium, Jun 1995), P. Wolper, Ed., vol. 939 of Lecture Notes in Computer Science, Springer-Verlag, pp. 84–97. http://www.csl.sri.com/papers/cav95/.
[bookmark: _Ref445810016]Shankar, N. Combining theorem proving and model checking through symbolic analysis. In CONCUR 2000—Concurrency Theory. Springer, 2000, pp. 1–16.
[bookmark: _Ref445820019]Sheeran, M., Singh, S., and Stålmarck, G. Checking safety properties using induction and a sat-solver. In Formal Methods in Computer- Aided Design, W. A. Hunt Jr. and S. D. Johnson, Eds., vol. 1954 of Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2000, pp. 127–144.
[bookmark: _Ref445820354]Somenzi, F. Cudd: Cu decision diagram package-release 2.4. 0. University of Colorado at Boulder (2009).
[bookmark: _Ref445820320]Sprenger, C. A verified model checker for the modal µ-calculus in coq. In Proceedings of the 4th International Conference on Tools and Algorithms for Construction and Analysis of Systems (London, UK, UK, 1998), TACAS ’98, Springer-Verlag, pp. 167–183.
[bookmark: _Ref445820640]Stump, A. Proof checking technology for satisfiability modulo theories. Electronic Notes in Theoretical Computer Science 228 (2009), 121–133.
[bookmark: _Ref445820657]Stump, A., Oe, D., Reynolds, A., Hadarean, L., and Tinelli, C. Smt proof checking using a logical framework. Formal Methods in System Design 42, 1 (2013), 91–118.
[bookmark: _Ref445820911]Team, G. D. GNU C Reference Manual.
[bookmark: _Ref445803480]The Mathworks. Simuling Design Verifier. http://www.mathworks. Com/products/sldesignverifier/.
[bookmark: _Ref445810065]Traverse, P., Lacaze, I., and Souyris, J. Airbus fly-by-wire: a process toward total dependability. In 25th Int. Congress of the Aeronautical Sciences (2006).
[bookmark: _Ref445820878]Tuch, H., Klein, G,and Norrish, M. Types, bytes, and separation logic. In ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (Nice, France, Jan 2007), Martin Hofmann and Matthias Felleisen, Ed., ACM, pp. 97–108.
[bookmark: _Ref445819944]Verma, K. N., Goubault-Larrecq, J., Prasad, S., and ArunKumar, S. Reflecting bdds in coq. In Advances in Computing Science — ASIAN 2000, H. Jifeng and M. Sato, Eds., vol. 1961 of Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2000, pp. 162–181.
[bookmark: _Ref445810461]Weber, T. Bounded model generation for isabelle/hol. Electron. Notes Theor. Comput. Sci. 125, 3 (July 2005), 103–116.
[bookmark: _Ref445818863]Weber, T. Validating QBF invalidity in HOL4. In Interactive Theorem Proving, First International Conference, ITP 2010, Edinburgh, UK, July 11-14, 2010. Proceedings (2010), M. Kaufmann and L. C. Paulson, Eds., vol. 6172 of Lecture Notes in Computer Science, Springer, pp. 466–480.
[bookmark: _Ref445809946]Whalen, M., Cofer, D., Miller, S., Krogh, B. H., and Storm, W. Integration of formal analysis into a model-based software development process. In Formal Methods for Industrial Critical Systems. Springer, 2008, pp. 68–84.
[bookmark: _Ref445809951]Whalen, M. W., Innis, J. D., Miller, S. P., and Wagner, L. G.Adgs-2100 adaptive display and guidance system window manager analysis.
[bookmark: _Ref445819331]Wiedijk, F. Pollack-inconsistency. In 9th International Workshop on User Interfaces for Theorem Provers, UITP 2010, Proceedings. (2010), C. S. Coen and D. Aspinall, Eds., ENTCS.
[bookmark: _Ref445810194]Wiels, V., Delmas, R., Doose, D., Garoche, P.-L., Cazin, J., and Durrieu, G. Formal verification of critical aerospace software. Aerospace- Lab Journal, Issue (2012).

© Copyright 2016 Rockwell Collins, Inc. All rights reserved as provided by NASA Contract NNL14AA06C.	 52
image1.jpeg

image2.jpg

image3.png

image4.png

