
SSAT DATCPI (FACTS)

Tool Qualification under DO-330 Case Studies

Deliverable 5

for

Contract NNL14AA07C



Introduction to Case Studies

Contents

1 Introduction 1

2 Motivation for Tool Qualification Case Studies 2

3 Toolchain Context 2

4 Scope of Case Studies 3

5 Issues Uncovered 5

6 Tool Qualification Objectives 6

6.1 Table T-0, Tool Operational Process . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

6.2 Table T-1, Tool Planning Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

6.3 Table T-2, Tool Development Process . . . . . . . . . . . . . . . . . . . . . . . . . . 7

6.4 Table T-3, Verification of Outputs of Tool Requirements Process . . . . . . . . . . . 8

6.5 Table T-6, Testing of Outputs of Integration Process . . . . . . . . . . . . . . . . . . 8

6.6 Table T-7, Verification of Outputs of Tool Testing . . . . . . . . . . . . . . . . . . . 9

6.7 Table T-10, Certification Liaison Process . . . . . . . . . . . . . . . . . . . . . . . . . 10

7 Failure Modes and Effects Analysis 10

7.1 FMEA Results for JPF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
7.2 FMEA Results for CodeHawk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
7.3 FMEA Results for Tool Chain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

8 Conclusions 12
8.1 Hurdles to the Adoption of Research Tools . . . . . . . . . . . . . . . . . . . . . . . 12

8.2 Importance of Error Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

8.3 Treatment of Incomplete Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

8.4 Use of Unqualified Tool Capabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

8.5 Dependence on Third Party Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2



Introduction to Case Studies

1 Introduction

This document reports on the results of the case study portion of our research effort that identifies

qualification considerations for formal methods tools under DO-330 and DO-333 for use in certi-

fication within the DO-178C framework. For the case study portion of our work, we performed

a notional tool qualification following DO-330 for two representative formal methods tools: “Tool

A”, Java PathFinder/Symbolic PathFinder for model checking, and “Tool B”, CodeHawk for static

analysis/abstract interpretation.

After reviewing the full set of objectives in DO-178C and DO-330 required for an actual qualifi-

cation effort, we organized our case study around the DO-330 objectives tables, enumerating what

subsets of these objectives would be in scope for the case studies, and what outputs we would

need to satisfy them. The results of this effort are a selection of qualification documents that show

how existing state-of-the-art formal methods tools may be qualified using a safety-driven approach

toward qualification within the DO-330 framework.

Initially, we anticipated changes to the way the formal methods tools are developed, how they

are used, what claims they can make and support, and how they are integrated into life cycle

tool chains may have to be changed from current practices. Our high-level experience thus far is

that qualification of formal methods tools differs little from qualification of any other tool used in

the development of safety-critical systems. However, we did identify potential issues and areas of

special concern, and have reported on those in our respective case study reports.

Regardless of any required changes, DO-330 qualification and use of formal methods tools for

DO-178C certification has great potential benefits for safety-critical system software, and these

benefits will offer compelling justification for the broader adoption of formal methods tools into

software and system engineering life cycles.

The remainder of this document is structured as follows:

• Section 2 discusses the motivation behind our case study effort, and the rationale for selecting

JPF and CodeHawk as representative formal methods tools.

• Section 3 discusses the complementary nature of the two tools, and how they might be used

within the broader context of a tool chain used in certification under DO-178C.

• Section 4 describes the scope of the case studies, and enumerates the set of documents pro-

duced for each study. Note that each case study effort for both tools produced a set of

documents, all of which are referenced from this overview, but are each independent, mim-

icking the collection of documents constructed for DO-330 qualification.

• Section 5 provides an overview of the main issues and points of interest that we identified

when writing the various case study documents.

• Section 6 provides some commentary on the ability of the case study tools to meet DO-

330 qualification objectives that were previously identified in our case study preparation

document.

1



Introduction to Case Studies

• Section 7 provides a brief discussion of the FMEA analysis that was performed for each tool.

• Finally, Section 8 offers a summary of conclusions.

2 Motivation for Tool Qualification Case Studies

To better understand issues that may be encountered when formal methods tools are qualified

for specific applications under DO-178C, DO-330, and DO-333, we have undertaken two Tool

Qualification case studies for representative formal methods tools. One of these, Java PathFinder

(JPF) is a model checker which examines reachability properties and assertions in algorithms and

requirements expressed in the Java programming language. The second, the CodeHawk C Analyzer,

is a standalone static analysis tool for proving (or disproving) memory safety properties of C

programs via abstract interpretation. This exercise was intended to reveal issues that would become

apparent during an actual qualification exercise, but might otherwise be hidden from a top-level

analysis of the tools and the process. For example, during the qualification exercise, it became

clear that JPF has many features suitable to an iterative test and repair approach to development,

but that those features should be treated carefully when JPF is used to contribute results to a

final certification for a finished software product. This issue came to light during the case study

and inspired recommendations related to error reporting and internal tool limits (e.g., search depth

limits).

Case studies are valuable in that they have the potential to identify more issues in tool combi-

nations and potential mitigations. For this effort, we designed our case studies to apply appropriate

limitations on software design and tool usage, and to utilize patterns of argumentation for qualifica-

tion and safety case support. Using this approach, we wrote the case study documents to illustrate

techniques for satisfying the tool qualification objectives.

3 Toolchain Context

As shown in Figure 1, the two formal methods tools selected for our Tool Qualification Case Studies

serve complementary roles in the software certification process. JPF will verify the correctness of

LLRs encoded in Java with respect to HLRs. CodeHawk will validate that the source C code used

to produce the object code is free of memory safety issues.

As discussed in other documents, the use of tools to automate verification activities has direct

impact on the workflow to satisfy certification objectives. For example, a verification tool may

directly automate particular verification objectives/activities specified in DO-178C, and can be

used to claim certification credit for those. Additionally, the use of a tool (e.g. JPF) for one

objective may allow one to skip other objectives or may establish certain properties/constraints

to be true such that a subsequent tool (e.g. CodeHawk) might be used in a more flexible way,

taking advantage of those assumptions. An extended discussion of this may be found in the FMEA

portion of our results.

2



Introduction to Case Studies

However, for our case study, each tool is treated is separately and stand-alone. As such, we

developed two independent sets of case study documents: one set for tool A (JPF), and a separate

set for tool B (CodeHawk).

Low-Level 
Requirements Source Code Object Code 

PathFinder CodeHawk 

Model-Code 
Verifier 

Test 
Generator 

6.4.5.b 

High-Level 
Requirements 

Test Harness Test Vectors 

6.3.4.a,b,e (F), 
c,d,f  (P) 

6.3.2.a (P) 
6.3.2.b,d,g (P) 6.3.4.c (F) & f  (P) 

6.3.2.a (P) 

6.3.2.b,d, 
6.4.c,d, 
6.4.4.b,d (P) 6.4.c,d, 6.4.5.c (P) 

Figure 1: The case studies assume that JPF and CodeHawk play complementary roles in the

development process. JPF will verify the correctness of LLRs encoded in Java with

respect to HLRs. CodeHawk will validate that the source C code used to produce

the object code is free of memory safety issues.

4 Scope of Case Studies

The scope of the case studies was focused on achieving the most insight into the actual tool quali-

fication process for formal methods tools, while reflecting the limitations of the project. The most

important restrictions were the absence of an actual flight software certification effort to inform the

tool qualification, our position outside the tool development process, and the realities of project

funding.

In practice, tool qualification under DO-178C is a collaboration between a tool developer and a

tool user that is developing a flight software component, even if the tool developer and the tool user

are part of the same organization. Since we did not have access to the tool developer for JPF, we

3



Introduction to Case Studies

have limited our treatment of some of the documents associated with tool design and development.

Also, since our work was not motivated by a specific flight software application, we have eliminated

a number of specific elements which require reference to an overarching flight certification effort.

For those aspects of qualification that we did complete, we sometimes limited ourselves to a few

representative examples. For example, we tried to consider a few tool requirements to a useful depth,

rather than cover the full breadth of requirements necessary for a full, real-world qualification.

For each tool we produced the following set of documents in accordance with the DO-178C

regime, to a level of fidelity consistent with the lack of an actual software component to be certified

and our funding:

• The tool-specific sections of the Plan for Software Aspects of Certification (PSAC), including

DO-178C objectives, proposed product TQL, and the tools impact on the software lifecycle.

• The Tool Qualification Plan (TQP) sections related to the means of qualification compliance.

• The Tool & Tool Operational Requirements (TR and TOR) sections containing requirements

that support the claimed objectives.

• A slim Verification & Validation Cases and Procedures document containing a few represen-

tative test cases traced to requirements.

• A similar sample of Verification & Validation Results tracing test execution results to the test

procedures we defined.

We did not produce the following documents which would be required by an actual tool quali-

fication exercise associated with an actual flight software component subject to DO-178C:

• The Verification Plan, for which the relevant information was covered in the TQP and the

Test Cases & Procedures documents.

• The Development, Configuration Management, and Quality Assurance Plans, for which the

relevant objectives are not applicable to TQL 4.

• The Design Description including design standards were considered to be out of scope. We

did, however, provide detailed a description of the tool architectures and algorithms in other

documents.

• Source Code, for which the relevant objectives are not applicable to TQL 4 & 5.

• Configuration Management Records, Configuration Index, Problem Reports, Life Cycle Envi-

ronment Configuration Index were deemed out of scope since they are only relevant to actual

software deployments and do not have any unique impacts on formal methods tools.

• Quality Assurance Records, for which there are no relevant research objectives for the case

study.

4



Introduction to Case Studies

5 Issues Uncovered

As the case study process unfolded, we uncovered many issues related to the qualification of the

two representative formal methods tools. The most in-depth treatment of each individual topic is

embedded in the case study artifacts themselves. For example, in section c.1 of the JPF Tool Op-

erational Requirements document, we include a lengthy discussion of “Development-time checking

vs. verification”. That discussion will not be repeated here, but it does provide background for

the conclusion that some accommodation should be made for developers to take advantage of both

qualified and unqualified tool features during early stages of software development. In the JPF case

study, there are over sixty separate discussions covering a range of categories, including subtleties

in tool identification and configuration, problems with JPF documentation and testing, details in

error handling, treatment of non-determinism, and the scalability of model-checking. Similarly,

the “Tool Operational Verification and Validation Cases and Procedures Framework for CodeHawk

C Analyzer (Tool B)” included in the CodeHawk case study includes extensive discussion of the

relationship between the results of the recent “Gold Standard” project funded by the Department

of Homeland Security and testing required for DO-330 tool qualification.

For JPF the issues can be grouped into four high-level categories:

• Tool identification and configuration: as the product of an active research project, JPF does

not follow a release schedule or protocol. We identified a specific JPF “release” for treatment

by the case study by reference to a date and source code repository commit tag. It can also

be difficult to determine which modules associated with JPF are active and well-maintained.
(Further discussion can be found in Section A of “JPF Core: Tool Qualification Plan (TQP)”.)

• Documentation: JPF documentation is in the form of an on-line wiki which covers many

aspects of the JPF research endeavor beyond the core functionality that would be qualified.

(Further discussed in Section G of “JPF Core: Tool Operational Requirements (TOR)”.)

• Testing: Although JPF does have a set of tests, the JPF test suite seems ad hoc, including

full system tests providing uneven coverage of representative program flaws. It does not

include unit tests. (Further discussed in Section B of “JPF Core: Tool Verification Cases and

Procedures (TVCAP)”.)

• Error handling: our case study discusses at length the necessity for clear error messages to

avoid operator error during the certification process. (Further discussed in Section F of “JPF

Core: Tool Requirements (TR)”.)

• Scalability: although model checking techniques constantly improve (for example, by incor-

porating symbolic execution techniques), an exhaustive check of all software aboard a modern

airliner is beyond the capabilities of current model checking tools. To compensate, organiza-

tions using model checkers must carefully scope the system under test, possibly by checking

abstractions of the final executable (such as low level requirements) or critical subsystems.

(Further discussed in Section C.2 of “JPF Core: Tool Operational Requirements (TOR)”.)

5



Introduction to Case Studies

The CodeHawk case study discusses similar issues. The CodeHawk C Analyzer that is the

object of the case study was produced by Kestrel Technology as part of a DHS research project. It

is not a publicly released product, and has no user documentation at present. Also, because it is a

research implementation, it does not yet have an externally identified accounting of error messages.

There are also some issues of possible interest to the application of formal methods tools to DO-330

certified software treated only in the CodeHawk study:

• Third-party tools: CodeHawk depends on the third-party tools gcc [3] and CIL [2, 1] which

introduces the issues of identification and configuration of these tools, as well as the possible

need to conduct similar qualification exercises for the tools. (Further discussed in Section C.7

of “Tool Qualification Plan (TQP) Framework for CodeHawk C Analyzer (Tool B)”.)

• Coverage of library code: like JPF and other formal methods tools that process programming

language source, CodeHawk requires extensions to handle library calls for system services for

which source code may not be available for analyses. In the case of CodeHawk, there may be

the need to extend the current catalog of “functional summaries” to cover libraries of interest

to flight critical applications. (Further discussed in Section C.3 of “Tool Qualification Plan

(TQP) Framework for CodeHawk C Analyzer (Tool B)”.)

6 Tool Qualification Objectives

As discussed in our case study preparation document, we structured our simulated case studies

around the DO-330 objectives tables. Section 3 of the case study preparation document enumerates

the subsets of DO-330 objectives that we found to be in scope for this effort, and what outputs we

would need to satisfy them.

Here, we analyze the results of the case studies to assess how the objectives in DO-330 Tables

T0-T10 are addressed for each tool. Building on this assessment, we attempt to identify areas of

outstanding need where there may be gaps or inadequacies in meeting the DO-330 objectives.

Of the 11 different tables of objectives, we found that only 7 of them contained objectives that

were applicable to our case studies. We found that, through our case study document preparation,

we were able to satisfy most of the objectives. In the subsections that follow, we provide some

discussion for those objectives where we identified potential gaps or complexities. Here, a “gap”

indicates that the outcome (or output) of the case study documents was found to be insufficient for

supporting the corresponding objective. A “complexity”, on the other hand, suggests that some

characteristics of the tool(s) make it particularly challenging to satisfy the objective.

6.1 Table T-0, Tool Operational Process

Obj. 4 Tool Operational Requirements are complete, accurate, verifiable, and consistent.

For any tool, the traceability between TOR, test cases and test results is required to en-

sure if the TOR are verifiable, consistent and accurate. For the case of JPF, there were very

6



Introduction to Case Studies

few existing test cases to draw from, and no corresponding requirements to trace those test

results to. We therefore attempted to first develop an appropriate set of tool operational

requirements, and then define a suite of test cases to map to those requirements. While we

only covered a subset of the full functionality of the tool (and therefore a subset of the needed

test cases), this process could be extended naturally to show full traceability.

Obj. 5 Tool operation complies with the Tool Operational Requirements.

In a full qualification effort, the tests that demonstrate this compliance would be captured

in the tool accomplishment summary. If deviations of test results from the expected outputs

are found, explanations of these test failures would be analyzed to determine whether they

would cause soundness issues or difficulty in using the tool. This is true for any tool being

qualified, though. We found nothing to suggest a gap or complexity in meeting this objective

with the subject formal methods tools.

Obj. 6 Tool Operational Requirements are sufficient and correct.

The validation of the Tool Operational Requirements critically depends on the role of the tool

within the software life cycle and the objectives for the tool described in the PSAC. Within

the limits of the scope of the case studies, we did validate the requirements documents with

respect to the role of the tools we defined in the software life cycle. We do not believe this

aspect of the DO-330 process presents any unique challenges to formal methods tools.

6.2 Table T-1, Tool Planning Process

Obj. 4 Additional considerations are addressed.

Complexity: Determining whether a tool is a suitable alternate tool to improve confidence may

be challenging. For instance, although JPF and SPF might look like suitable redundant tools,

the common code between them makes them unsuitable to use one to improve confidence on

the other.

6.3 Table T-2, Tool Development Process

Obj. 1 Tool requirements are developed.

Complexity: Many formal tools are research based and hence they may lack adequate doc-

umentation. In many cases, the research paper explaining high level implementation detail

might be the only available input. In the case of JPF, all of the tool requirements had to

be written independently for this case study, using the online documentation and the source

code as a guide. For CodeHawk, we started with a well-defined baseline set of documentation,

including requirements. However, we did have to adapt this documentation to fit the scope

and context of DO-330 objectives for qualification.

Obj. 2 Derived tool requirements are defined.

Complexity: Without a detailed design of the tool, it may not be feasible to determine whether

a requirement is derived or not. Again, since formal tools are research based it might lack

such detailed documentation.

7



Introduction to Case Studies

6.4 Table T-3, Verification of Outputs of Tool Requirements Process

Obj. 4 Tool Requirements define the behavior of the tool in response to error condi-

tions.
Complexity: While documentation of formal tools to some extent provides reasonably detailed

explanation to functional requirements, it can be challenging to adequately define and/or meet

all error reporting requirements. For example, one common behavior observed in many formal

tools is that they might take a very long time to run to completion. In such cases, it may

not be possible for the tool to provide useful / required outputs within a reasonable amount

of time.

Obj. 5 Tool Requirements define user instructions and error messages.

See Obj. 4.

Obj. 6 Tool requirements are verifiable.

Complexity: In general, many of the tool requirements are directly verifiable. One particular

challenge for formal methods tools, however, is the fact that some requirements may be

impractical to verify for large and/or complex input sets. For example, we can develop test

cases for JPF that show the tool properly detecting property violations (such as a deadlock)

for a relatively small / simple code-base. If the requirement is to detect the presence of

a deadlock for any system under test, then we would have to consider arbitrarily large /

complex code bases during testing. Because the code base can scale in this way, it is unclear

how to adequately develop test cases that can be used to verify a such a requirement.

Obj. 9 Algorithms are accurate.

Gap: Ensuring if the formal method was correctly implemented might require exhaustive

testing, which might be infeasible. At most, one can argue that it has been reasonably well

tested. Even the gold standard test suite used for CodeHawk provides only a certain level of

confidence on the implementation.

6.5 Table T-6, Testing of Outputs of Integration Process

Obj. 1 Tool Executable Object Code complies with Tool Requirements.

Gap: Guaranteeing that a single test case passed for a requirement may not be an indicator

that the requirement will be met in all cases. For instance, if a test on JPF returns “no

deadlock” on a simple program, it is not a guarantee that JPF is capable of reporting “no

deadlock” correctly on all other (more complex) programs too.

Obj. 2 Tool Executable Object Code is robust with Tool Requirements.

Gap: The tool cannot be tested exhaustively with all possible inputs. This practical limita-

tion applies to testing for all tools, not just formal methods tools. Robustness can only be

demonstrated by proving that the tool continues to correctly identify failures modes through

more testing, with diverse input sets.

8



Introduction to Case Studies

Complexity: Determining failure modes systematically and robustness criterion for formal

tools may require in-depth knowledge of the tool implementation as well as the underlying

formal methods. For instance, CodeHawk uses abstract interpretation and the tool is qualified

for 4 abstract domains. Ensuring that the tool’s output correctly reports results if applications

where those abstract domains were not suitable needs a detailed analysis that may be time

consuming. In the case of JPF, exhaustively testing applications with different depths may

be practically very expensive to achieve.

6.6 Table T-7, Verification of Outputs of Tool Testing

Obj. 2 Test results are correct and discrepancies explained.

Gap: In formal tools, evaluating the correctness of test results may involve more than looking

for pass/fail of the tests. While almost all tools provide reasons for failed tests, most tools

do not provide detailed information on why and how tests passed. This is particularly a

problem in formal tools. For instance, vacuity is a problem in many model checking tools.

Hence, when JPF, or any model checker for that matter, reports that there are no property

violations, establishing that the result was non-trivially satisfied may be necessary to trust the

results. The problem of ensuring that assertions and (temporal logic) expressions are properly

formed is equivalent to the effort involved in validating the requirements for a complex system.

Hence, in addition to explanation to FAILED tests, the passed tests may require additional

explanation. On the other hand, CodeHawk used a gold standard test suite whose oracle

was manually determined. In this case study, the correctness of the oracle was only assumed

and not validated. The successful proofs generated from CodeHawk were not checked for

correctness. These might induce additional risk in trusting the outputs. The Juliet test suite

for CodeHawk has a trusted oracle, but they are simple tests and do not adequately test all

features of the tool.

Complexity: Developing adequate test cases with correct oracles when the tools do not have

one already will be a challenging task. For instance, JPF did not have an existing test suite.

As a result, only a portion of the full required set of test cases were designed and presented.

Obj. 3 Test coverage of Tool Requirements is achieved.

Gap:

Complexity: The Juliet test suite for CodeHawk had some direct traceability to checking

some requirements, but because they were very simple, they may not (by themselves) ade-

quately establish the absence of errors in the tool’s output. The gold standard test suite for

CodeHawk, while not tied to tool requirements explicitly, is expected to check some critical

features of the tool In general, additional testing with complex inputs increases the confidence

on the tool output and performance, and appears to be a good way to supplement the more

basic tests that tend to be used for test coverage.

9



Introduction to Case Studies

6.7 Table T-10, Certification Liaison Process

Obj. 4 Impact of known problems on the Tool Operation Requirements is identified

and analyzed.

Complexity: JPF and CodeHawk, like most formal methods tools, are primarily used for

research. Consequently, known problems with the Tool Operational Requirements are not

easily identified or tracked. In general, research-based tools tend to be under active develop-

ment and may not have sufficiently detailed documentation of error reports or list of known

issues. Also, for tools that have not been in use for a long time or that have not been used

on a broad range of systems, one may not be able to sufficiently capture this information and

may lead to mis-placed confidence on the tool output. This is especially a challenge for JPF,

which does not have a readily available regression test suite.

7 Failure Modes and Effects Analysis

We conducted independent failure modes and effects analyses (FMEA) on both CodeHawk and JPF

as well as the composed tool chain. These are provided separately as an Excel spreadsheet with

tabs that show the tool chain and DO-178C credits claimed by each tool, the tool chain FMEA,

and finally the individual tool FMEAs. For each tool, we composed the FMEA by addressing the

following questions:

Potential Failure Mode What might go wrong?

Potential Failure Effects What is the impact on the end-user?

Severity How severe is this failure? We use a scale of 1–10, with 10 being the highest severity

with a potential safety effect.

Potential Causes What are the root causes of the failure mode?

Occurrence How likely is it that this root cause(s) will occur? We again use a 1–10 scale, where

10 is the highest likelihood.

Current Design Controls Prevention What are the existing processes that prevent either the

cause or the failure mode before it can impact certification?

Current Design Controls Detection What are the existing processes that detect either the

cause or the failure mode to assure it is properly handled during certification?

Detection How easy or difficult is it to detect the failure? We use a 1–10 scale with 10 being very

difficult or not possible to detect.

Upon answering these questions for each identified failure mode, we provide one or more rec-

ommended actions to mitigate the risk. We then use the severity, occurrence, and detection scores

10



Introduction to Case Studies

to compute an aggregate “risk priority number” (RPN). The RPN is the product of these three

component scores. As each component has a range of 1–10, the RPN has a range of 1–1000. A

low number suggests low risk, while a high number suggests great risk. For each identified failure

mode, A potential key characteristic (pKC) is flagged if the severity falls between 5–8, and if the

occurrence is 4 or higher. A critical pKC is flagged if the severity is 9–10, with an occurrence of

4 or higher. These characteristics must be addressed in the tool chain composition with a case

made in the Plan for Software Aspects of Certification (PSAC) to justify how these problems will

be avoided or identified and worked around in the final certification.

7.1 FMEA Results for JPF

Most of the critical considerations we identified relate to user errors, such as insufficient depth

setting or other configuration errors or incorrect assertions that do not match the intended require-

ments. These usage errors are unavoidable in tool design and qualification. The risk mitigation

report looks at life cycle enhancements, namely verification of intermediate artifacts (in this case,

the assertions) and input/output checkers that would include checking the options used in a run.

The remaining concerns are considered unlikely because the qualification process should rule

them out. Errors in the search or backtracking implementation that may cause JPF to miss an

execution path are notable because they are highly severe and undetectable by users. Likewise,

the model classes used as surrogates for native calls should be subject to the qualification process

and are unlikely to go undetected. Not only is the likelihood low that an undetected error would

manifest in certification, the odds that the only errors in the system are in unexplored paths or

improperly abstracted native calls are even lower.

7.2 FMEA Results for CodeHawk

The CodeHawk FMEA also shows some usage errors. These are predominantly related to the exe-

cution of multiple scripts, and the artifacts each develops. Again, there are life cycle enhancements

that can remedy these relatively easily. The execution of the scripts should be automated. This

is not necessarily as trivial as executing each in the proper sequence; but all software can be run

through the same script, so the benefits of constructing the script should easily outweigh the cost.

There are more specific possible implementation errors listed for CodeHawk than JPF, but that

is probably related to having the developer on the team. Kestrel is obviously intimately familiar

with the design and implementation as well as the areas where coding errors could undermine the

formal method most severely or undetectably. The qualification process should make it unlikely

that there are such errors, and even more unlikely that they should manifest for any certifiable

system. The risk mitigation strategies report recommends ways to minimize the impact of such

errors on certification.

There is a medium-priority failure mode relating to long runtime/non-termination. Where JPF

has a depth option to terminate the run perhaps before the search is complete, CodeHawk’s runtime

is a function of the precision of the domains and the complexity of the system. Fine-grained domains

11



Introduction to Case Studies

can result in a state-space explosion that can cause it to run out of memory or run for weeks. This

is not a safety issue as long a care is taken to check that old outputs are not mistaken for fresh

results.

7.3 FMEA Results for Tool Chain

The Tool Chain FMEA shows that the key critical concerns can be mitigated by lowering their

likelihood or raising the likelihood of detection. For example, with two tools cross-checking each

other, the likelihood of unsound results on the same system regarding the same property remain

catastrophic and impossible to detect, but also extremely unlikely. Disagreement (one tool produces

no result) or contradiction (where a property is proven in one tool while another says it doesn’t

hold) are much more likely and trivial to detect.

The highest risk priority score is actually for an unmitigated tool. The next scores relate to

usage: intermediate representation errors, which are addressed in the life cycle section of the risk

mitigation report, and certification credits claimed in error, which is addressed in the assurance

case section of the risk mitigation report. Great care is needed in determining what actions need to

be taken and verifying that the tools comprising the tool chain do indeed perform all those actions,

nothing will generally point to an activity that wasn’t performed.

8 Conclusions

Considering the full set of issues encountered while performing the case studies, we can synthesize

a set of conclusions that can inform future real world formal method tools qualification efforts.

8.1 Hurdles to the Adoption of Research Tools

Qualification of a research tool requires an initial effort to:

• Define the precise tool to be qualified.

• Limit the tools scope to just those features needed for qualification.

• Provide appropriate documentation and tests.

8.2 Importance of Error Handling

Error Handling in a testing tool is extremely important.

• Make extra effort to ensure test results are interpreted correctly.

• Provide procedures to help ensure test cases are valid.

12



Introduction to Case Studies

8.3 Treatment of Incomplete Results

Users must consider how to handle incomplete results when model checkers dont scale to their

models.

• Use complementary analyses to cover state space.

• Qualify techniques for automatically abstracting state space.

• Reformulate models at more abstract level.

8.4 Use of Unqualified Tool Capabilities

Developers should be able to use unqualified features for development activities outside the certi-

fication process. Should qualification process impose requirements to eliminate confusion?

8.5 Dependence on Third Party Tools

Formal methods tools are inherently complex systems. Those that analyze source code must parse,

interpret, and possibly simulate the execution of that source. To do so, tool developers can use

existing tools with reputable pedigrees, but many of these tools have not been qualified. These

tools generally offer many capabilities beyond those necessary to support the formal methods tool.

To facilitate their use for qualified tools, strategies should be developed to qualify only the limited

set of capabilities required by the tool.

13



Introduction to Case Studies

References

[1] CIL Developers. CIL (C Intermediate Language). https://sourceforge.net/projects/cil/.

[2] CIL Team. CIL - Infrastructure for C Program Analysis and Transformation (v. 1.3.7). https:

//people.eecs.berkeley.edu/~necula/cil/.

[3] Free Software Foundation. GCC, the GNU Compiler Collection. https://gcc.gnu.org/.

14

https://sourceforge.net/projects/cil/
https://people.eecs.berkeley.edu/~necula/cil/
https://people.eecs.berkeley.edu/~necula/cil/
https://gcc.gnu.org/

	Introduction
	Motivation for Tool Qualification Case Studies
	Toolchain Context
	Scope of Case Studies
	Issues Uncovered
	Tool Qualification Objectives
	Table T-0, Tool Operational Process
	Table T-1, Tool Planning Process
	Table T-2, Tool Development Process
	Table T-3, Verification of Outputs of Tool Requirements Process
	Table T-6, Testing of Outputs of Integration Process
	Table T-7, Verification of Outputs of Tool Testing
	Table T-10, Certification Liaison Process

	Failure Modes and Effects Analysis
	FMEA Results for JPF
	FMEA Results for CodeHawk
	FMEA Results for Tool Chain

	Conclusions
	Hurdles to the Adoption of Research Tools
	Importance of Error Handling
	Treatment of Incomplete Results
	Use of Unqualified Tool Capabilities
	Dependence on Third Party Tools


