
Framework for Tool-Specific Information in the Plan for 
Software Aspects of Certification (PSAC) for CodeHawk C 

Analyzer (Tool B) 

1 Introduction 

This document is part of a research Case Study simulating a Formal Methods Tool 
qualification exercise under DO-330, for the CodeHawk C Analyzer static analysis tool. 
An actual qualification exercise would produce, among other documents, a Plan for 
Software Aspects of Certification (PSAC) which would include tool-specific information 
for this analyzer as specified by DO-330 10.1.1. Because this is a research study, in 
which there is no actual qualifying organization and accompanying context, and because 
the tool under consideration is a research implementation without specific versions, 
release control, user documentation, or standard configurations, some of the sections of 
an actual PSAC will not be relevant. This document is thus a Framework for an actual 
PSAC, organized according to the DO-330 enumeration of required contents in section 
10.1.1. Accordingly, some sections will represent content that is concrete enough to be 
part of an actual PSAC; some will discuss how a more concrete implementation of this 
tool might fulfill the required contents; and some will not be applicable for the purposes 
of this research simulation. 

 

2 PSAC Tool Information Framework 

[From DO330-10.1.1] The PSAC should include the following information about the 
need for tool qualification: 

A. Identification of the tool and its intended use, including its impact in the software 
life cycle process.  

  

The CodeHawk C Analyzer is a standalone static analysis tool for proving (or disproving) 
memory safety properties of C programs via abstract interpretation. Its inputs are the set 



of source files that would normally constitute a C application for a compile and link 
process described by a Makefile. Its output is a series of intermediate and final XML files 
that record the analysis results. It requires the original C application to be first pre-
processed by the CIL intermediate C language pre-processor [1] (bundled with the tool). 
It requires no other external tool interfaces for its normal operation. 

CodeHawk’s impact in the software life cycle is to assist, automate or eliminate 
verification and validation steps for the C application under development. 

 

B. Details of the certification credit sought through tool use for eliminating, 
reducing, or automating the process(es).  

B.1 DO178C Objectives 

The specific certification objectives to be pursued by this hypothetical qualification 
exercise are those described in DO178C-6.3.4(c) & (f): 

 c. Verifiability: The objective is to ensure the Source Code does not 
contain statements and structures that cannot be verified and that the code does 
not have to be altered to test it.  

 f. Accuracy and consistency: The objective is to determine the correctness 
and consistency of the Source Code, including stack usage, memory usage, fixed 
point arithmetic overflow and resolution, floating-point arithmetic, resource 
contention and limitations, worst-case execution timing, exception handling, use 
of uninitialized variables, cache management, unused variables, and data 
corruption due to task or interrupt conflicts. The compiler (including its options), 
the linker (including its options), and some hardware features may have an 
impact on the worst-case execution timing and this impact should be assessed. 

The CodeHawk C Analyzer can be used to automate (see DO330-10.1.1(b)) the checking 
of those aspects of verifiability, accuracy and consistency of C Source Code above that 
relate to memory safety. 

B.2 Full Verifiability Credit Sought for DO178C Objective 6.3.4(c) 

With respect to the verifiability objective (c) above, a program contains statements that 
cannot be verified only relative to some method of verification. All executable statements 
accepted by the C compiler have a proscribed semantics that change the program state in 
some way. Any given set of test inputs may not execute all of these statements on all 
paths, and some of the intermediate values computed may not reach visible output, so if 
the method of verification is testing, some program statements may not be verifiable. But 
CodeHawk is an abstract interpreter that considers all possible program behaviors over 
all paths, at some level of abstraction, independent of any test inputs. It attempts to prove 
formal conjectures about the possible behaviors of program statements by computing 
constraints (invariants) on the range of values that they may compute. These constraints 



are then used to exclude or include certain classes of runtime behavior. The CodeHawk C 
Analyzer attempts to prove that every aspect of memory reference proscribed by the C 
Language Standard for every executable statement will be within the bounds of a well-
defined memory state. Every statement will be subject to this proof, so relative to the 
verification method (abstract interpretation) there can be no program statements whose 
memory safety properties cannot be verified. Relative to the precision of a given abstract 
domain (intervals, values sets, linear equalities and inequalities), some statements may 
not be able to be proven memory-safe that actually are safe, but all statements are 
amenable to the verification method. Thus CodeHawk’s approach to objective (c) is not 
to check for unverifiable statements, but to actually perform the verification of a 
particular behavior (memory safety) for all statements. It is the verification method itself 
(abstract interpretation) that guarantees complete coverage. For this reason, this PSAC 
would seek full credit for DO178C objective 6.3.4(c). 

B.3 Partial Accuracy and Consistency Credit Sought for DO178C objective 6.3.4(f) 

With respect to the accuracy and consistency objectives (f) above, the CodeHawk C 
Analyzer can be used to prove the subset of behaviors listed above that relate to memory 
safety. This includes aspects such as stack usage, memory usage, fixed point arithmetic 
overflow and resolution, use of uninitialized variables, cache management, and unused 
variables. In addition, CodeHawk can be used to prove other memory-related properties 
not listed above. Because memory safety properties are a subset of the accuracy and 
consistency objectives listed in (f), this PSAC would seek partial credit for DO178C 
objective 6.3.4(f). 

Discussion 

Whenever a tool claims partial credit for an objective, it is often the case that the 
qualifying organization will list any additional actions required to meet that objective 
completely. But in this case, partial credit is sought because the tool completely satisfies a 
subset of a list of features that comprise the objective – the subset that covers memory 
safety. To verify accuracy and consistency for the non-memory safety features 
enumerated in 6.3.4(f) one would need a different tool. There are no more actions that 
can be taken with this tool to qualify for full credit. 

C. Substantiation of the maturity and technical background of any technology or 
theory (for example, mathematical theory) implemented in the tool to show its 
applicability.  

The CodeHawk C Analyzer achieves its proofs of memory safety by implementing a 
static analysis technique known as abstract interpretation. The theory of abstract 
interpretation was originally developed by Patrick and Radia Cousot in the 1970s [1], and 
has been widely studied and implemented since. This method attempts to get around the 
infeasibility of proving properties over all possible (potentially infinite) executions of a 
program by finding a suitably abstract, over-approximation of all program behaviors (that 
is feasible to compute) over which the property also holds. Since the over-approximation 



of behaviors contains all actual behaviors as a subset, the proof extends to all actual 
behaviors. 

The over-approximation is necessarily imprecise, so for some abstract results, a property 
that holds for all actual behaviors may not hold for the over-approximation. There is 
typically a trade-off between precision and computing resources. More precision (better 
chance of containing proofs) requires more resources. The trick is to find an abstraction 
precise enough for a proof that it is still feasible to compute. 

Instead of using actual input values, the method interprets the program over sets of its 
possible input values. Abstract data value domains are used to constrain the possible 
values in these sets. So a program that takes integers as inputs, for examples, might be 
interpreted over the domain of integer intervals instead. Each instruction in the program 
that operates on integers will be abstracted to one that operates on intervals. A subtraction 
instruction (A := B – C), for instance, would yield A = [-4,4] if B = [1,7] and C = [3,5]. 
The interpreter walks the branches in the program’s control flow graph breadth-first, 
propagating all data flows in parallel. Predicates on conditional branches narrow the 
population of the abstract data sets by constraining the possible values that flow through 
to their true and false branches. Cross edges and back edges that join multiple paths 
widen these abstract sets by forming the union of sets of the incoming branches. Loops 
must be iterated to a fixpoint, which typically widens the sets due to back edges. 

The aim is to use an abstract domain that is precise enough to prove the property of 
interest. After the interpretation is finished, each <variable, location> pair of interest will 
have an abstract invariant expressing an over-approximation of the actual values at that 
point (for all executions). If the goal is to prove that an array reference can never be out 
of bounds, for instance, we will attempt to prove that the interval invariant on the index 
variable is contained within the declared upper and lower bounds of the array. It doesn’t 
matter that the invariant may contain values that will never occur, as long as they are all 
contained within the bounds. 

 

D. The TQL proposed for the tool and supporting justification.  

Formal methods tools are considered criteria 2 tools for determining the Tool 
Qualification Level because they are generally used to prove properties, analyze source 
code, and generate tests. As such, they do not produce output that can be part of the 
system software and insert errors. This means the TQL depends on whether the 
certification approach will use formal analysis results to eliminate or reduce verification 
processes beyond those automated by the tool or development processes for the system 
software. For example, a formal method result that division by zero is not possible could 
justify absence of protection mechanisms in the system. This would be a reduction in a 
development process, for systems requiring Software Level (AL) A or B, the formal 
method tool must be qualified with TQL-4. 

 



E. Tool source (for example, in-house, COTS, third party).  

Discussion 

This subsection refers to the tool source from the point of view of the organization 
seeking qualification credit. From the point of view of the authors of this document, 
simulating a qualification exercise for research purposes, the tool source would be “in 
house,” since we are the developers of the tool. If the CodeHawk C analyzer should find 
it’s way into an actual qualification exercise, it is likely that that it would be by license 
from the developers, and thus the source would be “COTS.” 

 

F. The stakeholders involved in the tool qualification and their specific roles and 
responsibilities, including who is responsible for satisfying specific objectives. 

Discussion 

Since this is a research simulation of a qualification, there is no qualifying organization to 
have stakeholders or roles and responsibilities to document here. 

 

G. Description of the Tool Operational Requirements definition process (see 5.1), 
tool operation integration process (see 5.3), and tool operational V&V process (see 
6.2) (or a reference to where these processes will be described).  

Discussion 

This subsection would only be applicable to an actual organization seeking to qualify a 
tool. As a side note, we see no reason why formal methods tools would be treated any 
differently by these requirements than any other tools. 

 

H. Description of the tool operational environment in which the tool will be used.  

The CodeHawk C Analyzer is a research project developed on Mac and Linux. It is 
written in Ocaml and thus can be compiled to run on any platform supported by the 
Ocaml compiler, including Windows. It has only been built and run on Mac/Linux to 
date.  

Discussion 

If this were a PSAC for an actual tool qualification, there would be a specific version of 
the tool that was being qualified, and thus it would have a specific installation/execution 
platform described here. 



 

I. If the tool qualification data is reused, identify previous applications of the tool, 
the strategy and justification for reuse, and any applicable re-qualification activities. 
In the case of a third party tool or a COTS tool, information about previous 
application can be provided by the supplier since it may not be available from the 
users of the tool. See sections 11.2 and 11.3 for reuse of previously qualified tools 
and COTS tools.  

Discussion 

This subsection is not applicable to the present research exercise, since it references the 
prior qualification history of a qualification seeking organization that does not exist. 

 

J. Reference to the TQP, or if no TQP is generated (for TQL-5), reference the data 
to support tool qualification. 

See the separate document: Tool Qualification Plan (TQP) Framework for CodeHawk C 
Analyzer (Tool B). 
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