
Tool Operational Requirements (TOR) Framework for 
CodeHawk C Analyzer (Tool B) 

 

1 Introduction 

This document is part of a research Case Study simulating a Formal Methods Tool 
qualification exercise under DO-330, for the CodeHawk C Analyzer static analysis tool. 
An actual qualification exercise would produce, among other documents, a Tool 
Operational Requirements (TOR) document for this analyzer as specified by DO-330 
10.3.1. Because this is a research study, in which there is no actual qualifying 
organization and accompanying context, and because the tool under consideration is a 
research implementation without specific versions, release control, user documentation, 
or standard configurations, some of the sections of an actual TOR will not be relevant. 
This document is thus a Framework for an actual TOR, organized according to the DO-
330 enumeration of required contents in section 10.3.1. Accordingly, some subsections 
will represent content that is concrete enough to be part of an actual TOR; some will 
discuss how a more concrete implementation of this tool might fulfill the required 
contents; and some will not be applicable for the purposes of this research simulation. 

 

2 TOR Framework 

 [From DO330-10.3.1] The Tool Operational Requirements define the tool’s 
functionality and interface from a software life cycle process perspective (that is, the 
process which uses the tool). The Tool Operational Requirements shall include, as 
applicable: 

A. Description of the context of the tool use, including interfaces with other tools 
and integration of the tool output files into the resultant software.

   



The CodeHawk C Analyzer is a standalone static analysis tool for proving (or disproving) 
memory safety properties of C programs via abstract interpretation. Its inputs are the set 
of source files that would normally constitute a C application for a compile and link 
process described by a Makefile. Its output is a series of intermediate and final XML files 
that record the analysis results. It requires the original C application to be first pre-
processed by the CIL intermediate C language pre-processor [1] (bundled with the tool). 
The CIL pre-processor will, in turn, call the gcc compiler for parsing and macro 
expansion. The CodeHawk C Analyzer requires no other external tool interfaces for its 
normal operation. 

 

B. Description of the tool operational environment(s) (where the tool will be 
installed). 

Discussion 

The CodeHawk C Analyzer is a research project developed on Mac and Linux. It is 
written in Ocaml and thus can be compiled to run on any platform supported by the 
Ocaml compiler, including Windows. It has only been built and tested on Mac/Linux to 
date. If this were a TOR for an actual tool qualification, there would be a specific version 
of the tool that was being qualified, and thus it would have a specific 
installation/execution platform described here. 

 

C. Description of input files, including format, language definition, etc. 

The CodeHawk C Analyzer is implemented as seven separate programs, compiled from 
Ocaml sources, that collective analyze a complete C application for memory safety. The 
seven modules are executed separately from the command line by seven shell scripts, and 
communicate with each other via persistent XML files. Some of the intermediate XML 
files may be regarded as both input and output (output from one analysis phase and input 
to another). The formats and language definitions of the XML files are specific to each 
analysis phase. Only one of these is created by the end user (see below). The others are 
created exclusively by the tool phases.  

The ultimate input is a collection of C source programs (.c and .h files) that constitute a 
complete application for analysis, from the point of view of a build script for the 
application such as a Makefile. CodeHawk uses the open source CIL C preprocessor as a 
front-end, which in turn reads the input project’s Makefile, to collect all of the .c and .h 
sources and preprocess them (by invoking gcc) into a canonical semantic representation. 

CodeHawk itself (the Ocaml software distinct from the CIL pre-processor front-end) 
takes the following proximal input files to begin its analysis: 

 f_cfile.xml: file information for each file f compiled by CIL 



            f/f_ff_cfun.xml: the function semantics for each function ff in f 

 target_files.xml: a listing of all source files included in the linking unit to be 
 analyzed 

 linkunit.xml: lists all source files included in this linking unit and relates local 
 variable and type id's to global id's 

To create the proximal input files, the user first runs the shell script runcilly.sh, which in 
turn invokes CIL on the C source files and produces the f_cfile.xml , f/f_ff_cfun.xml and 
target_files.xml files. The user then runs the shell script chlink.sh on this input file to 
create the linkunit.xml file. 

 

 

D. Description of output files, including format and contents. 

The output files from CodeHawk are a persistent collection of XML files, some of which 
serve as intermediate input to various phases of the analysis, but still may be inspected 
independently by the user. 

For each file f listed in the linkunit.xml file, CodeHawk produces: 



   - f_cfile.xml : definition and declaration information for compilation unit f 

   For each function ff in file f, CodeHawk produces: 

    - f/f_ff_cfun.xml: function semantics 

    - f/f_ff_api.xml : function API 

    - f/f_ff_ppo.xml : primary proof obligations 

   - f/f_ff_spo.xml : secondary proof obligations 

   - f/f_ff_pev.xml : primary proof obligation evidence 

   - f/f_ff_sev.xml : secondary proof obligation evidence 

   - f/f_ff_invs.xml: function invariants 

For an example of how to relate discharged (proven) and open (unproven) proof 
obligations to their source code language constructs, see Appendix A of the Theoretical 
Soundness Issues Report produced as deliverable 2 for this project. 

 

E. Requirements for all the tool functions and technical features used to satisfy the 
identified software life cycle process(es). 

The certification objectives to be pursued by defining these Tool Operational 
Requirements are those described in DO178C-6.3.4(c) & (f): 

 c. Verifiability: The objective is to ensure the Source Code does not 
contain statements and structures that cannot be verified and that the code does 
not have to be altered to test it.  

 f. Accuracy and consistency: The objective is to determine the correctness 
and consistency of the Source Code, including stack usage, memory usage, fixed 
point arithmetic overflow and resolution, floating-point arithmetic, resource 
contention and limitations, worst-case execution timing, exception handling, use 
of uninitialized variables, cache management, unused variables, and data 
corruption due to task or interrupt conflicts. The compiler (including its options), 
the linker (including its options), and some hardware features may have an 
impact on the worst-case execution timing and this impact should be assessed. 

The CodeHawk C Analyzer can be used to automatically check those aspects of 
verifiability, accuracy and consistency of C Source Code that relate to memory safety. 

With respect to the verifiability objective (c), a program contains statements that cannot 
be verified only relative to some method of verification. All executable statements 
accepted by the C compiler have a proscribed semantics that change the program state in 



some way. Any given set of test inputs may not execute all of these statements on all 
paths, and some of the intermediate values computed may not reach visible output, so if 
the method of verification is testing, some program statements may not be verifiable. But 
CodeHawk is an abstract interpreter that considers all possible program behaviors over 
all paths, at some level of abstraction, independent of any test inputs. It attempts to prove 
formal conjectures about the possible behaviors of program statements by computing 
constraints (invariants) on the range of values that they may compute. These constraints 
are then used to exclude or include certain classes of runtime behavior. The CodeHawk C 
Analyzer attempts to prove that every aspect of memory reference proscribed by the C 
Language Standard for every executable statement will be within the bounds of a well-
defined memory state. Every statement will be subject to this proof, so relative to the 
verification method (abstract interpretation) there can be no program statements whose 
memory safety properties cannot be verified. Relative to the precision of a given abstract 
domain (intervals, values sets, linear equalities and inequalities), some statements may 
not be able to be proven memory-safe that actually are safe, but all statements are 
amenable to the verification method. Thus CodeHawk’s approach to objective (c) is not 
to check for unverifiable statements, but to actually perform the verification of a 
particular behavior (memory safety) for all statements. It is the verification method itself 
(abstract interpretation) that guarantees complete coverage. 

With respect to the accuracy and consistency objectives (f), this TOR specifies 
requirements to prove the subset of behaviors listed above that relate to memory safety. 
This includes aspects such as stack usage, memory usage, fixed point arithmetic overflow 
and resolution, use of uninitialized variables, cache management, and unused variables. 
In addition, CodeHawk will prove other memory-related properties not listed above. 

E.1 Operational Requirements for Memory Safety Proof 

Memory safety is usually associated with bounds checking. To establish memory safety, 
however, requires a substantial number of additional properties to be checked, including 
integer under/overflow, whether variables have been properly initialized, whether 
memory has not been freed, and, often overlooked, the validity of casting of operations. 

MITRE Corporation has created a standard, numbered taxonomy of program 
vulnerabilities called the Common Weakness Enumeration (CWE). A subset of these deal 
with undefined memory operations, and the numbering scheme is often used as a way to 
classify memory safety properties. Below we enumerate the Tool Operational 
Requirements for CodeHawk according to our own, more coarse-grained classification of 
these properties that forms the basis for proof obligations, including references to the 
CWE’s covered. It should be noted, however, that the mapping from proof obligation 
categories to CWE’s is only approximate because of the informal definition of most 
CWE’s. Furthermore, the analysis of individual categories of properties cannot be 
considered in isolation, as discharge of many of the proof obligations depends on other 
property classes via the inductive hypothesis (see Tool Requirements Framework for 
CodeHawk C Analyzer, section D). 

E.1.1 Bounds Checking Requirement 



 Requirement E.1.1. CodeHawk shall generate and attempt to discharge proof 
obligations guaranteeing that no memory location in the analyzed C application can be 
referenced (read or written) outside of its declared bounds. 

The proof obligations for bounds checking include index array bounds, pointer 
dereferencing, and pointer arithmetic, and many of the standard library functions that 
write to pointers as a side effect, such as strcpy. They roughly cover the CWE’s shown in 
Table 2. 

 



E.1.2 Initialized Variable Requirement 

 Requirement E.1.2. CodeHawk shall generate and attempt to discharge proof 
obligations guaranteeing that no memory location in the analyzed C application can be 
referenced (read) before it has been initialized. 

The proof obligations for initialized variable include conditions for uninitialized 
variables, uninitialized struct fields, uninitialized array elements, and uninitialized 
regions that are read by library functions such as strcpy. These conditions roughly cover 
the CWE’s listed in Table 3. 

 

E.1.3 Valid Memory Requirement 

 Requirement E.1.3. CodeHawk shall generate and attempt to discharge proof 
obligations guaranteeing that no memory location in the analyzed C application can be 
referenced (read or written) before it has been properly allocated, or after it has been 
freed or gone out of scope. 

These conditions roughly cover the CWE’s listed in Table 4. 

 

E.1.4 Null Dereference Requirement 



 Requirement E.1.4. CodeHawk shall generate and attempt to discharge proof 
obligations guaranteeing that no pointer in the analyzed C application can be 
dereferenced (read or written) while it is NULL. 

This condition roughly covers the CWE’s listed in Table 5. 

 

 

E.1.5 Casts Requirement 

 Requirement E.1.5. CodeHawk shall generate and attempt to discharge proof 
obligations guaranteeing that every cast variable in the analyzed C application has the 
properties expected of the target type. 

The proof obligations for cast operations include both the numeric conversions and 
pointer casts, as well as casts from void. Because types are the basis of discharge for 
many of the bounds-checking proof obligations and casts can arbitrarily change types, it 
is important to verify at the place of the cast that the memory that is being cast has all of 
the properties expected of the target type. Furthermore, when casting from a larger 
numeric type to a smaller numeric type, or from a signed type to unsigned type or vice 
versa, it must be checked that no loss or modification of value occurs. The CWE’s 
covered by cast conditions are shown in Table 6. 

 

E.1.6 Arithmetic Properties Requirement 



 Requirement E.1.6. CodeHawk shall generate and attempt to discharge proof 
obligations guaranteeing that every operation on an arithmetic variable in the analyzed C 
application results in a value consistent with the arithmetic type. 

The proof obligations for arithmetic properties include checking for integer underflow 
and integer overflow and division by zero. They cover the CWE’s listed in Table 7. We 
include the underflow/overflow conditions to enable the use of the inductive hypothesis 
that values have not wrapped around when used in other operations. We include the 
division by zero condition, because it may give rise to crashes. Note that these conditions 
do not include conditions related to pointer arithmetic; conditions related to pointer 
arithmetic are included in the bounds-check conditions. 

 

E.1.7 Other Undefined Behaviors Requirement 

 Requirement E.1.7. CodeHawk shall generate and attempt to discharge proof 
obligations guaranteeing that no reference to a memory location in the analyzed C 
application can lead to the kinds of undefined behaviors enumerated below. 

This remaining category of proof obligations includes a variety of properties that are not 
necessarily related, but grouped together because they are relatively few in number. They 
all relate to conditions that are necessary to avoid undefined behavior, yet for several of 
them we have not found corresponding CWE’s. This may be the case because present-
day compilers in such cases tend to exhibit default behavior that avoids undefined 
behavior, but there is no guarantee that they will continue to do so when more and more 
optimizations are introduced in compilers, and so we do include them. 

• Improper null termination: Proof obligations shall be created for all string operations 
that rely on null termination for correct operation; 

• Uncontrolled format string: Proof obligations shall be created for all format 
arguments to be string literals; 

• Shift operation arguments: Proof obligations shall be created for all shift operations 
that the amount to be shifted does not exceed the size of the operand to be shifted; 

• Common base: Proof obligations shall be created for all pointer subtraction and pointer 
comparison operations that both operands reside in the same memory area, and, for 
subtraction, in the same array. 



• No overlap: Proof obligations shall be created for all calls to library functions that 
require their pointer arguments to not overlap. 

• Allocation base: Proof obligations shall be created for all calls to free to ensure that the 
pointer provided points to the start of a heap allocated memory region. 

 

F. Requirements to address the abnormal activation modes or inconsistent inputs 
that should be detected by the tool. These requirements should consider the impact 
of those modes on the functionality and outputs of the tool. (This item is not 
applicable to TQL-5.) 

There are no requirements for the CodeHawk C Analyzer to detect inconsistency inputs 
because there is no opportunity for users to create inconsistent inputs for the analyzer 
portion of CodeHawk. The input is a complete C application, determined by a Makefile. 
The CIL front-end will first attempt to parse and pre-process the various source files by 
calling the gcc compiler. The compiler itself determines that the input is a valid and 
complete C application and rejects it (with standard compiler error messages) otherwise.  

Discussion 

The user can exercise some control over which abstract domains will be used, and in 
which order, during the generation of invariants. These domains are chosen from a fixed 
list represented by single letters: 

        l: linear equalities 

        s: symbolic sets 

        v: valuesets 

        i: intervals 

A string of these letters, with possible repeats, submitted by the user instructs the abstract 
interpreter to propagate invariants over the program, in successive passes, using the 
domains specified. It is thus possible that a user could submit an input string with 
unrecognized characters, so we could include a requirement in this section for the 
CodeHawk C Analyzer to reject unrecognized characters in the parameter string (normal 
command line validation). It should be noted, though, that unrecognized characters (if 



skipped over silently) cannot cause CodeHawk to behave incorrectly or abnormally. Any 
sequence of valid domain characters describes a valid propagation strategy for the 
abstract interpreter. 

In its current (research) implementation involving seven separate shell scripts to be 
executed by the user in a specific order, CodeHawk has some exposure to abnormal 
activation if a user executes the scripts in the wrong order. This current method of open 
invocation was designed for the benefit of researchers, so CodeHawk itself has no 
specific detection mechanisms or remediations for incorrect shell execution orders. It is 
unlikely, however, that a product version of CodeHawk would be released with this 
unregulated invocation structure. The developers are already experimenting with a single 
Perl script interface that will automate the execution order and validation of the 
constituent shell scripts. 

 

G. The applicable user information, such as a user manual and installation guide or 
a reference to it, if not provided as part of the Tool Requirements data. 

Discussion 

An actual TOR for the qualification of an actual formal methods tool would refer to the 
user documentation for the released version of the tool for which qualification is being 
sought. The CodeHawk C Analyzer that is the object of this case study was produced by 
Kestrel Technology as part of a DHS research project. It is not a publically released 
product, and has no user documentation at present. 

 

H. Description of the operational use of the tool (including selected options, 
parameters values, command line, etc.). 

The various modules of the CodeHawk C Analyzer are executed independently by the 
user from the command line on a common linking unit, with the following shell scripts: 

 runcilly.sh creates the definition/declaration files for each compilation unit and 
 the semantics files for each function (referred to below as f.xml and f/f_ff.xml) 
 and the target_file.xml file which enumerates the files that will comprise the 
 analyzed link unit. 

 chlink.sh creates a linkunit file that contains all global definitions and declaration 
 for the linking unit 

 createprimary.sh creates primary proof obligations and initializes the secondary 
 proof obligation files and function API files 

 createsecondary.sh creates secondary proof obligations 



 generateinvariants.sh generates invariants for individual functions 

 checkpo.sh checks proof obligations and saves the evidence 

 report.sh reports the current status of the proof obligations 

To run an analysis, the user performs the following steps: (the first step must be run in the 
project directory that contains the main makefile; all other steps are to be run in the 
project analysis directory): 

1. Run runcilly.sh (in the directory where the main makefile is located) to create the file 
declaration and function semantics files. 

The script creates: 

     - f_cfile.xml, for each file compiled 

                - f/f_ff_cfun.xml, for each function in f 

     - target_files.xml file listing files included in the linking unit 

 

2. Run chlink.sh to create the linking file. 

The script reads : 

 - target_files.xml file listing files included in the linking unit 

            - for each file f listed: f_cfile.xml 

The script creates:  

 linkunit.xml 

The script updates:  

 for each file f: f_cfile.xml  (adds linking information) 

 

3. Run createprimary.sh to create primary proof obligations. 

The script reads :  

 - linkunit.xml 

           - for each file f in linkunit: f_cfile.xml 



           - for each function ff in f: f/f_ff_cfun.xml 

The script creates:  

 - for each function ff in f:  

  - f/f_ff_api.xml 

  - f/f_ff_ppo.xml 

  - f/f_ff_spo.xml 

 

4. Run generateinvariants.sh to generate invariants of different types (per file f) 

The script reads :  

 - f_cfile.xml 

            - for each function ff in f:  

               - f/f_ff_cfun.xml 

  - f/f_ff_invs.xml (if present) 

                - f/f_ff_ppo.xml 

               - f/f_ff_spo.xml 

The script creates or updates:  

 - for each function ff in f:  

     - f/f_ff_invs.xml 

 

5. Run checkpo.sh to check proof obligations against the invariants generated (per file f) 

The script reads: 

 - f_cfile.xml 

          - for each function ff in f: 

                 - f/f_ff_cfun.xml 

                 - f/f_ff_invs.xml 



                 - f/f_ff_api.xml 

                 - f/f_ff_ppo.xml 

                 - f/f_ff_spo.xml 

                 - f/f_ff_pev.xml  (if present) 

                 - f/f_ff_sev.xml  (if present) 

The script creates or updates:  

 - f/f_ff_pev.xml 

            - f/f_ff_sev.xml 

The script updates:  

 - f/f_ff_api.xml 

 

6. Run createsecondary.sh to create secondary proof obligations from the assumptions 
generated by checkpo 

The script reads:  

 - linkunit.xml 

           - for each file f in linkunit:  

  - f_cfile.xml 

           - for each function ff in f:  

                - f/f_ff_cfun.xml 

                - f/f_ff_spo.xml 

                - f/f_ff_api.xml 

The script updates:  

 - f/f_ff_spo.xml 

 

Repeat steps 4, 5, 6 until no new secondary proof obligations are generated. At any point 
one can run report.sh to view the current status of proof obligations. 



 

I. Performance requirements specifying the behavior of the tool output. 

Discussion 

The output of the CodeHawk C Analyzer is a report – a collection of XML files 
specifying which memory safety conjectures were proved (or not proved) at each 
program location that references memory. The output thus has no “behavior” that would 
be subject to a performance measure. Its size will always be linearly proportional to the 
size of the input C application. The runtime performance of the analyzer itself can vary 
widely depending on program size and complexity of the memory references. Although 
abstract interpretation guarantees finite termination in general, by analyzing a 
conservative abstraction of actual program behaviors, the actual runtime for a particular 
analysis may take unacceptable long, or require unacceptably large amounts of memory, 
to complete. The CodeHawk C Analyzer has many built-in heuristics for limiting 
memory size and running time, but there are no one-size-fits-all performance 
requirements per se, other than the requirement to terminate eventually. This is fairly 
typical of formal methods analyzers that attempt to prove properties about infinite sets of 
behaviors. 

If CodeHawk runs out of available memory, it will be abnormally terminated by the 
operation system. If a user decides that a given analysis run is taking too much time, the 
user will have to terminate CodeHawk abnormally (via operating system intervention). 
CodeHawk will always terminate eventually, though there is no way for the user to gauge 
its progress. Because this is currently a research implementation, there is no guarantee of 
usefulness for partial XML results after abnormal termination. Researchers often do 
restart with partial results. An eventual product implementation would likely close-off 
incomplete XML items and flush write buffers on abnormal termination, if the partial 
results are useful for restarts. Otherwise, it would likely erase any existing XML files in 
the working directory before starting up. 
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