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1 Introduction 

This document is part of a research Case Study simulating a Formal Methods Tool 
qualification exercise under DO-330, for the CodeHawk C Analyzer static analysis tool. 
An actual qualification exercise would produce, among other documents, a Tool 
Operational Verification and Validation Results document describing the qualification 
test results this for analyzer, as specified by DO-330 10.3.4. Because this is a research 
study, in which there is no actual qualifying organization and accompanying context, and 
because the tool under consideration is a research implementation without specific 
versions, release control, user documentation, or standard configurations, we will be 
describing a hypothetical set of results that might be the content of an actual Results 
document. This document is thus a Framework for an actual version of such a document, 
organized according to the DO-330 enumeration of required contents in section 10.3.4. It 
is based on a particular set of test case results that were previously produced to fulfill a 
DHS research contract for the tool’s development. 

 

2 Results Framework 

 [From DO330-10.3.4] The tool operational verification and validation process 
produces the Tool Operational Verification and Validation Results, which should: 

A. For each review, analysis, and test, indicate each procedure that passed or failed 
during the activities and the final pass/fail results.  

Discussion 

As outlined in the Tool Operational Verification and Validation Cases and Procedures 
Framework for CodeHawk C Analyzer document, the test cases chosen for this simulated 
study do not cross foot with the individual requirements for C memory safety enumerated 
in the TOR and TR documents. Those requirements are defined over the space of 
statement variety for the C language. Any single C program will contain many of these 
statement types, and not contain many others. Since we have chosen a test suite 
consisting of seven large C applications, for reasons outlined in Cases and Procedures 
document, each of the seven test runs contains many individual memory constructs upon 
which a qualifying analyzer’s output could be deemed to pass or fail. There is no 
summary judgment per test case. 

If a qualifying organization had chosen instead to use input cases such as the Juliet Test 
Suite, which consists of small, toy programs each containing one vulnerable memory 



construct, the individuation of the test cases would map one-one with the construct-
specific memory safety requirements. 

With the machine-readable metrics from the Gold Standard benchmark over the seven C 
applications we have chosen to use for this study, it would be possible to account for a 
qualifying analyzer’s pass/fail status on each known vulnerability. If the analyzer reports 
the vulnerability, it passes. If not, it fails. This would be a measure of the tool’s 
completeness. Conversely, each vulnerability that the analyzer reports that is not on the 
canonical list would count as a failure of soundness. A total result of no false positives 
would constitute (defeasible) evidence of soundness. 

B. Identify the configuration item or tool version reviewed, analyzed, or tested.  

Discussion 

This is a simulated qualification, referencing a research implementation of the analyzer, 
so there are no actual tool versions to specify. The research version of the tool was built 
and tested on various versions of MacOS and Linux. In a real qualification, there would 
be a specific qualifying version to cite here. 

C. Include the results of tests, reviews, and analyses.  

The following results are taken from the actual testing/verification that was done during 
the DHS Gold Standard project to create an objective vulnerability reference for the 8 C 
test applications. Regarded as a DO-330 testing qualification exercise, it would have been 
rather circular, since the results of the CodeHawk C Analyzer (and the evaluation of these 
results by it’s developers) were taken as canonical. Confidence in these results can now 
be used to objectively qualify other static analyzers. This situation exhibits a general 
problem for formal methods analyzers that take computer programs as input. The 
soundness challenge for such tools is in producing correct results for the (infinite) 
combinatorial complexity of programming language constructs. Small, toy programs will 
not probe this complexity. Real-world applications will, but the correct results will not be 
known in advance. Human analysts must comb through each reported vulnerability, and 
each safety assertion, to verify that all of the results are correct. 

For an example of what a test evaluator would see in the CodHawk output, and how that 
relates to the original source code locations, the reader is referred to Appendix A of the 
Theoretical Soundness Issues Report produced as deliverable 2 for this project. (The 
example is not from the Gold Standard test suite). Below, we will summarize the results 
from the entire 8-application Gold Standard test suite. 

CodeHawk places primary proof obligation of memory safety at every program location 
where an undefined memory reference is possible according to the C language semantics. 
It then uses abstract interpretation to generate invariants at each such location that will 
serve as the premises for a memory safety proof. Many of these obligations will not be 
able to be discharged from the invariants alone. When this occurs, the additional 
invariants needed to discharge the proof are assumed, and placed as pre and post 



conditions on the containing function, or on referenced global data structures. These 
lifted obligations must be satisfied by all callers of the containing function and all 
modifiers (and creators) of the referenced data structures. We call these lifted conditions 
secondary proof obligations. A new round of (abstract) invariant generation will then be 
performed to provide lemmas for these secondary obligations. Undischarged secondary 
obligation will, in turn, be lifted to new secondary obligations on their containing 
functions and data structures. This iterative process continues until no new secondary 
obligations are generated. 

Figure 1 below summarizes the number of primary proof obligations originally placed in 
each of the test applications (see Tool Operational Verification and Validation Cases and 
Procedures Framework for CodeHawk C Analyzer, section B), color-sorted by memory 
safety category (see Tool Operational Requirements (TOR) Framework for CodeHawk C 
Analyzer, section E.1). 

 

Figure 2 below summarizes where these primary obligations were eventually discharged 
for each test application. Statement refers to the obligations that were discharged by 
invariants at their original statement locations, function refers to the obligations that were 
discharged after being lifted to one or more containing functions, and api refers to 
obligations that were discharged after being lifted to a data structure api. Open refers to 
the obligations that could not be automatically discharged by CodeHawk. These represent 
either actual memory vulnerabilities, or locations that must be proved safe by hand. 



 

Figures 3 and 4 below summarize the number, placement and discharge of secondary 
proof obligations for the 8 test applications. 



 

 

 



D. Record and track any discrepancies found using the problem reporting process.  

Discussion 

This element would only be relevant for an actual qualification exercise. 


