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1 Introduction 

This document is part of a research Case Study simulating a Formal Methods Tool 
qualification exercise under DO-330, for the CodeHawk C Analyzer static analysis tool. 
An actual qualification exercise would produce, among other documents, a Tool 
Operational Verification and Validation Cases and Procedures document for this analyzer 
as specified by DO-330 10.3.3. Because this is a research study, in which there is no 
actual qualifying organization and accompanying context, and because the tool under 
consideration is a research implementation without specific versions, release control, user 
documentation, or standard configurations, we will be describing a hypothetical set of 
cases and procedures that might be the content of an actual Cases and Procedures 
document. This document is thus a Framework for an actual version of such a document, 
organized according to the DO-330 enumeration of required contents in section 10.3.3. It 
is based on a particular set of test cases and testing procedures that were previously used 
to fulfill a DHS research contract for the tool’s development. 

 

2 Cases and Procedures Framework 

 [From DO330-10.3.3] The Tool Operational Verification and Validation Cases and 
Procedures detail how the tool operational verification and validation process 
activities are performed). This data should include: 

A. Review and analysis procedures: The scope and depth of the review or analysis 
methods to be used, in addition to the description in the Tool Verification Plan.  

Formal methods tools are often characterized by essential properties that cannot be 
verified through testing. These are properties of soundness -- that an incorrect result will 
never be produced, or completeness -- that all instances of some condition will be 
identified. Requirements that a tool will do something, or won’t do something, lend 
themselves to specific test cases that will demonstrate instances of the required positive 
or negative behavior. All or never requirements, however, can only be verified by proof 
because it is never feasible to test every possible combination of inputs to the tool. Since 
DO-330 tool qualification centers around verification-by-testing, the qualification of 
formal methods tools with soundness or completeness requirements must somehow be fit 
into this testing framework. 

The requirements we list for the CodeHawk C Analyzer in the separate Tool 
Requirements (TR) Framework for CodeHawk C Analyzer document form a formal 
argument for the completeness of CodeHawk with respect to the possible program 
locations where memory safety may be compromised. The requirements jointly specify 



the set of proof obligations, and their placement in the program, that must be discharged 
to support an inductive proof of memory safety over the sematic transfer function defined 
by the C language standard. A verification that this unsafe memory space is exhaustively 
covered by the proof obligations would require a human analysis of the CodeHawk 
source code with respect to the C standard. No amount of testing can verify this. Testing 
can establish whether any particular memory violation in the input C program is 
identified in the CodeHawk output by an undischarged proof obligation, or conversely, 
whether any particular C program location that CodeHawk deems safe is indeed safe in 
the input C program. Testing can also refute the claim of completeness (or soundness 
with respect to proved-safe locations) by finding a counter example. But finding no 
counter examples in any particular test run does not verify that none exist in all other 
runs. 

The best one can do, then, is to expose CodeHawk to a sufficient variety of C program 
constructs to build confidence in the completeness requirement. It is beyond the (funding) 
scope of this research project to create, execute, and review an actual set of qualification 
test cases for CodeHawk. Rather, we are charged with identifying issues that may arise 
when subjecting formal methods tools, such as CodeHawk, to such qualification testing. 
Accordingly, we will discuss an actual set of test cases that were used for formal 
verification of CodeHawk in a related DHS research contract (Gold Standard), and 
contrast this with another set of test cases, the NSA Juliet Test Suite, that one might 
alternatively use in a tool qualification. Both attempt to assess the completeness of C 
memory safety analysis, but they take substantially different approaches to achieving 
sufficient input variety. 

The Juliet Test Suite [1], first developed by NSA and now available from NIST, is a 
collection of over 81,000 small programs with embedded flaws meant to illustrate 181 
Common Weakness Enumeration (CWE) instances. Each program exhibits one CWE and 
is usually paired with a similar program that does not contain the flaw. The suite comes 
with test drivers to automate the test execution and check, and count, the correct 
identifications (true positives), and misidentifications (false positives). The total suite 
functions as a verification of completeness (tool finds all 181 CWEs) and soundness (tool 
produces no false positives) with respect to the space covered by the 181 CWEs. This sort 
of granular, made-to-order isolation of individual flaws makes it possible to trace 
individual test cases to individual requirements, if the requirements were enumerated 
according to the CWE taxonomy. This would help achieve the DO-330 goal of 
traceability (DO-330: 6.1.5) but, as we have discussed in Tool Operational Requirements 
(TOR) Framework for CodeHawk C Analyzer, section E.1, the CWEs themselves do not 
form a rigorous or comprehensive enumeration of C memory safety. The CWEs were 
conceived as an informal enumeration of software bugs, and thus the Juliet Test Suite can 
be effective in assessing how many of these bugs can be found by a tool. But 
completeness (and soundness) with respect to the CWE taxonomy says very little about 
completeness and soundness relative to C memory safety. 

It also appears that the fine-grained traceability that comes from small, toy programs 
competes with the confidence that a tool could find the same flaws in much larger, more 
complicated, real-world programs. One of the unique challenges of static analysis is 



detecting the net program semantics embedded in complex control flow, function 
pointers, data aliasing and indirection. Analyzers that find simple instances in simple 
programs are often unable to find these same instances in many real program contexts. 
But building confidence in real program analysis requires real programs as test cases, and 
these in turn embody many overlapping and intertwined instances of memory 
compromise, defeating the traceability goal of one test case per one requirement. This is 
not so much a feature of formal methods tools as it is a feature of program analysis tools 
that take whole programs as input. An important aspect of whole program analysis is 
dealing with the arbitrarily complex, recursive variety of program forms. Achieving 
appropriately complex input variety, to warrant confidence in completeness and 
soundness, competes with tracing requirements to specific inputs and outputs. Human 
analysts must comb through the aggregate results of a tool and relate them to 
corresponding locations in the input program. This sort of testing is hard to automate, and 
very expensive in terms of human resources. 

This was the motivation behind the DHS Gold Standard project that the CodeHawk C 
Analyzer was originally built for. To obtain an objective metric of the complete set of 
memory flaws in a set of real-world C applications, against which other analyzers could 
eventually be assessed, this human cost must be paid at least once. We began with a 
formal definition of the space of C memory safety and built an analyzer around the 
inductive enumeration of this space. Memory safety proofs automatically produced by the 
analyzer needed to be checked by humans against the actual safety of the input C 
constructs. Proof obligations that could not be automatically discharged (because the 
computed abstract invariants weren’t sufficiently precise) were manually checked to 
determine whether they were in fact unsafe, or whether they could be proven safe with 
stronger invariants. This lead to humans adding the missing lemmas that would complete 
the proofs until all remaining unproven conjectures were determined to be false. 

After this very expensive human verification exercise achieved a sound and complete 
enumeration of the space of memory flaws in 7 real-world C applications (the Gold 
Standard), future verification of other C analyzers could be automated against this 
enumeration in the style of the Juliet suite. The upshot here for D0-330 qualification of C 
analyzers is that subsequent tools could possibly reuse the Gold Standard test applications 
plus the canonical enumeration of their memory safety space as a way to gain confidence 
in soundness and completeness through automated testing. But the first qualification 
lacked both (full) automation and individual traceability. 

As mentioned in the Tool Requirements (TR) Framework for CodeHawk C Analyzer 
document, the requirements we have listed there, and would thus address with test cases 
and procedures in this document, relate externally visible input/output results – 
requirements that specific classes of input constructs are diagnosed with output proofs (or 
non-proofs). Such requirements could be satisfied by analyzers using internal 
technologies other than abstract interpretation. In reference to DO-330 5.2.1.2(k), we 
noted other possible sets of requirements that might be defined to specify the correct 
implementation of internal CodeHawk technologies, including such things as abstract 
domains, program abstraction, fixpoint convergence, proof obligation placement and 
discharge. We will not further discuss test cases and procedures for these additional kinds 



of requirements other than to note that such internal testing may indeed be feasible in the 
case of CodeHawk because of the external visibility of many of its intermediate results in 
the form of persistent xml files. Test cases and procedures could be built around the 
individual modules of CodeHawk with their immediate xml inputs and xml outputs. Had 
CodeHawk not been implemented with this sort of open architecture with visible 
intermediate results, it is not clear how one would go about separately testing the 
implementation of its internal technologies. 

B. Test cases: The purpose of each test case, set of inputs, conditions, and expected 
results to achieve the pass/fail criteria.  

Assuming that we were to use the Gold Standard test suite as the test cases for 
qualification, the test cases would consist of the following seven open source C 
applications. 

Lighttpd   

Lighttpd (www.lighttpd.net) is a web server designed and optimized for high 
performance environments. The application is medium sized, consisting of 89 source 
files, 846 function, and 52,058 lines of code. It is a well-designed program that 
nevertheless poses many challenges for analysis. The features that make it hard to 
analyze include its heavy use of complex, heap-allocated data structures with many 
implicit relationships between its members that must hold for the program to be safe.  

Nagios 

Nagios (www.nagios.org) is a monitoring system that enables organizations to identify 
and resolve IT infrastructure problems, designed with scalability and flexibility in mind. 
The application is medium sized, consisting of 65,133 lines of code. It builds into several 
separate executables. Although not as well designed as lighttpd (for example, it includes 
a large number of global variables) it is nevertheless easier to verify than lighttpd, 
because it has many fewer function inter-dependencies. The main challenge posed by the 
nagios applications is the size of some of the functions, some more than 4000 lines of 
code with complex control flow structure. 

Naim 

Naim (http://naim.n.ml.org) is a console client for AOL instant messenger (AIM), AOL I 
seek you (ICQ), Internet Relay Chat (IRC), and The lily CMC. Naim has a plugin 
architecture that supports the inclusion of third-party plugins. The application is medium 
sized, consisting of 29 source files, 715 functions, and 23,210 lines of code. The main 
challenge for analysis is its heavy use of function pointers to support the plugin 
architecture. 

Pvm 



Pvm (http://www.csm.ornl.gov/pvm/) (parallel virtual machine), developed by Oak Ridge 
National Labs, is an application that permits a heterogeneous collection of computers 
hooked up by a network to be used as a single large parallel computer. 

Irssi 

Irssi (www.irssi.org) is a terminal-based IRC client that uses a text-mode user interface. 

Dovecot 

Dovecot (www.dovecot.org) is an open-source IMAP and POP3 email server for Linux 
systems. 

OpenSSL 

OpenSSL is an open-source implementation of the Secure Sockets Layer and Transport 
Layer Security protocols combined with a full-strength general-purpose cryptography 
library. A large number of Internet-facing applications rely on openSSL for secure 
communication. The application made headlines in April 2014 when it was discovered to 
be vulnerable to an information leak due to a memory over-read: the Heartbleed 
vulnerability. 

The purpose of each of these test cases is to expose the analyzer undergoing qualification 
to a representative sample of real C program constructs and memory vulnerabilities. 
Because the test cases are C applications, and CodeHawk is a C program analyzer, the 
inputs are the programs themselves. If this were the first use of these test applications, 
pre-Gold Standard, there would be no a priori expectations about pass/fail criteria. The 
applications were chosen to represent the variety of programming constructs and memory 
weaknesses that one might find in actual practice. The expectation is that CodeHawk 
should identify all locations that cannot be proven memory safe. In addition, it would be 
expected that all locations CodeHawk claims to be safe actually are safe. The number and 
nature of memory vulnerabilities in the input applications would not initially be known, 
and thus the initial CodeHawk testing would itself be part of the process that determines 
the actual vulnerabilities contained in the test applications. 

On the other hand, if this were a qualification exercise performed post-Gold Standard, the 
seven applications would be accompanied by a machine-readable enumeration of the 
nature and location of each actual memory vulnerability. The expectation is that the 
analyzer undergoing qualification would correctly identify all, or some sufficiently large 
subset, of the actual vulnerabilities, and report no (or few) other locations as vulnerable. 
A qualifying analyzer with any false positives would be shown to be unsound, and one 
with any false negatives would be shown to be incomplete. Finding no false positives and 
no false negatives would not verify either soundness or completeness, but would raise 
confidence in the possession of these formal properties. 

C. Test procedures: The step-by-step instructions for how each test case is to be set 
up and executed, selected inputs, how the test results are evaluated, and the test 
environment to be used.  



The Gold Standard test applications would be set up and executed using their normal 
build Makefiles – the same procedures one would go through to build the applications 
with a compiler/linker. Pre-Gold Standard, the CodeHawk results would need to be 
examined by analysts and compared to the corresponding locations in the C input code to 
determine that “proved safe” locations are safe and that undischarged proof obligations 
represent either actual memory vulnerabilities or constructs whose safety conjectures 
cannot be proven at the precision level of the abstract domains used for the run. 

Post Gold Standard, it would be possible to automate the results evaluation by having the 
computer check (against the Gold Standard benchmark) that all true vulnerabilities have 
been found and that no false ones have. 
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