
Tool Operational Verification and Validation Cases and
Procedures Framework for CodeHawk C Analyzer (Tool B)

1 Introduction

This document is part of a research Case Study simulating a Formal Methods Tool
qualification exercise under DO-330, for the CodeHawk C Analyzer static analysis tool.
An actual qualification exercise would produce, among other documents, a Tool
Operational Verification and Validation Cases and Procedures document for this analyzer
as specified by DO-330 10.3.3. Because this is a research study, in which there is no
actual qualifying organization and accompanying context, and because the tool under
consideration is a research implementation without specific versions, release control, user
documentation, or standard configurations, we will be describing a hypothetical set of
cases and procedures that might be the content of an actual Cases and Procedures
document. This document is thus a Framework for an actual version of such a document,
organized according to the DO-330 enumeration of required contents in section 10.3.3. It
is based on a particular set of test cases and testing procedures that were previously used
to fulfill a DHS research contract for the tool’s development.

2 Cases and Procedures Framework

 [From DO330-10.3.3] The Tool Operational Verification and Validation Cases and
Procedures detail how the tool operational verification and validation process
activities are performed). This data should include:

A. Review and analysis procedures: The scope and depth of the review or analysis
methods to be used, in addition to the description in the Tool Verification Plan.

Formal methods tools are often characterized by essential properties that cannot be
verified through testing. These are properties of soundness -- that an incorrect result will
never be produced, or completeness -- that all instances of some condition will be
identified. Requirements that a tool will do something, or won’t do something, lend
themselves to specific test cases that will demonstrate instances of the required positive
or negative behavior. All or never requirements, however, can only be verified by proof
because it is never feasible to test every possible combination of inputs to the tool. Since
DO-330 tool qualification centers around verification-by-testing, the qualification of
formal methods tools with soundness or completeness requirements must somehow be fit
into this testing framework.

The requirements we list for the CodeHawk C Analyzer in the separate Tool
Requirements (TR) Framework for CodeHawk C Analyzer document form a formal
argument for the completeness of CodeHawk with respect to the possible program
locations where memory safety may be compromised. The requirements jointly specify

the set of proof obligations, and their placement in the program, that must be discharged
to support an inductive proof of memory safety over the sematic transfer function defined
by the C language standard. A verification that this unsafe memory space is exhaustively
covered by the proof obligations would require a human analysis of the CodeHawk
source code with respect to the C standard. No amount of testing can verify this. Testing
can establish whether any particular memory violation in the input C program is
identified in the CodeHawk output by an undischarged proof obligation, or conversely,
whether any particular C program location that CodeHawk deems safe is indeed safe in
the input C program. Testing can also refute the claim of completeness (or soundness
with respect to proved-safe locations) by finding a counter example. But finding no
counter examples in any particular test run does not verify that none exist in all other
runs.

The best one can do, then, is to expose CodeHawk to a sufficient variety of C program
constructs to build confidence in the completeness requirement. It is beyond the (funding)
scope of this research project to create, execute, and review an actual set of qualification
test cases for CodeHawk. Rather, we are charged with identifying issues that may arise
when subjecting formal methods tools, such as CodeHawk, to such qualification testing.
Accordingly, we will discuss an actual set of test cases that were used for formal
verification of CodeHawk in a related DHS research contract (Gold Standard), and
contrast this with another set of test cases, the NSA Juliet Test Suite, that one might
alternatively use in a tool qualification. Both attempt to assess the completeness of C
memory safety analysis, but they take substantially different approaches to achieving
sufficient input variety.

The Juliet Test Suite [1], first developed by NSA and now available from NIST, is a
collection of over 81,000 small programs with embedded flaws meant to illustrate 181
Common Weakness Enumeration (CWE) instances. Each program exhibits one CWE and
is usually paired with a similar program that does not contain the flaw. The suite comes
with test drivers to automate the test execution and check, and count, the correct
identifications (true positives), and misidentifications (false positives). The total suite
functions as a verification of completeness (tool finds all 181 CWEs) and soundness (tool
produces no false positives) with respect to the space covered by the 181 CWEs. This sort
of granular, made-to-order isolation of individual flaws makes it possible to trace
individual test cases to individual requirements, if the requirements were enumerated
according to the CWE taxonomy. This would help achieve the DO-330 goal of
traceability (DO-330: 6.1.5) but, as we have discussed in Tool Operational Requirements
(TOR) Framework for CodeHawk C Analyzer, section E.1, the CWEs themselves do not
form a rigorous or comprehensive enumeration of C memory safety. The CWEs were
conceived as an informal enumeration of software bugs, and thus the Juliet Test Suite can
be effective in assessing how many of these bugs can be found by a tool. But
completeness (and soundness) with respect to the CWE taxonomy says very little about
completeness and soundness relative to C memory safety.

It also appears that the fine-grained traceability that comes from small, toy programs
competes with the confidence that a tool could find the same flaws in much larger, more
complicated, real-world programs. One of the unique challenges of static analysis is

detecting the net program semantics embedded in complex control flow, function
pointers, data aliasing and indirection. Analyzers that find simple instances in simple
programs are often unable to find these same instances in many real program contexts.
But building confidence in real program analysis requires real programs as test cases, and
these in turn embody many overlapping and intertwined instances of memory
compromise, defeating the traceability goal of one test case per one requirement. This is
not so much a feature of formal methods tools as it is a feature of program analysis tools
that take whole programs as input. An important aspect of whole program analysis is
dealing with the arbitrarily complex, recursive variety of program forms. Achieving
appropriately complex input variety, to warrant confidence in completeness and
soundness, competes with tracing requirements to specific inputs and outputs. Human
analysts must comb through the aggregate results of a tool and relate them to
corresponding locations in the input program. This sort of testing is hard to automate, and
very expensive in terms of human resources.

This was the motivation behind the DHS Gold Standard project that the CodeHawk C
Analyzer was originally built for. To obtain an objective metric of the complete set of
memory flaws in a set of real-world C applications, against which other analyzers could
eventually be assessed, this human cost must be paid at least once. We began with a
formal definition of the space of C memory safety and built an analyzer around the
inductive enumeration of this space. Memory safety proofs automatically produced by the
analyzer needed to be checked by humans against the actual safety of the input C
constructs. Proof obligations that could not be automatically discharged (because the
computed abstract invariants weren’t sufficiently precise) were manually checked to
determine whether they were in fact unsafe, or whether they could be proven safe with
stronger invariants. This lead to humans adding the missing lemmas that would complete
the proofs until all remaining unproven conjectures were determined to be false.

After this very expensive human verification exercise achieved a sound and complete
enumeration of the space of memory flaws in 7 real-world C applications (the Gold
Standard), future verification of other C analyzers could be automated against this
enumeration in the style of the Juliet suite. The upshot here for D0-330 qualification of C
analyzers is that subsequent tools could possibly reuse the Gold Standard test applications
plus the canonical enumeration of their memory safety space as a way to gain confidence
in soundness and completeness through automated testing. But the first qualification
lacked both (full) automation and individual traceability.

As mentioned in the Tool Requirements (TR) Framework for CodeHawk C Analyzer
document, the requirements we have listed there, and would thus address with test cases
and procedures in this document, relate externally visible input/output results –
requirements that specific classes of input constructs are diagnosed with output proofs (or
non-proofs). Such requirements could be satisfied by analyzers using internal
technologies other than abstract interpretation. In reference to DO-330 5.2.1.2(k), we
noted other possible sets of requirements that might be defined to specify the correct
implementation of internal CodeHawk technologies, including such things as abstract
domains, program abstraction, fixpoint convergence, proof obligation placement and
discharge. We will not further discuss test cases and procedures for these additional kinds

of requirements other than to note that such internal testing may indeed be feasible in the
case of CodeHawk because of the external visibility of many of its intermediate results in
the form of persistent xml files. Test cases and procedures could be built around the
individual modules of CodeHawk with their immediate xml inputs and xml outputs. Had
CodeHawk not been implemented with this sort of open architecture with visible
intermediate results, it is not clear how one would go about separately testing the
implementation of its internal technologies.

B. Test cases: The purpose of each test case, set of inputs, conditions, and expected
results to achieve the pass/fail criteria.

Assuming that we were to use the Gold Standard test suite as the test cases for
qualification, the test cases would consist of the following seven open source C
applications.

Lighttpd

Lighttpd (www.lighttpd.net) is a web server designed and optimized for high
performance environments. The application is medium sized, consisting of 89 source
files, 846 function, and 52,058 lines of code. It is a well-designed program that
nevertheless poses many challenges for analysis. The features that make it hard to
analyze include its heavy use of complex, heap-allocated data structures with many
implicit relationships between its members that must hold for the program to be safe.

Nagios

Nagios (www.nagios.org) is a monitoring system that enables organizations to identify
and resolve IT infrastructure problems, designed with scalability and flexibility in mind.
The application is medium sized, consisting of 65,133 lines of code. It builds into several
separate executables. Although not as well designed as lighttpd (for example, it includes
a large number of global variables) it is nevertheless easier to verify than lighttpd,
because it has many fewer function inter-dependencies. The main challenge posed by the
nagios applications is the size of some of the functions, some more than 4000 lines of
code with complex control flow structure.

Naim

Naim (http://naim.n.ml.org) is a console client for AOL instant messenger (AIM), AOL I
seek you (ICQ), Internet Relay Chat (IRC), and The lily CMC. Naim has a plugin
architecture that supports the inclusion of third-party plugins. The application is medium
sized, consisting of 29 source files, 715 functions, and 23,210 lines of code. The main
challenge for analysis is its heavy use of function pointers to support the plugin
architecture.

Pvm

Pvm (http://www.csm.ornl.gov/pvm/) (parallel virtual machine), developed by Oak Ridge
National Labs, is an application that permits a heterogeneous collection of computers
hooked up by a network to be used as a single large parallel computer.

Irssi

Irssi (www.irssi.org) is a terminal-based IRC client that uses a text-mode user interface.

Dovecot

Dovecot (www.dovecot.org) is an open-source IMAP and POP3 email server for Linux
systems.

OpenSSL

OpenSSL is an open-source implementation of the Secure Sockets Layer and Transport
Layer Security protocols combined with a full-strength general-purpose cryptography
library. A large number of Internet-facing applications rely on openSSL for secure
communication. The application made headlines in April 2014 when it was discovered to
be vulnerable to an information leak due to a memory over-read: the Heartbleed
vulnerability.

The purpose of each of these test cases is to expose the analyzer undergoing qualification
to a representative sample of real C program constructs and memory vulnerabilities.
Because the test cases are C applications, and CodeHawk is a C program analyzer, the
inputs are the programs themselves. If this were the first use of these test applications,
pre-Gold Standard, there would be no a priori expectations about pass/fail criteria. The
applications were chosen to represent the variety of programming constructs and memory
weaknesses that one might find in actual practice. The expectation is that CodeHawk
should identify all locations that cannot be proven memory safe. In addition, it would be
expected that all locations CodeHawk claims to be safe actually are safe. The number and
nature of memory vulnerabilities in the input applications would not initially be known,
and thus the initial CodeHawk testing would itself be part of the process that determines
the actual vulnerabilities contained in the test applications.

On the other hand, if this were a qualification exercise performed post-Gold Standard, the
seven applications would be accompanied by a machine-readable enumeration of the
nature and location of each actual memory vulnerability. The expectation is that the
analyzer undergoing qualification would correctly identify all, or some sufficiently large
subset, of the actual vulnerabilities, and report no (or few) other locations as vulnerable.
A qualifying analyzer with any false positives would be shown to be unsound, and one
with any false negatives would be shown to be incomplete. Finding no false positives and
no false negatives would not verify either soundness or completeness, but would raise
confidence in the possession of these formal properties.

C. Test procedures: The step-by-step instructions for how each test case is to be set
up and executed, selected inputs, how the test results are evaluated, and the test
environment to be used.

The Gold Standard test applications would be set up and executed using their normal
build Makefiles – the same procedures one would go through to build the applications
with a compiler/linker. Pre-Gold Standard, the CodeHawk results would need to be
examined by analysts and compared to the corresponding locations in the C input code to
determine that “proved safe” locations are safe and that undischarged proof obligations
represent either actual memory vulnerabilities or constructs whose safety conjectures
cannot be proven at the precision level of the abstract domains used for the run.

Post Gold Standard, it would be possible to automate the results evaluation by having the
computer check (against the Gold Standard benchmark) that all true vulnerabilities have
been found and that no false ones have.

References

[1] Tim Boland and Paul E. Black, Juliet 1.1 C/C++ and Java Test Suite, IEEE
Computer (2002), pp. 88-90.

