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@ Program verification uses proof assistants to ensure the validity of
user-provided code annotations.

@ These annotations may express the domain-specific properties of
the code.

@ However, formulating annotations correctly is nontrivial in practice.

@ By correctly, we mean that the annotations formulate stability
properties of an intended mathematical interpretation from control
theory.
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In order to solve these two challenges this work proposes
@ Axiomatization of Lyapunov-based stability as C code annotations,
© Implementation of linear algebra and control theory results in PVS.

Heber Herencia-Zapana,, Gilberto Perez,, P National Institute of Aerospace 5/35



Introduction Linear Map Matrices Invertibility and Isomorphisms Control Theory Control Theory Verification Conclus

@ If there exists a positive definite function V' such that V({(k)) < 1
implies V' (£(k + 1)) < 1 then this function can be used to establish
the stability of the system.
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@ If there exists a positive definite function V' such that V({(k)) < 1
implies V' (£(k + 1)) < 1 then this function can be used to establish
the stability of the system.

@ This Lyapunov function, V, defines the ellipsoid {¢]| V' (§) < 1}, this
ellipsoid plays an important role for the stability preservation at the
code level.

Heber Herencia-Zapana,, Gilberto Perez,, P National Institute of Aerospace 6/35



Introduction Linear Map Matrices Invertibility and Isomorphisms Control Theory Control Theory Verification Conclus

Annotated with assertions in the Hoare style we get
°

{prel}
u = chc+Dcyc
{post1}

{pre2}
Xe = AcXc+chc
{post2}.
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@ To use ellipsoids to formally specify bounded input, bounded state.
@ Typically, an instruction .S would be annotated in the following way:

{reépty=Az+b{y—be &y} (1)

where the pre- and post- conditions are predicates expressing that
the variables belong to some ellipsoid, with
Ep={z:R*"zTP 1z <1} and Q = APAT.
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An ellipsoid-aware Hoare logic

The mathematical theorem that guarantees the relations is :

Theorem

If M, Q are invertible matrices, and
(x—c)TQ Y (x—c) <1and
y=Mzx-+b

then

(y—b— M) (MQMT)~Y(y —b— Mc) <1

We will refer to it as the ellipsoid theorem.
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@ The pre- and post- conditions are expressed as predicates in
ACSI and PVS.

@ The multiplication of a matrix with a vector is defined with function
vect_mult(matrix A, vector x), which returns a vector.
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@ The pre- and post- conditions are expressed as predicates in
ACSI and PVS.

@ The multiplication of a matrix with a vector is defined with function
vect_mult(matrix A, vector x), which returns a vector.

@ Addition and multiplication of 2 matrices, multiplication by a scalar,
and inverse of a matrix are declared as matrix types
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inverse of a matrix A, mat_inverse(A) is defined using the predicate
is_invertible(A) as follows:

/%@ axiom mat.inv_select.i_eq.: (s
@ VmatrixA, integer i, j;

is_invertible(A) && i ==j ==
mat_select(mat_mult(A, mat_inverse(A4)),4,j) =1

axiom mat.inv_select.i_dff j:

VmatrixA, integer i, j;

is_invertible(A) && i! = j ==
mat_select(mat_mult(A, mat_inverse(A4)),4,j) =0
O/

©@ 0 0 0 o b
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Complex constructions or relations can be defined as uninterpreted
predicates. The following predicate is meant to express that vector x
belongs to &p:

T T T - ACSL
0( //@ predicate in_ellipsoid(matrix P, vector x); C)j

Heber Herencia-Zapana,, Gilberto Perez,, P National Institute of Aerospace 12/35
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in_ellipsoid?(P_.0, vect_of_array(xc, 2, floatP_floatM))))))
IMPLIES

in_ellipsoid?(Q, vect_of_array(yc, 2, floatP_floatM0))

pvs
vect_of _array(yc, 2, floatP_floatM0)’vect =
Ac * vect_of _array(xc, 2, floatP_floatM)’vect

For both POs,

@ we must first interpret the uninterpreted types and to prove the
properties that are defined axiomatically.
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in_ellipsoid?(P_.0, vect_of_array(xc, 2, floatP_floatM))))))
IMPLIES

in_ellipsoid?(Q, vect_of_array(yc, 2, floatP_floatM0))

pvs
vect_of _array(yc, 2, floatP_floatM0)’vect =
Ac * vect_of _array(xc, 2, floatP_floatM)’vect

For both POs,

@ we must first interpret the uninterpreted types and to prove the
properties that are defined axiomatically.

@ We must then discharge the verification conditions. This is done
by using PVS and a linear algebra extension of it.
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In order to discharge the PO, the following libraries need to be used:
@ Linear_algebra:
e linear_map, matrices, matrix_operator, block_matrices
@ Control_theory
o ellipsoid, s_procedure_def, shur_formula
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linear_map

T : [n,m,Vector[n] — Vector[m]]

Mapping:TYPE= [# dom: posnat, codom: posnat, mp:
[Vector [dom] ->Vector [codom]] #]
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linear_map

T : [n,m,Vector[n] — Vector[m]]

pvs
Mapping:TYPE= [# dom: posnat, codom: posnat, mp:
[Vector [dom] ->Vector [codom]] #]
(f.9) — [n,m, f'mp(x) + g'mp(z)]
pvs

+(f: Maping, (g: (same_dim?(£f)))): Maping =
f WITH [‘mp:= lambda(x: Vector[f‘dom]): f‘mp(x) + g‘mp(x)]
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linear_map_def

{e(i) eR"i=1,---,n}

unit?(n) (e: [below[n] -> Vector[n]]): =
bool = FORALL (i: below[n]): e(i)*e(i)=1
ortho?(n) (e: [below[n] -> Vector[n]]):
bool = FORALL (i,j: below[n]): (i /= j IMPLIES e(i)*e(j)=0)
v =) (we(i))e(i)
1=1
pvs

vec_expan?(n) (e: [below[n] -> Vector([nll):
bool = FORALL (x: Vector[n]): x = SigmaV(0,n-1,x*e)

Heber Herencia-Zapana,, Gilberto Perez,, P National Institute of Aerospace 17 /35
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linear_map_def

{e(i)) eRYi=1,--- ,n}

base?(n) (e: [below[n] -> Vector[n]]): bool = unit?(n) (e) anpVS
ortho?(n) (e) and vec_expan?(n) (e)

exercise

e(n): [below[n]->Vector[n]] = LAMBDA(j: below[n]): LAMBD
below[n]): IF (i=j) THEN 1 ELSE O ENDIF

Heber Herencia-Zapana,, Gilberto Perez,, P National Institute of Aerospace 18/35
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linear_map_def

{e(i)) eRYi=1,--- ,n}

VS

base?(n) (e: [below[n] -> Vector[n]]): bool = unit?(n) (e) anp
ortho?(n) (e) and vec_expan?(n) (e)

exercise

e(n): [below[n]->Vector[n]] = LAMBDA(j: below[n]): LAMBD
below[n]): IF (i=j) THEN 1 ELSE O ENDIF

exercise

J

((cano_base:LEMMA base?(n) (e(n))
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linear_map_def

-1 -1
WY wiF] =Y hlziF]
1=0 1=0

linear map_e?(h,l,n,m): bool = h‘dom = n and h‘codom = m an
FORALL (x: Vector[1l],F: [below[l]->Vector[n]]):
h‘mp(SigmaV[below[1],n] (0,1-1,x*F)) = SigmaV[below[1l],m] (0,1 -
1,xx(h‘mp o F));

pvs

hlx =yl = hlz]+ hly]
hlax] = ah[z]
additive?(f): bool = FORALL (x,y: Vector[f‘dom]):
fmp(x + y) = £mp(x) + £ ‘mp(y)
homogeneous?(f): bool = FORALL (a: real, x: Vector[f‘dom]):
f‘mp(a*x) = a*f‘mp(x)
linear map?(f): bool = additive?(f) AND homogeneous?(f)

Heber Herencia-Zapana,, Gilberto Perez,, P National Institute of Aerospace 19/35
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linear_map_def

exercise

linear map_characterization: LEMMA FORALL (f: Map(n,n)):
linear map?(f) IFF linear map_e?(n,n) (f)
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matrices

Matrix: TYPE = [# rows: posnat, cols: posnat,
matrix: [below(rows), below(cols) -> real] #]

Heber Herencia-Zapana,, Gilberto Perez,, P National Institute of Aerospace 21/35
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matrices

pvs
Matrix: TYPE = [# rows: posnat, cols: posnat,
matrix: [below(rows), below(cols) -> real] #]
+: (M, N) — [n,m, (i, j) — Mi; + Nij]
pvs

+(M, (N: (same_dim?(M)))): Matrix = M WITH [ ‘matrix :=
LAMBDA (i: below(M‘rows), j: below(M‘cols)):
Mfmatrix(i, j) + Nmatrix(i, j) J;

Heber Herencia-Zapana,, Gilberto Perez,, P National Institute of Aerospace 21/35
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matrices

MsxMt=M"'«xM=1

inverse?(M: Square) (N: Square | N‘rows = M‘rows): bool =
M*x N =TI(M‘rows) and N * M = I(M‘rows)

Heber Herencia-Zapana,, Gilberto Perez,, P National Institute of Aerospace 22/35
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matrices

MsxMt=M"'«xM=1

pvs

[ inverse?(M: Square) (N: Square | N‘rows = M‘rows): bool =
(M * N = I(M‘rows) and N * M = I(M‘rows)

VS

[ invertible?(M: Square): bool = EXISTS (N: (inverse?(M))):

inverse? (M) (N)
: exercise ’—\

-]13
\. \.

\

rinverse,unique: lemma FORALL (M: (invertible?), N, P:
(inverse?(M))): N =P

\
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matrix_operator

L(n,m) : fr—[m,n, (i,7) — f(e(n)(i))(j) = A

L(n,m): [Map_linear(n,m) -> Mat(m,n)] =

(lambda(f: Map_linear(n,m)):

(# rows:= m,cols:= n,matrix:=

lambda(j: below[m],i: below[n]): f‘mp(e(n)(i)) (jI#))

Heber Herencia-Zapana,, Gilberto Perez,, P National Institute of Aerospace 23/35
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matrix_operator

L(n,m) : fr—[m,n, (i,7) — f(e(n)(i))(j) = A

L(n,m): [Map_linear(n,m) -> Mat(m,n)] = —
(lambda(f: Map_linear(n,m)):
(# rows:= m,cols:= n,matrix:=
lambda(j: below[m],i: below[n]): f‘mp(e(n)(i)) (jI#))
T(n,m): Ar— [n,m,x —> Axzx]
pvs

T(n,m): [Mat(m,n) -> Map_linear(n,m)]=
(lambda(A: Mat(m,n)): (#dom:= n,codom:= m,mp:=
lambda(x: Vector[n]): lambda(j: below[m]):
sigma(0,A‘cols-1,lambda(i: below[A‘cols]):
Afmatrix(j,1)*x(1))#))

Heber Herencia-Zapana,, Gilberto Perez,, P National Institute of Aerospace 23/35
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matrix_operator

exercise

J

(Iso: LEMMA bijective?(L(n,m))

exercise

map_matrix_bij: LEMMA FORALL (A: Mat(m,n)):
L(n,m)(T(n,m) (A)) = A
isomap: LEMMA FORALL (f: Map_linear(n,m)):
T(n,m)(L(n,m)(f)) = f

Heber Herencia-Zapana,, Gilberto Perez,, P National Institute of Aerospace 24/35
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matrix_operator

compmult: LEMMA FORALL (g: Map_linear(n,m),f: Map_linear aﬁmw :
L(n,p)(f 0 g = L(m,p) (£)*L(n,m) (g)

pvs

Matrix_inv(n):type= {A: Square | squareMat?(n)(A) and
bijective?(n) (T(n,n) (A))}

Heber Herencia-Zapana,, Gilberto Perez,, P National Institute of Aerospace 25/35
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matrix_operator

compmult: LEMMA FORALL (g: Map_linear(n,m),f: Map_linear aﬁmw :
L(n,p)(f 0 g = L(m,p) (£)*L(n,m) (g)

Matrix_inv(n):type= {A: Square | squareMat?(n)(A) and =
bijective?(n) (T(n,n) (A))}
inv(n): Matriz_inv(n) —  Matriz_inv(n)
A > Lpn((Tan(A)7h)
pvs

(inv(n)(A) = L(n,n) (inverse(n) (T(n,n) (A)))
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How is the inverse?(M)?

exercise

[ inv: LEMMA squareMat?(n) (M) AND bijective?(n) (T(n,n) (M))
IMPLIES inverse?(M) (inv(n) (M))
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matrix_operator

exercise

prod_inv_oper:LEMMA square?(A) and squareMat?(n)(A) and
bijective?(n) (T(n,n) (A)) AND

square?(B) and squareMat?(n)(B) and bijective?(n) (T(n,n) (B))
IMPLIES

inv(n) (A*B)=inv(n) (B)*inv(n) (A)

Heber Herencia-Zapana,, Gilberto Perez,, P National Institute of Aerospace 27/35
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(M M3
M= My M,
M : [rowl, row2, colsl, cols2, (i, j) — M; ;] (2)

pvs

Block Matrix: TYPE = [# rowsl: posnat,rows2: posnat,
colsl: posnat,cols2: posnat,
matrix: [below(rowsl + rows2), below(colsl + cols2) -> real] #]

Heber Herencia-Zapana,, Gilberto Perez,, P National Institute of Aerospace 28/35
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(M M3
v=(i i)

M : [rowl, row2, colsl, cols2, (i, j) — M; ;] (2)

pvs

Block Matrix: TYPE = [# rowsl: posnat,rows2: posnat,
colsl: posnat,cols2: posnat,
matrix: [below(rowsl + rows2), below(colsl + cols2) -> real] #]

Block2M1 : M — [rowsl, colsl, (i, j) — M; ;]

pvs

Block2M1(M): Matrix = (# rows := M‘rowsl, cols := M‘colsi,
matrix := LAMBDA (i: below(M‘rowsl), j: below(M‘colsl)):
M‘matrix(i,j) #)
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schur_formula

(M My
M_<M2 M4)>O (3)

My > 0and (M; — M3(My)" ' M) >0 (4)

[ strict_schur_formula: LEMMA (Block2M2(M) =
transpose(Block2M3(M)) AND invertible?(Block2M4(M)) AND
symmetric?(Block2M1(M)) AND symmetric?(Block2M4(M)))
IMPLIES
(def_pos? (M)

IFF
def pos?(Block2M4(M)) AND def pos?(Block2M1(M) -
| BLock2M3 (M) *inverse (Block2M4 (M) ) *Block2M2 (M) ) ) )
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S-procedure

Thus the implication that must be proved is as follows:
{xTPx <1, and y* < 1}implies (Ax + By)' P(Ax + By) < 1. (5)

Applying the S-procedure the implication 5 is equivalent to: Exist a
JIRSRIN

(Ax + By)T P(Ax + By) — ux’ Px — (1 — p)y* < 0.
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S-procedure

Control_theory

Let the linear functionals o, : R"— > R and consider the following two
conditions
@ Si:Forallk=1,2,...,N, o, > 0implies oy > 0
sl_condition?(m) (beta: fun_constraint(m),f: Map(n,1)):

= FORALL (x: Vector[n]): pos_constraint_point?(m) (beta,x)
IMPLIES f‘mp(x)(0) >= 0

pvs

© S,: Thereexists 7, > 0, k =1,2,..., N such that

ooly) — E]kV:lTkak(y) >0, Vye R"

s2_condition?(m) (beta: fun_constraint(m),f: Map(n,1)):
= EXISTS (r: pos_scalar_family(m)): (FORALL (x: Vector[n]):
f‘mp(x)(0) - sigma[below[m]](0O,m - 1, LAMBDA(i: below([m]):
r(i)*beta(i) ‘mp(x) (0)) >= 0)
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Control_theory

ellipsoid: LEMMA V (n:posnat, Q, M: SquareMat(n), x, y, b, ‘T
Vector([n]):

bijective?(n) (T(n,n) (Q)) AND bijective?(n) (T(n,n) (M))
AND (x-c)*(inv(n) (Q)*(x-c))< 1

AND y=M*x + b

IMPLIES

| (y-b-M*c)*(inv(n) (M (Q*transpose(M)))* (y-b-M*c)) < 1
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Control theory verification

{reépty=Mz+b{y—be s} (6)

@ in ellipsoid?(P, X) and Y=MX+b
IMPLIES
in_ellipsoid? (MQM7T,Y-b)
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{reépty=Mz+b{y—be s} (6)

pvs

@ in ellipsoid?(P, X) and Y=MX+b
IMPLIES
in_ellipsoid? (MQM7T,Y-b)

pvs

@ bijections :LEMMA
[bijective?(Q) (T(2,2)(Q) AND bijective?(2)(T(2,2) (M)
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@ Linear Algebra:
e sigma_lemmas,linear_map, sigma_vector,
linear_map_def,vect_of_vect
e matrices, matrix_operator, matrix_lemmas, block_matrices
@ Control Theory:

e ellipsoid, convex_def, s_procedure_def
e schur_prelim, schur_formula
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