
Apr-19-10

Xiang Yin
John Knight

Department of Computer Science
University of Virginia

University of Virginia 1 Apr-19-10

 Software Systems
 Safety and security are critical concerns
 Formal verification highly desirable

 Increasing size and complexity
 Current approaches not widely applied
 Formal verification needs to become routine

University of Virginia 2 Apr-19-10

  e.g. Floyd-Hoare verification

Formal
Specification
(Z, Statecharts, etc.)

Implementation
(Program in Java, C, etc.)

Compliance
Proof

Very Difficult
Very Complicated

Very Time Consuming

  Correctness Proof

University of Virginia 3 Apr-19-10

Formal
Specification Implementation

R
ef

in
em

en
t

Proof

R
ef

in
em

en
t

Proof

Severe Limitations
On Developers

  Refinement

  e.g. B Method

University of Virginia 4 Apr-19-10

 Focus on functional correctness
 More practical proof structure
 Goals:

 Relevant
 Scalable
 Accessible
 Efficient

This Is Strictly a
Pragmatic Issue

University of Virginia 5 Apr-19-10

 Focus on functional correctness
 More practical proof structure

 Relevant
  Benefit from formal verification

 Scalable
  Applicable to larger systems

 Accessible
  Routine usage

 Efficient
  Acceptable time and resource

This Is Strictly a
Pragmatic Issue

University of Virginia 6 Apr-19-10

  High-level structure of a specification retained in the
implementation
  Specification: contain design information
  Implementation: often similar in structure, at least in partial

  Save design effort
  More maintainable

  e.g. Z schema System operation
  e.g. model-based specifications: states & operations

University of Virginia 7 Apr-19-10

state: TYPE = [# a: int, b: int #]
foo(st: state) : state

type state is
 record
 a: Integer;
 b: Integer;
 end record;

procedure foo(st: in out state);
--# derives st from st;

High-level structure of specification tends to be
retained in the implementation

  Example: Model-based specifications states &
operations:

Z schema System operation

  Advantages to implementer:
  Save design effort, more maintainable

University of Virginia 8 Apr-19-10

state: TYPE = [# a: int, b: int #]
foo(st: state) : state

type state is
 record
 a: Integer;
 b: Integer;
 end record;

procedure foo(st: in out state);
--# derives st from st;

  Implementation I, Specification S: I => S
  pre(S) => pre(I) ˄ post(I) => post(S)

  Weakens the pre-condition
  Decreases non-determinism

  Rely on reverse synthesis:
  Break into two proofs
  Make implication proof between two abstract specifications

  Rely on structural matching hypothesis:
  Pairs of matching elements: types, states, operations
  Implication lemma for each distinct element

University of Virginia 9 Apr-19-10

University of Virginia 10 Apr-19-10

Mechanical proof

Programmers

Bend The
Program To

Make It
Verifiable

University of Virginia 11 Apr-19-10

  Transform implementation to facilitate verification

  Simplify verification conditions
  Reduce complexity introduced in design

  Careful treatment of special cases
  Compact data structures
  Efficient algorithms
  Complexity in the control- and data-flow

  Support proof by parts
  Align the structure

  Matches extracted specification & original specification
  Allows an efficient overall proof structure

University of Virginia 12 Apr-19-10

  A hybrid of metrics for review:
  Element metrics

  Lines of code, number of statements, construct nesting level, etc.
  Complexity metrics

  McCabe cyclomatic complexity, loop nesting level, etc.
  Verification condition metrics

  Number and size of VCs, machine time to analyze the VCs, etc.

  Specification matching metric
  Support proof by parts
  Summary of the structures of the original and the extracted

specifications
  Visually inspected and evaluated match-ratio

  Indicate likely difficulty of proof

University of Virginia 13 Apr-19-10

  Prototype Instantiation
  SPARK Ada implementation
  PVS Specification

  Extraction from annotation
  Proved pre- and post-condition annotation
  Introduced as a proved lemma
  Leave out the unrelated implementation details

  Correctness of the output but not actual algorithm

  e.g.

University of Virginia 14 Apr-19-10

type state is
 record
 a: Integer;
 b: Integer;
 end record;

procedure foo(st: in out state)
--# derives st from st;
--# pre st.a = 0;
--# post st = st~[a => 1];
is
begin
 -- procedure body
 …
end foo;

state: TYPE = [# a: int, b: int #]

foo_pre(st: state): bool = (st`a = 0)

foo_post(st_, st: state): bool =
 (st = st_ WITH [`a := 1])

foo(st: state): state

foo: LEMMA FORALL (st: state):
 foo_pre(st) => foo_post(st,
foo(st))

  Direct extraction from code
  No proper annotation
  Not helpful in abstracting out details
  e.g.

  Skeleton extraction
  Lightweight version, structure only
  Facilitate metric analysis

  Component Reuse & Model Synthesis
University of Virginia 15 Apr-19-10

procedure foo(st: in out state)
is
begin
 foo1(st);
 st.a = 1;
 foo2(st);
end foo;

foo(st: state): state =
 LET st1 = foo1(st) IN
 LET st2 = st1 WITH [`a := 1] IN
 LET st3 = foo2(st2) IN
 st3

  Implication lemma for each pair of matching elements
  Implication theorem as conjunction of all lemmas

  Type Lemma
  Type refinement

  State Lemma
  State match
  State initialization

  Operation Lemma
  Applicability
  Correctness

University of Virginia 16 Apr-19-10

  Operation Lemma
  Set up according to behavior subtyping

  Applicability
  The extracted operation has a weaker pre-condition
  Applicable whenever the original operation is

FORALL st:
 Pre_org(R(st)) => Pre_ext(st)

  Correctness
  The extracted operation has a stronger post-condition if applicable
  When applicable, generate allowed output of the original operation

FORALL st1, st2 | st2 = f(st1):

 Post_ext(st2) AND pre_org(R(st1)) => post_org(R(st2))

University of Virginia 17 Apr-19-10

University of Virginia 18 Apr-19-10

  Target: The Tokeneer ID Station
  Hypothetical secure enclave protection software

  Defined by NSA as security challenge problem
  Developed by Praxis High Integrity Systems

Z
Specification
(117 pages)

SPARK Ada
Implementation

(9939 lines)

Developers

Verifiers

PVS
Specification
(2336 lines)

  Scenario:
  Public available artifacts (developed by others)
  Non-trivial application
  Several thousand lines long
  In a domain requiring high assurance
  Focus on functional proof

University of Virginia 19 Apr-19-10

  Proof: correctness of functionality:
  Different from Praxis’ correctness by construction proof

  Structural matching hypothesis:
  Upon review:

  Source code structure resembled specification closely
  Skeleton extraction:

  Structure match ratio 74.7%

  Verification refactoring:
  Sufficiently similar to proceed without major refactoring

  Specification extraction:
  5622 lines of PVS extracted automatically

University of Virginia 20 Apr-19-10

  Implementation Proof
  Pre- / post-condition annotations, freedom from run-time exceptions
  SPARK toolset: Over 2600 VCs generated, 95% VCs discharged

automatically
  Implication Proof

  Matching elements identified straightforwardly
  Can be partly automatically suggested by names

  Over 300 implication lemmas
  Most TCCs discharged automatically

  10% of the lemmas discharged automatically
  90% required straightforward human intervention

  expansion of function definitions
  introduction of type predicates
  application of extensionality
  etc.

  Complete Proof
  Identified mismatches that were documented design decisions

University of Virginia 21 Apr-19-10

  Proof by parts

  Focus on proof of functional correctness

  Designed to scale for large software systems
  Demonstrated on a program several thousand lines long

  Does not impose restrictions on software development

  Also eases the location of implementation defects

  Infeasible if structural matching hypothesis does not hold
  Verification refactoring can help align the structures

University of Virginia 22 Apr-19-10

