Formal Verification of

Large Software Systems

Xiang Yin

John Knight

Department of Computer Science
University of Virginia

Apr-19-10

" SN
Motivation

m Software Systems
Safety and security are critical concerns
Formal verification highly desirable

Increasing size and complexity
m Current approaches not widely applied
m Formal verification needs to become routlne

Apr-19-10 University of Virginia

" B
Proofs in Traditional Verification

m Correctness Proof

Formal .
e Implementation
SpeC|flcat|on (Program in Java, C, etc.)

(Z, Statecharts, etc.)

4

RN Compliance YiEs
Proof
Very Difficult

m e.g. Floyd-Hoare verification Very Complicated
Very Time Consuming

Apr-19-10 University of Virginia

" B
Proofs in Traditional Verification

m Refinement Severe Limitations
On Developers

Proof Proof "

Formal

Specification Implementation

Reflnementv
Reflnement
v

m e.g. B Method [orew)

Apr-19-10 University of Virginia 3

»
Our Goal

m Focus on functional correctness
m More practical proof structure

m Goals:
Relevant

Scalable

Accessible This Is Strictly a
Efficient Pragmatic Issue

Apr-19-10 University of Virginia

»
Our Goal

m Focus on functional correctness
m More practical proof structure

Relevant
m Benefit from formal verification

Scalable
= Applicable to larger systems

Accessible
= Routine usage

Efficient

m Acceptable time and resource

Apr-19-10 University of Virginia

This Is Strictly a
Pragmatic Issue

T

Semantics
restricted to be
implementable

va

D |

SN

“Standard”

development

process

Semantics-preserving

transformations to reduce
verification complexity

\

Conventional
. . Development
Original]
Specification >|Imp|ementat|on
< A rse Synthesis
Impli&aﬁ&ﬁp ate or complete S R ';
I source-code Annotati -
rooFr 0‘ annotations nnotation Verification}
1 : | Refactoring! y
! Extracted Implementation |
Mechanlc;Lproof Extraction | | Refactored | 4
! [! o |
toshbw = |— — _ _ | Implementation L __ _ !
imp|icaﬂ0‘h_ e S S R o AU‘tO'l'ﬂ'atl'C'Fl'OYdf' !

Apr-19-10

Mechanical ra’i@ : ,,Tl‘ 0CEesSS

to specification
language

ity of Virginia

Hoare verification

" S
Structural Matching Hypothesis

m High-level structure of a specification retained in the
Implementation

Specification: contain design information

Implementation: often similar in structure, at least in partial
m Save design effort
m More maintainable

m e.g.Zschema E=» System operation
m e.g. model-based specifications: states & operations

type state is
record

a: Integer;
state: TYPE = [# a: int, b: int #] [::$> b: Integer;
foo(st: state) : state end record;

procedure foo(st: in out state);
——# derives st from st;

Apr-19-10 University of Virginia

" S
Structural Matching Hypothesis

High-level structure of specification tends to be
retained in the implementation

m Example: Model-based specifications states &

operations:
Z schema E===) System operation
type state is
record
. . : Integer;
S Bt — ST o

end record;

procedure foo(st: in out state);
——# derives st from st;

m Advantages to implementer:
Save design effort, more maintainable

Apr-19-10 University of Virginia

"
Proof by Parts

m Implementation |, Specification S: I => S
pre(S) => pre(I) A post(I) => post(S)
Weakens the pre-condition
Decreases non-determinism

m Rely on reverse synthesis:

Break into two proofs
Make implication proof between two abstract specifications

m Rely on structural matching hypothesis:

Pairs of matching elements: types, states, operations
Implication lemma for each distinct element

Apr-19-10 University of Virginia

Verification Refactoring

Hard to verify

Semantics-preserving 74 -

Original
Implementation

‘ S

Yy

transformations

Easier to verify

Apr-19-10

7 \
< «”

- Y

g

/
%
Y

Refactored
Implementation

University of Virginia

Programmers

Mechanical proof

Bend The
Program To
Make It
Verifiable

10

" S
Verification Refactoring

m Transform implementation to facilitate verification

m Simplify verification conditions

m Reduce complexity introduced in design
Careful treatment of special cases
Compact data structures
Efficient algorithms
Complexity in the control- and data-flow

m Support proof by parts

m Align the structure
Matches extracted specification & original specification
Allows an efficient overall proof structure

Apr-19-10 University of Virginia 11

" S
Metric Analysis

m A hybrid of metrics for review:

Element metrics

m Lines of code, number of statements, construct nesting level, etc.
Complexity metrics

s McCabe cyclomatic complexity, loop nesting level, etc.
Verification condition metrics

» Number and size of VCs, machine time to analyze the VCs, etc.

Specification matching metric
m Support proof by parts

s Summary of the structures of the original and the extracted
specifications

= Visually inspected and evaluated match-ratio

m Indicate likely difficulty of proof

Apr-19-10 University of Virginia 12

» B
The Proof Process

AdaCore GNAT Metric
Praxis SPARK Examiner

= PrOtOtype Instantiation Our code analyzer

SPARK Ada implementation
PVS Specification

Stratego/XT toolset
PVS Theorem Prover

o v Y

I
|
I
|
I /
| | Annotation ; Metric Verification

: Update Yes
I

|
|

Analysis Refactoring
Original
———— I' — '/'i Specification

Implementation Specification Extracted Implication
Proof Extraction Specification Proof

Praxis SPARK
toolset

PVS Theorem Prover }

Our extraction tool }

Apr-19-10 University of Virginia 13

" I
Specification Extraction

m Extraction from annotation
Proved pre- and post-condition annotation
Introduced as a proved lemma

Leave out the unrelated implementation details
m Correctness of the output but not actual algorithm

eg type state is
record
a: Integer;
b: Integer;
end record;

state: TYPE = [# a: int, b: int #]
foo pre(st: state): bool = (st'a = 0)

) foo post(st , st: state): bool =
procedure foo(st: 1in out state) - -

] (st = st WITH ["a := 1])

-—# derives st from st; [:::i} -
--# pre st.a = 0; foo(st: state): state
-—-# post st = st~[a => 1];
s foo: LEMMA FORALL (st: state):
begin foo pre(st) => foo post(st,

—-— procedure body foo(sE)) -
end foo;

Apr-19-10 University of Virginia

" I
Specification Extraction

m Direct extraction from code
No proper annotation
Not helpful in abstracting out details

eg procedure foo(st: in out state)
is foo(st: state): state =
begin LET stl = fool(st) IN
fool (st) ; |:> LET st2 = stl WITH [‘a := 1]
st.a = 1; LET st3 = foo2(st2) IN
foo2 (st); st3
end foo;

m Skeleton extraction
Lightweight version, structure only
Facilitate metric analysis

m Component Reuse & Model Synthesis

Apr-19-10 University of Virginia

IN

15

"
Implication Proof

m Implication lemma for each pair of matching elements
m Implication theorem as conjunction of all lemmas

m Jype Lemma
Type refinement

m State Lemma

State match
State initialization

m Operation Lemma
Applicability
Correctness

Apr-19-10 University of Virginia

" S
Implication Proof

m Operation Lemma
Set up according to behavior subtyping

Applicability
m The extracted operation has a weaker pre-condition

m Applicable whenever the original operation is

FORALL st:
Pre org(R(st)) => Pre ext(st)

Correctness

m The extracted operation has a stronger post-condition if applicable

m When applicable, generate allowed output of the original operation
FORALL stl, st2 | st2 = f(stl):
Post ext (st2) AND pre org(R(stl)) => post org(R(st2))

Apr-19-10 University of Virginia

» I
Evaluation

m Target: The Tokeneer ID Station

Hypothetical secure enclave protection software
= Defined by NSA as security challenge problem
= Developed by Praxis High Integrity Systems

Z
Specification %

& (117 pages)
> |

SPARK Ada
Implementation g
. 9939 lines IR
m Scenario: () f\”‘v V}Zﬁ%
Public available artifacts (developed by others) 2 \g% ; ‘{>
. . . . S
Non-trivial application
Several thousand lines long Verifiers

In a domain requiring high assurance
Focus on functional proof

Apr-19-10 University of Virginia 18

" I
Tokeneer Proof

m Proof: correctness of functionality:
Different from Praxis’ correctness by construction proof

m Structural matching hypothesis:

Upon review:
m Source code structure resembled specification closely

Skeleton extraction:
m Structure match ratio 74.7%

m Verification refactoring:
Sufficiently similar to proceed without major refactoring

m Specification extraction:
95622 lines of PVS extracted automatically

Apr-19-10 University of Virginia

" I
Tokeneer Proof

m Implementation Proof

Pre- / post-condition annotations, freedom from run-time exceptions

SPARK toolset: Over 2600 VCs generated, 95% VCs discharged
automatically

m Implication Proof
Matching elements identified straightforwardly
m Can be partly automatically suggested by names
Over 300 implication lemmas
s Most TCCs discharged automatically
10% of the lemmas discharged automatically
90% required straightforward human intervention
m expansion of function definitions
m introduction of type predicates
m application of extensionality
= efc.
m Complete Proof

|ldentified mismatches that were documented design decisions

Apr-19-10 University of Virginia 20

" J
Conclusion
m Proof by parts

Focus on proof of functional correctness

Designed to scale for large software systems
s Demonstrated on a program several thousand lines long

Does not impose restrictions on software development
Also eases the location of implementation defects

Infeasible if structural matching hypothesis does not hold
m Verification refactoring can help align the structures

Apr-19-10 University of Virginia

21

'_
Questions?

Apr-19-10 University of Virginia

22

