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Preface

This NASA conference publication contains the proceedings of the Second NASA Formal Methods Sympo-
sium (NFM 2010), held at NASA Headquarters, in Washington D.C., USA, on April 13 - 15, 2010.

NFM 2010 is a forum for theoreticians and practitioners from government, academia, and industry, with
the goals of identifying challenges and providing solutions to achieving assurance in safety-critical systems.
Within NASA, for example, such systems include autonomous robots, separation assurance algorithms for
aircraft, and autonomous rendezvous and docking for spacecraft. Moreover, emerging paradigms such as
code generation and safety cases are bringing with them new challenges and opportunities. The focus of
the symposium is on formal techniques, their theory, current capabilities, and limitations, as well as their
application to aerospace, robotics, and other safety-critical systems.

The NASA Formal Methods Symposium (NFM) is a new annual event intended to highlight the state
of formal methods art and practice. It follows the earlier Langley Formal Methods Workshop (LFM) series
and aims to foster collaboration between NASA researchers and engineers, as well as the wider aerospace,
safety-critical and formal methods communities. Since 1990, the proceedings of the symposium and the
previous workshop series have been published as NASA Conference Publications:

1990 First LFM Workshop Hampton, VA NASA-CP-10052
1992 Second LFM Workshop Hampton, VA NASA-CP-10110
1995 Third LFM Workshop Hampton, VA NASA-CP-10176
1997 Fourth LFM Workshop Hampton, VA NASA-CP-3356
2000 Fifth LFM Workshop Williamsburg, VA NASA/CP-2000-210100
2008 Sixth LFM Workshop Newport News, VA NASA/CP-2008-215309
2009 First NFM Symposium Moffett Field, CA NASA/CP-2009-215407
2010 Second NFM Symposium Washington, DC NASA/CP-2010-216215

The specific topics covered by NFM 2010 included but were not limited to: formal verication, including
theorem proving, model checking, and static analysis; automated testing and simulation techniques; model-
based development; techniques and algorithms for scaling formal methods, such as abstraction and symbolic
methods, compositional techniques, as well as parallel and/or distributed techniques; code generation; safety
cases; accident/safety analysis; formal approaches to fault tolerance; theoretical advances and empirical
evaluations of formal methods techniques for safety-critical systems, including hybrid and embedded systems.

Two types of papers were considered: regular papers describing fully developed work and complete
results, and short papers describing interesting work in progress or preliminary results. The symposium
received 50 submissions (35 regular papers and 15 short papers) out of which 24 were accepted (20 regular, 4
short). All submissions went through a rigorous reviewing process, where each paper was read by 4 reviewers.
Submissions and program selections were performed through the EasyChair conference meeting system. In
addition to the refereed papers, the symposium featured a welcome speech given by John Kelly (NASA),
and three invited talks given by Guillaume Brat (Carnegie-Mellon/NASA) on Verification and Validation
of Flight-Critical Systems, John Harrison (Intel) on Formal Methods at Intel - An Overview, and Nikolaj
Bjorner (Microsoft) on Decision Engines for Software Analysis using Satisfiability Modulo Theories Solvers.
The organizers are grateful to the authors for submitting their work to NFM 2010 and to the keynote speakers
for accepting the invitation to present their insights into their research areas.

NFM 2010 would not have been possible without the collaboration of the program committee members
and the external reviewers in paper selection, and the support of the NASA Formal Methods community,
in particular Ben Di Vito, Jim Rash, and Kristin Rozier, in setting up this event. Special thanks go to
Raymond Meyer for the graphical dessign of NFM 2010 visual material.

The NFM 2010 website can be found at http://shemesh.larc.nasa.gov/NFM2010.

April 2010 César Muñoz (Program Chair)
Mike Hinchey (Conference Chair)
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Decision Engines for Software Analysis using Satisfiability
Modulo Theories Solvers

Nikolaj Bjørner
Microsoft Research

Redmond, Washington, USA

Abstract

The area of software analysis, testing and verification is now undergoing a revolution thanks to
the use of automated and scalable support for logical methods. A well-recognized premise is that at
the core of software analysis engines is invariably a component using logical formulas for describing
states and transformations between system states. The process of using this information for discov-
ering and checking program properties (including such important properties as safety and security)
amounts to automatic theorem proving. In particular, theorem provers that directly support common
software constructs offer a compelling basis. Such provers are commonly called satisfiability modulo
theories (SMT) solvers.

Z3 is a state-of-the-art SMT solver. It is developed at Microsoft Research. It can be used to check
the satisfiability of logical formulas over one or more theories such as arithmetic, bit-vectors, lists,
records and arrays. The talk describes some of the technology behind modern SMT solvers, including
the solver Z3. Z3 is currently mainly targeted at solving problems that arise in software analysis and
verification. It has been applied to various contexts, such as systems for dynamic symbolic simulation
(Pex, SAGE, Vigilante), for program verification and extended static checking (Spec#/Boggie, VCC,
HAVOC), for software model checking (Yogi, SLAM), model-based design (FORMULA), security
protocol code (F7), program run-time analysis and invariant generation (VS3). We will describe how
it integrates support for a variety of theories that arise naturally in the context of the applications.
There are several new promising avenues and the talk will touch on some of these and the challenges
related to SMT solvers.
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Verification and Validation of Flight-Critical Systems
Guillaume Brat

Carnegie-Mellon University/NASA
Moffett Field, California, USA

Abstract

For the first time in many years, the NASA budget presented to congress calls for a focused ef-
fort on the verification and validation (V&V) of complex systems. This is mostly motivated by the
results of the VVFCS (V&V of Flight-Critical Systems) study, which should materialize as a a con-
crete effort under the Aviation Safety program. This talk will present the results of the study, from
requirements coming out of discussions with the FAA and the Joint Planning and Development Of-
fice (JPDO) to technical plan addressing the issue, and its proposed current and future V&V research
agenda, which will be addressed by NASA Ames, Langley, and Dryden as well as external partners
through NASA Research Announcements (NRA) calls. This agenda calls for pushing V&V earlier in
the life cycle and take advantage of formal methods to increase safety and reduce cost of V&V. I will
present the on-going research work (especially the four main technical areas: Safety Assurance, Dis-
tributed Systems, Authority and Autonomy, and Software-Intensive Systems), possible extensions,
and how VVFCS plans on grounding the research in realistic examples, including an intended V&V
test-bench based on an Integrated Modular Avionics (IMA) architecture and hosted by Dryden.
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Formal Methods at Intel - An Overview
John Harrison

Intel Corporation
Hillsboro, Portland, USA

Abstract

Since the 1990s, Intel has invested heavily in formal methods, which are now deployed in sev-
eral domains: hardware, software, firmware, protocols etc. Many different formal methods tools and
techniques are in active use, including symbolic trajectory evaluation, temporal logic model check-
ing, SMT-style combined decision procedures, and interactive higher-order logic theorem proving.
I will try to give a broad overview of some of the formal methods activities taking place at Intel,
and describe the challenges of extending formal verification to new areas and of effectively using
multiple formal techniques in combination.
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Automatic Review of Abstract State Machines by
Meta-Property Verification∗

Paolo Arcaini
University of Milan

paolo.arcaini@unimi.it

Angelo Gargantini
University of Bergamo

angelo.gargantini@unibg.it

Elvinia Riccobene
University of Milan

elvinia.riccobene@unimi.it

Abstract

A model review is a validation technique aimed at determining if a model is of sufficient quality
and allows defects to be identified early in the system development, reducing the cost of fixing them.
In this paper we propose a technique to perform automatic review of Abstract State Machine (ASM)
formal specifications. We first detect a family of typical vulnerabilities and defects a developer can
introduce during the modeling activity using the ASMs and we express such faults as the violation of
meta-properties that guarantee certain quality attributes of the specification. These meta-properties
are then mapped to temporal logic formulas and model checked for their violation. As a proof of
concept, we also report the result of applying this ASM review process to several specifications.

1 Introduction
Using formal methods, based on rigorous mathematical foundations, for system design and development
is of extreme importance, especially for high-integrity systems where safety and security are important.
By means of abstract models, faults in the specification can be detected as early as possible with limited
effort. Validation should precede the application of more expensive and accurate verification methods,
that should be applied only when a designer has enough confidence that the specification really reflects
the user perceptions. Otherwise (right) properties could be proved true for a wrong specification.

Model review, also called “model walk-through” or “model inspection”, is a validation technique in
which modeling efforts are critically examined to determine if a model not only fulfills the intended re-
quirements, but also are of sufficient quality to be easy to develop, maintain, and enhance. This process
should, therefore, assure a certain degree of quality. The assurance of quality, namely ensuring read-
ability and avoiding error-prone constructs, is one of the most essential aspects in the development of
safety-critical reactive systems, since the failure of such systems – often attributable to modeling and,
therefore, coding flaws – can cause loss of property or even human life [13]. When model reviews are
performed properly, they can have a big payoff because they allow defects to be detected early in the
system development, reducing the cost of fixing them.

Usually model review, which comes from the code-review idea, is performed by a group of external
qualified people. However, this review process, if done by hand, requires a great effort that might be
tremendously reduced if performed in an automatic way – as allowed by using formal notations – by
systematically checking specifications for known vulnerabilities or defects. The question is what to
check on and how to automatically check the model. In other words, it is necessary to identify classes
of faults and defects to check, and to establish a process by which to detect such deficiencies in the
underlying model. If these faults are expressed in terms of formal statements, these can be assumed as a
sort of measure of the model quality assurance.

In this paper, we tackle the problem of automatically reviewing formal specifications given in terms
of Abstract State Machines (ASMs) [4]. We first detect a family of typical vulnerabilities and defects a
developer can introduce during the modeling activity using the ASMs and we express such faults as the
violation of formal properties. These properties refer to model attributes and characteristics that should
hold in any ASM model, independently from the particular model to analyze. For this reason they are

∗This work was partially supported by the Italian Government under the project PRIN 2007 D-ASAP (2007XKEHFA)
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called meta-properties. They should be true in order for an ASM model to have the required quality
attributes. Therefore, they can be assumed as measures of model quality assurance. Depending on the
meta-property, its violation indicates the presence of actual faults, or only of potential faults.

These meta-properties are defined in terms of temporal logic formulas that use two operators, Always
and Sometime, to capture properties that must be true in every state or eventually true in at least one state
of the ASM under analysis. Then, we translate these temporal formulas to Computational Tree Logic
(CTL) formulas and we exploit the model checking facilities of AsmetaSMV [2, 1], a model checker for
ASM models based on NuSMV [5], to check the meta-property violation.

The choice of defining a model review process for the ASM formal method is due to several reasons.
First, the ASMs are powerful extensions of the Finite State Machines (FSMs), and it has been shown
[4] that they capture the principal models of computation and specification in the literature. Therefore,
the results obtained for the ASMs can be adapted to other state-transition based formal approaches.
Furthermore, the ASMs are endowed with a set of tools [6, 1] (among which a model checker) which
makes it possible to handle and to automate our approach. Finally, ASMs have been widely applied as
a formal method for system specification and development, which makes available a certain number of
nontrivial specifications on which to test our process.

The Abstract State Machine formal method is briefly presented in Section 2. Section 3 defines
a function, later used in the meta-properties definition, that statically computes the firing condition of a
transition rule occurring in the model. Meta-properties that are able to guarantee certain quality attributes
of a specification are introduced in Section 4. In Section 5, we describe how it is possible to automate
our model review process by exploiting the use of a model checker to check the possible violation of
meta-properties. As a proof of concept, in Section 6 we report the results of applying our ASM review
process to a certain number of specifications, going from benchmark models to test the meta-properties,
to ASM models of real case studies of various degree of complexity. In Section 7, we present other works
related to the model review process. Section 8 concludes the paper and indicates some future directions
of this work.

2 Abstract State Machines
Abstract State Machines (ASMs), whose complete presentation can be found in [4], are an extension
of FSMs [3], where states are multi-sorted first-order structures, i.e. domains of objects with functions
and predicates (boolean functions) defined on them, and the transition relation is specified by “rules”
describing how functions change from one state to the next.

Basically, a transition rule has the form of guarded update “if Condition then Updates” where Up-
dates are a set of function updates of the form f (t1, . . . , tn) := t which are simultaneously executed when
Condition is true. f is an arbitrary n-ary function and t1, . . . , tn, t are first-order terms.

To fire this rule in a state si, i ≥ 0, all terms t1, . . . , tn, t are evaluated at si to their values, say
v1, . . . ,vn,v, then the value of f (v1, . . . ,vn) is updated to v, which represents the value of f (v1, . . . ,vn)
in the next state si+1. Such pairs of a function name f , which is fixed by the signature, and an optional
argument (v1, . . . ,vn), which is formed by a list of dynamic parameter values vi of whatever type, are
called locations. They represent the abstract ASM concept of basic object containers (memory units),
which abstracts from particular memory addressing and object referencing mechanisms. Location-value
pairs (loc,v) are called updates and represent the basic units of state change.

There is a limited but powerful set of rule constructors that allow to express simultaneous parallel
actions (par) or sequential actions (seq). Appropriate rule constructors also allow non-determinism
(existential quantification choose) and unrestricted synchronous parallelism (universal quantification
forall).

A computation of an ASM is a finite or infinite sequence s0,s1, . . . ,sn, . . . of states of the machine,
where s0 is an initial state and each sn+1 is obtained from sn by firing simultaneously all of the transition
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rules which are enabled in sn. The (unique) main rule is a transition rule and represents the starting
point of the computation. An ASM can have more than one initial state. A state s which belongs to a
computation starting from an initial state s0, is said to be reachable from s0.

For our purposes, it is important to recall how functions are classified in an ASM model. A first dis-
tinction is between basic functions which can be static (never change during any run of the machine) or
dynamic (may be changed by the environment or by machine updates), and derived functions, i.e. those
coming with a specification or computation mechanism given in terms of other functions. Dynamic func-
tions are further classified into: monitored (only read, as events provided by the environment), controlled
(read and write (i.e. updated by transaction rules)), shared and output (only write) functions.

The ASMETA tool set [1] is a set of tools around the ASMs. Among them, the tools involved in our
model review process are: the textual notation AsmetaL, used to encode fragments of ASM models, and
the model checker AsmetaSMV [2], which is based on the NuSMV model checker [5] to prove temporal
properties on ASM models.

3 Rule Firing Condition
In the following we introduce a method to compute, for each rule of the specification under review, the
firing condition under which the rule is executed. We introduce a function Rule Firing Condition which
returns this condition.

RFC : Rules→Conditions

where Rules is the set of the rules of the ASM M under review and Conditions are boolean predicates
over the state of M. RFC can be statically computed as follows. First we build a static directed graph,
similar to a program control flow graph. Every node of the graph is a rule of the ASM and every edge has
label [u]c representing the conditions under which the target rule is executed. c is a boolean predicate and
[u] is a sequence of logical assignments of the form v = t, being v a variable and t a term. The condition c
must be evaluated under every logical assignment v = t listed in u. Figure 1 reports how to incrementally
build the graph, together with the labels for the edges. By starting from the main rule, the entire graph
is built, except for the rules that are never used or are not reachable from the main rule and for which
the RFC evaluates to false. We assume that there are no recursive calls of ASM rules, so the graph is
acyclic. In general, an ASM rule can call itself (directly or indirectly), but rule recursion is seldom used.
However, recursion is still supported in derived functions, which are often used in ASM specifications.

Parallel rule R
R1 par R2

R
[]true //

[]true

%%KKKKKKKKKKKK R1

R2

Conditional rule R
if c then R1 else R2 endif

R
[]c //

[]¬c

%%KKKKKKKKKKKK R1

R2

Let rule R
let x = t in R1

R
[x=t]true // R1 Forall rule R

forall x in D with a do Rx
R

[x=d1]a
&&

[x=dn]a

88 Rx

Macro call rule R
Rm[t1, .., tn]

R
[x1=t1,...,xn=tn]true// Rm Choose rule R

choose x in D with a do Rx
R

[x=d1]a
&&

[x=dn]a

88 Rx

Figure 1: Schemas for building the graph for RFC
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For this reason the lack of recursive rules does not prevent to write realistic specifications.
To compute the RFC for a rule R, one should start from the rule R and visit the graph backward

until the main rule is reached. The condition RFC(R) is obtained by applying the following three steps.
Initially, Rx = R holds.

1. Expand every occurrence of RFC(Rx) by substi-
tuting it with the conditions under which Rx is
reached, i.e. the labels of the edges entering the
node of Rx. If the graph has the schema shown
besides, one must substitute RFC(Rx) with
[u1](RFC(R1)∧ c1)∨·· ·∨ [un](RFC(Rn)∧ cn)

R1

[u1]c1   A
AA

AA
AA

R2

[u2]c2
��

. . . . . . Rn

[un]cn
vvlllllllllllllllll

Rx

2. Eliminate every logical assignment by applying the following rules:

• Distribute the ∨ (or) over the ∧ (and):
([u1]A1∨·· ·∨ [un]An)∧B≡ [u1](A1∧B)∨·· ·∨ [un](An∧B)

• Distribute the assignments: [u](A∧B)≡ [u]A∧ [u]B

• Apply the assignments: [u,x = t]A≡ [u]A[x← t]

3. Apply again 1 until you reach a rule with no entering edges (main rule).

Example Consider the following example in which y and z are nullary functions of the machine and
$x is a logical variable. The inner rules are labeled for their concise representation in the graph.

main rule R =

par

r1: forall $x in {0,2} with $x < 2 do

r2: if y < $x then

r3: z := y endif

r4: skip

endpar

R
true //

true

%%LLLLLLLLLLLL r1

[$x=0]$x<2
&&

[$x=2]$x<2

88 r2
[]y<$x // r3

r4

To compute the condition under which rule r3 fires, RFC(r3), one must perform the following steps:

1. Apply the expansion of RFC(r3): RFC(r3)≡ RFC(r2)∧ y < $x
2. No assignment to eliminate, expand RFC(r2):

RFC(r3)≡ ([$x = 0](RFC(r1)∧$x < 2)∨ [$x = 2](RFC(r1)∧$x < 2))∧ y < $x
3. Distribute the ∨ over the ∧:

RFC(r3)≡ [$x = 0](RFC(r1)∧$x < 2∧ y < $x)∨ [$x = 2](RFC(r1)∧$x < 2∧ y < $x)
4. Apply the assignments:

RFC(r3)≡ (RFC(r1)∧0 < 2∧ y < 0)∨ (RFC(r1)∧2 < 2∧ y < 2)
RFC(r3)≡ (RFC(r1)∧ y < 0)∨ f alse

5. Expand the definition of RFC(r1) which is true:
RFC(r3)≡ y < 0

4 Meta-properties
In this section we introduce some properties that should be proved in order to ensure that an ASM spec-
ification has some quality attributes. These properties refer to attributes that are defined independently
from the particular ASM specification to be analyzed and they should be true in order to guarantee cer-
tain degree of quality for the ASM model. For this reason we call them meta-properties, and they are
formally defined in the following.
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The violation of a meta-property always means that a quality attribute is not met and may indicate a
potential/actual fault in the model. The severity of such violation depends on the meta-property, each of
which measures the degree of model adequacy to the guidelines of ASM modeling style we introduce in
this paper in order to use the ASM method for safety critical systems. We have identified the following
categories of model quality attributes.

Consistency guarantees that locations (memory units) are never simultaneously updated to different
values (MP1). This fault is known as inconsistent updates and must be removed in order to have a
correct model.

Completeness requires that every behavior of the system is explicitly modeled. This enforces explicit
listing of all the possible conditions in conditional rules (MP2) and the actual updating of controlled
locations (MP7).

Minimality guarantees that the specification does not contain elements – i.e. transition rules, domain
elements, locations, etc. – defined or declared in the model but never used (MP3, MP4, MP5, MP6).
Minimality of the state requires that only the necessary state functions are introduced (MP7). These
defects are also known as over-specification.

4.1 Meta-property definition

To formally specify the above attributes in terms of meta-properties we have identified properties that
must be true in every state and properties that must be eventually true in at least one state of the ASM
under analysis. Given an ASM M and a predicate φ over a state of M, we define the operators Always
and Sometime as follows:

M |= Always(φ) = ∀s0 ∈ S0 ∀s ∈R(s0) : φ(s)
M |= Sometime(φ) = ∃s0 ∈ S0 ∃s ∈R(s0) : φ(s)

where S0 is the set of initial states of M, and R(s0) is the set of all the states reachable from s0. In the
following we present the meta-properties we have introduced, currently support, and use for automatic
review of ASM models.

MP1. No inconsistent update is ever performed

An inconsistent update occurs when two updates clash, i.e. they refer to the same location but are distinct
[7]. If a location is updated by only one rule, no inconsistent update occurs. Otherwise an inconsistent
update is possible. Let’s see these two examples:
main rule r_inc0 =

par

l := 1

l := 2

endpar

main rule r_inc1 =

par

if cond1 then l(a1) := t1 endif

if cond2 then l(a2) := t2 endif

endpar

In the first example, the same location l is updated to two different values (1 and 2) in two rules
having both conditions RFC equal to true; in this case, the inconsistent update is apparent. In the second
example, instead, to prove that the two updates are consistent, one should prove:

Always((cond1∧ cond2∧a1 = a2)→ t1 = t2)

In general, for every pair of rules R1 and R2 that update two locations ( f ,a1) and ( f ,a2) to the values
t1 and t2 respectively, the property:

Always((RFC(R1)∧RFC(R2)∧a1 = a2)→ t1 = t2) (1)

states that the two updates are never inconsistent. The violation of property (1) means that there exists a
state in which R1 and R2 fire, a1 = a2, and t1 6= t2.
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if x > 0 then skip

else

if x <= 0 then skip endif

endif

if a and b then skip

else

if not a then skip endif

endif

Figure 2: Complete and incomplete if

MP2. Every conditional rule must be complete

In a conditional rule R = if c then Rthen endif, without else, the condition c must be true if R is evaluated.
Therefore, in a nested conditional rule, if one does not use the else branch, the last condition must be
true. In Fig. 2 the inner conditional rule is complete in the left-hand code, incomplete in the right-hand
one, since if a is true but b is false, then no branch in the conditional statements is chosen. Property

Always(RFC(R)→ c) (2)

states that, when the conditional rule R is executed, its condition c is evaluated to true. A violation
of property 2 means that there exists a behavior of the system that satisfies RFC(R)∧¬c but it is not
explicitly captured by the model.

Corollary 1: Every Case Rule without otherwise must be complete Since the case rule can be
reduced, by definition [4], to a series of conditional rules, the computation of RFC is straightforward.
The meta-property MP2 is applied to case rules as follows. Let R = switch t caset1 : R1 . . . casetn :
Rn endswitch be a case rule. Its completeness is given by the following property:

Always(RFC(R)→ c1∨ c2 · · ·∨ cn) (3)

where c j is t = t j for each j = 1 . . .n. The violation of the property (3) means that there is a state in which
the case rule R is executed and none of its conditions is true.

MP3. Every rule can eventually fire

Let R be a rule of our ASM model (forall, choose, conditional, update, . . .); to verify that R is eventually
executed, we must prove the following property:

Sometime(RFC(R)) (4)

If the property is proved false, it means that rule R is contained in an unreachable model fragment.

Corollary 2: Every condition in a conditional rule is eventually evaluated to true (and false if the
else branch is given) For every conditional rule, MP3 requires that there exists a path in which its
guard is eventually true and, if the else is given, also a path in which its guard is eventually false. In the
following example the guard of the inner conditional rule is never true.

if x > 0 then

if x < 0 then skip endif

endif

Let Q = if c then Rthen [else Relse] endif be a conditional rule. The property 4 becomes, for the then
and else part, respectively:

Sometime(RFC(Q)∧ c) (5) Sometime(RFC(Q)∧¬c) (6)
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enum domain State = { AWAITCARD | AWAITPIN | CHOOSE | OUTOFSERVICE | OUTOFMONEY}

dynamic controlled atmState: State

dynamic controlled atmInitState: State

dynamic controlled atmErrState: State

dynamic monitored pinCode: Integer

main rule r_Main =

par

if(atmState = atmInitState) then atmState := AWAITPIN endif

if(atmState=AWAITPIN) then atmState := CHOOSE endif

if(atmState=CHOOSE) then atmState := AWAITCARD endif

endpar

default init s0:

function atmInitState = AWAITCARD

function atmErrState = OUTOFSERVICE

function atmState = atmInitState

Figure 3: Over-specified ATM

MP4. No assignment is always trivial

An update l := t is trivial [7] if l is already equal to t, even before the update is applied. This property
requires that each assignment which is eventually performed, will not be always trivial. Let R = l := t
be an update rule. Property

Sometime(RFC(R))→ Sometime(RFC(R)∧ l 6= t) (7)

states that, if eventually updated, the location l will be updated to a new value at least in one state. The
more simple property Sometime(RFC(R)∧ l 6= t) would be false if the update is never performed.

MP5. For every domain element e there exists a location which has value e

Every domain element should be used at least once as location value. In the example of Fig. 3, the
element OUTOFMONEY of the domain State is never used. To check that a domain element e j ∈D is used
as location value, if l1, . . . , ln are all the locations (possibly defined by different function names) taking
value in the domain D, the property

Sometime(l1 = e j ∨ l2 = e j ∨ . . .∨ ln = e j) (8)

states that at least a location once takes the value e j. Note that this property must be restricted to domains
that are only function co-domains: if the domain D is used as domain of an n-ary function with n > 0, all
its elements have to be considered useful, even if property 8 would be false for some e j ∈ D. Otherwise,
if property 8 is false, the element e j may be removed from the domain.

MP6. Every controlled function can take any value in its co-domain

Every controlled function is assigned at least once to each element in its co-domain; otherwise it could be
declared over a smaller co-domain. Let l1 . . . lm be the locations of a controlled function f with co-domain
D = {e1, . . . ,en}. Property

Sometime(l1 = e1∨·· ·∨ lm = e1)∧ . . .∧Sometime(l1 = en∨ . . .∨ lm = en) (9)

states that f takes all the values of its co-domain D.

MP7. Every controlled location is updated and every location is read

This property is obtained combining the results of the previous meta-properties and a static inspection of
the model. It is defined by the following table, which also shows what actions the various results suggest.
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controlled1 initialized2 updated3 always trivial update4 read5 Possible actions
false N/A N/A N/A false remove
true - false N/A false remove
true true false N/A true declare static/add an update
true true true true - declare static

In the example in Fig. 3 the monitored location pinCode is never read; it could be removed. The
controlled atmErrState location is initialized, but never updated nor read; it could be removed. The
controlled atmInitState location is initialized, read, but never updated; it could be declared static. Note
that if a controlled location is never updated, that may suggest that the specification is incomplete and it
misses an update to a part of the controlled state.

5 Meta-Property Verification by Model Checking
To verify (or falsify) the meta-properties introduced in the previous section, we use the AsmetaSMV
tool [2] which is able to prove temporal properties of ASM specifications by using the model checker
NuSMV [5]. The ASM specification M is translated to a NuSMV machine MNuSMV (as explained in [2])
representing the Kripke structure which is model checked to verify a given temporal property. In this
paper we use the CTL (Computation Tree Logic) language to express the properties to be verified by
NuSMV. In NuSMV, a CTL property ψ is true if and only if ψ is true in every initial state of the machine
MNuSMV , i.e. MNuSMV |= ψ iff (MNuSMV ,s0) |= ψ,∀s0 ∈ S0, where S0 is the set of initial states of MNuSMV .
Since the Kripke structure obtained from the ASM may have many initial states, the translation of the
meta-properties as defined in Sect. 4.1 into CTL formulas is not straightforward. The translation of
Always(φ) is simply AG(φ), since MNuSMV |= AG(φ) means that along all paths starting from each initial
state, φ is true in every state (globally), which corresponds to the definition of Always. However, the
translation of Sometime(φ) is not EF(φ), since MNuSMV |= EF(φ) means that there exists at least one path
starting from each initial state containing a state in which φ is true, while Sometime requires only that
there exists at least an initial state from which φ will eventually hold. This means that there are cases in
which EF(φ) is false, since not from every initial state φ will eventually be true, while Sometime(φ) is
true. To prove Sometime(φ) we use the following equivalence:

M |= Sometime(φ)⇔MNuSMV 6|= AG(¬φ)

that means that Sometime(φ) is true if and only if AG(¬φ) is false. We run the model checker with the
property P = AG(¬φ) and if a counter example of P is found, then Sometime(φ) holds, while if P is
proved true, then Sometime(φ) is false.

6 Experimental results
We have implemented a prototype tool, available at [1], that has allowed us to apply our model review
process to three different sets of ASM specifications. The first set Bench contains only the benchmarks
we have explicitly designed to expose the violations of the introduced meta-properties. The set AsmRep
contains models taken from the ASMETA repository which are also available at [1]. Many ASM case
studies of various degree of complexity and several specifications of classical software engineering sys-
tems (like ATM, Dining Philosophers, Lift, etc.) are included in AsmRep. The last set, Stu, contains the

1true if it is a controlled location, false if it is a monitored/static/derived location. Statically checked.
2true if the location is initialized. It is applicable only to controlled locations. Statically checked.
3true if the location is updated. It is applicable only to controlled locations. Checked by MP3.
4true if the update is always trivial. It is applicable only to controlled locations. Checked by MP4.
5true if the location is read at least in one state. Checked by MP3.
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Spec Set # spec. # rules # violations violated MPs (# violations)
Bench 21 384 61 All
AsmRep 18 506 29 MP4(11), MP6(8), MP5(5), MP7(4), MP3(1)
Stu 6 172 38 MP7(11), MP5(9), MP6(9), MP1(3), MP3(3), MP4(3)

Table 1: Experimental results and violations found

models written by our students in a master course in which the ASM method is taught. The results of
our experiments are reported in Table 1 which shows the name of the set, the number of models in it, the
total number of rules in those models, the number of violations we detected, and the violations found in
terms of meta-properties.

As expected our tool was able to detect all the violations in the benchmarks. The student projects
contained several faults, most regarding the model minimality but also some inconsistencies which were
not detected by model simulation. We found also several violations in the models of AsmRep, all of
them regarding model minimality. Note that not all the models in AsmRep could be analyzed, since
AsmetaSMV does not support all the AsmetaL constructs and it can analyze only finite models. We plan
to use SMT solvers and Bounded Model Checking to analyze ASMs with infinite states.

7 Related work

Typical automatic reviews of formal specifications include simple syntax checking and type checking.
This kind of analysis is performed by simple algorithms which are able to immediately detect faults like
wrong use of types, misspelled variables, and so on. Some complex type systems may require proving
of real theorems, like the non-emptiness of PVS types [11]. The review we propose in this paper is more
similar to the kind of reviews proposed by Parnas and his colleagues. In a report about the certification
of a nuclear plant, he observed that “reviewers spent too much of their time and energy checking for
simple, application-independent properties” (like our meta-properties) which distracted them from the
more difficult, safety-relevant issues.” [12]. Tools that automatically perform such checks can save
reviewers considerable time and effort, liberating them to do more creative work.

Our approach has been greatly influenced by the work done by the group lead by Heitmeyer with
the Software Cost Reduction (SCR) method. SCR features a tabular notation which can be checked for
completeness and consistency [8]: completeness guarantees that each function is totally defined by its
table and consistency guarantees that every value of controlled and internal variables is uniquely defined
at every step. In [9] is described a method, similar to ours, to automatically verify the consistency
of a software requirements specification (SRS) written in an SCR-style; properties that describe the
consistency of the model are defined structural properties. The SRS document is translated into a PVS
model where, for each structural property, a PVS theorem is declared. The verification of structural
properties is carried out through the proof of PVS theorems and, for one property, through the model
checking of a CTL property.

Other approaches try to apply analyses similar to those performed in SCR to non-tabular notations.
In [13], the authors present a set of robustness rules (like UML well-formedness rules) that seek to
avoid common types of errors by ruling out certain modeling constructs for UML state machines or
Statecharts. Structural checks over Statecharts models can be formulated by OCL constraints which, if
complex, must be proved by theorem proving. Their work and ours extend the use of meta-properties not
only to guarantee correctness but also to assure high quality standards in case the models are to be used
for safety critical applications.
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8 Conclusions and Future work
We have presented a method to perform automatic model review of ASM specifications. This process
has the aim of guarantee certain quality attributes of models. A given quality attribute is captured by a
meta-property expressed in terms of a CTL formula. The AsmetaSMV model checker for ASMs is used
to detect a possible violation of this meta-property and, therefore, the presence of a possible defect in the
model. These meta-properties can be assumed as measures of model quality assurance.

In the future we plan to improve our process in the following directions. One of the typical shortcom-
ings introduced by a not ASM-expert when modeling with ASMs is the use of the seq rule constructor
when par could be used, instead. This is usually due by a wrong understanding of the simultaneous
parallel execution of function updates. The correct use of a par instead of a seq can improve the quality
of a model in terms of abstraction and minimality. So we plan to investigate this kind of defect and
define suitable meta-properties able to detect it. Another future plan regards the vacuity detection [10] of
(temporal) properties which can be specified for an ASM model. We plan to investigate if it is possible
to detect property vacuity before proving properties. To this purpose, an integration of the AsmetaSMV
system with existing tools able to detect vacuity could be possible.
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Abstract

On recent architectures, a numerical program may give different answers depending on the ex-
ecution hardware and the compilation. Our goal is to formally prove properties about numerical
programs that are true for multiple architectures and compilers. We propose an approach that states
the rounding error of each floating-point computation whatever the environment. This approach is
implemented in the Frama-C platform for static analysis of C code. Small case studies using this
approach are entirely and automatically proved.

1 Introduction

Floating-point computations often appear in current critical systems from domains such as physics,
aerospace system, energy, etc. For such systems, hardwares and softwares play an important role.

All current microprocessor architectures support IEEE-754 floating-point arithmetic [1]. However,
there exist some architecture-dependent issues. For example, the x87 floating-point unit uses the 80-
bit internal floating-point registers on the Intel platform. The fused multiply-add (FMA) instruction,
supported by the PowerPC and the Intel Itanium architectures, computes xy± z with a single rounding.
These issues can introduce subtle inconsistencies between program executions. This means that the
floating-point computations of a program running on different architectures may be different [2].

Static analysis is an approach for checking a program without running it. Deductive verification
techniques which perform static analysis of code, rely on the ability of theorem provers to check valid-
ity of formulas in first-order logic or even more expressive logics. They usually come with expressive
specification languages such as JML [3, 4] for Java, ACSL [5] for C, Spec# [6] for C#, etc. to spec-
ify the requirements. For automatic analysis of floating-point codes, a successful approach is abstract
interpretation based static analysis, that includes Astrée [7, 8] and Fluctuat [9].

Floating-point arithmetic has been formalized since 1989 in order to formally prove hardware compo-
nents or algorithms [10, 11, 12]. There exist less works on specifying and proving behavioral properties
of floating-point programs in deductive verification systems. A work on floating-point in JML for Java is
presented in 2006 by Leavens [13]. Another proposal has been made in 2007 by Boldo and Filliâtre [14].
Ayad and Marché extended this to increase genericity and handle exceptional behaviors [15].

However, these works only follow the strict IEEE-754 standard, with neither FMA, nor extended
registers. Correctly defining the semantics of the common implementations of floating-point is tricky,
because semantics may change according to arguments of compilers and processors. As a result, formal
verification of such programs is a challenge. The purpose of this paper is to present an approach to prove
numerical programs with few restrictions on the compiler and the processor.

More precisely, we require the compiler to preserve the order of operations of the C language and we
only consider rounding-to-nearest mode, double precision numbers and computations. Our approach is
implemented in the Frama-C platform1 associated with Why [16] for static analysis of C code.

This paper is organized as follows. Section 2 presents some basic knowledge needed about floating-
point arithmetic, including the x87 unit and the FMA. Section 3 presents a bound on the rounding error

∗This work was supported by the Hisseo project, funded by Digiteo (http://hisseo.saclay.inria.fr/).
1http://frama-c.cea.fr/
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of a computation in all possible cases (extended registers, FMA). Two small case studies are presented
in Section 4. These examples illustrate our approach and show the difference of the results between the
usual (but maybe incorrect) model and our approach.

2 Floating-point Arithmetic

2.1 The IEEE-754 floating-point standard

The IEEE-754 standard [1] for floating-point arithmetic was developed to define formats and behaviors
for floating-point numbers and computations. A floating-point number x in a format (p,emin,emax), where
emin and emax are the minimal and maximal unbiased exponents and p is the precision, is represented by
the triplet (s,m,e) so that

x = (−1)s×2e×m (1)

where s ∈ {0,1} is the sign of x, e is any integer so that emin ≤ e≤ emax, m (0≤m < 2) is the significand
(in p bits) of the representation.

We only consider the binary 64-bit format (usually double in C or Java language), that satisfies the
format (1) with (53,−1022,1023), as it concentrates all the problems. Our ideas could be re-used in
other formats.

When approximating a real number x by its rounding ◦(x), a rounding error happens. We here
consider only round-to-nearest mode, that includes both the default rounding mode (round-to-nearest,
ties to even) and the new round-to-nearest, ties away from zero, of the revision of the IEEE-754 standard.
In radix 2 and round-to-nearest mode, a bound on the error is known [17].

If | ◦ (x)| ≥ 2emin , x is called normal number. In other words, it is said to be in the normal range. We
then bound the relative error: ∣∣∣∣

x−◦(x)
x

∣∣∣∣≤ 2−p. (2)

For smaller | ◦ (x)|, the value of the relative error becomes large (up to 0.5). In that case, x is in the
subnormal range and we prefer a bound based on the absolute error:

|x−◦(x)| ≤ 2emin−p. (3)

2.2 Floating-point computations depend on the architecture

With the same program containing floating-point computations, the result may be different depending on
the compiler and the processor. We present in this section some architecture-dependent issues resulting
in such problems.

A first cause is the fact that some processors (IBM PowerPC or Intel/HP Itanium) have a fused
multiply-add (FMA) instruction which computes (x× y)± z as if with unbounded range and precision,
and rounds only once to the destination format. This operation can speed up and improve the accuracy
of dot product, matrix multiplication and polynomial evaluation, but few processors now support it. But
how should a× b + c× d be computed? When a FMA is available, the compiler may choose either
◦(a×b+◦(c×d)), or ◦(◦(a×b)+ c×d), or ◦(◦(a×b)+◦(c×d)) which may give different results.

Another well-known cause of discrepancy happens in the IA32 architecture (Intel 386, 486, Pentium
etc.) [2]. The IA32 processors feature a floating-point unit called "x87". This unit has 80-bit registers in
"double extended" format (64-bit significand and 15-bit exponent), often associated to the long double
C type. When using the x87 mode, the intermediate calculations are computed and stored in the x87
registers (80 bits). The final result is rounded to the destination format. Extended registers may also
lead to double rounding, where floating-point results are rounded twice. For instance, the operations are
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computed in the long double type of x87 floating-point registers, then rounded to IEEE double precision
type for storage in memory. Double rounding may yield different result from direct rounding to the
destination type.

An example is given in the following figure: we assume x is near the midpoint c of two consecutive
floating-point numbers a and b in the destination format. Using round-to-nearest, with single rounding,
x is rounded to b. However, with double rounding, it may firstly be rounded towards the middle c and
then be rounded to a (if a is even). The results obtained in the two cases are different.

xa bc

This is illustrated by the program of Figure 1. In this example, y = 2−53 + 2−64 and x are exactly
representable in double precision. The values 1 and 1+2−52 are two consecutive floating-point numbers.
With strict IEEE-754 double precision computations for double type, the result obtained is z = 1+2−52.
Otherwise, on IA32, if the computations on double is performed in the long double type inside x87
unit, then converted to double precision, z = 1.0.

i n t main ( ) {
double x = 1 . 0 ;
double y = 0x1p−53 + 0x1p−64; / / y = 2−53 +2−64

double z = x + y ;
p r i n t f ( " z=%a \ n " , z ) ;

}

Figure 1: A simple program giving different answers depending on the architecture.

Another example which gives inconsistencies in result between x87 and SSE[2] is presented in Fig-
ure 2. This example will be presented and reused in Section 4. In this example, we have a function
int sign(double x) which returns a value which is either −1 if x < 0, or 1 if x ≥ 0. The function
int eps_line(double sx, double sy, double vx, double vy) then makes a direction decision
depending on the sign of a few floating-point computations. We execute this program on SSE unit and
obtain that Result = 1. When it is performed on IA32 inside x87 unit, the result is Result = -1.

i n t s i g n ( double x ) {
i f ( x >= 0) re turn 1 ;
e l s e re turn −1;

}
i n t e p s _ l i n e ( double sx , double sy , double vx , double vy ) {

re turn s i g n ( sx∗vx+sy∗vy )∗ s i g n ( sx∗vy−sy∗vx ) ;
}
i n t main ( ) {

double sx = −0x1 .0000000000001 p0 ; / / sx = −1−2−52

double vx = −1.0;
double sy = 1 . 0 ;
double vy = 0x1 . f f f f f f f f f f f f f p −1; / / vy = 1−2−53

i n t r = e p s _ l i n e ( sx , sy , vx , vy ) ;
p r i n t f ( " R e s u l t = %d \ n " , r ) ;

}

Figure 2: A more complex program giving different answers depending on the architecture.
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3 Hardware-independent bounds for floating-point computations

As the result of floating-point computations may depend on the compiler and the architecture, static
analysis is the perfect tool, as it will verify the program without running it, therefore without enforcing
the architecture or the compiler. As we want both correct and interesting properties on a floating-point
computation without knowing which rounding will be in fact executed, the chosen approach is to consider
only the rounding error. This will be insufficient in some cases, but we believe this can give useful and
sufficient results in most cases.

3.1 Rounding error in 64-bit rounding, 80-bit rounding and double rounding

We know that the choice between 64-bit, 80-bit and double rounding is the main reason that causes the
discrepancies of result. We prove a rounding error bound that is valid whatever the hardware, and the
chosen rounding. We denote by ◦64 the round-to-nearest in the double 64-bit type. We denote by ◦80
the round-to-nearest to the extended 80-bit registers.

Theorem 1. For a real number x, let�(x) be either ◦64(x), or ◦80(x), or the double rounding ◦64(◦80(x)).

We have either
(
|x| ≥ 2−1022 and

∣∣∣∣
x−�(x)

x

∣∣∣∣≤ 2050×2−64 and |�(x)| ≥ 2−1022
)

or
(
|x| ≤ 2−1022 and |x−�(x)| ≤ 2049×2−1086 and |�(x)| ≤ 2−1022) .

This theorem is the basis of our approach to correctly prove numerical programs whatever the hard-
ware. These bounds are tight as they are reached in all cases where � is the double rounding. They are
a little bigger than the ones for 64-bit rounding (2050 and 2049 instead of 2048) for both cases. These
bounds are therefore both correct, very tight, and just above the 64-bit’s.

As 2−1022 is a floating-point number, we have �(2−1022) = 2−1022. As all rounding modes are
monotone2, �(x) is also monotone. Then |x| ≥ 2−1022 implies |�(x)| ≥ 2−1022 and vice versa.

Now let us prove the bounds of Theorem 1 on the rounding error for all possible values of �.

3.1.1 Case 1, �(x) = ◦64(x): Rounding error in 64-bit rounding

Here, we have p = 53 and emin = −1022. Therefore the results of Section 2.1 give the following
error bounds that are smaller than the desired ones. Therefore Theorem 1 holds in 64-bit rounding.

64

Theorem 1

0

2−1022

+∞
|x−�(x)| ≤ 2049×2−1086

|x−◦64(x)| ≤ 2−1075

∣∣∣∣
x−◦64(x)

x

∣∣∣∣≤ 2−53

∣∣∣∣
x−�(x)

x

∣∣∣∣≤ 2050×2−64

Figure 3: Rounding error in 64-bit rounding vs. Theorem 1

3.1.2 Case 2, �(x) = ◦80: Rounding error in 80-bit rounding

We consider here the 80-bit registers used in x87. They have a 64-bit significand and a 15-bit expo-
nent. Thus, p = 64 and the smallest positive number in normal range is 2−16382.

The error bounds of Section 2.1 are much smaller in this case than Theorem 1’s except in the case
where |x| is between 2−16382 and 2−1022. There, we have |x−◦(x)| ≤ 2−64×|x| ≤ 2−64×2−1022 = 2−1086.

2A monotone function f is a function such that, for all x and y, x≤ y implies f (x)≤ f (y).
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80

Theorem 1

0

2−1022

2−16382 +∞

|x−�(x)| ≤ 2049×2−1086

|x−◦80(x)| ≤ 2−1086

∣∣∣∣
x−◦80(x)

x

∣∣∣∣≤ 2−64

∣∣∣∣
x−�(x)

x

∣∣∣∣≤ 2050×2−64

Figure 4: Rounding error in 80-bit rounding vs. Theorem 1

So, all bounds are much smaller than that of Theorem 1 so Theorem 1 holds in 80-bit rounding.

3.1.3 Case 3, �(x) = ◦64(◦80(x)): Rounding error in double rounding

The bounds here will be that of Theorem 1. We split in two cases depending on the value of |x|.
Normal range. We first assume that |x| ≥ 2−1022. We bound the relative error by some computations

and the previous formulas:
∣∣∣∣
x−◦64(◦80(x))

x

∣∣∣∣≤
∣∣∣∣
x−◦80(x)

x

∣∣∣∣+
∣∣∣∣
◦80(x)−◦64(◦80(x))

x

∣∣∣∣≤ 2−64 +
∣∣∣∣
◦80(x)−◦64(◦80(x))

◦80(x)
× ◦80(x)

x

∣∣∣∣
≤ 2−64 +2−53× (2−64 +1)≤ 2050×2−64

Subnormal range. We now assume that |x| ≤ 2−1022. The absolute error to bound is |x−◦64(◦80(x))|.
We have two cases depending on whether x is in the 80-bit normal or subnormal range.

If x is in the 80-bit subnormal range, then |x|< 2−16382 and
|x−◦64(◦80(x))| ≤ |x−◦80(x)|+ |◦80(x)−◦64(◦80(x))| ≤ 2−1086 +2−1075 ≤ 2049×2−1086.

If x is in the 80-bit normal range, then 2−16382 ≤ |x|< 2−1022 and
|x−◦64(◦80(x))| ≤ |x−◦80(x)|+ |◦80(x)−◦64(◦80(x))| ≤ 2−64×|x|+2−1075 ≤ 2049×2−1086.

Then Theorem 1 holds in double rounding. In conclusion, Theorem 1 is proved for all 3 roundings.

We use the Coq library developed with the Gappa tool with the help of the Gappa tactic [18] to
prove the correctness of Theorem 1. The corresponding theorem and proof (228 lines) in Coq is avail-
able at http://www.lri.fr/~nguyen/research/rnd_64_80_post.html. The formal proof exactly
corresponds to the one described in the preceding Section. It is not very difficult, but needs many com-
putations and a very large number of subcases. The formal proof gives a very strong guarantee on this
result, allowing its use in the Frama-C platform.

3.2 Hardware and compiler-independent proofs of numerical programs

3.2.1 Rounding error in presence of FMA

Theorem 1 gives rounding error formulas for various roundings denoted by � (64-bit, 80-bit and
double rounding). Now, let us consider the FMA that computes x× y+ z with one single rounding. The
question is whether a FMA was used in a computation. We therefore need an error bound that covers all
the possible cases.

The idea is very simple: we consider a FMA as a rounded multiplication followed by a rounded
addition. And we only have to consider another possible “rounding” that is the identity: �(x) = x.

This specific “rounding” magically solves the FMA problem: the result of a FMA is �1(x× y + z),
that may be considered as �1(�2(x× y)+ z) with �2 being the identity. So we handle in the same way
all operations even in presence of FMA or not, by considering one rounding for each basic operation
(addition, multiplication. . . ). Of course, this “rounding” easily verifies the formulas of Theorem 1.
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3.2.2 Proofs of programs

What is the use of this odd rounding? The idea is that each basic operation (addition, subtraction,
multiplication, division and square root) will be considered as rounded with a � that may be one of the
four possible roundings. Let us go back to the computation of a*b+c*d: it becomes�(�(a×b)+�(c×
d)) with each� being one of the 4 roundings. It gives us 64 possibilities. In fact, only 45 possibilities are
allowed (for example, the addition cannot be exact). But all the real possibilities are included in all the
considered possibilities. And all considered possibilities have a rounding error bounded by Theorem 1.

So, by considering the identity as a rounding like the others, we handle all the possible uses of the
FMA in the same way as we handle multiple roundings. Note that absolute value and negation may
produce a rounding if we put a 80-bit number into a 64-bit number.

The idea now is to do forward analysis of the rounding errors, that is to say propagate the errors
and bound them at each step of the computation. Therefore, we have put the formulas of Theorem 1 as
postconditions of each floating-point operation in the Frama-C platform to look into the rounding error
of the whole program. Based on the work of [15], we create a new “pragma” called multirounding to
implements this. Ordinarily, the pragma directive is the method specified by the C standard for providing
additional information to the compiler, beyond what is conveyed in the language itself; here, it lets
Frama-C know that floating-point computations may be done with extended registers and/or FMA.

In our pragma, each floating-point number is represented by two values, an exact one (a real value,
as if no rounding occurred) and a rounded one (the true floating-point value). At each computation, we
are only able to bound the difference between these two values, without knowing the true rounded value.

Theorem 2. Let � be an operation among addition, subtraction, multiplication, division, square root,
negation and absolute value. Let x = �(y,z) be the exact result of this operation (without rounding).
Then, whatever the architecture and the compiler, the computed result x̃ is such that

If |x| ≥ 2−1022, then x̃ ∈
[
x−2050×2−64×|x| , x+2050×2−64×|x|

]
\
]
−2−1022 , 2−1022

[
.

If |x| ≤ 2−1022, then x̃ ∈
[
x−2049×2−1086 , x+2049×2−1086

]
∩
[
−2−1022 , 2−1022

]
.

This is straightforward as the formulas of Theorem 1 subsume all possible roundings (64 or 80-bit)
and operations (using FMA or not), whatever the architecture and the compiler choices.

Theorem 3. If we define each result of an operation by the formulas of Theorem 2, and if we are able to
deduce from these intervals an interval I for the final result, then the really computed final result is in
I whatever the architecture and the compiler that preserves the order of operations.

This is proved by using Theorem 2 and minding the FMA and the order of the operations.
The next question is the convenience of this approach. We have a collection of inequalities that might

be useless. They are indeed useful and practical as we rely on the Gappa tool [19, 20] that is intended
to help verifying and formally proving properties on numerical programs. Formulas of Theorem 1 have
been chosen so that Gappa may take advantage of them and give an adequate final rounding error.

We may have chosen other formulas for Theorem 1 (such as |�(x)− x| ≤ 2050× 2−64|x|+ 2049×
2−1086 or |�(x)−x| ≤max

(
2050×2−64|x|,2049×2−1086

)
but those are not as conveniently handled by

Gappa as the chosen ones.

4 Case Studies

4.1 Double rounding example

The first example is very easy. It concerns the program of Figure 1. In this program, the result may either
be 1 or 1 + 2−52, depending on the arguments of compiler we use. We add to the original program an
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assertion written in ACSL [5]. By using Frama-C/Why and thanks to the Gappa prover, we automatically
prove that in every architecture or compiler, the result of this program is always in [1, 1+2−52].

4.2 Avionics example

We now present a more complex case study containing floating-point computations to illustrate our
approach. This example is part of KB3D [21]3, an aircraft conflict detection and resolution program.
The aim is to make a decision corresponding to value −1 and 1 to decide if the plane will go to its
left or its right. Note that KB3D is formally proved correct using PVS and assuming the calculations
are exact [21]. However, in practice, when the value of the computation is small, the result may be
inconsistent or incorrect. The original code is in Figure 2 and may give various answers depending
on the architecture/compilation. To prove the correctness of this program which is independent to the
architecture/compiler, we need to modify this program to know whether the answer is correct or not.

The modified program (See Figure 5) provides an answer that may be 1, −1 or 0. The idea is that,
if the result is nonzero, then it is correct (meaning the same as if the computations were done on real
numbers). If the result is 0, it means that the result may be under the influence of the rounding errors and
the program is unable to give a certified answer.

In the original program, the inconsistency of the result is derived from the function int sign(double
x). To use this function only at the specification level, we define a logic function logic integer
l_sign (real x) with the same meaning. Then we define another function int sign (double x,

#pragma J e s s i e F l o a t M o d e l ( m u l t i r o u n d i n g )
#pragma J e s s i e I n t e g e r M o d e l ( math )

/ /@ l o g i c i n t e g e r l _ s i g n ( r e a l x ) = ( x >= 0 . 0 ) ? 1 : −1;

/∗@ r e q u i r e s e1 <= x−\ e x a c t ( x ) <= e2 ;
@ ensures \ abs ( \ r e s u l t ) <= 1 &&
@ ( \ r e s u l t != 0 ==> \ r e s u l t == l _ s i g n ( \ e x a c t ( x ) ) ) ;
@∗ /

i n t s i g n ( double x , double e1 , double e2 ) {
i f ( x > e2 ) re turn 1 ;
i f ( x < e1 ) re turn −1;
re turn 0 ;

}

/∗@ r e q u i r e s
@ sx == \ e x a c t ( sx ) && sy == \ e x a c t ( sy ) &&
@ vx == \ e x a c t ( vx ) && vy == \ e x a c t ( vy ) &&
@ \ abs ( sx ) <= 100 .0 && \ abs ( sy ) <= 1 0 0 . 0 &&
@ \ abs ( vx ) <= 1 . 0 && \ abs ( vy ) <= 1 . 0 ;
@ ensures
@ \ r e s u l t != 0
@ ==> \ r e s u l t == l _ s i g n ( \ e x a c t ( sx ) ∗ \ e x a c t ( vx ) + \ e x a c t ( sy ) ∗ \ e x a c t ( vy ) )
@ ∗ l _ s i g n ( \ e x a c t ( sx ) ∗ \ e x a c t ( vy )−\ e x a c t ( sy ) ∗ \ e x a c t ( vx ) ) ;
@∗ /

i n t e p s _ l i n e ( double sx , double sy , double vx , double vy ) {
i n t s1 , s2 ;
s1= s i g n ( sx∗vx+sy∗vy , −0x1 .90641 p−45 , 0x1 .90641 p−45);
s2= s i g n ( sx∗vy−sy∗vx , −0x1 .90641 p−45 , 0x1 .90641 p−45);
re turn s1∗ s2 ;

}

Figure 5: Avionics program

3See also http://research.nianet.org/fm-at-nia/KB3D/.
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Figure 6: Result of Figure 5 program

double e1, double e2) that gives the sign of x provided we know its rounding error is between e1
and e2. In the other cases, the result is zero.

The function int eps_line (double sx, double sy, double vx, double vy) of Figure 5
then does the same computations as the one of Figure 2, but the result may be different. More precisely,
if the modified function gives a nonzero answer, it is the correct one (it gives the correct sign). But it
may answer zero (contrary to the original program) when it is unable to give a certified answer. As in
interval arithmetic, the program does not lie, but it may not answer.

About the other assertions, the given value of sx, vx. . . are reasonable for the position and the speed
of the plane. The assertions about s1 and s2 are here to help the automatic provers.

The most interesting parts are the value chosen for e1 and e2: they need to bound the rounding error
of the computation sx ∗ vx + sy ∗ vy (and its counterpart). For this, we will rely on the Gappa tool. In
particular, it will solve all the required proofs that no overflow occur.

In the usual formalization where all computations directly round to 64 bits, the values e2 = −e1 =
0x1p− 45 are correct (it has been proved using the Gappa tool). With our approach and a generic
rounding, we have proved that the values e2 =−e1 = 0x1.90641p−45 are correct. This means that the
rounding error of sx∗vx+ sy∗vy will always be smaller than this value whatever the architecture and the
compiler choices. This means that, even if a FMA is used or if extended registers are used somewhere,
this function does not lie.

The analysis of this program (obtained from the verification condition viewer gWhy [16]) is given in
Figure 6. By using different automatic theorem prover: Alt-Ergo [22], CVC3 [23], Gappa, we success-
fully prove all proof obligations in this program.

Nearly all the proof obligations are quick to prove. The proof that the values e1 and e2 bound the
rounding error is slightly longer (about 10 seconds). This is due to the fact that, for each operation, we
have to split into 2 cases: normal and subnormal and this increases the number of proof obligations to
solve (exponential in the number of computations).
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5 Conclusions and further work

We have proposed an approach to give correct rounding errors whatever the architecture and the choices
of the compiler (preserving the order). This is implemented in the Frama-C framework from the Beryl-
lium release for all basic operations: addition, subtraction, multiplication, division, square root, negation,
absolute value and we have proved its correctness in Coq.

As we use the same conditions for all basic operations, it is both simple and efficient. Moreover, it
handles both rounding according to 64-bit rounding in IEEE-754 double precision, 80-bit rounding in
x87, double rounding in IA-32 architecture, and FMA in Itanium and PowerPC processors.

Nevertheless, the time to run a program needs to be taken into account. With a program containing
few floating-point operations, it works well. However, it will be a little slower with programs containing a
large number of floating-point operations because of the disjunction in Theorem 1 . The scalability could
be achieved by several means: either modifying Gappa so that it may handle other kinds of formulas as
good as those of Theorem 1, or replacing the formulas in Theorem 1 by other ones which do not contain
disjunctions.

Another drawback is that we may only prove rounding errors. There is no way to prove, for example,
that a computation is correct (even if it would be correct in all possible roundings). This means that
some subtle floating-point properties may be lost but bounding the final rounding error is usually what is
wanted by engineers and this does not appear to be a big flaw.

Note that we only consider double precision numbers as they are the most used. This is easily
applied to single precision computations the same way (with single rounding, 80-bit rounding or double
rounding). The idea would be to give similar formulas with the same case splitting and to provide the
basic operations with those post-conditions.

We only handle rounding-to-nearest (ties to even and ties away from zero). The reason is that directed
roundings do not suffer from these problems: double rounding gives the correct answer and if some
intermediate computations are done in 80-bit precision, the final result is more accurate, but still correct
as it is always rounded in the correct direction. Only rounding to nearest causes discrepancies.

This work is at the boundary between software and hardware for floating-point programs and this as-
pect of formal verification is very important. Moreover, this work deals both with normal and subnormal
numbers, the latter ones being usually dismissed.

Another interesting point is that our error bounds may be used by other tools. As shown here,
considering a slightly bigger error bound for each operation suffices to give a correct final error. This
means that if Fluctuat for example would use them, it would also consider all possible cases of hardware
and of compilation (preserving the order).

The next step would be to allow the compiler to do anything, including re-organizing the operations.
This is a challenge as it may give very different results. For example, if |e| � |x|, then (e+ x)− x gives
zero while e+(x− x) gives e. Nevertheless, some ideas could probably be reused to give a loose bound
on the rounding error.

Acknowledgments

We are grateful to Claude Marché for his suggestions, his help in creating a new pragma in Frama-C/Why
and his constructive remarks. We thank Guillaume Melquiond for his help in the use of Gappa tool. We
are grateful to César Muñoz for providing the case study and explanations. We also thank Pascal Cuoq
for his helpful suggestions about the FMA.

Proceedings of NFM 2010, April 13-15, 2010, Washington D.C., USA. 22



Hardware-independent proofs of numerical programs Boldo, and Nguyen

References
[1] Microprocessor Standards Subcommittee: IEEE Standard for Floating-Point Arithmetic. IEEE Std. 754-2008

(August 2008) 1–58
[2] Monniaux, D.: The pitfalls of verifying floating-point computations. TOPLAS 30(3) (May 2008) 12
[3] JML-Java Modeling Language www.jmlspecs.org.
[4] Burdy, L., Cheon, Y., Cok, D.R., Ernst, M.D., Kiniry, J.R., Leavens, G.T., Leino, K.R.M., Poll, E.: An

overview of JML tools and applications. International Journal on Software Tools for Technology Transfer
(STTT) 7(3) (June 2005) 212–232

[5] Baudin, P., Filliâtre, J.C., Marché, C., Monate, B., Moy, Y., Prevosto, V.: ACSL: ANSI/ISO C Specification
Language. (2008) http://frama-c.cea.fr/acsl.html.

[6] Barnett, M., Leino, K.R.M., Rustan, K., Leino, M., Schulte, W.: The Spec# Programming System: An
Overview, Springer (2004) 49–69

[7] Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux, D., Rival, X.: The ASTRÉE analyzer.
In: ESOP. Number 3444 in Lecture Notes in Computer Science (2005) 21–30

[8] Monniaux, D.: Analyse statique : de la théorie à la pratique. Habilitation to direct research, Université Joseph
Fourier, Grenoble, France (June 2009)

[9] Delmas, D., Goubault, E., Putot, S., Souyris, J., Tekkal, K., Védrine, F.: Towards an industrial use of fluctuat
on safety-critical avionics software. In: FMICS. Volume 5825 of LNCS., Springer (2009) 53–69

[10] Carreño, V.A., Miner, P.S.: Specification of the IEEE-854 floating-point standard in HOL and PVS. In:
HOL95: 8th International Workshop on Higher-Order Logic Theorem Proving and Its Applications, Aspen
Grove, UT (September 1995)

[11] Russinoff, D.M.: A mechanically checked proof of IEEE compliance of the floating point multiplication, di-
vision and square root algorithms of the AMD-K7 processor. LMS Journal of Computation and Mathematics
1 (1998) 148–200

[12] Harrison, J.: Formal verification of floating point trigonometric functions. In: Proceedings of the Third
International Conference on Formal Methods in Computer-Aided Design, Austin, Texas (2000) 217–233

[13] Leavens, G.T.: Not a number of floating point problems. Journal of Object Technology 5(2) (2006) 75–83
[14] Boldo, S., Filliâtre, J.C.: Formal Verification of Floating-Point Programs. In: 18th IEEE International

Symposium on Computer Arithmetic, Montpellier, France (June 2007) 187–194
[15] Ayad, A., Marché, C.: Multi-prover verification of floating-point programs. In Giesl, J., Hähnle, R., eds.:

Fifth International Joint Conference on Automated Reasoning, Edinburgh, Scotland, Springer (July 2010)
[16] Filliâtre, J.C., Marché, C.: The Why/Krakatoa/Caduceus platform for deductive program verification. In:

Computer Aided Verification (CAV). Volume 4590 of LNCS., Springer (July 2007) 173–177
[17] Goldberg, D.: What every computer scientist should know about floating point arithmetic. ACM Computing

Surveys 23(1) (1991) 5–47
[18] Boldo, S., Filliâtre, J.C., Melquiond, G.: Combining Coq and Gappa for Certifying Floating-Point Programs.

In: 16th Symposium on the Integration of Symbolic Computation and Mechanised Reasoning. Volume 5625
of Lecture Notes in Artificial Intelligence., Grand Bend, Canada, Springer (July 2009) 59–74

[19] Daumas, M., Melquiond, G., Muñoz, C.: Guaranteed proofs using interval arithmetic. In Montuschi, P.,
Schwarz, E., eds.: 17th IEEE Symposium on Computer Arithmetic, Cape Cod, MA, USA (2005) 188–195

[20] Daumas, M., Melquiond, G.: Certification of bounds on expressions involving rounded operators. Transac-
tions on Mathematical Software 37(1) (2009)

[21] Dowek, G., Muñoz, C., Carreño, V.: Provably safe coordinated strategy for distributed conflict resolution.
In: Proceedings of the AIAA Guidance Navigation, and Control Conference and Exhibit 2005, AIAA-2005-
6047, San Francisco, California (2005)

[22] Conchon, S., Contejean, E., Kanig, J.: CC(X): Efficiently Combining Equality and Solvable Theories without
Canonizers. In: SMT 2007: 5th International Workshop on Satisfiability Modulo. (2007)

[23] Barrett, C., Tinelli, C.: CVC3. In: Proceedings of the 19th International Conference on Computer Aided
Verification (CAV ’07). Volume 4590 of LNCS., Springer-Verlag (July 2007) 298–302 Berlin, Germany.

Proceedings of NFM 2010, April 13-15, 2010, Washington D.C., USA. 23



Slice-based Formal Specification Measures –
Mapping Coupling and Cohesion Measures to Formal Z

Andreas Bollin
Alpen-Adria Universität Klagenfurt

Klagenfurt, Austria
Andreas.Bollin@uni-klu.ac.at

Abstract

This paper demonstrates that existing slice-based measures can reasonably be mapped to the
field of state-based specification languages. By making use of Z specifications this contribution
renews the idea of slice-profiles and derives coupling and cohesion measures for them. The measures
are then assessed by taking a critical look at their sensitiveness in respect to modifications on the
specification source. The presented study shows that slice-based coupling and cohesion measures
have the potential to be used as quality indicators for specifications as they reflect the changes in the
structure of a specification as accustomed from their program-related pendants.

1 Introduction

In one of the rare articles concerning the relation between specifications and code, Samson, Nevill, and
Dugard [13] demonstrate a strong quantitative correlation between size-based specification metrics and
the related pendant of software code. Their assumption is that a meaningful set of (complexity and
quality) measures could help in estimating product measures and development effort at a much earlier
stage. Complexity can be described by size-based attributes, but is it reasonable to measure the quality
of a specification? This contribution takes a closer look at this problem.

Quality considerations are sophisticated. Besides the question of what a ”good specification” looks
like, quality-based measures (as in use with program code) are not so easily transformed to specifications.
One reason is that such measures are usually based on control/data dependency considerations – concepts
that are either not at all or only implicitly available. However, various authors demonstrated in [11, 4, 10,
17] that a reconstruction of the necessary dependencies ameliorates the situation and enables continuative
techniques like slicing and chunking. And with that, slice-based measures (which are often taken as the
basis for quality considerations) can be mapped to formal specifications, too. What would be the benefits
of such measures?

As presumed by Samson et. al., with experiences from a large collection of specifications and imple-
mentations at hand, product and development estimates could be calculated at much earlier stages. But
there is another benefit. When the measures are sensitive and react instantly to changes in the specifica-
tions, considerations, e.g. concerning deterioration effects, could be made, too.

The main objective of this contribution is now to investigate whether slice-based quality measures
can reasonably be transformed to formal specifications. It does not invent new measures, but it maps
the ideas behind the definitions of coupling and cohesion measures to the world of formal specification
languages. Additionally, it looks for possible limitations. Based on Z [14], the mapping is described in
some details and the outcome is assessed in respect to its expressiveness and sensitiveness.

This paper is structured as follows: Section 2 introduces specification slices and takes them as the
basis for the slice-based measures mentioned above. Section 3 discusses the effects on the measures by
making use of sample specifications, and Section 4 concludes the work with a short outlook.
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2 Background

The motivation behind analyzing slice-based coupling and cohesion measures goes back to a paper of
Meyers and Binkley [8]. In their empirical study they take a closer look at these measures and demon-
strate that the values of coupling and cohesion can also be used for assessing deterioration effects. As
formal specifications evolve, too, it would be interesting to see whether changes in the specification code
show a similar behavior of these measures. As a necessary first step, a reasonable transformation of the
original definitions of the measures to the world of formal specifications has to be found. This section
demonstrates how this can be done for Z [14].

2.1 Slice-based Coupling and Cohesion

Coupling is a measure for the strength of inter-component connections, and cohesion is a measure for the
mutual affinity of sub-components of a component. Within the range of this contribution we are interested
in how these measures are calculated and what they indicate. As adumbrated in the introduction, a
practical way in calculating coupling and cohesion measures is to make use of slices.

Weiser [15, 16] introduced five slice-based measures for cohesion: Tightness, Coverage, Overlap,
Parallelism, and Clustering. Ott and Thuss [12] partly formalized these measures, and this contribution
makes use of their formalization. Coupling was originally defined as the number of local information
flow entering (fan-in) and leaving (fan-out) a procedure [7]. Harman et. al demonstrate in [6] that it
can also be calculated via slicing. Furthermore, they show that the use of slices not only enables the
detection of coupling, it can also be used to determine the ”bandwidth” of the existing information flow.
Their notion of information flow is also used in this contribution.

2.2 Specification Slices and Slice Profiles

For the calculation of coupling and cohesion measures, sets of slices and their intersections (comparable
to the use of slice profiles in [12]) are needed. For state-based specifications the technique of slicing
was introduced by Oda and Araki [11], informally redefined by Chang and Richardson [4], and then
refined by Bollin [1]. His Java prototype has been extended in the recent years. It now supports slicing,
chunking, and concept location of Z specifications [3]. The technical details of the identification of
dependencies are not relevant within the scope of this paper, but the basic idea is quite simple:

First, the specification is dismantled into its basic elements called primes1 by making use of the CZT
parser [9]. The primes are mapped to a graph called SRN (for Specification Relationship Net). Then,
by following the approach of Chang and Richardson and Bollin [4, 1] control and data dependencies are
reconstructed (via a syntactical approximation to the semantical analysis). The SRN gets annotated by
this dependency information, yielding an Augmented SRN (ASRN for short).

The ASRN serves the same purpose as the system dependence graph used by the approaches de-
scribed in [8, p.4]. Based on this data structure, slicing works as follows: a set of vertices (representing
the point of interest) in the ASRN is taken as starting point, and, by following the dependencies existing
in the graph, further primes are aggregated, resulting in the designated specification slice. The trans-
formation between a specification Ψ and its ASRN is defined in a bijective manner. So, when talking
about a specification it can be either the textual representation (consisting of a set of primes) or its ASRN
representation (consisting of vertices representing the primes).

1Basically, primes are the predicates of the specification and are later represented as vertices in an augmented graph. When
they represent predicates of the precondition of a schema they are called precondition primes, and when they form predicates
that represent after-states they are called postcondition primes.
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Harman et. al [6] and Ott and Thuss [12] use different types of slices for their calculation of coupling
and cohesion values. This situation is dealt with hereinafter by generating two variants of the static
specification slices: for coupling the slices are calculated by following the dependencies in a transitive
backward manner, for the values of cohesion the slices are calculated by combining the dependencies
in a forward and backward manner. Specification slices and slice profiles (the collection of slices for a
specific schema operation) are then defined as follows:

Definition 1. Static Specification Slice. Let Ψ be a formal Z specification, ψ one schema out of Ψ, and V a set
of primes v out of ψ . SSlicefb(ψ,V) is called static forward/backward specification slice of ψ for primes V. It is
calculated by generating a transitive forward and backward slice with V as the starting point of interest. When the
slice is generated in a transitive and backward manner, it is called static backward slice SSliceb(ψ,V).

Definition 2. Slice Profile, Slice Intersection, Slice Union. Let Ψ be a formal Z specification, ψ one schema out
of Ψ, and V the set of primes v representing all postcondition primes in ψ . The set of all possible static specification
slices (SSlicefb(ψ,{v}) or SSliceb(ψ,{v}), with v∈V) is called Slice Profile (SP(ψ)). The intersection of the slices
in SP(ψ) is called Slice Intersection (SPint(ψ)). The union of all slices in SP(ψ) is called Slice Union (SU(ψ)).

2.3 Cohesion

With the introduction of slice profiles it is possible to provide the definitions of cohesion measures (as
introduced in the work of Ott and Thuss [12]). The values for cohesion are calculated only for a given
schema. As slices and slice profiles might contain primes from other schemata (due to inter-schema
dependencies), the following definitions restrict the set of primes in the slice profile to the schema.

Definition 3. Tightness. Let Ψ be a formal Z specification, ψ one schema out of Ψ, SP(ψ) its slice profile, and
SPint(ψ) its slice intersection. Then Tightness τ(ψ) is the ratio of the size of the slice intersection to the size of ψ .
It is defined as follows:

τ(ψ) =
| SPint(ψ)∩ψ |

| ψ |
Definition 4. MinCoverage, Coverage, MaxCoverage. Let Ψ be a formal Z specification, ψ one schema out
of Ψ, and SP(ψ) its slice profile containing n slices. MinCoverage Covmin(ψ) expresses the ratio between the
smallest slice SPi−min in SP(ψ) and the number of predicate vertices in ψ . Coverage Cov(ψ) relates the sizes of
all possible specification slices SPi (SPi ∈ SP(ψ)) to the size of ψ . MaxCoverage Covmax(ψ) expresses the ratio
of the largest slice SPi−max in the slice profile SP(ψ) and the number of vertices in ψ . They are defined as follows:

Covmin(ψ) =
1
| ψ | | SPi−min∩ψ | Cov(ψ) =

1
n

n

∑
i=1

| SPi∩ψ |
| ψ | Covmax(ψ) =

1
| ψ | | SPi−max∩ψ |

Definition 5. Overlap. Let Ψ be a formal Z specification, ψ one schema out of Ψ, SP(ψ) its slice profile containing
n slices, and SPint its slice intersection. Then Overlap O(ψ) measures how many primes are common to all possible
specification slices SPi (SPi ∈ SP(ψ)). It is defined as follows:

O(ψ) =
1
n

n

∑
i=1

| SPint ∩ψ |
| SPi∩ψ |

Tightness measures the number of primes that are common to every slice. The definition is based on
the size2 of the slice intersection. Coverage is split into three different measures: Minimum Coverage
looks at the size of the smallest slice and relates it to the size of the specification, Coverage looks at
the size of the slices, but it takes all slices and compares them to the size of the specification, and
Maximum Coverage looks at the size of the largest slice and relates it to the size of the specification.
Finally, Overlap looks at the slice intersection and determines how many primes are common to all
slices.

2Please note that within the context of all definitions size counts the number of primes in the ASRN.

Proceedings of NFM 2010, April 13-15, 2010, Washington D.C., USA. 26



Slice-based Formal Specification Measures A. Bollin

2.4 Coupling

The calculation of coupling follows the definitions to be found in [6]. First, Inter-Schema Flow z is
specified. It describes how many primes of the slices in the slice union are outside of the schema. Inter-
Schema Coupling then computes the normalized ratio of this flow in both directions.

Definition 6. Inter-schema Flow and Coupling. Let Ψ be a formal Z specification and ψs and ψd two schemata
out of Ψ. Inter-Schema Flow between the two schemata z(ψs,ψd) is the ratio of the primes of SU(ψd) that
are in ψs and that of the size of ψs. Inter-Schema Coupling between the two schemata C(ψs,ψd) measures the
Inter-Schema Flow in both directions. They are defined as follows:

z(ψs,ψd) =
| SU(ψd)∩ψs |

| ψs |
C(ψs,ψd) =

z(ψs,ψd) × | ψs | + z(ψd,ψs) × | ψd |
| ψs |+ | ψd |

Schema coupling is calculated by considering the Inter-Schema Coupling values to all other schemata.

Definition 7. Schema Coupling. Let Ψ be a formal Z specification and ψi one schema in Ψ. Then Schema
Coupling χ(ψi) is the weighted measures of the Inter-Schema Coupling of ψi to all other n schemata ψj in Ψ\ψi.
It is defined as follows:

χ(ψi) =
∑n

j=1 C(ψi,ψj) × | ψj |
∑n

j=1 | ψj |
With the measures in this section it is possible to assign attributes to a formal Z specification. How-

ever, with the mapping a connection to quality has been so far not empirically justified. On the other
hand, the slice-based measures have carefully been transformed to Z. There is a chance that, when ob-
serving changes of these values for a given specification, one might defer useful properties.

3 Sensitivity of Slice-based Measures

By following the strategy that Thuss and Ott [12] used for their validations, we now investigate the
sensitivity of the measures with respect to representative changes of the specifications. The advantage is
that for such a study only small-sized sample specifications are necessary to explore the effects.

3.1 Sensitivity of Cohesion

The first objective is to determine whether the transformed measures for cohesion are sensitive to changes
in the internal structure of the specification. The following operations are considered:

O1 Adding a precondition-prime. This means that this prime ”controls” the evaluation of the other
primes in the schema. With it, the internal semantic connections are extended. Mapped to a
potential implementation, this could mean that an if-clause is added to the code, enveloping all
other statements in the method. This operation should slightly increase coverage.

O2 Adding a prime that specifies an after-state and that is not related to all the other predicates in the
schema. In this case the predicate introduces new ”trains of thought”. Mapped to a subsequent
implementation, this could mean that a new output- or state-relevant statement (not or only frac-
tionally related to the other statements) is added. With it, a new slice is added to the slice-profile.
The slice intersection is very likely smaller than before, thus reducing the values for cohesion.

O3 Adding a prime that specifies an after-state and that is furthermore related to all other primes in
the schema. In this case the predicate extends existing ”trains of thought” (as there are references
to all existing ones). Mapped to a possible implementation, it is very likely that a new output- or
state-relevant statement, related to all other statements, is added. If at all, this increases the set of
intersection slices. And with that, it also raises the values of coupling.
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Figure 1: Z specifications of raising sizes. On the left side of the table the slices (and thus the slice-
profile) are visualized, on the right side the values for cohesion are presented.

Based on the assumption that schema operations are often mapped to methods (or procedures) as
described in operations O1 to O3, the following working hypothesis can be posted:

Hypothesis 1. A structural change of type O1, O2 or O3 in a schema operation influences the values
for cohesion. Adding a predicate prime to the schema according to operations O1 or O3 increases the
values (or leaves them unchanged), adding a prime according to operation O2 decreases the values (or
leaves them unchanged). Reversing the operations also reverses the effect on the measures.

There are situations where, due to a large number of dependencies, a method or a schema operation
already has reached the maximum values for cohesion. These special cases are the reason why the values
might also be unchanged (and Sec. 3.3 reconsiders this issue in more details).

Hypothesis 1 is now checked by using small sample schema operations (called Test1 to Test7 in
Fig. 1). At first let us start with a simple Z schema operation called Test1. It contains a prime that
increases the value of n by one. As there is only one slice, the slice intersection only contains one
element. The values of cohesion are all 1. Then another prime (m′ = m+1, prescribing an after-state) is
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added to the schema (which is an operation of class O2), yielding operation Test2. With this new prime
a new ”functionality” has been introduced to the schema. The values for cohesion are reduced as the
slice intersection is empty. Tightness and Overlap are zero, the rest of the values are equal to 1

2 . Then,
in Test3, the prime delta? > 0 is added to the schema. This prime is a precondition prime and thus the
operation belongs to class O1. With this, all the values of cohesion increase. As the slice intersection
contains one prime only (delta? > 0), its size is #SPint(ψ) = 1. With that, the values for cohesion result
in: τ = 1

3 , Covmin = 1
3 ×2, Cov = 1

2 × (2
3 + 2

3), Covmax = 1
3 ×2, and O = 1

2 × (1
2 + 1

2).
Test4 adds another precondition prime set? 6=∅ to the schema (operation O1). This yields an increase

in the values of cohesion. The reason is the increase in size of the slice intersection. Test5 adds another
prime containing an after state identifier to the schema operation. The prime p′ = p+delta? is not related
to the other primes prescribing after-states, so this change is an operation of class O3. The size of the
slice intersection stays the same, only the size of the schema increases. As a result the values for cohesion
decrease.

Now let us take a look at situations when predicates that are partly related to existing predicates
are added to the schema. Test6 is an extension of Test4, but this time the new prime p′ = p + n uses
the identifier n which is also defined by the postcondition prime n′ = n + delta?. On the other hand it
does not refer to the third postcondition prime m′ = m− delta?, and so the operation belongs to class
O2. The values for cohesion consequently decrease. On contrary, Test7 is a modification of Test3. The
prime m′ = m−n is added, and so it is related to all other postcondition primes in the schema. With this
operation the values for cohesion increase, again.

Due to reasons of space the example schemata above only contain simple predicates. But they are
sufficient to demonstrate the influence of structural changes. In Z there are several schema operators
that complicate the situations, but by further analyzing the formulas of the measures one observes the
following behavior:

• Cohesion will increase when (a) at least one postcondition exists and a precondition prime is added,
(b) a postcondition prime that is related to some, but not to all, other postcondition primes in the
schema is added, (c) a postcondition prime that is not related to the other postcondition primes is
removed.

• Cohesion stays the same when (a) a postcondition prime that is related to all other existing postcon-
dition primes is added or removed and the other existing primes are already fully inter-related, (b)
a pre- or postcondition prime is added and there is no postcondition prime.

• Cohesion will decrease when (a) a postcondition prime that is not related to the other postcondition
primes is added, (b) a precondition prime is removed and there is at least one postcondition prime,
(c) a postcondition prime that is related to the other postcondition primes is removed.

The values for a derived implementation would very likely react to these changes in the same way, so
the sample specifications and the analysis of the formulas seems to confirm our working hypothesis. The
measures are sensitive to changes in the underlying specification, and the observed changes are in such
a way that an increase in internal connectivity also leads to an increase of the values of the measures.
Conversely, a decrease in connectivity also leads to a decrease of the values of cohesion.

3.2 Sensitivity of Coupling

The next step is the evaluation of coupling. As mentioned above, specification coupling measures the
mutual interdependence between different schemata. According to Harman et. al [6] it is an advantage
to use slice-based measures as they measure the ”bandwidth” of the information flow. In our case, this
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Figure 2: Z example for analyzing the effect of slice-based coupling and values for coupling and cohesion
for the six Z schemata (omitting the FullDB operation schema).

flow is defined as the relative amount of the size of a set of slices of one schema that lies inside another
schema. This flow depends upon control- and data-relationships, so an increase in the number of these
dependencies should increase the value of coupling. Reducing the number of relations should decrease
the value of coupling. There are no differences between the definitions of the measure, be it for traditional
programs or be it for formal specifications.

The next hypothesis focuses on the sensitiveness to structural changes within a formal Z specification.
Especially, an increase (or decrease) in inter-schema relations should be reflected correctly3.

Hypothesis 2. A change in the number of relations between two schemata in a formal specification
generally leads to a change in the value of coupling. Adding a predicate prime to one schema that
introduces new dependencies to primes in the other schema increases the value of coupling (or leaves it
unchanged). Reversing the change also reverses the effect on the measure.

For our considerations we now make use of a small specification (see Fig. 2) which is an extension
(and intentionally unfinished version) of the birthday-book specification out of Spivey [14, pp.3–6].

The specification consists of one state space called BB (for Birthday Book) which stores the names of
friends, their birthday dates, and a small gift. Consequently, there are two operations (Add and AddGift)
for adding them to the database. The operations are not total, but are sufficient for our examinations. In
order to analyze the effect of added pre- and postcondition primes, these operations are available in two
versions. Finally, there is an operation called Success which should (later on) indicate the success of an
operation. However, at the moment this operation is not related to any of the other operations.

The values of schema coupling are summarized in Fig. 3. As expected, the Success operation has a
value of coupling equal to zero. There are no connections to the state space BB and also no connections

3Again, there are situations where, due to a high number of dependencies, the value of coupling might stay unchanged.
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Figure 3: Values for Inter-Schema Flow z(ψ1,ψ2) and Inter-Schema Coupling C(ψ1,ψ2). The abbrevi-
ations S1 to S6 refer to the schema names mentioned in Fig. 2.

to the other operation schemata. On the other hand, the values for the other operations differ (though their
syntactical composition is more or less equivalent). With n = 6 operations there are 15 different combi-
nations and thus possibly 15 values for Inter-Schema Coupling. Within the scope of this contribution we
will focus on three combinations that are of most interest in this schema constellation.

As a first example we look at the operations Add and Add2. The difference between them is made up
by just one prime, namely name′ = name∪{n?} at line 18. In fact, in the context of the specification this
postcondition prime is redundant (as the state invariant at line 6 would guarantee that the added name is
also in the set of names). But syntactically this prime is sufficient to increase the set of dependencies.
Both operations include the state-space, which means that there is a relation between the postcondition
primes and the invariant. This introduces a new ”flow of control”, which increases the bandwidth and
thus the value for coupling (from 0.724 to 0.737 in Fig. 2).

Fig. 3 presents the values for Inter-Schema Flow and Coupling, and they make this difference more
visible. Inter-Schema Flow z(BB,Add) is |SU(Add)∩BB|

|BB| , which is 1 (so the slices of Add(S2) cover 100%

of the state space BB(S1)). z(Add,BB) is |SU(BB)∩Add|
|Add| , where SU(BB)∩Add covers the primes at lines

{6,10,11} (due to data dependency between line 6 and line 11). With this, the Inter-Schema Flow is 3
4 .

(Please note that due to the schema inclusion the Add schema consists of 4 predicates!) Now, looking at
Inter-Schema Coupling, the value is 1×1+3/4×4

1+4 , which is 0.8. Similarly, one can calculate the value for
the coupling between BB(S1) and Add2(S3), which is 0.833. The new dependency between the invariant
at line 6 and line 18 led to the situation that the slice contains one more prime. For similar situations we
might infer that the introduction of postcondition primes will (very likely) raise the value of coupling.

Another situation occurs when looking at the operation schemata AddGift and AddGift2. In relation to
the state schema the second variant of the operation contains an additional prime at line 35. However, the
point of departure is not the same. In this case the prime is a precondition prime that does not influence
any primes outside the schema – at first sight. On closer examination it is clear that the postcondition
primes in this schema are control dependent upon this prime, and a slice ”reaching” the schema operation
will have to include this prime, too. It grows in size, meaning that more ”bandwidth” is spent on it. In
similar situation we can infer that the value of coupling will also increase as the value for the Inter-
Schema Flow increases from n

m to n+1
m+1 .

The above specification does not show that the value for coupling can also decrease. This is the case
when we introduce a postcondition prime that is not related to the primes in the other schema(ta). Then,
in case of a state schema, there is no data-dependency between the primes. And in the case of another
operation schema there is neither control nor data-dependency. As the size of the schema increases,
Inter-Schema Flow decreases from n

m to n
m+1 .

On the syntactical level there is no difference between Add and AddGift. Both consist of a precon-
dition prime, three postcondition primes, and include the state. This equivalence can be seen in Fig. 2
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as the values for cohesion are the same. But it gets interesting when comparing them to AddGift2. The
value for Inter-Schema Coupling between Add (S2) and AddGift (S5) is 0.750, whereas the value for
Add (S2) and AddGift2 (S6) is 0.778. So, there is a slightly higher value of coupling between Add and
AddGift2. The reason for this is a semantic difference: the data relationship between the lines 11 and 34.
This simple example demonstrates that the idea of the ”bandwidth” is quite applicable in this situation.

Though the above example is simple, it is able to demonstrate the effects on the value for coupling
in the case of structural changes of schema operations. The second working hypothesis seems to be
confirmed, at least from the analytical part of view.

3.3 Limitations

Though the above hypotheses seem to be confirmed, there are limitations. More precisely, the problems
are that (a) the specifications might be too dense, (b) only part of the ”bandwidth” is regarded, and (c)
the dependency reconstruction does not work correctly. What seems to corrupt the measures is in fact
not a real problem.

In [2] the effect and efficiency of slicing has been investigated, and it turned out that slicing has dis-
advantages when the specifications are too dense. In about 60-70% of all cases slicing led to a reduction
in the size of the specification, which also means that in some situations there has been no reduction at
all. The slices then contained all other primes – indicating that nearly every prime is related to all other
primes. However, this effect decreases on average with raising sizes of the specifications (our experience
relies on more than 45.000 lines of specification text), and it is only a problem with text-book examples
that consist of a view schema operations only.

The next concern is that coupling is not sensitive to changes that lead to an increase in the number
of relations between the same primes. Irrespective the number of dependencies between two primes,
only the occurrence of the primes is counted by the size-operator. Bandwidth does not increase then.
The presented notion of coupling works well on a syntactical level, but not necessarily as expected
on a semantic level. The last measure (comparing AddGift and AddGift2) was sensitive because one
prime has (intentionally) been omitted from both schemata: normally, an author of these operations
would have added the line date′ = date as predicates to the schemata. This would have introduced
data-dependencies from both schemata to the Add schema, and there would have been no difference in
Inter-Schema Coupling anymore. In fact, this can not be seem as a real problem, it is as coupling is
defined. Nevertheless, one has to keep in mind that there might be more dependencies as expected.

Finally, slicing only works fine when the specifications are ”well-formed”. This means that they
consist of separable pre- and postconditions primes. When such a separation is not possible, then the
outcome is vitiated. Diller mentions in [5, p.165] that in most cases this separation can be done (which
means that a syntactical approximation to the semantic analysis is possible), but this does not prevent
from cases where pre- and postconditions are interwoven and not separable.

4 Conclusion and Outlook

This contribution introduces the notion of specification slice-profiles that are then used for the calculation
of slice-based specification measures. The way of calculating these measures for Z (namely coupling and
cohesion) is new and it is based on the use of (reconstructed) control and data dependency information.
The objective of this work is to investigate if such a mapping is meaningful. For this, the contribution
takes a set of small specifications as a basis, and the sensitivity of the measures is then analyzed by
changing internal and external properties of the specifications.
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The evaluation shows that the measures reflect the changes in the structure of the specification as
expected. Especially the values for cohesion seem to be a good indicator for changes in internal proper-
ties. Coupling is, due to the use of unions of slices a bit less sensitive, but it also reacts when there are
dramatic structural changes. All in all, the measures proof useful.

The understanding of the behavior of the measures was a first, necessary step. The next steps will
be to include different ”real-life” specifications and to perform an empirical study that demonstrates that
the measures are not just proxies for other, eventually size- based, measures. In case of confirming their
unique features again, this could be a step towards taking specifications as quality indicators quite at the
beginning of the SW-development cycle.
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Abstract

In this paper we describe a process of algorithmic discovery that was driven by our goal of
achieving complete, mechanically verified algorithms that compute conflict prevention bands for use
in en route air traffic management. The algorithms were originally defined in the PVS specification
language and subsequently have been implemented in Java and C++. We do not present the proofs
in this paper: instead, we describe the process of discovery and the key ideas that enabled the final
formal proof of correctness.

1 Introduction

The formal methods team at NASA Langley has developed air traffic separation algorithms for the last
10 years. Given the safety-critical nature of these algorithms, we have emphasized formal verification
of the correct operation of these algorithms. In February of 2008, Ricky Butler and Jeffrey Maddalon
started a project to develop and formally verify algorithms that compute conflict prevention bands for en
route aircraft.

In air traffic management systems, a conflict prevention system senses nearby aircraft and provides
ranges of maneuvers that avoid conflicts with these aircraft The maneuvers are typically constrained
to ones where only one parameter is varied at a time: track angles, vertical speeds, or ground speeds.
Such maneuvers are easy for pilots to fly and have the advantage that they can be presented in terms
of prevention bands, i.e. ranges of parameter values that should be avoided. Prevention bands display
the maneuvers that result in conflict within a specified lookahead time as a function of one parameter.
Without conflict prevention information, a pilot might create another conflict while seeking to solve a
primary conflict or otherwise changing the flight plan.

The National Aerospace Laboratory (NLR) in the Netherlands refers to their conflict prevention capa-
bility as Predictive Airborne Separation Assurance System or Predictive ASAS [3]. The NLR approach
provides two sets of bands: near-term conflicts are shown in red, while intermediate-term conflicts are
shown in amber as illustrated in Figure 1. We did not directly analyze the NLR system because the
algorithms were not available to us; however, we did use some of their interface ideas.

When we began this project, we had no idea that this project would take almost two years to com-
plete and that four additional formal methods researchers would join our effort before we were done.
This project has been one of the most interesting and enjoyable projects that we have worked on in our
careers. The reason for this is manifold: (1) the work resulted in a very elegant algorithm that is imple-
mented in Java and C++, (2) the final algorithm was very different from our first ideas, (3) there were
many, many discoveries that were surprising. (At some points in the project we were having daily in-
sights that improved the algorithm or a proof), (4) on the surface the problem looks simple, but looks can
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Figure 1: Compass Rose with Conflict Prevention Bands

be deceiving and the problem is actually very subtle with many special cases. After studying the prob-
lem for over a year, we developed an algorithm and rigorously documented this algorithm in a NASA
Technical Memorandum [8]. We also formalized much of the mathematical development in the paper.
We planned to follow up this paper with another paper that documented a complete formal proof of this
algorithm. Much to our surprise this final formal proof step found some deficiencies in our algorithm.
These deficiencies were repaired and a formal proof in the Prototype Verification System (PVS) [9] was
finally completed in November 2009.

In this paper we will present a brief history of this project and highlight how the goal of formally
verifying the algorithm in the PVS theorem prover pushed us to new discoveries. In addition to finding
some subtle problems in the initial approach, we are confident that many of the discoveries would not
have been made if we had taken a more traditional approach of constructing algorithms, testing, and
revising them until they worked.

2 Notation

We consider two aircraft, the ownship and the traffic aircraft, that are potentially in conflict in a 3-
dimensional airspace. The conflict prevention algorithm discussed here only uses state-based informa-
tion, e.g,. initial position and velocity and straight line trajectories, i.e., constant velocity vectors in an
Euclidean airspace. These approximations of real aircraft behavior are valid for short lookahead times
(typically less than 5 minutes).

We use the following notations:

so 3D vector Initial position of the ownship aircraft
vo 3D vector Initial velocity of the ownship aircraft
si 3D vector Initial position of the traffic aircraft
vi 3D vector Initial velocity of the traffic aircraft

The components of each vector are scalar values, so they are represented without the bold-face font, for
example so = (sox,soy,soz). As a simplifying assumption, we regard the position and velocity vectors as
accurate and without error. For notational convenience, we use v2 = v · v and we denote by gs(v) the

ground speed of v, i.e., the norm of the 2-dimensional projection of v: gs(v) =
√

v2
x + v2

y .
In the airspace system, the separation criteria are specified as a minimum horizontal separation D and

a minimum vertical separation H (typically, D is 5 nautical miles and H is 1000 feet). It is convenient to
develop the theory using a translated coordinate system. The relative position s is defined to be s = so−si

and relative velocity of the ownship with respect to the traffic aircraft is denoted by v = vo− vi. With
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these vectors the traffic aircraft is at the center of the coordinate system and does not move. For example
in the left side of Figure 2, the blue (upper) point represents the ownship with its velocity vector and
its avoidance area (circle of diameter D around the aircraft). The magenta (lower) point represents the
traffic aircraft. The right side represents the same information in the translated coordinate system. In a
3-dimensional airspace, the separation criteria defines a cylinder of radius D and half-height H around
the traffic aircraft. This cylinder is called the protected zone.

In Figure 2, the two aircraft are potentially in conflict because the half-line defined by the relative
velocity vector v intersects the protected area, meaning that in some future time the ownship will enter
the protected zone around the traffic. If this future time is within the lookahead time T , the two aircraft
are said to be in conflict.

3 The Start of the Project

We began our project by first surveying the literature for previous solutions. Hoekstra [4] describes
some algorithms developed at NLR with some diagrams [3], but unfortunately he did not provide much
detail about how the algorithms actually worked. We decided to develop our own track angle, ground
speed, and vertical speed algorithms. In this paper, we will only present the track band algorithm. These
are the most challenging and interesting of the three and the other bands are computed and verified
using analogous methods. We adopted the NLR idea of introducing two parameters, Tred (typically three
minutes) and Tamber (typically five minutes), which divide the set of conflicts based on their nearness (in
time) to a loss of separation (see figure 1). If a loss of separation will occur within Tred , then the region
is colored red. On the other hand, if a loss of separation will occur after Tred , but before Tamber, then the
region is colored amber, otherwise it is painted green.

We first recognized that each aircraft’s contribution to the prevention band is independent of all other
aircraft; thus, the problem neatly decomposes into two steps:

1. Solve the bands problem for the ownship relative to each other aircraft separately.

2. Merge all of the pairwise regions.

We also quickly realized that an iterative solution was possible for the first step. We already had a
formally proven, efficient algorithm available to us named CD3D that decides if a conflict occurs for
specific values of so, vo, si, and vi, and parameters D, H, and T . More formally, CD3D determines whether
there exists a future time t where the aircraft positions so +tvo and si +tvi are within a horizontal distance
D of each other and where the aircraft are within vertical distance H of each other. In other words there
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is a predicted loss of separation within the lookahead time. Therefore, one need only to execute CD3D
iteratively, varying the track angle from 0 to 360◦ per traffic aircraft. By evaluating different scenarios,
we determined that a step size of 0.1◦ would be adequate for ranges of up to 200 nautical miles. An
iterative approach would consume more computational resources than an analytical one where the edges
of the bands are computed directly. An iterative approach may not scale well where such separation
assurance algorithms must be executed for many different traffic aircraft every second. Despite these
disadvantages, the existence of an iterative approach provided a fall-back position: if we were not able
to discover a formally verifiable analytical solution, then we knew we could use the interative approach.

4 Search for an Analytical Solution

To solve the prevention bands problem in an analytical way, it is useful to define separate horizontal and
vertical notions of conflict. In the relative coordinate system, we define that a horizontal conflict occurs if
there exists a future time t within the lookahead time T where the aircraft are within horizontal distance
D of each other, i.e., (sx + tvx)2 +(sy + tvy)2 < D2. where s and v are, respectively, the relative position
and the relative velocity of the ownship with respect to the traffic aircraft. A vertical conflict occurs if
there exists a future time t within the lookahead time T where the aircraft are within horizontal distance
H of each other, i.e., |sz + tvz|< H. We say that two aircraft are in conflict if there is a time t where they
are in horizontal and vertical conflict. Formally, we define the predicate conflict? as follows

conflict?(s,v) ≡ ∃ 0≤ t ≤ T : (sx + tvx)2 +(sy + tvy)2 < D2 and |sz + tvz|< H. (1)

4.1 Track Only Geometric Solution

We begin with a non-translated perspective shown in Figure 3. The track angle is denoted by α1. For

iv = (v  , v   )
ix    iy

oα

o α α

α

v

( |v | cos    , |v | sin     )o

Figure 3: Two Dimensional Version of Track Bands Problem

given vectors vo and vi, we need to find the track angles α such that the relative vector vα = voα −vi:

vα = (|vo|cosα− vix, |vo|sinα− viy), (2)

is not in conflict.
Our initial approach was to divide the conflict prevention problem into simplifying cases. We dis-

covered later that this division was unnecessary and more elegant formulations provided the necessary
leverage to formally verify the algorithm. In any case, we decided to first solve the track bands problem
in two dimensions without consideration of the lookahead time. We also decided to ignore vertical speed

1In air traffic management, the track angle is calculated from true north in a clockwise direction, but here we have followed
the traditional mathematical definition.
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considerations and look at the horizontal plane only. The problem thus reduced to finding the tangent
lines to the horizontal protection zone (in the relative frame of reference) as a function of α . We begin
with the observation that in order for a vector to be tangent it must intersect the circle of the protection
zone. In other words, we need solutions of |s+ tvα |= D or equivalently

(s+ tvα)2 = D2 (3)

where the vectors are two-dimensional. Expanding we obtain a quadratic equation at2 +bt + c = 0 with
a = vα

2, b = 2(s ·vα), and c = s2−D2. The tangent lines are precisely those where the discriminant of
this equation is zero. In other words, where b2−4ac = 0. But, expanding the dot products yield:

b2 = 4[sx(ω cosα− vix)+ sy( ω sinα− viy)]2

4ac = 4(ω2−2ω(vix cosα + viysinα)+ v2)(s · s−D2)

The discriminant finally expands into a complex second-order polynomial in sinα and cosα . But to
solve for α , we need to eliminate the cosα using the equation

cosα =
√

1−sin2α

The net result is an unbelievably complex fourth order polynomial in sinα . Solving for α analytically
would require the use of the quartic formulas. Although these formulas are complicated, such a program
could probably be written in a day or two. But, how would we verify these solutions? After all, the
quartic equations involve the use of complex analysis. Therefore, we began to look for simplifications.

We found a simplification of the discriminant that had been used in the verification of the KB3D
algorithm [6]:

b2−4ac = 0 if and only if (s ·v) = Rε det(s,v), (4)

where ε ∈ {−1,+1}, det(s,v) ≡ s⊥ · v, s⊥ = (−sy,sx), and R =
√

s2−D2

D . The beauty of the final form
is that the equation is linear on v. The two solutions are captured in the two values of ε . When we
instantiate vα in this formula, we end up with a quadratic equation in sinα .

Using this approach, we were able to derive the following solutions for α . If |G|√
E2+F2 ≤ 1 then in

some 2π range, we have

α1 = asin

(
G√

E2 +F2

)
−atan(E,F),

α2 = π−asin

(
G√

E2 +F2

)
−atan(E,F),

where
E = ω(Rεsx− sy), F =−ω(Rεsy + sx), G = vi · (Rε s⊥− s),

Since E, F , and G are all functions of ε , we have two pairs of α1 and α2 or a total of four total angles.
These angles are the places where the track prevention band changes color, assuming no lookahead time.
This result was formalized in the PVS theorem prover and implemented in Java.

4.2 Solution with Lookahead Time

The solution presented so far only considers the 2-dimensional case with no lookahead time. Figure 4
illustrates three distinct cases that appear when the lookahead time is considered: (a) the protection zone
is totally within lookahead time, (b) the zone is partially within, and (c) the zone is totally beyond the
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lookahead time. Cases (a) and (c) were easy to handle, but we realized that case (b) was going to take
some additional analysis. We were quite pleased with our initial geometric result and decided to present
the result to our branch head and research director. During the presentation, a member of the original
KB3D team announced, “I think you can solve this problem without trigonometry,” and he urged us
to defer the use of trigonometry until the last possible moment. In other words, he suggested that we
solve for (vα) without expanding its components. Only after the appropriate abstract solution vector is
found, should the conversion to a track angle, α , be made. This was a key idea that had been used in the
development of the KB3D algorithms, which resulted in very efficient and elegant algebraic solutions [1].
Indeed, we realized that the geometric problem was solvable by a particular kind of KB3D resolutions
called track lines, computed by the function track_line:

track_line(s,vo,vi,ε,ι): Vect2

The function track line returns the vector 0 when all track angles for the ownship yield a potential
conflict. Otherwise, the vector returned by this function is a velocity vector for the ownship that is tangent
to the 2-dimensional protected zone. Since ε and ι are±1, there are four possible track line solutions for
given s, vo, and vi .

The key to solving track bands with a lookahead time is to find where the projected lookahead time
intersects the protected zone. That is, plot where the relative position of the aircraft will be after T units of
time in every possible direction given an unchanged ground speed and find the intersection points with
the protection zone. The function track_circle, also available in KB3D, provides these solutions,
which are called track circle solutions.

The function track_circle

track_circle(s,vo,vi,T,ι): Vect2

returns the vector 0 when there are no track circle solutions, i.e., when the lookahead time boundary T
and the protected zone do not intersect, or when there are an infinite number of solutions. Otherwise,
the vector returned by this function is a velocity vector for the ownship that intersects the 2-dimensional
protected zone at a time later than T . Since ι is ±1, for given s, vo, and vi there are two possible track
circle solutions. The track_line and track_circle functions are derived and discussed in [8].

We believe that the lookahead problem would not have been analytically tractable using the trigono-
metric approach pursued at first. This switch to a pure algebraic approach was fundamental to achieving
the final proof of the 3-dimensional bands algorithm.

4.3 The Track Bands Algorithm

The two functions, track_line and track_circle, form the basis of the track bands algorithm. We
define a critical vector as a relative velocity vector where the color of the bands may change. These
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critical vectors are

Rmm = track line(s,vo,vi,−1,−1),
Rmp = track line(s,vo,vi,−1,+1),
Rpm = track line(s,vo,vi,+1,−1),
Rpp = track line(s,vo,vi,+1,+1),
Crm = track circle(s,vo,vi,Tred ,−1),
Crp = track circle(s,vo,vi,Tred ,+1),
Cam = track circle(s,vo,vi,Tamber,−1),
Cap = track circle(s,vo,vi,Tamber,+1),
Cem = track circle(s,vo,vi, tentry,−1),
Cep = track circle(s,vo,vi, tentry,+1),
Cxm = track circle(s,vo,vi, texit ,−1),
Cxp = track circle(s,vo,vi, texit ,+1).

Some of these vectors may be zero vectors in which case they are ignored. The times tentry and texit are
the calculated entry and exit times into the protection zone.

In the track bands algorithm, these vectors are calculated, the corresponding track angles (using
atan) are computed and sorted into a list of angles. Next, the angles 0 and 2π are added to the list to
provide appropriate bounding. Then, a conflict probe (such as CD3D) us applied to an angle between
each of the critical angles to characterize the whole region (i.e., determine which color the region should
be painted: green, amber, or red). This procedure is iterated between the ownship and all traffic aircraft.
Finally, the resulting bands are merged to get the display as in Figure 1.

5 Formal Verification of Pairwise Prevention Bands Algorithms

The functions track_line and track_circle discussed in Section 4.2 have been verified correct for
conflict resolution, i.e., they compute vectors that yield conflict free trajectories for the ownship, and
complete for track prevention bands, i.e., they compute all critical vectors where the track bands change
colors. These functions are slightly different from the original ones presented in [8]. Indeed, the functions
presented in that report, while correct for conflict resolution, failed to compute all the critical vectors.
For conflict prevention bands this is a safety issue, because a region that should be colored red can be
colored green instead. Interestingly, those functions, which had been tested on over 10,000 test cases
without any error manifestations, were in fact incorrect. The deficiencies in these functions were only
found during the formal verification process!

The general idea of the correctness proof of the prevention bands algorithms is as follows:

1. For a given parameter of the ownship, e.g., track angle, define a function Ωtrk : R→R, parametrized
by s, vo, and vo, that characterizes conflicts in the following way: Ωtrk(α) < 0 if and only if
conflict?(s,vα), where vα is defined as in Formula 2.

2. Prove that the critical vectors computed in Section 4.3 are complete, i.e., they compute all of the
zeros of the function Ωtrk,

3. Prove that the function Ωtrk is continuous.
4. Use the Intermediate Value theorem to deduce that any point in an open bands region, e.g., the mid-

point, determines the color of the whole band. This last step requires the existence of a conflict
probe algorithm that is proven correct, which we have already developed and verified.

This approach is illustrated in figure 5.
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The discovery of this Ωtrk proof approach also directly influenced the final bands algorithms. Orig-
inally we expected to compute the color of a region. This proof method lead us to the idea of using the
CD3D conflict probe on the midpoint of the region in order to color the region.

We first tried this proof approach on a simplified version of the problem: the two-dimensional
ground speed bands with infinite lookahead time. In this case, the function Ωgs must characterize
conflict?(s,vk), where vk = k

gs(v)v.

The following formula provided the needed relationship between horizontal conflict that does not
include a quantification over time:

horizontal conflict?(s,v) ⇐⇒ s ·v < Rdet(v,s) <−s ·v, (5)

where, R is defined as in Formula 4.
The function Ωgs was constructed based on this theorem. The resulting function required the use

of if-then-else logic so the proof that it was continuous was tedious. After much effort, we were able
to prove in PVS that the ground-speed functions gs_line and gs_circle, which are analogous to
track_line and track_circle, were complete assuming no look-ahead time.

The lesson learned from this first attempt was that we needed a more abstract way of defining the
functions Ωgs and Ωtrk so that the complexity of the continuity proofs could be untangled from the
subtleties of the track and ground speed resolutions. With this in mind, we defined a function Ω : Rn→R,
parametrized by s, vo, and vo, such that Ωtrk = Ω ◦ vα and Ωgs = Ω ◦ vk. The continuity of Ωtrk and
Ωgs is a consequence of the continuity of Ω, which was proved once and for all for all kinds of bands,
and the continuity of vα and vk. All this seems straightforward except that there are several technical
difficulties.

The function Ω is closely related to the function that computes the minimum distance between two
aircraft. That function is, in general, noncontinuous for an infinite lookahead time. Interestingly, it is
continuous when a lookahead time is considered, but the general proof of this fact requires the use of
vector variant of the Heine-Cantor Theorem, i.e., if M is a compact metric space, then every continuous
function f : M → N, where N is a metric space, is uniformly continuous. Furthermore, the minimum
distance function may have flat areas. Therefore, special attention has to be paid to the definition of Ω
to guarantee that the set of critical points is finite. Otherwise, it cannot be proven that the critical vector
functions are complete.

The next sections discuss the formal verification of the prevention bands algorithms with lookahead
time for both the 2-D and 3-D cases.
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5.1 Verification of 2D Prevention Bands

In the 2-dimensional case, a direct definition of Ω is possible by using τ , the time of minimal horizontal
separation between two aircraft:

τ(s,v) = −s ·v
v2 . (6)

From τ , we can define Ω as follows:

Ω(v) = (s+min(max(0,τ(s,v)),T )v)2−D2, (7)

where s is the relative distance between the ownship and the traffic aircraft.
The use of square distances in Formula 7 avoids the use of the square root function. Since the

minimum and maximum of a continuous function is continuous, the use of min and max is easier to
handle than the if-then-logic used in our first attempt.

The function Ω is not defined when v is 0. Therefore, rather than using Ω directly, we used the
function v 7→ v2Ω(v), which is defined everywhere, and proved that it is continuous and that it correctly
characterizes conflicts, i.e., conflict?(s,v) if and only if v2Ω(v) < 0.

The function v2Ω(v) has an infinite number of zeroes in some special cases, e.g., when s is at the
border of the protected zone, i.e, when s2 = D2. In those, special cases, we use an alternative charac-
terization of conflicts that has the required properties. In August 2009, we completed the proof of the
2-dimensional track and ground speed bands with finite lookahead time. For additional technical details
on this formal development, we refer the reader to [7].

5.2 Verification of 3D Prevention Bands

The verification of the 3D conflict prevention bands algorithm is similar to that of the 2D algorithm.
Indeed, many of the geometrical concepts critical to the verification in the 2D case can be generalized to
the 3D case. However, these generalizations are typically nontrivial because, geometrically, a circle (a
2D protected zone) is much easier to work with than a cylinder (a 3D protected zone). The Ω function
used in the verification of the 2D algorithm uses the horizontal time of minimum separation τ , which is
easy to compute analytically. In contrast, the fact that a cylinder is not a smooth surface indicates that a
3D generalization of the Ω function will not be as simply defined.

Despite these geometric challenges, a concept was discovered that can be used to simplify geom-
etry problems involving distance on cylinders. This concept is the notion of a normalized cylindrical
length [2]:

||u||cyl = max(

√
u2

x +u2
y

D
,
|uz|
H

). (8)

This metric nicely reduces horizontal and vertical loss of separation into a single value. Indeed, if s is
the relative position vector of two aircraft, then ||s||cyl < 1 if and only if the aircraft are in 3D loss of
separation.

Using the cylindrical distance metric, the Ω function can be defined in the 3D case as follows.

Ω3D(v) = min
t∈[0,T ]

||s+ t ·v||cyl−1, (9)

where S is the relative position vector between the ownship and traffic aircraft. An immediate conse-
quence of this definition is that two aircraft are in conflict if and only if Ω3D(v) < 0.
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The correctness of the prevention bands algorithms relies on the fact that Ω3D is a continuous function
of v, that the set of critical vectors, i.e., the zeroes of the function, is finite, and that the critical vector
algorithms are complete.

For many functions, a proof of continuity follows immediately from definitions. In this case, the
function Ω3D is a minimum over the closed interval [0,T ]. While standard methods from differentiable
calculus are often employed in similar problems, this function is a minimum of a non-differentiable
function, namely the cylindrical length. Its closed form involves several if-else statements and it would be
difficult to use directly in a proof of continuity. Thus, somewhat more abstract results from real analysis
were needed to be extended to vector analysis, e.g., the notion of limits, continuity, compactness, and
finally the Heine-Cantor Theorem.

As in the 2-dimensional case, the function Ω3D may have flat areas and, consequently, in some special
cases, may have an infinite number of critical zeros. We carefully identified these special cases and then
used an alternative definition of Ω3D. These special cases are extremely rare, indeed all the missing
critical vectors in the original algorithms presented in [8] were due to these special cases. Although they
are rare, dealing with them is necessary for the correctness proof of the algorithms. If one critical vector
is missing, the coloring of the bands will be potentially switch from red to green or vice-versa.

Finally, the PVS proof that the algorithms find all of the critical points is less abstract but more
tedious than the proof of continuity. It required the development of several PVS theories about the Ω3D

function, which are general enough to be used in other state-based separation assurance algorithms. The
proof of the correctness of the 3-dimensional algorithms for track, ground speed, and vertical speed with
finite lookahead time was complete in December 2009.

6 Verification of the Merge Algorithm

Having developed methods to calculate pairwise solutions (see section 4.3), we turned to the problem
of merging all of the pairwise solutions into a single set of bands for all aircraft (second problem listed
in section 3). Our original approach relied on complex reasoning about overlapping regions coupled
with precedence rules: an amber region take precedence over a green region but not a red region. We
developed a Java version that “worked,” but it was soon obvious that this solution was complex enough
that it could not be implicitly trusted. We decided that a formal verification of the merge algorithm was
necessary.

As we began considering how to formally specify and analyze this merge algorithm, we recognized
two problems with our approach. First, our algorithm was specialized to the precise problem we were
working; almost any change to the system would require a new algorithm and therefore a new verifica-
tion. The other problem was that our algorithm was monolithic; there was no obvious decomposition into
general pieces that could be verified once and used in different contexts. To resolve these problems, we
soon realized that standard set operations (set union, set difference, etc.) could be used to implement not
only the multiple-aircraft merge problem, but also the different colors of conflict prevention information.

Suppose we had a way of determining the set of track angles that have a loss of separation within
time T , denoted G<T . Then since Tred < Tamber, we can define the colored bands of track angles in terms
of this new set:

Gred = G<Tred

Gamber = G<Tamber −G<Tred

Ggreen = {α |0◦ ≤ α < 360◦}− G<Tamber

This observation simplified the analysis, because only one set, G<T needed to be analyzed.
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Next, we observed that each aircraft’s contribution to the set G<T is independent of all other traffic;
thus, the problem neatly divides into a series of aircraft pairs: the ownship and each traffic aircraft. If
we use G o,i

<T to represent the set of track angles which cause a loss of separation within time T between
traffic aircraft i and the ownship o, then the set of track angles for all traffic is then be formed by

G<T =
⋃

i∈traffic

G o,i
<T

This observation simplified the analysis again, because now we only needed to find the track angles
which cause a conflict between two aircraft, denoted by the set G o,i

<T . The set G o,i
<T corresponds to output

of the algorithm presented in section 4.3 except the two lookahead times are replaced with one time, T .
By using set operations we had a well-defined specification of the key parts of our merge algorithm.

However common implementations of sets in programming languages do not include efficient ways
to deal with ranges of floating point numbers; therefore, we chose to implement our own. We then
performed a code-level verification of the set union and set difference operations that were used in the
merge algorithm.

Each band is represented by an interval describing its minimal and maximal values, with the set of
all bands of one color being an interval set. These interval sets were internally represented by arrays
of (ordered) intervals. Necessary properties for the implementation would be that the data structures
representing the bands remained ordered and preserved the proper value ranges within a set of bands.

Set union combines overlapping bands as appropriate and set difference involves breaking larger
bands into smaller ones. There were two complications in the verification. The first complication arose
because the implementation used a subtle notion of ordering where a zero or a positive value represents
an actual position in the array of intervals, but a negative value represents a point between (or beyond)
the intervals currently in the set. Although tedious, this verification was completed without issues. The
second complication resulted from the boundary conditions. The original Java implementation did not
clearly indicate whether the endpoints of a band of green angles were part of that the green band, or if
they were part of the next band. The formal verification brought this issue forward. It was not possible
to exclusively use closed or open intervals for both union and difference operations: the use of one
necessitates the use of the other. For instance, removing a closed interval, which includes the endpoints,
leaves us with open intervals—everything up to, but not including, these end points. Also, removing two
adjacent open intervals leads to a left over point between them.

At this point we had an implementation issue. Should we use fully general set operations with open
and closed intervals, or should we use set operations with well-defined, but non-standard semantics.
In the interest of having a consistent interface and eliminating redundant code, we decided to take the
second route. The union operation would assume that inputs would be closed intervals and therefore, the
result would be closed intervals. The difference operations would assume that the set to be subtracted
would consist of only open intervals and therefore, the result would be only of closed intervals. As
mentioned above, this lead to the possibility of introducing artifacts of singleton intervals, where both
endpoints have the same value. After consideration, however, we realized these points could be safely
eliminated, as they are equivalent to a critical point at a local minimum or maximum. Green singletons
could be eliminated without introducing additional danger, and a red singleton would represent a brush
against (but not a cross into) the traffic aircraft’s protected zone.

The formal verification of merge algorithm required us to think deeply about what the merge algo-
rithm was trying to accomplish. During this analysis process we were able to develop an elegant solution
which can be presented in a paragraph of text, instead of a complicated 400 line Java program with many
special cases. In addition the formal verification process required us to clearly specify how our algorithm
would behave at the points where there is a transition from one color to another.
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Figure 6: Screenshot of Track Prevention Band Display

7 Java and C++ Implementations

Ultimately these algorithms will be brought into large simulation environments where they will be eval-
uated for performance benefits (improvements to airspace capacity or aircraft efficiency). Some of these
simulation environments are in Java and some are in C++. Therefore a requirement of this project was
not only to develop an algorithm and verify it, but to also produce Java and C++ implementations of the
algorithm. The initial Java version of the algorithm was available in December 2008 (see Figure 6). This
version successfully passed the limited test suite we developed. By the summer of 2009 we had a C++
version and the testing apparatus to verify exact agreement between the Java and C++ versions, along
with a regression suite of 100 test scenarios.

Since PVS is a specification language and contains non-computable functions, we deliberately re-
stricted our use of PVS in the specification of our algorithms to only the computable elements. In this
way there was a direct translation of PVS into Java or C++. We are currently developing a tool to au-
tomatically convert PVS specifications into Java [5], but the tool is not yet mature enough to handle the
specification of these kinds of algorithms. However, we ran into problems even in our manual conversion
of the algorithm. For instance, the PVS libraries contain all the appropriate vector operations (addition,
dot-product, etc.) but libraries do not exist for these operations in standard Java or C++. We searched
for a third-party library to offer these functions, but there were two downsides to these libraries. First,
we wanted the same algorithm in both Java and C++, but most libraries were targeted to only one pro-
gramming language. Second, we desired a library with identical semantics in both languages. But even
when we found libraries that supported both languages, we inevitably discovered certain quirks in their
implementation. For example, One vector library took full advantage of the imperative nature of the
Java language, implementing functions on vectors which would change the components of the vector.
While this results in efficient code, because object creation is not necessary, it does not closely relate to
the functional style of PVS. Because of these incompatibilities, we chose to implement our own vector
libraries. For similar reasons, we developed our own set operations (union and intersection).

Even with this hand translation, we still do not have an exact behavioral replica of the PVS in Java
or C++. The most glaring difference is that Java and C++ use floating point numbers while PVS uses
actual real numbers. All of our verifications in PVS are accomplished with vectors defined over the real
numbers. This can be thought of as computation using infinite precision arithmetic. Clearly, our Java
and C++ implementations execute on less powerful machines than this. There are several places where
we must be especially careful:

• Calculation of quadratic discriminants. Since we are often computing tangents, the theoretical
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value is zero, but the floating point answer can easily be a small negative number near zero. In this
case, we would miss a critical point.

• The possibility of the mid-point of a region being very close to zero.

Finally, another aspect related to this issue is that the data input into the algorithm is not precise. A
standard engineering assumption is that the error in the input data will overwhelm any error introduced
by floating point computations. However, we would like to make a formal statement that includes both
data and computational errors.

8 Conclusions

In this paper, we have presented a short history of the development and formal verification of prevention
bands algorithms. The resulting track-angle, ground speed, and vertical speed bands algorithms are far
more simple than our earlier versions. The goal of completing a formal proof forced us to search for
simplifications in the algorithms and in the underlying mathematical theories. A key insight that enabled
the completion of this work, is that trigonometric analysis should be deferred until the latest possible
time. Although, the project took far longer than we expected, we are very pleased with the elegance and
efficiencies of the discovered algorithms.
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and recovery algorithm. Technical Report NASA/TP-2004-213015, NASA/Langley Research Center, Hamp-
ton VA 23681-2199, USA, April 2004.
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Abstract

This paper presents the correctness proof of Saturation, analgorithm for generating state spaces
of concurrent systems, implemented in the SMART tool. Unlike the Breadth First Search exploration
algorithm, which is easy to understand and formalise, Saturation is a complex algorithm, employing
a mutually-recursive pair of procedures that compute a series of non-trivial, nested local fixed points,
corresponding to a chaotic fixed point strategy. A pencil-and-paper proof of Saturation exists, but a
machine checked proof had never been attempted. The key element of the proof is the characterisa-
tion theorem of saturated nodes in decision diagrams, stating that a saturated node represents a set
of states encoding a local fixed-point with respect to firing all events affecting only the node’s level
and levels below. For our purpose, we have employed the Prototype Verification System (PVS) for
formalising the Saturation algorithm, its data structures, and for conducting the proofs.

1 Introduction

Software systems have become a key part of our lives, controlling or influencing many of the activities
that we undertake every day. Software correctness is particularly important for safety-critical systems
where people’s lives can be at risk. Such systems have to be rigorously checked for correctness before
they can be deployed. Several formal techniques and tools for reinforcing the dependability of critical
systems exist. Temporal logic model checking is a techniqueto verify systems algorithmically, using
a decision procedure that checks if a (usually finite) abstract model of the system, expressed as a
state-transition system, satisfies a formal specification written as a temporal logic formula [7, 13].
Additionally, theorem proving is a technique to establish mathematical theorems and theories with
the aid of a computer program,i.e., a theorem prover. Theorem provers usually require the interaction
with an experienced user to find a proof. While model checking has been successfully used to find
errors, it is seldom used to seek the absolute correctness ofa system or application. On the other
hand, provers and proof checkers are oftentimes the most reliable means available for establishing a
higher level of correctness.

For both approaches however, from the point of view of validation, and even certification, there is
the outstanding issue of trustworthiness: if a formal analysis tool is employed, how does one establish
the semantic validity of the analysis tool itself – in other words,who is checking the checker?While
the formal methods community has been functioning on the premise of accumulated trust – some
theorem provers and model checkers accumulate a track record of being trustworthy – the issue of
certifying verification tools is of undeniable concern, themore so as experience shows that automated
verification tools are far from being free of bugs [14].

Regulatory authorities (FAA, CAA, or DOD) require softwaredevelopment standards, such as
MIL-STD-2167 for military systems and RTCA DO-178B for civil aircraft. While certified tools for
generating code exist, they have been mostly confined to a very narrow segment, such as synchronous
languages for embedded systems and are usually of proprietary nature.

In this paper we attempt to establish the correctness of a general purpose model checking al-
gorithm, with the help of a theorem prover. More precisely, we present the PVS proof of correct-
ness for Saturation [5], a non-trivial algorithm for model checking concurrent systems, implemented
within the SMART [6] formal analysis tool. We have employed the Prototype Verification System
(PVS) [12] for formalising the Saturation algorithm, the Multi-valued Decision Diagrams (MDDs)
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[15] data structure, and for conducting the proofs. Unlike the Breadth First Search exploration al-
gorithm which is easy to understand and formalise, Saturation is a high-performance algorithm, em-
ploying a mutually-preemptive, doubly-recursive pair of procedures that compute a series of nested
local fixed points, corresponding to achaoticglobal fixed point strategy. The key result of the proof
is the characterisation theorem of saturated nodes in decision diagrams, stating that a saturated node
represents a set of states encoding a local fixed-point with respect tofiring all events affecting only
the node’s level and levels below. Saturation requires aKronecker consistentpartition of the system
model in sub-models. The PVS proofs presented here take advantage of the Kronecker consistency
property to express how the state-spaces generated by localnext-state functions relate to the global
state-space. In this regard, Saturation’s correctness proof outlines an approach that may be re-used in
the correctness proofs of an entire class of algorithms thatrely on structural properties. Additionally,
the PVS formalisation makes the invariant relating Saturation and the firing routine explicit. This is
an important requirement for the SMART code. Its implementation, and the implementation of the
structures it uses for storing state-spaces, must satisfy this invariant.

2 Preliminaries

Saturation employs Multi-valued Decision Diagrams (MDDs)[15], an extension of the classical
Binary Decision Diagrams (BDDs), to symbolically encode and manipulate sets of states for con-
structing the state-space of structured asynchronous systems. MDDs encode characteristic functions
for sets of the formSK × ·· · ×S1 for systems comprisingK subsystems, each with its local state
spaceSk, for K ≥ k≥ 1. The particular MDD variant used in Saturation (quasi-reduced, ordered) is
formally given in Definition 1.

Definition 1 (MDDs). MDDs are directed acyclic edge-labelled multi-graphs withthe following
properties:

1. Nodes are organised into K+ 1 levels from0 to K. The expression
〈
k|p

〉
denotes a generic

node, where k is the node’s level and p is a unique index for a node at that level.

2. Level0 consists of two terminal nodes
〈
0|0

〉
and

〈
0|1

〉
, which we often denote0 and1.

3. Level K contains only a single non-terminal node
〈
K, r

〉
, the root, whereas levels K−1 through

1 contain one or more non-terminal nodes.

4. A non-terminal node
〈
k|p

〉
has |Sk| arcs pointing to nodes at level k− 1. An arc from the

position ik ∈ Sk to the node
〈
(k−1)|q

〉
is denoted by

〈
k|p

〉
[ik] = q.

5. No two nodes areduplicate, i.e., there are no nodes
〈
k|p

〉
and

〈
k|q

〉
such that p6=q and for all

ik ∈ Sk,
〈
k|p

〉
[ik] =

〈
k|q

〉
[ik].

In contrast to [15], not fully- but quasi-reduced ordered MDDs are considered in Saturation,
henceredundantnodes,i.e., nodes

〈
k|p

〉
such that

〈
k|p

〉
[ik] =

〈
k|p

〉
[ jk] for all ik 6= jk, are valid

according to definitions used in Saturation. This relaxed requirement can potentially lead to a much
larger number of nodes, but in practice this rarely occurs. On the other hand, the quasi-reduced form
has the property that all the children of a node are at the samelevel, which can be exploited in the
algorithm. Equally important, the quasi-reduced form is still canonical, as the fully-reduced form is.
A sequenceσ of local states(ik, . . . , i1) is referred to as asub-state. Given a node〈k|p〉, the node
reached from it through a sequenceσ of local states(ik, . . . , i1) is defined as:

〈k|p〉[σ ] =

{
〈k|p〉 if σ = (), the empty sequence

〈(k−1)|〈k|p〉[ik]〉[σ ′] if σ = (ik,σ ′), with ik ∈ Sk .

A sub-stateσ constitutes apathstarting at node〈k|p〉, if 〈k|p〉[σ ] = 〈0|1〉. B(k, p) is the set of
states encoded by〈k|p〉, i.e., those states constituting paths starting at node〈k|p〉.

B(k, p) = {σ ∈ Sk×·· ·×S1 : 〈k|p〉[σ ] = 〈0|1〉}
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2.1 Kronecker Consistency

Saturation requires aKronecker consistentpartition of the system model intoK sub-models. A next-
state functionN of a Kronecker structured asynchronous system model is defined on the potential
state-spacêS: SK ×·· ·×S1 decomposed by event,i.e., N =

⋃
e∈E Ne. An evente has aKronecker

representationfor a given model partition ifNe can be written as the cross-product ofK local next-
state functions,i.e., Ne = N K

e × ·· · ×N 1
e , whereN k

e : Sk → 2|Sk|, for K ≥ k ≥ 1. SinceSk are
all assumed to be finite in Saturation,Ŝ : SK × ·· · ×S1 can be regarded as a structure of the form
Ŝ: {1, · · · ,nK}×· · ·×{1, · · · ,n1}, wherenk = |Sk|. A partition of a system model into sub-models is
Kronecker consistentif every eventehas a Kronecker representation for that partition. The definition
of Ne can be extended to a set of sub-statesX, Ne(X) =

⋃
x∈X Ne(x), and to a set of eventsE ,

NE (X) =
⋃

e∈E Ne(X). An eventdependson a particular level if the event affects the (local) state-
space generated for that partition at that level. LetTop(e) andBottom(e) be the highest and lowest
levels an evente depends, two cases in the definition ofNE result whenE = {e: Top(e) ≤ k} and
E k = {e: Top(e) = k}. We writeN≤k as a shorthand forN{e:Top(e)≤k}, andN=k as a shorthand for

NE k. The reachable state-space S⊆ Ŝ from an initial system stateX is the smallest set containing
X and being closed with respect toN , i.e., S= X ∪N (X)∪N (N (X)) · · · = N ∗(X), where∗
denotes the reflexive and transitive closure.

2.2 Saturation

Saturation relies on a routineFire(e,k, p), for exhaustively firing all the eventsesuch thatTop(e) = k,
and recursively calling Saturation of any descendant

〈
k|p

〉
[ik] of 〈k|p〉. Fire, like Saturation, checks

whethere is enabled in a node〈k|p〉 and then reveals and adds globally reachable states to the MDD
representation of the state-space under construction. However, unlike Saturation,Fire operates on
a fresh node instead of modifying〈k|p〉 in place, since〈k|p〉 is already saturated. In Saturation,
MDDs are modified locally and only between the levels on whichthe fired event depends on. The
enabling and the outcome of firing an eventeonly depend on the states of sub-modelsTop(e) through
Bottom(e). Definition 2 formalises the idea of a saturated node. Saturation and the routine for firing
events are mutually recursive, related through the following invariant conditions:Saturateis called
on a node〈k|p〉 whose children are already saturated,Fire is always invoked on a saturated node
〈l |q〉 with l < Top(e) andSaturateis invoked just before returning fromFire.

Definition 2 (Saturated Node). An MDD node〈k|p〉 is saturated if it encodes a set of states that is a
fixed-point with respect to the firing of any event affecting only the node’s level or lower levels, that
is, if B(k, p) = N ∗

≤k(B(k, p)).

2.3 Saturation’s Correctness

For ease of reference, Figure 1 shows the pseudo-code for theSaturation and event firing algorithms.
We reproduce here the original pencil-and-paper correctness proof of the theorem relating both algo-
rithms, for ease of reference, then proceed with the formal PVS proof.

Correctness. Let 〈k|p〉 be a node withK ≥ k ≥ 1 and saturated children, and〈l |q〉 be one of
its children withq 6= 0 and l = k−1; let U stand forB(l ,q) before the callFire(e, l ,q), for some
eventewith l < Top(e), and letV representB(l , f ), wheref is the value returned by this call; Then,
V = N ∗

≤l (Ne(U )).

Proof. By induction onk. For the induction base,k = 1, the only possible callFire(e, l ,1) returns1
because of the test onl , which has value 0, in Line 1 in Figure 1. Then,U = V = {()} and{()}=
N ∗
≤0(Ne({()})).

For the induction step we assume that the call toFire(e, l−1, ·) works correctly. Recall thatl = k−1.
Fire does not add further local states toL , since it modifies “in–place” the new node〈l |s〉, and not
node〈l |q〉 describing the states from where the firing is explored. The call Fire(e, l ,q) can be resolved
in three ways. Ifl < Bottom(e), then the returned value isf = q andN l

e (U ) = U for any setU ;
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sinceq is saturated,B(l ,q) = N ∗
≤l (B(l ,q)) = N ∗

≤l (Ne(B(l ,q))). If l ≥Bottom(e) butFire has been
called previously with the same parameters, then the callFind(FCache[l ],{q,e},s) is successful.
Since nodeq is saturated, it has not been modified further; Finally, we need to consider the case where
the callFire(e, l ,q) performs “real work.” First, a new node〈l |s〉 is created, having all its arcs ini-
tialised to0. We explore the firing ofe in each statei satisfying〈l |q〉[i] 6= 0 andN e

l (i) 6= /0. By induc-
tion hypothesis, the recursive callFire(e, l−1,〈l |q〉[i]) returnsN ∗

≤l−1(Ne(B(l−1,〈l |q〉[i]))). Hence,
when the “while L 6= /0” loop terminates,B(l ,s) =

⋃
i∈S l N l

e (i)×N ∗
≤l−1(Ne(B(l−1,〈l |q〉[i]))) =

N ∗
≤l−1(Ne(B(l ,q))) holds. Thus, all children of node〈l |s〉 are saturated. According to the induction

hypothesis, the callSaturate(l ,s) correctly saturates〈l |s〉.
Therefore, we haveB(l ,s) = N ∗

≤l (N
∗
≤l−1(Ne(B(l ,q))) = N ∗

≤l (Ne(B(l ,q))) after the call.

3 The PVS Formalisation

We used the Prototype Verification System (PVS) [12] for formalisingSaturate, the MDD data struc-
ture it uses to store state-spaces, and for conducting the correctness proofs. Our formalisation is
purely functional, e.g., we do not formalise memory and memory operations. The main goal of
our PVS formalisation is to machine-check the pencil-and-paper correctness proof ofSaturate, in-
troduced in Section 2.3 and Figure 1. Modelling memory is necessary when one is interested in
generating actual code from the formalisation. We are planning to port our PVS formalisation to
AtelierB [2] and use refinement calculus techniques to generate Saturation actual code from the B
model. Yet, this is future work.

We started formalising the basic concepts employed by the definition of Kronecker consistency
such as events, states, local state values, next-state functions, local next-state functions. Then, we
formalised the Saturation algorithm and the routine for firing events, and conducted their correctness
proof in PVS following the pencil-and-paper proof. In the following, we present the definition of
some of those basic concepts in PVS. Predicatelocal_value?(m) below formalises local state
values at levelm, wherenk is the functionnk = |Sk|. The reader should remember thatSaturate
generates state spaces of values on a level basis. This is a direct consequence of the definition
of Kronecker consistency.local_value(m) is the type of all elements satisfying the predicate
local_value?(m), and the typestate(k) formalises sub-states of sizek as sequencess whose
elementss s̀q(m) at any positionm≤ k are restricted bynk. We further defines_t(k,s,m) (not
shown here) to be a sub-state ofs of sizem≤ k, wherek is the size ofs.

local_value?(m)(n): bool = (m=0 ∧ n=0) ∨ (m > 0 ∧ n > 0 ∧ n≤ nk(m))
local_value(m): type = (local_value?(m))
state(k): type = { s:Seq(k) | ∀(m:upto(k)): (m=0 ∧ s`sq(m)=0) ∨

(m > 0 ∧ s`sq(m) > 0 ∧ s`sq(m)≤ nk(m)) }

We use PVS datatypes to model MDDs, formed usingtype constructors, and define predicates
ordered? and reduced? (not shown here), modelling ordered and reduced MDDs. Predicate
reduced? subsumesordered?. The typeOMDD below formalises Definition 1. We further define
function level, which returns the height of an MDD node,child(p,i), which returns thei-th
child of an MDDp, and predicatetrivial? that holds of an MDD if it is0 or 1.

OMDD: type = (reduced?)

Events are formalised as the typeevent below with two functionsTop andBottom returning the
highest and lowest level an event depends upon. The symbol+ in the type definition indicates that
the typeevent is non-empty.TopLesser(k) models the setE = {e: Top(e)≤ k}.
event: type+

Top:[event -> posnat]
Bottom:[event -> posnat]

TopLesser(k): setof[event] = {e:event | Top(e) ≤ k}
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Saturate(in k:level, p:index)
Update 〈k|p〉 in–place, to encode
N ∗
≤k(B(〈k|p〉)).

declare e:event;
declare L :set of local;
declare f ,u:index;
declare i, j:local;
declare pChanged:bool;

1. repeat
2. pChanged← false;
3. foreach e∈ E k do
4. L ← Locals(e,k, p);
5. while L 6= /0 do
6. i ← Pick(L );
7. f ← Fire(e,k−1,〈k|p〉[i]);
8. if f 6= 0 then
9. foreach j ∈N k

e (i) do
10. u← Union(k −

1, f ,〈k|p〉[ j]);
11. if u 6=〈k|p〉[ j] then
12. 〈k|p〉[ j]←u;
13. pChanged← true;
14. if N k

e ( j) 6= /0 then
15. L ←L ∪{ j};
16. until pChanged= false;

Union(in k:level, p:index, q:index):index
Build an MDD rooted at 〈k|s〉 encoding
B(〈k|p〉)∪B(〈k|q〉). Return s.

declare i:local;
declare s,u:index;

1. if p = 1 or q = 1 then return 1;
2. if p = 0 or p = q then return q;
3. if q = 0 then return p;
4. if Find(UCache[k],{p,q},s) then

return s;
5. s← NewNode(k);
6. for i = 0 to nk−1 do
7. u← Union(k−1,〈k|p〉[i],〈k|q〉[i]);
8. 〈k|s〉[i]← u;
9. Check(k,s);

10. Insert(UCache[k],{p,q},s);
11. return s;

Fire(in e:event, l :level, q:index):index
Build an MDD rooted at 〈l |s〉 encoding
N ∗
≤l (Ne(B(〈l |q〉))). Return s.

declare L :set of local;
declare f ,u,s:index;
declare i, j:local;
declare sChanged:bool;

1. if l < Bottom(e) then return q;
2. if Find(FCache[l ],{q,e},s) then
3. return s;
4. s← NewNode(l);
5. sChanged← false;
6. L ← Locals(e, l ,q);
7. while L 6= /0 do
8. i ← Pick(L );
9. f ← Fire(e, l−1,〈l |q〉[i]);

10. if f 6= 0 then
11. foreach j ∈N l

e (i) do
12. u← Union(l−1, f ,〈l |s〉[ j]);
13. if u 6=〈l |s〉[ j] then
14. 〈l |s〉[ j]← u;
15. sChanged← true;
16. if sChangedthen
17. Saturate(l ,s);
18. Check(l ,s);
19. Insert(FCache[l ],{q,e},s);
20. return s;

Locals(in e:event, k:level, p:index):
set of local
Return {i∈S k:〈k|p〉[i] 6=0, N k

e (i) 6= /0},
the local states in p locally enabling e.
Return /0 or {i ∈ S k : N k

e (i) 6= /0}, re-
spectively, if p is 0 or 1.

Check(in k:level, inout p:index)
If 〈k|p〉 is the duplicate of an exist-
ing 〈k|q〉 delete 〈k|p〉 and set p to q.
Else, insert 〈k|p〉 in the unique table.
If 〈k|p〉[0] = · · · = 〈k|p〉[nk−1] = 0 or 1,
delete 〈k|p〉 and set p to 0 or 1, since
B(〈k|p〉) is /0 or S k×·· ·×S 1, respec-
tively.

Figure 1: Pseudo–code for the node–saturation and event firing algorithms.
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The typenext(k) describesNe for some evente. Local next-state functions at levelk are
introduced by the typeLocalnext(k). A finite sequence of local next-state functionsfs makes a
next-state functionN Kronecker consistent,Kronecker?(k)(N)(fs), if for each evente, and sub-
statesx andy of sizek, everyy’s local statey s̀q(m) with m≤ k is an image ofx’s local state
x s̀q(m) through the local next-state functionfs s̀q(m)(e) (modellingN m

e ).

next(k): type = [ event -> [state(k) -> setof[state(k)]] ]
Localnext(k): type = [ event -> [local_value(k) -> setof[local_value(k)]] ]

Kronecker?(k)(N)(fs): bool =
∀(e:event, x,y:state(k)):
N(e)(x)(y) ⇔ ∀(m:upto(k)): fs`sq(m)(e)(x`sq(m))(y`sq(m))

NextLesser(k)(N,fs)(x) formalisesN≤k applied over a sub-statex consisting ofk levels.
The formalisation assumes thatfs is a sequence of local next-state functions that makeN Kro-
necker consistency. That is,Ne has a Kronecker representation for all evente such thatTop(e)≤ k.
We further defineNextLesser(k,m)(N,fs) similar toNextLesser(m)(N,fs) (not shown here)
for levels less than or equal tom, and equals to the identity function fromm+1 to k. Definition of
NextLesser(m)(N,fs) is extended to a setX of sub-states in the natural way.

NextLesser(k)(N, fs)(x): setof[state(k)] =
{ y:state(k) | ∃(e:(TopLesser(k))):

∀(m:upto(k)): fs`sq(m)(e)(x`sq(m))(y`sq(m)) }

N ∗
≤k(X) is formalised asApply(k)(N,fs)(w)(X) below, wherew represents the number of

iterations after which applyingN≤k on X does not generate any new state. That is,X is a fixed-
point of N≤k. The existence of suchw is guaranteed by our formalisation sinceX is a finite
set, and everyNe in N≤k with Top(e) ≤ k is an increasing function. A similar definition for
Apply(k,m)(N,fs)(w)(X) exists (not shown here) that usesNextLesser(k,m)(N,fs)(X) in-
stead ofNextLesser(k)(N,fs)(X). As a consequence of the definition ofN ∗

≤k, and because we are
considering Kronecker consistency next-state functions,we have thatN ∗

≤k(N
∗
≤k−1(X)) = N ∗

≤k(X)
(CorollaryApply_cor1).

Apply(k)(N,fs)(w)(X): recursive setof[state(k)] =
if w=0 then X elsif w=1 then union(X,NextLesser(k)(N,fs)(X))
else union(X,Apply(k)(N,fs)(w-1)(X)) endif
measure w

Apply_cor1: corollary
∀(k:{n:upto(K) | n > 0}, N:next(k), fs:(kronecker?(k)(N)),
w:posnat, X:setof[state(k)], s:state(k)):

Apply(k)(N,fs)(w)(Apply(k,k-1)(N,fs)(w)(X))(s) ⇔ Apply(k)(N,fs)(w)(X)(s)

Finally, we formalise the routine for firing events and modelits usage in Saturation. We employed
an axiomatic approach rather than writing a definition for the routine. Although axioms might po-
tentially introduce inconsistencies, the use of definitions may force PVS to generate additional proof
obligations all over the lemmas and theorems using the definitions, cluttering their proofs. Further-
more, an axiomatic approach is preferable when one is not interested in generating code for the
algorithm directly. The firing of an evente on a node〈l |q〉, fire(l,e,N,fs,w,q) is described by
axiomsfire_trivial, fire_nontrivial, fire_recursive, andfire_ saturated below, with
l≤ K, e:{ev:event | l <Top(ev)}, N:next(l), fs:(Kronecker?(l )(N)), andq:{u:OMDD |
level(u)=l∧ saturated?(l,u)(N,fs)(w)}. Therefore, to be able to callfire(l,e,N,fs,w,q),
evente should be such thatl < Top(e), andq should be such thatsaturated?(l,q)(N, fs)(w),
in accordance with the “Fire is always invoked on a saturated node〈l |q〉 with l < Top(e)” invari-
ant condition. fire_trivial states thatfire(l,e,N,fs,w,q) returnsq unaffected when ei-
ther l < Bottom(e) or l = 0. These two conditions describe the cases when the recursivecall to
fire(l,e,N,fs,w,q) ends.fire_nontrivial states that ifl>0, thenfire(l,e,N,fs,w,q)’s
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call returns a node whose level is the same asq’s level, that isl. trivial? holds of an MDD if it
is 0 or 1. fire_recursive states that the setBelow(l,fire(l,e,N,fs,w,q)) of states of sizel
encoded by a call tofire(l,e,N,fs,w,q) is recursively generated on a Kronecker structured level-
basis. That is, at levell, the local next-state functionN l

e (seefs s̀q(l)(e)) generates all the local
states for every local state valuei at levell, and recursively,fire(l-1,e,Nl′,fsl′,w,child(q,i))
generates all the sub-states of sizel-1. The final challenge in our formalisation comes from mod-
elling the mutual recursion betweenSaturateandFire. Mutual recursion is not directly supported
by PVS. The axiomfire saturated formalises the invariant “Saturateis invoked just before re-
turning fromFire” in which we model Saturated as a property of a node that is fired on a particular
event. Notice thatfire saturated cannot directly be expressed as a definition.

fire(l,e,N,fs,w,q): OMDD

fire_trivial: axiom l < Bottom(e) ∨ l=0 ⇒ fire(l,e,N,fs,w,q)=q

fire_nontrivial: axiom
l > 0 ⇒ ¬trivial?(fire(l,e,N,fs,w,q)) ∧ level(fire(l,e,N,fs,w,q))=l

fire_recursive: axiom
Below(l,fire(l,e,N,fs,w,q)) =
{ s:state(l) | ∃(i:local_value(l)): fs`sq(l)(e)(i)(s`sq(l)) ∧

Below(l-1,fire(l-1,e,Nl′,fsl′,w,child(q,i)))(s_t(l,s,l-1)) }

fire_saturated: axiom saturated?(l,fire(l,e,N,fs,w,q))(N,fs)(w)

3.1 Saturation’s Formalisation

Theorem 1 formalisesN ∗
≤k−1(Ne(B(k, p))) =

⋃
i∈Sk N k

e (i)×N ∗
≤k−1(Ne(B(

〈
k− 1|

〈
k|p

〉
[i]

〉
))),

which is true in Kronecker systems.

Theorem 1(Applying Kronecker Consistent Next-State Functions). This theorem is used in Satura-
tion’s correctness proof (Theorem 2).

kronecker_apply: theorem

∀(k:{n:upto(K) | n > 0}, p:{u:OMDD | ¬trivial?(u) ∧ level(u)=k}, ev:event,

N:next(k), fs:(kronecker?(k)(N)), w:posnat, w1:posnat, s:state(k)):

( ∃(i:local_value(k)):
fs`sq(k)(ev)(i)(s`sq(k)) ∧
Apply(k-1)(Nk′,fsk′)(w1)(Next(k-1,ev)(Nk′,fsk′)(Below(k-1,child(p,i))))

(s_t(k,s,k-1)) )

⇔
Apply(k,k-1)(N,fs)(w)(Next(k,ev)(N,fs)(Below(k,p)))(s)

The proof of Theorem 1 is conducted under thewell_defined assumption below, which states
that since “the enabling and the outcome of firing an eventeonly depend on the states of sub-models
Top(e) throughBottom(e)”, if k < Bottom(e) then applyingN≤k to B(k, p) does not generate any
new state, and thenon_decreasing assumption, which states that all considered local next-state
functionsf are non-decreasing.Below(k,p) formalisesB(k, p), the set of states encoded by〈k|p〉.
well_defined: assumption
∀(k:upto(K), p:{u:OMDD | level(u)=k}, e:event,
N:next(k), fs:(Kronecker?(k)(N))):
k < Bottom(e) ⇒ Below(k,p) = Next(k,e)(N,fs)(Below(k,p))

non_decreasing: assumption
∀(k:upto(K), e:event, f:Localnext(k), i:local_value(k)): f(e)(i)(i)
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Theorem 1 is proved by induction onw andw1. The base case,w=1 andw1=1, is proved from
the lemmabelow_incremental below. This lemma states that a states of sizek>0 belongs to
Below(k,p) if and only if p is not trivial (p is different to0 and1), ands_t(k,s,k-1) belongs to
Below(k-1,child(n,s s̀q(s l̀n))).

below_incremental: lemma
Below(k,p)(s) ⇔
( ¬ trivial?(p) ∧ Below(k-1,child(p,s`sq(s`ln)))(s_t(k,s,k-1)) )

The inductive step for Theorem 1 is shown below. It reduces after expanding the definition ofApply
in thew+1 part of the logical equivalence.

Apply(k,k-1)(N,fs)(w)(Next(k,ev)(N,fs)(Below(k,p)))(s)
⇔

Apply(k,k-1)(N,fs)(w+1)(Next(k,ev)(N,fs)(Below(k,p)))(s)

Theorem 2 below formalises Saturation’s correctness condition in PVS. The PVS proof of this
theorem follows the pencil-and-paper proof in Section 2.3.

Theorem 2 (Saturation’s Correctness). B(l , f ) = N ∗
≤ l (Ne(U )), where f is the value returned by

Fire(l ,e,q)’s call, andU stands forB(l ,q) before calling Fire(l ,e,q), for some event e such that
l < Top(e).

saturation_correctness: theorem

∀(l:upto(K), e:{ev:event | l < Top(ev)}, N:next(l), fs:(Kronecker?(l)(N),

w:posnat, q:{u:OMDD | level(u)=l ∧ saturated?(l,u)(N,fs)(w)})):

Below(l,fire(l,e,N,fs,w,q)) =

Apply(l)(N,fs)(w)(Next(l,e)(N,fs)(Below(l,q)))

Proof. By induction onl.

(i.) Base case (l=0). If l=0 thenfire(l,e,N,fs,w,q) = q (Axiom fire_trivial). Below(0,q)
equalsTSeq (the empty sequence), andNext(0,e)(N,fs)({TSeq}) = {TSeq}. Because
Apply(0)(N,fs)(w)({TSeq}) = {TSeq}, the base case reduces trivially.

level(q)=0 ∧ 0 < Top(e) ∧ reduced?(q) ∧
Kronecker?(0)(N)(fs) ∧ saturated?(0,q)(N,fs)(w)
⇒

Below(0,fire(0,e,N,fs,w,q)) =
Apply(0)(N,fs)(w)(Next(0,e)(N,fs)(Below(0,q)))

(ii .) Inductive step withf = fire(l+1,e,N,fs,w,q).

l+1 < Top(e) ∧ level(q)=l+1 ∧ reduced?(q) ∧
Kronecker?(l+1)(N)(fs) ∧ saturated?(l+1,q)(N,fs)(w) ∧
(∀(ee:{ev:event | l < Top(ev)}, Nl:next(l), fsl:(Kronecker?(l)(Nl)),

ww:nat, qq:{u:OMDD | level(u)=l ∧ saturated?(l,u)(Nl,fsl)(ww)}):
Below(l,fire(l,ee,Nl,fsl,ww,qq)) =
Apply(l)(Nl,fsl)(ww)(Next(l,ee)(Nl,fsl)(Below(l,qq))))

⇒
Below(l+1,f) = Apply(l+1)(N,fs)(Next(l+1,e)(N,fs)(Below(l+1,q)))

(ii .i) Let us supposel+1 < Bottom(e). From axiomfire_trivial, f = fire(l+1,e,N,fs,
w,q) = q. The proof is discharged from this,saturated?(l+1,q)(N,fs)(w) in the
antecedent of the proof, and the assumptionwell_defined.

(ii .ii) Let us supposel+1 ≥ Bottom(e). If trivial?(q) thenlevel(q) = 0, which con-
tradicts the hypothesislevel(q) = l+1. We hence assume¬trivial?(q) afterwards.
From the axiomfire_saturated andsaturated?(l,f)(N,fs)(w) in the hypothe-
sis of the proof,Below(l+1,f) = Apply( l+1)(N,fs)(w)(Below(l+1,f)). Because
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Below(l+1,f) = Apply(l+1,l)( N,fs)(w)(Next(l+1,e)(N,fs)(Below(l+1,q)))1,
thenBelow(l+1,f) = Apply(l+1)(N,fs)(w)(Apply(l+1,r)(N,fs)(w)(Next( l+1,
e)(N,fs)(Below(l+1,q)))). Therefore, from CorollaryApply_cor1 in Section 3,
Below(l+1,f) = Apply(l+1)(N,fs)(Next(l+1, e)(N,fs) (Below(l+1,q))).

4 Conclusion and Future Work

Saturation is a high-performance non-trivial algorithm with an existing pencil-and-paper correctness
proof. Conducting Saturation’s correctness proof in PVS allowed us to verify correct the existing
pencil-and-paper proof. Additionally, the PVS type-checker ensures that all the definitions in Satu-
ration are type-correct, and that details are not overlooked. The Kronecker consistency property of
systems considered in Saturation allows a separation of concerns so that proof-constraints did not
clutter the actual structural proofs we conducted. In this regard, Saturation’s correctness proof out-
lines a proof approach for an entire family of algorithms relying on structural properties. However,
there is still a missing link. We proved the correctness of a model of Saturation. But, how do we
know that Saturation’s implementation faithfully atteststo this model? As future work, we will pur-
sue research in generating Java or C code from the PVS formalisation of Saturation, in the spirit of
C. Muñoz and L. Lensink’s work in [11], and comparing this code with the existing implementation
of Saturation in the SMART formal analysis tool.

The full formalisation of Saturation in PVS consists of 7 theories, 10 lemmas, 7 corollaries, 2
main theorems, and 107 Type-Correctness Conditions (TCCs). The full formalisation can be reached
athttp://www.uma.pt/ncatano/satcorrectness/saturation-proofs.htm. Our formalisa-
tion is purely functional, e.g., we do not formalise memory,or memory operations.

Future Work. In [11], Muñoz and Lensink present a prototype code generator for PVS which
translates a subset of PVS functional specifications into the Why language [8] then to Java code
annotated with JML specifications [3, 4]. However, the code generator is still a proof of concept
so that many of its features have to be improved. We will pursue research in that direction so as
to generate Java certified code from the PVS formalisation ofSaturation, and compare this with the
existing implementation of Saturation in the SMART formal analysis tool.

In a complementary direction, our PVS formalisation of Saturation can be ported into B [1].
Then, using refinement calculus techniques [9, 10], e.g., implemented in the AtelierB tool [2], code
implementing Saturation can be generated. This code is ensured to comply with the original formali-
sation of Saturation. A predicate calculus definition wouldrequire that axiomatisation for the routine
for firing events (Section 3) is replaced by a more definitional style of modelling.
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Abstract

We develop a learning-based automated Assume-Guarantee (AG) reasoning framework for ver-
ifying ω-regular properties of concurrent systems. We study the applicability of non-circular (AG-
NC) and circular (AG-C) AG proof rules in the context of systems with infinite behaviors. In particu-
lar, we show thatAG-NC is incomplete when assumptions are restricted to strictly infinite behaviors,
while AG-C remains complete. We present a general formalization, called LAG, of the learning
based automated AG paradigm. We show how existing approaches for automated AG reasoning are
special instances of LAG. We develop two learning algorithms for a class of systems, called∞-regular
systems, that combine finite and infinite behaviors. We show that for∞-regular systems, bothAG-
NC andAG-C are sound and complete. Finally, we show how to instantiate LAG to do automated
AG reasoning for∞-regular, andω-regular, systems using bothAG-NC andAG-C as proof rules.

1 Introduction
Compositional reasoning [8, 13] is a widely used technique for tackling thestatespace explosionproblem
while verifying concurrent systems. Assume-Guarantee (AG) is one of the most well-studied paradigms
for compositional reasoning [19, 14]. In AG-style analysis, we infer global properties of a system from
the results of local analysis on its components. Typically, to analyze a systemcomponentC locally, we
use an appropriate “assumption”, a model of the rest of the system that reflects the behavior expected by
C from its environment in order to operate correctly. The goal of the local analyses is then to establish
that every assumption made is also “guaranteed” – hence Assume-Guarantee.

Since its inception [18, 16], the AG paradigm has been explored in several directions. However, a
major challenge in automating AG reasoning is constructing appropriate assumptions. For realistic sys-
tems, such assumptions are often complicated, and, therefore, constructing them manually is impractical.
In this context, Cobleigh et al. [9] proposed the use of learning to automatically construct appropriate
assumptions to verify a system composed of finite automata against a finite automaton specification (i.e.,
to verify safety properties). They used the following sound and complete AG proof rule:

M1 ‖ A⊑ S M2 ⊑ A
M1 ‖M2 ⊑ S

whereM1,M2,A andSare finite automata,|| is a parallel composition, and⊑ denotes language contain-
ment. The essential idea is to use theL ∗ algorithm [2] to learn an assumptionA that satisfies the premises
of the rule, and implement the minimally adequate teacher required byL ∗ via model-checking.

The learning-based automated AG paradigm has been extended in several directions [6, 1, 21]. How-
ever, the question of whether this paradigm is applicable to verifyingω-regular properties (i.e., liveness
and safety) of reactive systems is open. In this paper, we answer this question in the affirmative. An
automated AG framework requires: (i) an algorithm that uses queries and counterexamples to learn an
appropriate assumption, and (ii) a set of sound and complete AG rules. Recently, a learning algorithm
for ω-regular languages has been proposed by Farzan et al. [10]. However, to our knowledge, the AG
proof rules have not been extended toω-regular properties. This is the problem we address in this paper.

First, we study the applicability of non-circular (AG-NC) and circular (AG-C) AG proof rules in the
context of systems with infinite behaviors. We assume that processes synchronize on shared events and
proceeding asynchronously otherwise, i.e., as in CSP [15]. We prove that, in this context,AG-NC is
sound butincompletewhen restricted to languages with strictly infinite behaviors (e.g.,ω-regular). This
is surprising and interesting. In contrast, we show thatAG-C is both sound and complete forω-regular
languages.Second, we extend our AG proof rules to systems and specifications expressible in∞-regular
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languages (i.e., unions of regular andω-regular languages). We show that bothAG-C and AG-NC
are sound and complete in this case. To the best of our knowledge, these soundness and completeness
results are new. We develop two learning algorithms for∞-regular languages – one using a learning algo-
rithm for ω-regular languages (see Theorem 8(a)) with an augmented alphabet, and another combining
a learning algorithm forω-regular languages withL ∗ (see Theorem 8(b)) without alphabet augmenta-
tion. Finally, we present a very general formalization, called LAG, of the learning based automated AG
paradigm. We show how existing approaches for automated AG reasoning are special instances of LAG.
Furthermore, we show how to instantiate LAG to develop automated AG algorithms for ∞-regular, and
ω-regular, languages using both AG-NC and AG-C as proof rules.

The rest of the paper is structured as follows. We present the necessary background in Section 2. In
Section 3, we review our model of concurrency. In Section 4, we study the soundness and completeness
of AG rules, and present our LAG framework in Section 5. We conclude the paper with an overview of
related work in Section 6.

2 Preliminaries
We write Σ∗ andΣω for the set of all finite and infinite words overΣ, respectively, and writeΣ∞ for
Σ∗∪Σω . We use the standard notation of regular expressions:λ for empty word,a·b for concatenation,
a∗, a+, andaω for finite, finite and non-empty, and infinite repetition ofa, respectively. Whena∈ Σω , we
definea·b= a. These operations are extended to sets in the usual way, e.g.,X ·Y = {x·y | x∈X∧y∈Y}.
Language. A language is a pair(L,Σ) such thatΣ is an alphabet andL ⊆ Σ∞. The alphabet is an
integral part of a language. In particular,({a},{a}) and({a},{a,b}) are different languages. However,
for simplicity, we often refer to a language asL and mentionΣ separately. For instance, we write
“languageL over alphabetΣ” to mean the language(L,Σ), andΣ(L) to mean the alphabet ofL. Union
and intersection are defined as usual, but only for languages over the same alphabet. The complement
of L, denotedL, is defined as:L = Σ(L)∞ \L. A finitary language (Σ∗-language) is a subset ofΣ∗. An
infinitary language (Σω -language) is a subset ofΣω . ForL⊆ Σ∞, we write∗(L) for the finitary language
L∩Σ∗ andω(L) for the infinitary languageL∩Σω . Note thatΣ(L) = Σ(∗(L)) = Σ(ω(L)) = Σ(L).

Transition Systems. A labeled transition system (LTS) is a 4-tupleM = (S,Σ, Init,δ ), whereS is a
finite set of states,Σ is an alphabet,Init ⊆ S is the set of initial states, andδ ⊆ S×Σ×S is a transition
relation. We writes

α−→ s′ for (s,α ,s′) ∈ δ , and Σ(M) for Σ. M is deterministic if|Init| ≤ 1, and
∀s∈S�∀α ∈ Σ � |{s′ | s α−→ s′}| ≤ 1. A runr over a wordw= α0,α1, . . . ,∈ Σ(M)∞ is a sequence of states
s0,s1, . . ., such that∀i ≥ 0 � si

αi−→ si+1. We writeFirst(r), Last(r), andInf (r) to denote the first state
of r, the last state ofr (assumingr ∈ S∗), and states that occur infinitely often inr (assumingr ∈ Sω ),
respectively. We writeRun(w,M) for the set of runs ofw onM.

Automata. A Finite Automaton (FA) is a 5-tupleA= (S,Σ, Init,δ ,F), where(S,Σ, Init,δ ) is an LTS and
F ⊆ S is a set of accepting states. The language accepted byA, L (A), is the set of all wordsw ∈ Σ∗
s.t. there exists a runr of w on A, with First(r) ∈ Init ∧ Last(r) ∈ F . A BüchiAutomaton (BA) is a
5-tupleB = (S,Σ, Init,δ ,F), where(S,Σ, Init,δ ) is an LTS andF ⊆ S is a set of accepting states. The
language accepted byB, L (B), is the set of all wordsw ∈ Σω s.t. there exists a runr of w on A with
First(r) ∈ Init ∧ Inf (r)∩F 6= /0. A BA or FA is deterministic if its underlying LTS is deterministic.

Regularity. A language is regular (ω-regular) iff it is accepted by a FA (BA). A languageL ⊆ Σ∞ is
∞-regular iff ∗(L) is regular andω(L) is ω-regular. Deterministic FA (DFA) and non-deterministic FA
(NFA) are equally expressive. Deterministic BA are strictly less expressive than non-deterministic BA.

Learning. A learning algorithm for a regular language is any algorithm that learns an unknown, but
fixed, languageU over a known alphabetΣ. Such an algorithm is calledactiveif it works by querying a
Minimally Adequate Teacher (MAT). The MAT can answer “Yes/No” to two types of queries aboutU :

Proceedings of NFM 2010, April 13-15, 2010, Washington D.C., USA. 58



Sagar Chaki and Arie Gurfinkel

Membership Query Given a wordw, is w∈U?

Candidate Query Given an automatonB, is L (B) = U? If the answer is “No”, the MAT returns a
counterexample (CE), which is a word such thatCE∈L (B)⊖U , whereX⊖Y = (X\Y)∪(Y\X).

An active learning algorithm begins by asking membership queries of the MATuntil it constructs a
candidate, with which it make a candidate query. If the candidate query is successful, the algorithm
terminates; otherwise it uses theCE returned by the MAT to construct additional membership queries.
The family of active learning algorithms was originated by Angluin viaL ∗ [2] for learning a minimal
DFA that accepts an unknown regular language.L ∗ was further optimized by Rivest and Schapire [20].

The problem of learning aminimalautomaton which accept an unknownω-regular language is still
open. It is known [17] that for any languageU one can learn in the limit an automaton that acceptsU via
the identification by enumerationapproach proposed by Gold [12]. However, the automaton learned via
enumeration may, in the worst case, be exponentially larger than the minimal automaton acceptingU .
Furthermore, there may be multiple minimal automata [17] acceptingU . Maler et al. [17] have shown
thatL ∗ can be extended to learn a minimal (Müller) automaton for a fragment ofω-regular languages.

Farzan et al. [10] show how to learn a Büchi automaton for anω-regular languageU . Specifically,
they useL ∗ to learn the languageU$ = {u$v | u · vω ∈U}, where $ is a fresh letter not in the alphabet
of U . The languageU$ was shown to be regular by Calbrix et al. [4]. In the sequel, we refer to this
algorithm asL$. The complexity ofL$ is exponential in the minimal BA forU . Our LAG framework
can use any active algorithm for learningω-regular languages. In particular,L$ is an existing candidate.

3 Model of Concurrency
Let w be a word andΣ an arbitrary alphabet. We writew⇃ Σ for the projection ofw onto Σ defined
recursively as follows (recall thatλ denotes the empty word):

λ ⇃Σ = λ (a·u) ⇃Σ =

{
a· (u⇃Σ) if a∈ Σ
u⇃Σ otherwise

Clearly, bothΣ∗ andΣ∞ are closed under projection, butΣω is not. For example,(a∗ ·bω ⇃{a}) = a∗, and
a∗ consists only of finite words. Projection preservers regularity. IfL is a regular (∞-regular) language
andΣ is any alphabet, thenL ⇃Σ is also regular (∞-regular).

A process is modeled by a language of all of its behaviors (or computations). Parallel composition
(||) of two processes/languages synchronizes on common actions while executing local actions asyn-
chronously. For languages(L1,Σ1) and(L2,Σ2), L1||L2 is the language overΣ1∪Σ2 defined as follows:

L1 ‖ L2 = {w∈ (Σ1∪Σ2)∞ | w⇃Σ1 ∈ L1∧w⇃Σ2 ∈ L2} (def. of ||)

Intuitively, L1||L2 consists of all permutations of words fromL1 andL2 that have a common synchroniza-
tion sequence. For example,(b∗ ·a·b∗)||(c∗ ·a·c∗) is (b+c)∗ ·a·(b+c)∗. Note that whenL1 andL2 share
an alphabet, the composition is their intersection; when their alphabets are disjoint, the composition is
their language shuffle. The set ofΣ∗, Σω , andΣ∞ languages are all closed under parallel composition.

Theorem 1. The|| operator is associative, commutative, distributive over union and intersection. It is
also monotone, i.e., for any two languages L1, L2, and L3: L2 ⊆ L3 ⇒ (L1||L2)⊆ (L1||L3).

Let L1 andL2 be two languages such thatΣ(L1)⊇ Σ(L2). We say thatL1 is subsumed byL2, written
L1 4 L2, if L1 ⇃ Σ(L2) ⊆ L2. Let LS be the language of a specificationS, andLM be the language of a
systemM. Then,M satisfiesS, writtenM |= S, iff LM 4 LS.
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4 Proof Rules for Assume-Guarantee Reasoning
In this section, we study the applicability of a non-circular and a circular AG rule to proving properties of
processes with infinite behaviors (e.g., reactive systems that neither terminate nor deadlock). These rules
were shown to be sound and complete for systems with finite (i.e., inΣ∗) behaviors by Barringer et al. [3].
In Section 4.1, we show that the non-circular AG rule is sound for bothΣ∞ andΣω behaviors. However,
it is complete only when the assumptions are allowed to combinebothfinite and infinite behaviors (i.e.,
in Σ∞). In Section 4.2, we show that the circular AG rule is sound and complete forΣω andΣ∞ behaviors.

4.1 Non-Circular Assume-Guarantee Rule

The non-circular AG proof rule (AG-NC for short) is stated as follows:

(L1 ‖ LA) 4 LS L2 4 LA

(L1 ‖ L2) 4 LS

whereL1, L2, LS, andLA are languages with the alphabetsΣ1, Σ2, ΣS, ΣA, respectively,ΣS⊆ (Σ1∪Σ2),
andΣA = (Σ1∪ΣS)∩Σ2. AG-NC is known to be sound and complete forΣ∗-languages. Intuitively, it says
that if there exists an assumptionLA such that: (a)L1 composed withLA is contained inLS, and (b)L2 is
contained inLA, then the composition ofL1 with L2 is contained inLS as well. Note that the alphabetΣA

is the smallest alphabet containing: (a) actions at the interface betweenL1 andL2, i.e., actions common
to the alphabets ofL1 andL2, and (b) external actions ofL2, i.e., actions common to the alphabets ofL2

andLS. Any smaller alphabet makes the rule trivially incomplete; any larger alphabetexposes internal
(i.e., non-external) actions ofL2. It is not surprising thatAG-NC remains sound even when applied to
languages with infinite words. However,AG-NC is incompletewhenLA is restricted toΣω -languages:

Theorem 2. There exists L1,L2,LS⊆ Σω such that(L1||L2) 4 LS, but there does not exists an assumption
LA ⊆ Σω that satisfies all of the premises ofAG-NC.

Proof. By example. LetL1, L2, LS, and their alphabets be defined as follows:

Σ1 = {a,b} Σ2 = {a,c} ΣS = {a,b} L1 = (a+b)ω L2 = a∗cω LS = (a+b)∗bω

The conclusion ofAG-NC rule is satisfied since(L1||L2) ⇃ΣS = (a+b)∗bω = LS. The alphabetΣA of LA

is (Σ1∪ΣS)∩Σ2 = {a}. SinceLA ⊆ Σω
A , it can only beaω or /0. The only way to satisfy the first premise

of AG-NC is to letLA = /0, but this is too strong to satisfy the second premise.

Note that the proof of Theorem 2 shows thatAG-NC is incomplete even for∞-regular languages.

Remark 1. One may conjecture that theAG-NC rule becomes complete forΣω if subsumption is rede-
fined to only consider infinite words. That is, by redefining subsumption as: L1 4 L2 ⇔ ω(L1 ⇃Σ(L2))⊆
L2. However, under this interpretation,AG-NC is no longer sound. For example, let the languages L1,
L2, LS, and their alphabets be defined as follows:

Σ1 = {a,b} Σ2 = {a,c} ΣS = {a,b} L1 = (a+b)ω L2 = a∗cω LS = bω

Then, the conclusion ofAG-NC does not hold:ω((L1||L2)⇃ΣS) = (a+b)∗bω 6⊆ bω . But LA = /0 satisfies
both premises:(L1||LA) = bω , andω(L2 ⇃{a}) = LA.

Remark 2. AG-NC is complete if the alphabetΣA is redefined to beΣ1∪Σ2. However, in this case the
rule is no longer “compositional” since the assumption LA can be as expressive as the component L2.

Intuitively, AG-NC is incomplete forΣω becauseΣω is not closed under projection. However, we
show that the rule is complete forΣ∞ – the smallest projection-closed extension ofΣω . We first show that
for any languagesL1 andLS, there always exists a unique weakest assumptionLA, such thatL1||LA 4 LS.
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Theorem 3. Let L1 and LS be two languages, andΣA be any alphabet s.t.Σ(L1)∪ΣA = Σ(L1)∪Σ(LS).
Then, LA = {w∈ Σ∞

A | (L1||{w}) 4 LS} satisfies L1||LA 4 LS, and is the weakest such assumption.

Proof. Let us writeΣ1, ΣS and Σ1S to meanΣ(L1), Σ(LS) and Σ(L1)∪ Σ(LS) respectively. To show
that LA is a valid assumption, pick anyw ∈ L1 ‖ LA. Thenw ⇃ ΣA ∈ LA. This implies thatw ⇃ ΣS ∈
(L1 ‖ {w⇃ΣA}) ⇃ΣS⊆ LS. Sincew is any word inL1 ‖ LA, we haveL1 ‖ LA 4 LS. To show thatLA is the
weakest assumption, letL′A ⊆ Σ∞

A be any language such thatL1 ‖ L′A 4 LS and letw be any word inL′A.
Then,(L1 ‖ {w})⊆ (L1 ‖ L′A) 4 LS. But this implies thatw∈ LA, and, therefore,L′A ⊆ LA.

Note thatΣ∞
A subsumes both finite (Σ∗A) and infinite (Σω

A ) words. Thus, ifLA is aΣ∞
A weakest assump-

tion, then∗(LA) andω(LA) are the weakestΣ∗A andΣω
A assumptions, respectively.

Theorem 4. Let L1, L2, LS, and LA be inΣ∞. Then, theAG-NC rule is sound and complete.

Proof. The proof of soundness is trivial and is omitted. For the proof of completeness we only show
the key step. Assume thatL1||L2 4 LS, and letLA be the weakest assumption such thatL1||LA 4 LS.
By Theorem 3,LA is well-defined and satisfies the first premise ofAG-NC. The second premise holds
becauseL2 ⇃ΣA ⊆ Σ∞

A, andLA is the weakestΣ∞
A assumption (see Theorem 3).

Theorem 4 implies thatAG-NC is sound for any fragment ofΣ∞. Of course, this is not true for
completeness of the rule. For practical purposes, we would like to know that the rule remains complete
when its languages are restricted to the regular subset. We show that this is so by showing that under the
assumption thatL1 andLS are regular, the weakest assumption is regular as well.

Theorem 5. Let L1 and LS be two languages, andΣA be any alphabet such thatΣ(L1)∪ΣA = Σ(L1)∪
Σ(LS). Then, LA ⊆ Σ∞

A is the weakest assumption such that L1||LA 4 LS iff LA = (L1 ‖ LS) ⇃ΣA.

Proof. Let us writeΣ1, ΣS andΣ1S to meanΣ(L1), Σ(LS) andΣ(L1)∪Σ(LS), respectively. For anyw∈Σ∞
A:

w∈ (L1 ‖ LS) ⇃ΣA iff ∀w′ ∈ Σ∞
1S�{w′}4 {w} =⇒ w′ 6∈ (L1 ‖ LS)

iff ∀w′ ∈ Σ∞
1S�{w′}4 {w} =⇒ ({w′} 64 L1∨{w′}4 LS)

iff ∀w′ ∈ Σ∞
1S� ({w′}4 {w}∧{w′}4 L1) =⇒ {w′}4 LS

iff ∀w′ ∈ Σ∞
1S� ({w′}4 (L1 ‖ {w})) =⇒ {w′}4 LS iff L1 ‖ {w}4 LS

Together with Theorem 3, this completes the proof.

Theorem 5 impliesAG-NC is complete for any class of languages closed under complementation
and projection, e.g., regular and∞-regular languages. In addition, Theorem 5 implies that learning-
based automated AG reasoning is effective for any class of languages whose weakest assumptions fall in
a “learnable” fragment. In particular, this holds for regular,ω-regular and∞-regular languages.

4.2 Circular Assume-Guarantee Rule

The Circular Assume-Guarantee proof rule (AG-C for short) is stated as follows:

(L1 ‖ LA1) 4 LS (L2 ‖ LA2) 4 LS (LA1 ‖ LA2) 4 LS

(L1 ‖ L2) 4 LS

whereL1, L2, andLS are languages over alphabetsΣ1, Σ2, ΣS, respectively;ΣS⊆ Σ1∪Σ2, andLA1 and
LA2 share a common alphabetΣA = (Σ1∩Σ2)∪ΣS. AG-C is known to be sound and complete forΣ∗-
languages. Note that in comparison withAG-NC, there are two assumptionsLA1 andLA2 over a larger
alphabetΣA. Informally, the rule is sound for the following reason. Letw be a word inL1||L2, and
u = w⇃ ΣA. Thenu∈ LA1, or u∈ LA2, or u∈ LA1∪LA2 = (LA1||LA2). If u∈ LA1 then the first premise
implies that{w} 4 L1||{u} 4 LS; if u∈ LA2 then the second premise implies that{w} 4 L2||{u} 4 LS;
otherwise, the third premise implies that{w}4 {u}4 LS.
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Remark 3. Note that the assumption alphabet forAG-C is larger thanAG-NC. In fact, usingΣA1 =
(Σ1∪ΣS)∩Σ2 andΣA2 = (Σ2∪ΣS)∩Σ1 makesAG-C incomplete. Indeed, let L1 = {aa} with Σ1 = {a},
L2 = {bb} with Σ2 = {b} and LS = {aab,abb,ab}. Note that L1||L2 4 LS. We show that no LA1 and
LA2 can satisfy the three premises ofAG-C. Premise 1⇒ b 6∈ LA1 ⇒ b ∈ LA1. Similarly, premise 2
⇒ a 6∈ LA2 ⇒ a∈ LA2. But then ab∈ LA1||LA2, violating premise 3.

In this section, we show thatAG-C is sound and complete for bothΣω andΣ∞ languages. First,
we illustrate an application of the rule to the example from the proof of Theorem2. Let L1, L2, andLS

be Σω languages as defined in the proof of Theorem 2. In this case, the alphabet ΣA is {a,b}. Letting
LA1 = (a+b)∗bω , andLA2 = (a+b)ω satisfies all three premises of the rule.

Theorem 6. Let L1, L2, LS, LA1, and LA2 be inΣω or Σ∞. Then, theAG-C rule is sound and complete.

Proof. The proof of soundness is sketched in the above discussion. For the proof of completeness we
only show the key steps. Assume thatL1||L2 4 LS. Let LA1 andLA2 be the weakest assumptions such
that L1||LA1 4 LS, andL2||LA2 4 LS, respectively. By Theorem 3, bothLA1 andLA2 are well-defined
and satisfy the first and the second premises ofAG-C, respectively. We prove the third premise by
contradiction. SinceLA1 andLA2 have the same alphabet,(LA1||LA2) = (LA1∩LA2). Assume that(LA1∩
LA2) 64 LS. Then, there exists a wordw∈ (LA1||LA2) such thatw 6∈ LA1, andw 6∈ LA2, andw⇃ ΣS 6∈ LS.
By the definition of weakest assumption (see Theorem 3),L1||{w} 64 LS andL2||{w} 64 LS. Pick any
w1 ∈ L1||{w} andw2 ∈ L2||{w}. Let w′1 = w1 ⇃Σ1 andw′2 = w2 ⇃Σ2. We know that{w′1}||{w′2} ⊆ L1||L2.
Also,w∈ ({w′1}||{w′2})⇃ΣA. Now since{w′1}||{w′2}⊆ L1||L2, we havew∈ (L1||L2)⇃ΣA. SinceΣS⊆ ΣA,
w⇃ΣS∈ (L1||L2) ⇃ΣS. But w⇃ΣS 6∈ LS, which contradictsL1||L2 4 LS.

The completeness part of the proof of Theorem 6 is based on the existence of the weakest assumption.
We already know from Theorem 5, that the weakest assumption is (∞-,ω-)regular ifL1, L2, andLS are
(∞-,ω-)regular, respectively. Thus,AG-C is complete for (∞-,ω-)regular languages. SinceAG-NC is
incomplete forω-regular languages, a learning algorithm forω-regular languages (such asL$) cannot
be applied directly for AG reasoning forω-regular systems and specifications. In the next section, we
overcome this challenge by developing automated AG algorithms for∞-regular andω-regular languages.

5 Automated Assume-Guarantee Reasoning
In this section, we present our LAG framework, and its specific useful instances. LAG uses membership
oracles, learners, and checkers, which we describe first.

Definition 1 (Membership Oracle and Learner). A membership oracle Q for a language U over alphabet
Σ is a procedure that takes as input a word u∈ Σ∞ and returns0 or 1 such that Q(u) = 1 ⇐⇒ u∈U. We
say that Q|= U. The set of all membership oracles is denoted byOracle. LetA be any set of automata.
We writeLearnerA to denote the set of all learners of typeA . Formally, a learner of typeA is a pair
(Cand,LearnCE) such that: (i)Cand : Oracle 7→A is a procedure that takes a membership oracle as
input and outputs a candidate C∈A , and (ii) LearnCE : Σ∞ 7→ LearnerA is a procedure that takes a
counterexample as input and returns a new learner of typeA . For any learner P= (Cand,LearnCE)
we write P.Cand and P.LearnCE to meanCand andLearnCE respectively.

Intuitively, a membership oracle is the fragment of a MAT that only answers membership queries,
while a learner encapsulates an active learning algorithm that is able to construct candidates via mem-
bership queries, and learn from counterexamples of candidate queries.

Learning. LetU be any unknown language,Q be an oracle, andP be a learner. We say that(P,Q) learns
U if the following holds: ifQ |=U , then there does not exist an infinite sequence of learnersP0,P1, . . . and
an infinite sequence of counterexamplesCE1,CE2, . . . such that: (i)P0 = P, (ii) Pi = Pi−1.LearnCE(CEi)
for i > 0, and (iii)CEi ∈L (Pi−1.Cand(Q))⊖U for i > 0.
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Input: P1 . . .Pk : LearnerA ; Q1, . . . ,Qk : Oracle; V : Checker(A ,k)
forever do

for i = 1 tok do Ci := Pi .Cand(Qi)
R := V(C1, . . . ,Ck)
if (R= (FEEDBACK , i,CE)) then Pi := Pi .LearnCE(CE) else returnR

Figure 1: Algorithm for overall LAG procedure.

Definition 2 (Checker). Let A be a set of automata, and k be an integer denoting the number of
candidates. A checker of type(A ,k) is a procedure that takes as input k elements A1, . . . ,Ak of A
and returns either (i)SUCCESS, or (ii) a pair (FAILURE ,CE) such that CE∈ Σ∞, or (iii) a triple
(FEEDBACK , i,CE) such that1≤ i ≤ k and CE∈ Σ∞. We writeChecker(A ,k) to mean the set of all
checkers of type(A ,k).

Intuitively, a checker generalizes the fragment of a MAT that respondsto candidate queries by
handling multiple (specifically,k) candidates. This generalization is important for circular proof
rules. The checker has three possible outputs: (i)SUCCESSif the overall verification succeeds; (ii)
(FAILURE ,CE) whereCE is a real counterexample; (iii)(FEEDBACK , i,CE) whereCE is a coun-
terexample for thei-th candidate.

5.1 LAG Procedure

Our overall LAG procedure is presented in Fig. 1. We writeX : T to mean that “X is of typeT”. LAG
accepts a set ofk membership oracles,k learners, and a checker, and repeats the following steps:

1. Constructs candidate automataC1, . . . ,Ck using the learners and oracles.
2. Invokes the checker with the candidates constructed in Step 1 above.
3. If the checker returnsSUCCESSor (FAILURE ,CE), then exits with this result. Otherwise,

updates the appropriate learner with the feedback and repeats from Step1.

Theorem 7. LAG terminates if there exists languages U1, . . . ,Uk such that: (i) Qi |= Ui for 1≤ i ≤ k, (ii)
(Pi ,Qi) learns Ui for 1≤ i ≤ k, and (iii) if V(C1, . . . ,Ck) = (FEEDBACK , i,CE), then CE∈L (Ci)⊖Ui .

Proof. By contradiction. If LAG does not terminate there exists somePi such thatPi .LearnCE is called
infinitely often. This, together with assumptions (i) and (iii), contradicts (ii), i.e.,(Pi ,Qi) learnsUi .

5.2 Oracle, Learner, and Checker Instantiations

We now describe various implementations of oracles, learners and checkers. We start with the notion of
an oracle for weakest assumptions.

Oracle for Weakest Assumption. Let L1, LS be any languages andΣ be any alphabet. We write
Q(L1,LS,Σ) to denote the oracle such thatQ(L1,LS,Σ) |= (L1 ‖ LS) ⇃Σ. Q(L1,LS,Σ) is typically imple-
mented via model checking since, by Theorems 3 and 5,Q(L1,LS,Σ)(u)= 1 ⇐⇒ u∈Σ∞∧L1 ‖ {u}4 LS.

Learner Instantiations. In general, a learnerP(L) is derived from an active learning algorithmL as
follows: P(L) = (Cand,LearnCE) s.t. Cand = part ofL that constructs a candidate using membership
queries, andLearnCE = part ofL that learns from a counterexample to a candidate query.

Non-circular Checker. Let A be a type of automata, andL1, L2 and LS be any languages. Then
VNC(L1,L2,LS) is the checker of type(A ,1) defined in Fig. 2. Note thatVNC(L1,L2,LS) is based on the
AG-NC proof rule. The following proposition aboutVNC(L1,L2,LS) will be used later.

Proposition 1. If VNC(L1,L2,LS)(A) returns SUCCESS, then L1 ‖ L2 4 LS. Otherwise, if
VNC(L1,L2,LS)(A) returns (FAILURE ,CE), then CE is a valid counterexample to L1 ‖ L2 4 LS. Fi-

nally, if VNC(L1,L2,LS)(A) returns(FEEDBACK ,1,CE), then CE∈L (A)⊖ (L1 ‖ LS) ⇃Σ.
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Checker: VNC(L1,L2,LS) Checker: VC(L1,L2,LS)

Input: A: A
if (L1 ‖L (A)) 4 LS then

if L2 4 L (A) then return SUCCESS
else

let w be a CEX toL2 4 L (A)
if L1 ‖ {w}4 LS then

return (FEEDBACK ,1,w⇃Σ(A))
else

let w′ be a CEX toL1 ‖ {w}4 LS

return (FAILURE ,w′)
else

let w be a CEX to(L1 ‖L (A)) 4 LS

return (FEEDBACK ,1,w⇃Σ(A))

Input: A1,A2 : A
for i = 1,2 do

if Li ‖L (Ai) 64 LS then
let w be a CEX toLi ‖L (Ai) 4 LS

return (FEEDBACK , i,w⇃ΣA)
if L (A1) ‖L (A2) 4 LS then return SUCCESS
else

let w be a CEX toL (A1) ‖L (A2) 4 LS

for i = 1,2 do
if Li ‖ {w}4 LS then

return (FEEDBACK , i,w⇃ΣA)
else letwi be a CEX toLi ‖ {w}4 LS

pick w′ ∈ {w1} ‖ {w2}
return (FAILURE ,w′)

Figure 2:VNC – a checker based onAG-NC; VC – a checker based onAG-C.

Circular Checker. LetA be a type of automata, andL1, L2 andLS be any languages. ThenVC(L1,L2,LS)
is the checker of type(A ,2) defined in Fig. 2. Note thatVC(L1,L2,LS) is based on theAG-C proof rule.
The following proposition aboutVC(L1,L2,LS) will be used later.

Proposition 2. If VC(L1,L2,LS)(A1,A2) returns SUCCESS, then L1 ‖ L2 4 LS. Otherwise, if
VC(L1,L2,LS)(A1,A2) returns (FAILURE ,CE), then CE is a valid counterexample to L1 ‖ L2 4 LS.

Finally, if VC(L1,L2,LS)(A1,A2) returns(FEEDBACK , i,CE), then CE∈L (Ai)⊖ (Li ‖ LS) ⇃Σ.

5.3 LAG Instantiations

In this section, we present several instantiations of LAG for checkingL1 ‖ L2 4 LS. Our approach extends
to systems with finitely many components, as for example in [9, 3].

Existing Work as LAG Instances: Regular Trace Containment.Table 1 instantiates LAG for existing
learning-based algorithms for AG reasoning. The first row corresponds to the work of Cobleigh et al. [9];
its termination and correctness follow from Theorem 7, Proposition 1, and the fact that(P1,Q1) learns the
language(L1 ‖ LS) ⇃Σ. The second row corresponds to Barringer et al. [3]; its termination andcorrectness
follow from Theorem 7, Proposition 2, and the fact that(Pi ,Qi) learns(Li ‖ LS) ⇃Σ for i ∈ {1,2}.
New Contribution: Learning Infinite Behavior. Let Lω be any active learning algorithm forω-regular
languages (e.g.,L$). SinceAG-NC is incomplete forω-regular languages,Lω is not applicable directly
in this context. On the other hand, bothAG-NC and AG-C are sound and complete for∞-regular
languages. Therefore, a learning algorithm for∞-regular languages yields LAG instances for systems
with infinite behavior. We now present two such algorithms. The first (see Theorem 8 (a)) usesLω only,
but augments the assumption alphabet. The second (see Theorem 8(b)) combinesLω andL ∗, but leaves
the assumption alphabet unchanged. We present both schemes since neither is objectively superior.

Theorem 8. We can learn a∞-regular language U using a MAT for U in two ways: (a) using onlyLω

but with alphabet augmentation, and (b) without alphabet augmentation, but using bothL ∗andLω .

Proof. Part(a): LetΣ be the alphabet ofU . We useLω to learn anω-regular languageU ′ over the
alphabetΣ′ = Σ∪ {τ} such thatU ′ ⇃ Σ = U , andτ 6∈ Σ. Let U ′ = U · τω . We assume that the MAT
X for U accepts membership queries of the form(M1,M2) ∈ DFA×BA, and returns “Yes” ifU =
L (M1)∪L (M2), and aCE otherwise. Then, a MAT forU ′ is implemented usingX as follows: (i)
Membership: u ∈U ′ iff u ∈ Σ∞ · τω ∧u⇃ Σ ∈U , whereu⇃ Σ ∈U is decided usingX; (ii) Candidate
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Conformance Rule A Learner(s) Oracle(s) Checker
Regular Trace AG-NC DFA P1 = P(L∗) Q1 = Q(L1,LS,ΣNC) VNC(L1,L2,LS)
Containment [9]
Regular Trace AG-C DFA P1 = P2 = Q1 = Q(L1,LS,ΣC) VC(L1,L2,LS)
Containment [3] P(L∗) Q2 = Q(L2,LS,ΣC)

∞-regular Trace AG-NC DFA × BA P1 = P(L) Q1 = Q(L1,LS,ΣNC) VNC(L1,L2,LS)
Containment

∞-regular Trace AG-C DFA × BA P1 = P2 = Q1 = Q(L1,LS,ΣC) VC(L1,L2,LS)
Containment P(L) Q2 = Q(L2,LS,ΣC)

ω-regular Trace AG-NC DFA × BA P1 = P(L) Q1 = Q(L1,LS,ΣNC) VNC(L1,L2,LS)
Containment

ω-regular Trace AG-C BA P1 = P2 = Q1 = Q(L1,LS,ΣC) VC(L1,L2,LS)
Containment P(Lω) Q2 = Q(L2,LS,ΣC)

Table 1: Existing learning-based AG algorithms as instances of LAG;ΣNC = (Σ(L1)∪Σ(LS))∩Σ(L2);
ΣC = (Σ(L1)∩Σ(L2))∪Σ(LS); L is a learning algorithm from Theorem 8.

with C′: If L (C′) 6⊆ Σ∞ ·τω , returnCE′ ∈L (C′)\Σ∞ ·τω . Otherwise, make a candidate query toX with
(M1,M2) such thatL (M1) = ∗(C′ ⇃Σ) andL (M2) = ω(C′ ⇃Σ), and turn anyCE to CE′ = CE· τω .

Part(b): We useL ∗ to learn∗(U) andLω to learnω(U). We assume that the MATX for U accepts
membership queries of the form(M1,M2) ∈DFA×BA, and returns “Yes” ifU = L (M1)∪L (M2), and
a CE otherwise. We runL ∗ andLω concurrently, and iterate the two next steps: (1) answer membership
queries withX until we get candidatesM1 andM2 from L ∗ andLω respectively; (2) make candidate
query(M1,M2) to X; return any finite (infinite)CE back toL ∗ (Lω ); repeat from Step 1.

LAG instances for ∞-regular Trace Containment. Suppose thatL1,L2 andLS are∞-regular and we
wish to verifyL1 ‖ L2 4 LS. The third row of Table 1 show how to instantiate LAG to solve this problem
usingAG-NC. This instance of LAG terminates with the correct result due to Theorem 7, Proposition 1,
and the fact that(P1,Q1) learns(L1 ‖ LS) ⇃Σ. The fourth row of Table 1 show how to instantiate LAG to
solve this problem usingAG-C. This instance of LAG terminates correctly due to Theorem 7, Proposi-
tion 2, and because(Pi ,Qi) learns(Li ‖ LS) ⇃Σ for i ∈ {1,2}.
LAG instances for ω-regular Trace Containment. Suppose thatL1,L2 andLS areω-regular and we
wish to checkL1 ‖ L2 4 LS. When usingAG-NC, restricting assumptions toω-regular languages is
incomplete (cf. Theorem 2). Hence, the situation is the same as for∞-regular languages (cf. row 5
of Table 1). When usingAG-C, restricting assumptions to beω-regular is complete (cf. Theorem 6).
Hence, we useLω without augmenting the assumption alphabet, as summarized in row 6 of Table 1. This
is a specific benefit of the restriction toω-regular languages. This instance terminates with the correct
result due to Theorem 7, Proposition 2, and because(Pi ,Qi) learns(Li ‖ LS) ⇃Σ for i ∈ {1,2}.

6 Related Work and Conclusion
Automated AG reasoning with automata-based learning was pioneered by Cobleigh et al. [9] for checking
safety properties of finite state systems. In this context, Barringer et al. [3] investigate the soundness
and completeness of a number of decomposition proof rules, and Wang [23] proposed a framework for
automatic derivation of sound decomposition rules. Here, we extend the AG reasoning paradigm to
arbitraryω-regular properties (i.e., both safety and liveness) using both non-circular and circular rules.

The idea behind (particular instances of) Theorem 5 is used implicitly in almost all existing work on
automated assume-guarantee reasoning [9, 6, 7]. However, we are not aware of an explicit closed-form
treatment of the weakest assumption in a general setting such as ours.

The learning-based automated AG reasoning paradigm has been extended to check simulation [5] and
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deadlock [6]. Alur et al. [1], and Sinha et al. [21], have investigated symbolic and lazy SAT-based im-
plementations, respectively. Tsay and Wang [22] show that verification of safety properties of∞-regular
systems is reducible the standard AG framework. In contrast, our focus ison the verification of arbitrary
ω-regular-properties ofω-regular-systems.

In summary, we present a very general formalization, called LAG, of the learning-based automated
AG paradigm. We instantiate LAG to verifyω-regular properties of reactive systems withω-regular
behavior. We also show how existing approaches for automated AG reasoning are special instances of
LAG. In addition, we prove the soundness and completeness of circular and non-circular AG proof rules
in the context ofω-regular languages. Recently, techniques to reduce the number of queries [7], and
refine the assumption alphabet [11], have been proposed in the contextof using automated AG to verify
safety properties. We believe that these techniques are applicable forω-regular-properties as well.
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Abstract

Bugs in user input sanitation of software systems often leadto vulnerabilities. Among them
many are caused by improper use of regular replacement. Thispaper presents a precise modeling
of various semantics of regular substitution, such as the declarative, finite, greedy, and reluctant,
using finite state transducers (FST). By projecting an FST toits input/output tapes, we are able
to solve atomic string constraints, which can be applied to both the forward and backward image
computation in model checking and symbolic execution of text processing programs. We report
several interesting discoveries, e.g., certain fragmentsof the general problem can be handled using
less expressive deterministic FST. A compact representation of FST is implemented in SUSHI, a
string constraint solver. It is applied to detecting vulnerabilities in web applications.

1 Introduction

User input sanitation has been widely used by programmers toassure robustness and security of software.
Regular replacementis one of the most frequently used approaches by programmers. For example,
at both client and server sides of a web application, it is often used to perform format checking and
filtering of command injection attack strings. As software bugs in user input sanitation can easily lead to
vulnerabilities, it is desirable to employ automated analysis techniques for revealing such security holes.
This paper presents the finite state transducer models of a variety of regular replacement operations,
geared towards automated analysis of text processing programs.

One application of the proposed technique is symbolic execution [10]. In [3] we outlined a unified
symbolic execution framework for discovering command injection vulnerabilities. The target system
under test is executed as usual except that program inputs are treated as symbolic literals. A path condi-
tion is used to record the conditions to be met by the initial input, so that the program will execute to a
location. At critical points, e.g., where a SQL query is submitted, path conditions are paired with attack
patterns. Solving these constraints leads to attack signatures.

1 <?php
2 $msg = $POST [ ”msg” ] ;
3 $ s a n i t i z e d = p r e gr e p l a c e ( ”/\< s c r i p t .∗?\>.∗?\<\/ s c r i p t .∗?\> / i ” , ” ” , $msg ) ;
4 s a v e t o d b ( $ s a n i t i z e d )
5 ?>

Listing 1: Vulnerable Sanitation against XSS Attack

In the following, we use an example to demonstrate the idea ofthe above research and motivate the
modeling of regular replacement in this paper. Consider a PHP snippet in Listing 1, which takes a mes-
sage as input and posts it to a bulletin. To prevent the Cross-Site Scripting (XSS) attack, the programmer
callspreg replace() to remove any pair of<script> and</script> tags. Unfortunately, the pro-
tection is insufficient. Readers can verify that<<script></script>script>alert(’a’)</script>
is an attack string. Afterpreg replace(), it yields<script>alert(’a’)</script>.

We now show how the attack signature is generated, assuming the availability of symbolic execution.
By symbolically executing the program, variable$msg is initialized with a symbolic literal and let it be
x. Assumeα is the regular expression<script.*?>.*?</script.*?>andε is the empty string. After
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line 3, variable$sanitized has a symbolic value represented by string expressionx−α→ε , and it is a
replacement operator that denotes the effects ofpreg replace, using thereluctantsemantics (see “∗?”
in formula). Then at line 4 where the SQL query is submitted, astring constraint can be constructed as
below, using an existing attack pattern. The equation asks:can a JavaScript snippet be generated after
thepreg replace protection?

x−α→ε ≡ <script.*?>alert(’a’)</script.*?>

To solve the above equation, we first model the reluctant regular replacementx−α→ε as a finite state
transducer (FST) and let it beA1. The right hand side (RHS) of the equation is a regular expression, and
let it ber. It is well known that the identity relationId(r) = {(w,w) | w∈ L(r)} is a regular relation that
can be recognized by an FST (let it beA2). Now letA be the composition ofA1 andA2 (by piping the
output tape ofA1 to input tape ofA2). ProjectingA to its input tape results in a finite state automaton
(FSA) that represents the solution ofx.

Notice that a precise modeling that distinguishes the various regular replacement semantics is nec-
essary. For example, a natural question following the aboveanalysis is:If we approximate the reluctant
semantics using the greedy semantics, could the static analysis be still effective?The answer is negative:
When the*? operators in Listing 1 are treated as*, the analysis reports no solution for the equation, i.e.,
a false negative report on the actually vulnerable program.

In this paper, we present the modeling of regular replacement operations.§2 covers preliminaries.
§3 and§4 present the modeling of various regular replacement semantics. §5 introduces tool support.§6
discusses related work.§7 concludes.

2 Preliminaries
This section formalizes several typical semantics of regular substitution, and then introduces a variation
of the standard finite state transducer model. We introduce some notations first. LetΣ represent the
alphabet andR the set of regular expressions overΣ. If ω ∈ Σ∗, ω is called a word. Given a regular
expressionr ∈ R, its language is denoted asL(r). Whenω ∈ L(r) we sayω is an instance ofr. We
sometimes abuse the notation asω ∈ r when the context is clear thatr is a regular expression. A regular
expressionr is said to befinite if L(r) is finite. Clearly,r ∈ R is finite if and only if there exists a
constant length boundn ∈ N s.t. for anyω ∈ L(r), |w| ≤ n. We assume #6∈ Σ is the begin marker
and $6∈ Σ is theend marker. They will be used in modeling procedural regular replacement in §4. Let
Σ2 = Σ∪{#,$}. AssumeΨ is a second alphabet which is disjoint withΣ. Givenω ∈ (Σ∪Ψ)∗, π(ω)
denotes the projection ofω to Σ s.t. all the symbols inΨ are removed fromω . Let 0≤ i < j ≤ |ω |, ω [i, j]
represents a substring ofω starting from indexi and ending atj−1 (index counts from 0). Similarly,ω [i]
refers to the element at indexi. We use NFST, DFST to denote the nondeterministic and deterministic
FST, respectively. Similar are NFSA and DFSA for finite stateautomata.

There are three popular semantics of regular replacement, namelygreedy, reluctant, andpossessive,
provided by many programming languages, e.g., injava.utils.regexof J2SE. We concentrate on two
of them: the greedy and the reluctant. The greedy semantics tries to match a given regular expression
pattern with the longest substring of the input while the reluctant semantics works in the opposite way.
From the theoretical point of view, it is also interesting todefine adeclarativesemantics for string
replacement. A declarative replacementγr→ω replaces every occurrence of a regular patternr with ω .

Definition 2.1. Let γ ,ω ∈ Σ∗ andr ∈ R (with ε 6∈ r). Thedeclarative replacement, denoted asγr→ω , is
defined as:

γr→ω =
{
{γ} if γ 6∈ Σ∗rΣ∗
{νr→ω ωµr→ω | γ = νβ µ andβ ∈ r} otherwise
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The greedy and reluctant semantics are also calledprocedural, because both of them enforce aleft-
mostmatching. The replacement procedure is essentially a loop which examines each index of a word,
from left to right. Once there is a match of the regular pattern r, the greedy replacement performs the
longest match, and the reluctant replaces the shortest.

Definition 2.2. Let γ ,ω ∈ Σ∗ andr ∈R (with ε 6∈ r). Thereluctant replacementof r with ω in γ , denoted
asγ−r→ω , is defined recursively asγ−r→ω = {νωµ−

r→ω} whereγ = νβ µ , ν 6∈ Σ∗rΣ∗, β ∈ r, and for every
ν1,ν2,β1,β2,µ1,µ2 ∈ Σ∗ with ν = ν1ν2, β = β1β2, µ = µ1µ2: if ν2 6= ε thenν2β1 6∈ r andν2β µ1 6∈ r;
and, ifβ2 6= ε thenβ1 6∈ r.

Note that in the above definition, “ifν2 6= ε thenν2β1 6∈ r andν2β µ1 6∈ r” enforces left-most match-
ing”, i.e., there does not exist an earlier match ofr thanβ ; similarly, “if β2 6= ε thenβ1 6∈ r” enforces
shortest matching, i.e., there does not exist a shorter match of r thanβ .

Definition 2.3. Let γ ,ω ∈ Σ∗ andr ∈R(with ε 6∈ r). Thegreedy replacement, denoted asγ+
r→ω , is defined

recursively asγ+
r→ω = {νωµ+

r→ω} whereγ = νβ µ , ν 6∈ Σ∗rΣ∗, β ∈ r, and for everyν1,ν2,β1,β2,µ1,µ2 ∈
Σ∗ with ν = ν1ν2, β = β1β2, µ = µ1µ2: if ν2 6= ε thenν2β1 6∈ r and if µ1 6= ε thenν2β µ1 6∈ r.

Example 2.4. Let γ = aaawith a∈ Σ, (i) γaa→b = {ba,ab}, γ+
aa→b = {ba}, γ−aa→b = {ba}. (ii) γa+→b =

{b,bb,bbb}, γ+
a+→b = {b}, andγ−a+→b = {bbb}.

Notice that in the above definitions,ε 6∈ r is required for simplicity. In practice, precise Perl/Java
regex semantics is followed for handlingε ∈ r. For example, in SUSHI, givenγ = a, r = a∗, andω = b,
γ−r→ω = {bab} andγ+

r→ω = {bb}. Whenβ ∈ γ−r→ω , we often abuse the notation and write it asβ = γ−r→ω ,
given the following lemma. Similar applies toγ+

r→ω .

Lemma 2.5. For anyγ ,ω ∈ Σ∗ andr ∈ R: |γ+
r→ω |= |γ−r→ω |= 1.

In the following, we briefly introduce the notion of FST and its variation, using the terminology in
[7]. We demonstrate its application to modeling the declarative replacement.

Definition 2.6. Let Σε denoteΣ∪{ε}. A finite state transducer (FST) is an enhanced two-taped nonde-
terministic finite state machine described by a quintuple(Σ,Q,q0,F,δ ), whereΣ is the alphabet,Q the
set of states,q0 ∈Q the initial state,F ⊆Q the set of final states, andδ is the transition function, which
is a total function of typeQ×Σε ×Σε → 2Q.

It is well known that each FST accepts a regular relation which is a subset ofΣ∗ × Σ∗. Given
ω1,ω2 ∈ Σ∗ and an FSTM , we say(ω1,ω2) ∈ L(M ) if the word pair is accepted byM . Let M3 be the
composition of two FSTsM1 andM2, denoted asM3 = M1||M2. ThenL(M3) = {(µ ,ν) | (µ ,η) ∈
L(M1) and(η ,ν) ∈ L(M2) for someη ∈ Σ∗}. We introduce an equivalent definition of FST below.

Definition 2.7. An augmented finite state transducer (AFST) is an FST(Σ,Q,q0, F,δ ) with the transition
function augmented to typeQ×R → 2Q, whereR is the set of regular relations overΣ.

In practice, we would often restrict the transition function of an AFST to the following two types: (1)
Q×R×Σ∗→ 2Q. In a transition diagram, we label the arc fromqi to q j for transitionq j ∈ δ (qi , r : ω)

Id( * -  * r  *) r : !
Id( * -  * r  *)

":"

1 2 34

Figure 1: An FST forsr→ω
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by r : ω ; and (2)Q×{Id(r) | r ∈R}→ 2Q, whereId(r) = {(ω ,ω) | ω ∈ L(r)}. In a transition diagram,
an arc of type (2) is labeled asId(r).

Now, we can use an AFST to model the declarative string replacementsr→ω for any ω ∈ Σ∗ and
r ∈ R (with ε 6∈ r). Figure 1 shows the construction, which presents an AFST that accepts{(s,η) | s∈
Σ∗ andη ∈ sr→ω}. In other words, given any twos,η ∈ Σ∗, we can use the AFST to check ifη is a
string obtained froms by replacing every occurrence of patterns inr with ω . We alternatively use FST
and AFST for the time being without loss of generality.

3 DFST and Finite Replacement

This section shows that regular replacement with finite language pattern can be modeled using DFST,
under certain restrictions. We fix the notation of DFST first.Intuitively, for a DFST, at any stateq∈ Q
the input symbol uniquely determines the destination stateand the symbol on output tape. If there is a
transition labeled withε on the input, then this is the only transition fromq.

Definition 3.1. An FSTA = (Σ,Q,s0,F,δ ) is deterministicif for any q∈Q and anya∈ Σ the following
is true. Lett1, t2 ∈ {a,ε}, b1,b2 ∈ Σε , andq1,q2 ∈ Q. q1 = q2, b1 = b2, andt1 = t2 if q1 ∈ δ (q, t1 : b1)
andq2 ∈ δ (q, t2 : b2).

Lemma 3.2. Let $ 6∈ Σ be an end marker. Given afinite regular expressionr ∈Rwith ε 6∈ r andω2 ∈ Σ∗,
there exist DFSTA − and A + s.t. for anyω ,ω1 ∈ Σ∗: ω1 = ω−

r→ω2
iff (ω$,ω1$) ∈ L(A −); and,

ω1 = ω+
r→ω2

iff (ω$,ω1$) ∈ L(A +).

We briefly describe howA + is constructed forω+
r→ω2

, similar is A −. Given a finite regular ex-
pressionr, and assume its length bound isn. Let Σ≤n =

⋃
0≤i≤n Σi. ThenA + is defined as a quintuple

(Σ∪{$},Q,q0,F,δ ). The set of statesQ = {q1, . . . ,q|Σ≤n|} has|Σ≤n| elements, and letB : Σ≤n → Q be
a bijection. Letq0 = B(ε) be the initial state and the only final state. A transition(q,q′,a : b) is defined
as follows for anyq∈Q anda∈ Σ∪{$}, letting β = B−1(q): (case 1) ifa 6= $ and|β |< n, thenb = ε
andq′ = B(βa); or (case 2) ifa 6= $ and|β | = n: if β 6∈ rΣ∗, thenb = β [0] andq′ = B(β [1 : |β |]a);
otherwise, letβ = µν whereµ is the longest match ofr, thenb = ω2 andq′ = B(νa); or (case 3) if
a = $, thenb = β+

r→ω2
$ andq′ = q0.

Intuitively, the above algorithm simulates the left-most matching. It buffers the current string pro-
cessed so far, and the buffer size is the length bound ofr. Once the buffer is full (case 2), it examines
the buffer and checks if there is a match. If not, it emits the first character and produces it as output;
otherwise, it producesω2 on the output tape. Clearly,B is feasible because of the bounded length ofr.

4 Procedural Replacement

The modeling of procedural replacement is much more complexthan that of the declarative semantics.
The general idea is to compose a number of finite state transducers for generating and filtering begin
and end markers for the regular pattern in the input word. We start with the reluctant semantics. Given
reluctant replacementS−r→ω , the modeling consists of four steps.

4.1 Modeling Left-Most Reluctant Replacement

Step 1 (DFST Marker for End of Regular Pattern): The objective of this step is to construct a DFST
(calledA1) that marks the end of regular patternr, givenS−r→ω . We first construct a deterministic FSA
A that acceptsr s.t. A does not have anyε transition. We use(q,a,q′) to denote a transition from
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Figure 2: DFST End Marker

stateq to q′ that is labeled witha∈ Σ. Then we modify each final statef of FSA as below: (1) make
f a non-final state, (2) create a new final statef ′ and establish a transitionε from f to f ′, (3) for any
outgoing transition( f ,a,s) create a new transition( f ′,a,s) and remove that outgoing transition fromf
(keeping theε transition). Thus theε transition is the only outgoing transition off . Then convert the
FSA into a DFSTA1 as below: for anε transition, its output is $ (end marker); for every other transition,
its output is the same as the input symbol.

Example 4.1. A1 in Figure 2 is the DFST generated for regular expressioncb+a+.

Step 2 (Generic End Marker): Note that on the input tape,A1 only acceptsr. We would like to
generalizeA1 so that the new FST (calledA2) will accept any word on its input tape. For example,A2

in Figure 2 is a generalization ofA1, and(ccbbaa,ccbba$a$) ∈ L(A2).
Step 2 is formally defined as follows. GivenA1 = (Σ∪{$},Q1,q1

0,F1,δ1) as described in Step 1,A2

is a quintuple(Σ∪{$},Q2,q2
0,F2,δ2). A labeling functionB : Q2→ 2Q1 is a bijection s.t.B(q2

0) = {q1
0}.

For anyt ∈Q2 anda∈ Σ: t ′ ∈ δ2(t,a : a) iff B(t ′) = {s′ | ∃s∈B(t) s.t. s′ ∈ δ1(s,a : a)} ∪ {q1
0}. Clearly,

B models a collection of states inA1 that can be reached by the substrings consumed so far onA2. Note
that there is at most one state reached by a substring, because A1 is deterministic. Hence, the collection
of states is always finite. The handling of the onlyε transition inA2 is similar.

Example 4.2. A2 in Figure 2 is the result of applying the above algorithm onA1. Clearly, for A2,
B(1) = {1}, B(2) = {2,1}, andB(3) = {3,1}. Running(ccbb,ccbb) on A2 results a partial run to
state 3. For(ccbb,ccbb), there are five substring pairs to be observed:(ccbb,ccbb), (cbb,cbb), (bb,bb),
(b,b), and(ε ,ε). Among them, only(cbb,cbb) and (ε ,ε) can be extended to matchr (i.e., cb+a+).
Clearly, if run them onA1, they would result in partial runs that end at states 3 (by(cbb,cbb)) and 1 (by
(ε ,ε)). This is the intuition of havingB(3) = {3,1} in A2. The labeling functionB keeps track of the
potential substrings of match by recording those states ofA1 that could be reached by the substrings.

The following lemma states thatA2 inserts an end marker $ after each occurrence of regular pattern
r, and there are no duplicate end markers inserted (even when empty stringε ∈ r).

Lemma 4.3. For any r ∈ R there exists a DFSTA2 s.t. for anyω ∈ Σ∗, there is one and only one
ω2 ∈ (Σ∪ {$})∗ with (ω ,ω2) ∈ L(A2) and ω = π(ω2) such thatω2 satisfies the following: for any
0≤ x < |ω2|, ω2[x] = $ iff π(ω2[0,x]) ∈ Σ∗r; and for any 1≤ x < |ω2|, if ω2[x] = $, thenω2[x−1] 6= $.

Step 3 (Begin Marker of Regular Pattern): From A2 we can construct areversetransducerA3 by
reversing all transitions inA2 and replacing the end marker $ with the begin marker #. Then create a
new initial states0, addε transitions froms0 to each final state inA2, and make the original initial state
of A2 the final state inA3. For example, theA3 shown in Figure 3 is a reverse ofA2 in Figure 2. Clearly,
(aabbcc,#a#abbcc) ∈ L(A3), andA3 marks the beginning for patternr = a+b+c.

Lemma 4.4. For anyr ∈ R there exists an FSTA3 s.t. for anyµ ∈ Σ∗, there exists one and only one
ν ∈ (Σ∪{#})∗ with (µ ,ν) ∈ L(A3). ν satisfies the following: (i)µ = π(ν), and, (ii) for 0≤ i < |ν |:
ν [i] = # iff π(ν [i, |ν |]) ∈ rΣ∗, and (iii) for 1≤ i < |ν |: if ν [i] = # thenν [i−1] 6= #,
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Figure 3: Begin Marker and Reluctant Replacement Transducers

The beauty of the nondeterminism is thatA3 can always make the “smart” decision to enforce there
is one and only one run which “correctly” inserts the label #.Any incorrect insertion will never reach a
final state. The nondeterminism givesA3 the “look ahead” ability.

Step 4 (Reluctant Replacement):Next we define an automaton for implementing the reluctant replace-
ment semantics. Given a DFSAM , let M1 be the new automaton generated fromM by removing all
the outgoing transitions from each final state ofM . We have the following result:L(M1) = {s | s∈
L(M ) ∧ ∀s′ ≺ s : s′ /∈ L(M )}. ClearlyM1 implements the “shortest match” semantics. Givenr ∈ R,
let reluc(r) represent the result of applying the above “reluctant” transformation onr.

We still need to filter the extra begin markers during the replacement process. Given a regular lan-
guageL = reluc(r), letL# represent the language generated fromL by nondeterministically inserting
#, i.e.,L# = {µ | µ ∈ (Σ ∪ {#})∗ ∧ π(µ) ∈L }. Clearly, to recognizeL#, an automaton can be con-
structed fromA (which acceptsL ) by attaching a self loop transition (labeled with #) to eachstate of
A . LetL#

′ = L# ∩ Σ∗2# (this is to avoid removing the begin marker for the next match). Now given reg-
ular languageL#

′ andω ∈ Σ∗, it is straightforward to construct an FSTAL#
′×ω s.t. (µ ,ν) ∈ L(AL#

′×ω)
iff µ ∈L#

′ andν = ω . Intuitively, given anyµ (interspersed with #) that matchesr, the FST replaces it
with ω .

An automatonA4 (as shown in Figure 3) can be defined. Intuitively,A4 consumes a symbol on both
the input tape and output tape unless encountering a begin marker #. Once a # is consumed,A4 enters
the replacement mode, which replaces the shortest match ofr with ω (and also removes extra # in the
match). Thus, piping it withA3 directly leads to the precise modeling of reluctant replacement.

Lemma 4.5. Given anyr ∈ R andω ∈ Σ∗, and letAr beA3||A4, then for anyω1,ω2 ∈ Σ∗: (ω1,ω2) ∈
L(Ar) iff ω2 = ω1

−
r→ω .

4.2 Modeling Left-Most Greedy Semantics

Handling the greedy semantics is more complex. We have to insert both begin and end markers for the
regular pattern and then apply a number of filters to ensure the longest match. The first action is to
insert begin markers usingA3 as described in the previous section. Then the second actionis to insert
an end marker $nondeterministicallyafter each substring matchingr. Later, additional markers will be
filtered, and improper marking will be rejected. We call thisFST A ′

2. Given r ∈ R andω ∈ Σ∗, A ′
2

can be constructed so that for anyω1 ∈ Σ∗2 andω2 ∈ Σ∗2: (ω1,ω2) ∈ L(A ′
2) iff (i) π(ω1) = π(ω2), and

(ii) for any 0≤ i < |ω2|, π(ω2[0, i]) ∈ Σ∗r if ω2[i] = $, and (iii) for any 1≤ i < |ω2|, if ω2[i] = $ then
ω2[i−1] 6= $. Notice thatA ′

2 is different fromA2 in that the $ after a match ofr is optional. Clearly,
A ′

2 can be modified fromA2 by simply adding anε : ε transition fromf (old final state) tof ′ (new final
state) inA2, e.g., to add anε : ε transition from state 4 to 5 inA2 in Figure 2. Also #:# transitions are
needed for each state to keep the # introduced byA3.

Then we need a filter to remove extra markers so that every $ is paired with a #. Note we do not
yet make sure that between the pair of # and $, the substring isa match ofr. We construct the AFST

Proceedings of NFM 2010, April 13-15, 2010, Washington D.C., USA. 72



On Regular Replacement Fu and Li

as follows. LetA f = (Σ2,Q,q0,F,δ ). Q has two statesq0 andq1. F = {q0}. The transition function
δ is defined as below: (i)δ (q0, Id(Σ)) = {q0}, (ii) δ (q0,$ : ε) = {q0}, (iii) δ (q0,# : #) = {q1}, (iv)
δ (q1,# : ε) = {q1}, (v)δ (q1, Id(Σ)) = {q1}, (vi) δ (q1,$ : $) = {q0}.

Now we will apply three FST filters (represented by three identity relations Id(L1), Id(L2), and
Id(L3)), for filtering the nondeterministic end marking.L1, L2, andL3 are defined as below:

L1 = Σ∗2#(r̄ ∩ Σ∗)$Σ∗2 (1)

L2 = Σ∗2[∧#]($ ∩ r#,$) ∩ Σ∗2[∧#]($ΣΣ∗2 ∩ r#,$Σ∗2) (2)

L3 = Σ∗2#(r#,$ ∩ (Σ∗$(Σ+)#,$))Σ∗2 (3)

The intuition ofL1 is to make sure that the substring between each pair of # and $ is a match ofr.
The motivation ofL2 is for preventing removing too many # symbols byA f (due to improper insertion
of end markers byA ′

2). Id(L2) handles two cases: (1) to avoid removing the begin markers atthe end of
input word if the patternr includesε ; and (2) to avoid removing begin markers for the next instance of r.
Consider the following example for case (2): givenS+

a∗→c and the input wordbab, the correct marking of
begin and end markers should be #$b#a$#$b#$ (which leads tocbccbcas output). However the following
incorrect marking could passId(L1) andId(L3), if not enforcing theId(L2) filter: #$b#a$b#$. The cause
is that an ending marker $ (e.g., the one before the lastb) may triggerA f to remove a good begin marker
# that precedes an instance ofr (i.e.,ε). Filter Id(L2) is thus defined for preventing such cases.

Finally, L3 is defined for ensuring longest match. Note that filterId(L3) will be applied afterId(L1)
andId(L2) which have guaranteed the pairing of markers and the proper contents between each pair of
markers.L3 eliminates cases where starting from # there is a substring (when projected toΣ) matches
r and the string contains at least one $ inside (implying that there is a longer match than the substring
between the # and its matching $). Note that(Σ+)#,$ refers to a word inΣ+ interspersed with begin/end
markers, i.e., for anyω ∈ (Σ+)#,$, |π(ω)| > 0. We also need an FSTA ′

4, which is very similar toA4.
A ′

4 enters (and leaves) the replacement mode, once it sees the begin (and the end) marker. Then we have
the following:

Lemma 4.6. Given anyr ∈Randω ∈ Σ∗, let Ag beA3||A ′
2||A f ||AId(L1)||AId(L2)||AId(L3)||A ′

4, then for
anyω1,ω2 ∈ Σ∗: ω2 = ω1

+
r→ω iff (ω1,ω2) ∈ L(Ag).

5 SISE Constraint and SUSHI Solver

This work is implemented as part of a constraint solver called SUSHI [4], which solves SISE (Simple
Linear String Equation) constraints. Intuitively, a SISE equation can be regarded as a variation of word
equation [13]. It is composed of word literals, string variables, and various frequently seen string op-
erators such as substring, concatenation, and regular replacement. To solve SISE, an automata based
approach is taken, where a SISE is broken down into a number ofatomic string operations. Then the
solution process consists of a number of backward image computation steps. We now briefly describe
the part related to regular replacement.

It is well known that projecting an FST to its input tape (by removing the output symbol from each
transition) results in a standard finite state machine. Similar applies to the projection to output tape.
We useinput(A ) andoutput(A ) to denote the input and output projection of an FSTA . Given
an atomic SISE constraintxr→ω ≡ r2, the solution pool ofx (backward image of the constraint) is de-
fined as{µ | µr→ω ∈ L(r2)}. Given a regular expressionν , the forward image ofνr→ω is defined as
{µ | µ ∈ αr→ω andα ∈ ν}. Clearly, letA be the corresponding FST ofxr→ω , the backward image can
be computed usinginput(A ||Id(r2)). Similarly, givenµr→ω , the forward image isoutput(Id(µ)||A ).
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Type I Type II Type III

(I,I) (II,I) (III,II)

Type ofτ1 Type ofτ2 input of τ output ofτ
I I φ1 ϕ2

II I φ1 ϕ2

III I ϕ1 ∩ φ2 ϕ2

I II {x} wherex∈ φ1 {y} wherey∈ ϕ2

II II φ1 ϕ2

III II φ2 ϕ2

I III φ1 ϕ1

II III φ1 ϕ1 ∩ φ2

III III ϕ1 ∩ φ2 ϕ1 ∩ φ2

Figure 4: SUSHI FST Transition Set

5.1 Compact Representation of FST

SUSHI relies ondk.brics.automaton [15] for FSA operations. We use a self-made Java package for
supporting FST operations [16]. Note that there are existing tools related to FST, e.g., the FSA toolbox
[16]. In practice, to perform inspection on user input, FST has to handle a large alphabet represented
using 16-bit Unicode. In the following, we introduce a compact representation of FST. A collection of
FST transitions can be encoded as aSUSHI FST Transition Set(SFTS) in the following form:

T = (q,q′,φ : ϕ)

whereq, q′ are the source and destination states, theinput charsetφ = [n1,n2] with 0≤ n1≤ n2 represents
a range of input characters, and theoutput charsetϕ = [m1,m2] with 0≤ m1 ≤ m2 represents a range
of output characters.T includes a set of transitions with the same source and destination states:T =
{(q,q′,a : b) | a ∈ φ andb ∈ ϕ}. For T = (q,q′,φ : ϕ), however, it is required that if|φ | > 1 and
|ϕ |> 1, thenφ = ϕ . Forφ andϕ , ε is represented using[−1,−1]. Thus, there are three types of SFTS
(excluding theε cases), as shown in the following.Type I: |φ | > 1 and|ϕ | = 1, thusT = {(q,q′,a :
b) | a∈ φ andϕ = {b}}. Type II: |φ | = 1 and |ϕ |> 1, thusT = {(q,q′,a : b) | b∈ ϕ andφ = {a}}.
Type III: |ϕ | = |φ | > 1, thusT = {(q,q′,a : a) | a ∈ φ}. The top-left of Figure 4 gives an intuitive
illustration of these SFTS types (which relates the input and output chars).

The algorithms for supporting FST operations (such as union, Kleen star) should be customized
correspondingly. In the following, we take FST compositionas one example. LetA = (Σ,Q,q,F,δ )
be the composition ofA1 = (Σ,Q1,q1

0,F1,δ1) andA2 = (Σ,Q2,s2
0,F2,δ2). Givenτ1 = (t1, t ′1,φ1 : ϕ1) in

A1 andτ2 = (t2, t ′2,φ2 : ϕ2) in A2, whereϕ1 ∩ φ2 6= /0, an SFTSτ = (s1,s2,φ : ϕ) is defined forA s.t.
s1 = (t1, t2), s2 = (t ′1, t

′
2), and the input/output charset ofτ is defined as the table in Figure 4 (note all

entries except for (I,II) produce one SFTS only). For example, when bothτ1 andτ2 are type I, we have
φ = φ1 andϕ = ϕ2. The bottom left of Figure 4 shows the intuition of the algorithm. The dashed circles
represent the corresponding input/output charset.

5.2 Evaluation

We are interested in whether the proposed technique is efficient and effective in practice. We list here
four SISE equations for stress-testing the SUSHI package. Note that each equation is parametrized by
an integern. eq1: x+

a+→b{n,n} ≡ b{2n,2n}; eq2: x−
a+→b{n,n} ≡ b{2n,2n}; eq3: x+

a∗→b{n,n} ≡ b{2n,2n}; eq4:

x−
a∗→b{n,n} ≡ b{2n,2n}. The following table displays the running results whenn is 41. (more data in [4]).

It displays the max size of FST and FSA used in the solution process.

Equation FST States FST Transitions FSA States FSA Transitions Time (Seconds)
eq1(41) 5751 16002 125 207 155.281
eq2(41) 5416 5748 83 124 162.469
eq3(41) 631 1565 2 2 492.281
eq4(41) 126 177 0 0 14.016
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The technique scales well in practice. We applied SUSHI in discovering SQL injection vulnerabilities
and XSS attacks in FLEX SDK (see technical report [4]). The running cost ranges from 1.4 to 74 seconds
on a 2.1Ghz PC with 2GB RAM (with SISE equation size ranging from 17 to 565).1

6 Related Work

Recently, string analysis has received much attention in security and compatibility analysis of programs
(see e.g., [5, 12]). In general, there are two interesting directions of string analysis: (1)forward analysis,
which computes the image (or its approximation) of the program states as constraints on strings; and,
(2) backward analysis, which usually starts from the negation of a property and computes backward.
Most of the related work (e.g., [2, 11, 18]) falls into the category of forward analysis. This work can be
used for both forward and backward image computation. Compared with forward analysis, it is able to
generate attack signatures as evidence of vulnerabilities.

Modeling regular replacement distinguishes our work from several related work in the area. For ex-
ample, one close work to ours is the HAMPI string constraint solver [9]. HAMPI supports solving string
constraints with context-free components, which are unfolded to regular language. HAMPI, however,
supports neither constant string replacement nor regular replacement, which limits its ability to reason
about sanitation procedures. Similarly, Hooimeijer and Weimer’s work [6] in the decision procedure for
regular constraints does not support regular replacement.A closer work to ours is Yu’s automata based
forward/backward string analysis [18]. Yu uses a language based replacement [17], which introduces im-
precision in its over-approximation. Conversely, our analysis considers the delicate differences among
the typical regular replacement semantics and provides more accurate analysis. In [1], Bjørneret al. uses
first order formula on bit-vector to model string operationsexcept replacement. We conjecture that it can
be extended by using recursion in their first order frameworkfor defining replaceAll semantics.

FST is the major modeling tool in this paper. It is mainly inspired by [7, 14, 8] in computational
linguistics, for processing phonological and morphological rules. In [8], an informal discussion was
given for the semantics of left-most longest matching of string replacement. This paper has given the
formal definition of replacement semantics and has considered the case whereε is included in the search
pattern. Compared with [7] where FST is used for processing phonological rules, our approach is lighter
given that we do not need to consider the left and right context of re-writing rules in [7]. Thus more
DFST can be used, which certainly has advantages over NFST, because DFST is less expressive. For
example, in modeling the reluctant semantics, compared with [7], our algorithm does not have to non-
deterministically insert begin markers and it does not needextra filters, thus more efficient. It is in-
teresting to compare the two algorithms and measure the gainin performance by using more DFST in
modeling, which remains one of our future work.
Limitation of the Model: It is shown in [4] that solving SISE constraint is decidable (with worst
complexity 2-EXPTIME). This may seem contradictory with the conclusion in [1]. The decidability
is achieved by restricting SISE as described below. SISE requires that each variable appears at most
once and all variables must be appear in LHS. This permits a simple recursive algorithm that reduces
the solution process into a number of backward image computation steps. However, it may limit the
expressiveness of SISE in certain application scenario. SISE supports regular replacement, substring,
concatenation operators, however, it does not support operators related to string length, e.g., indexOf and
length operators. It is interesting to extend the frameworkto support mixed numerical and string opera-
tors, e.g., encoding numeric constraints using automata asdescribed by Yuet al. in [18], or translating
string constraints to first order formula on bit-vectors as shown by Bjørneret al. [1].

1SISE equation size is measured by the combined length of constant words, variables, and operators included in the
equation.
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7 Conclusion

This paper presents the finite state transducer models of various regular substitutions, including the
declarative, finite, reluctant, and greedy replacement. A compact FST representation is implemented
in a constraint solver SUSHI. The presented technique can beused for analyzing programs that process
text and communicate with users using strings. Future directions include modeling mixture of greedy
and reluctant semantics, handling hybrid numeric/string constraints, and context free components.
Acknowledgment: This paper is inspired by the discussion with Fang Yu, Tevfik Bultan, and Oscar
Ibarra. We thank the anonymous reviewers for very constructive comments that help improve the paper.
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Abstract

We use the UPPAAL model checker for Timed Automata to verify the Timing-Sync time-synchron-
ization protocol for sensor networks (TPSN). The TPSN protocol seeks to provide network-wide
synchronization of the distributed clocks in a sensor network. Clock-synchronization algorithms for
sensor networks such as TPSN must be able to perform arithmetic on clock values to calculate clock
drift and network propagation delays. They must be able to read the value of a local clock and as-
sign it to another local clock. Such operations are not directly supported by the theory of Timed
Automata. To overcome this formal-modeling obstacle, we augment the UPPAAL specification lan-
guage with theinteger clock derived type. Integer clocks, which are essentially integer variables that
are periodically incremented by a global pulse generator, greatly facilitate the encoding of the opera-
tions required to synchronize clocks as in the TPSN protocol. With this integer-clock-based model of
TPSN in hand, we use UPPAAL to verify that the protocol achieves network-wide time synchroniza-
tion and is devoid of deadlock. We also use the UPPAAL Tracer tool to illustrate how integer clocks
can be used to capture clock drift and resynchronization during protocol execution.

1 Introduction

A sensor network is a collection of spatially distributed, autonomous sensing devices, used to perform a
cooperative task. Sensor networks are widely deployed for unmanaged and decentralized operations such
as military operations, surveillance, and health and environmental monitoring. Sensor networks differ
from traditional distributed networks in their stringent resource constraints, network dynamics, node
failure, and intermittent communication links. Consequently, protocols executing on sensor networks
must be robust and reliable.

Many high-level sensor applications depend on an underlying time-synchronization mechanism,
which provides network-wide time synchronization. Thus, protocols for time synchronization are critical
for sensor applications, and ensuring their correctness isof the utmost importance.

In this paper, we use the UPPAAL model checker [7] for Timed Automata to verify the correctness of
theTiming-sync Protocol for Sensor Networks (TPSN) [3]. TPSN is a time-synchronization protocol that
performs pair-wise node synchronization along the edges ofa network spanning tree. The local clock of
a designated node, typically theroot of the spanning tree, serves as the reference clock. Nodes may leave
or join the network. TPSN enjoys several advantages over other sensor network time-synchronization
protocols, including higher precision (less synchronization error) and the fact that its tree-based scheme
makes it well-suited for multi-hop networks.

Clock-synchronization algorithms for sensor networks such as TPSN must be able to perform arith-
metic on clock values in order to calculate clock drift and network propagation delays. They must be able
to read the value of a local clock and assign it to another local clock. Such operations are not directly
supported by the theory of Timed Automata. To overcome this formal-modeling obstacle, we augment
UPPAAL’s input language with theinteger clock derived type. Integer clocks, which are essentially inte-
ger variables that are periodically incremented by a globalpulse generator, greatly facilitate the encoding
of the operations required to synchronize clocks as in the TPSN protocol.

With this integer-clock-based model of TPSN in hand, we use UPPAAL to verify that the protocol
achieves network-wide time synchronization and is devoid of deadlock. Our model additionally takes
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into account nodes entering and leaving the network. We alsouse the UPPAAL Tracer tool to illustrate
how integer clocks can be used to capture clock drift and resynchronization during protocol execution.

This paper is organized as follows. Section 2 offers a description of the TPSN [3] protocol. Sec-
tion 3 introduces the concept of integer clocks. Section 4 presents our UPPAAL model of TPSN; the
corresponding verification and simulation results are given in Section 5. Section 6 considers related
work, while Section 7 contains our concluding remarks. An online version of the paper, available from
www.cs.sunysb.edu/~sas/NFM10-full.pdf, contains an Appendix in which a complete UPPAAL

source-code listing of our TPSN model can be found.

2 The Timing-Sync Protocol for Sensor Networks

The Timing-sync Protocol for Sensor Networks (TPSN) aims toprovide network-wide time synchroniza-
tion in a sensor network [3]. The TPSN protocol first establishes a hierarchical structure in the network.
It then achieves pair-wise synchronization along the edgesof this structure such that all local clocks
synchronize to a reference node. A more detailed discussionof the two phases of TPSN is now given.

• Level-discovery phase:Level discovery occurs when the network is first deployed. Inthis phase,
a hierarchical structure (spanning tree) is established for the network in which every node is as-
signed a level. A distinguished node called theroot node is assigned level 0 and initiates this
phase by broadcasting alevel discovery packet containing the identity and level of the sender. The
immediate neighbors of the root node receive this packet andassign themselves a level one greater
than the level they have received; i.e., level 1. They then broadcast a newlevel discovery packet
containing their own level. This process is continued and eventually every node in the network is
assigned a level. After been assigned a level, a node neglects any futurelevel discovery packets,
thereby ensuring that no flooding congestion takes place during this phase. Ultimately, a spanning
tree is created with the root node at level 0.

• Synchronization phase: The root node initiates the synchronization phase, during which pair-
wise synchronizations involving a level-i node and a level-(i−1) node are carried out using hand-
shake (two-way) message exchanges. Eventually, all nodes in the network synchronize their clocks
to that of the root node. Consider the synchronization of level-i nodeA and level-(i−1) nodeB;
i.e., A is a child ofB in the spanning tree andA is attempting to synchronize its clock with that
of B. The following sequence of messages comprise the handshake: A at local timeT1 sends a
synchronization pulse packet containing its level number and the value ofT1 to B. B receives this
packet at local timeT2, whereT2 = T1 + ∆ + d, ∆ is the clock drift between the two nodes, and
d is the propagation delay.B, at local timeT 3, sends back anacknowledgment packet toA con-
taining its level number and the values ofT1, T2, andT3. Finally,A receives theacknowledgment
packet at local timeT4. Assuming that the clock drift and the propagation delay donot change in
this small span of time,A can calculate the clock drift and propagation delay as:

∆ =
(T2−T1)− (T4−T3)

2
; d =

(T2−T1)+ (T4−T3)
2

Knowing the drift,A can correct its clock accordingly, so that it synchronizes to B.

The root node initiates the synchronization phase by broadcasting atime sync packet. Upon receiv-
ing this packet, nodes belonging to level 1 wait for a random amount of time before synchronizing
with the root node. Randomization is used to avoid contention at the MAC layer of the communi-
cations protocol stack. Upon receiving an acknowledgment,these nodes adjust their clock to the
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root node. Given that every level-2 node has at least one level-1 node in its neighbor set, nodes be-
longing to level-2 overhear this message exchange, upon which they wait for some random amount
of time before initiating the message exchange with level-1nodes. This use of randomization is to
ensure that level-1 nodes have been synchronized before level-2 nodes begin the synchronization
phase. A node sends back an acknowledgment to asynchronization pulse only after it has synchro-
nized itself, thereby ensuring that multiple levels of synchronization do not occur in the network.
This process is carried out throughout the network, and consequently every node is eventually
synchronized to the root node.

• Special Cases:The TPSN algorithm employs heuristics to handle special cases such as a sensor
node joining an already established network, and nodes dying randomly.Node joining: This case
concerns a sensor node that joins an already-established network (in particular, after the level-
discovery phase is over) or that does not receive alevel discovery packet owing to MAC-layer
collisions. In either case, it will not be assigned a level inthe spanning tree. Every node, however,
needs to be a part of the spanning tree so that it can be synchronized with the root. When a
new node is deployed, it waits for some time to be assigned a level, failing which it timeouts and
broadcasts alevel request message. Neighboring nodes reply to this request by sendingtheir own
level. On receiving the levels from its neighbors, the new node assigns itself a level one greater
than the smallest level it has received, thereby joining thehierarchy. This is alocal level-discovery
phase. Node dying: If a sensor node dies randomly, it may lead to a situation where a level-i
node does not possess a level-(i− 1) neighbor. In this case, the level-i node would not get back
an acknowledgment to itssynchronization pulse packet, preventing it from synchronizing to the
root node. As part of collision handling, a node retransmitsits synchronization pulse after some
random amount of time. After a fixed number of retransmissions of thesynchronization pulse,
a node assumes that it has lost all its neighbors on the upper level, and therefore broadcasts a
level request message to discover its level. Assuming the network is connected, the node will have
at least one neighboring node and will receive a reply, afterwhich The TPSN protocol considers
four retransmissions to be a heuristic for deciding non-availability of an upper-level neighbor.

If the node that dies is the root node, level-1 nodes will not receive an acknowledgment and hence
will timeout. Instead of broadcasting alevel request packet, they run a leader-election algorithm
to determine a new root node. The newly elected root node re-initiates the level-discovery phase.

3 Integer Clocks

UPPAAL is an integrated tool environment for the specification, simulation and verification of real-time
systems modeled as networks of Timed Automata extended withdata types. Primitive data types in
UPPAAL are: clock, bounded integer, boolean and channel. There arealso two compound types: array
and structure, as in the C language. Timed Automata in UPPAAL are described asprocesses. A process
consists of process parameters, local declarations, states and transitions. Process parameters turn into
process-private constants when a process is instantiated.Local declarations describe the set of private
variables to which a running process has access. States correspond to the vertices of a Timed Automaton
in graphical form. Transitions are the edges connecting these vertices. A transition specifies a source and
destination state, a guard condition, a synchronization channel, and updates to private or global data. A
system in UPPAAL is the parallel composition of previously declared processes.

Clocks in Timed Automata A Timed Automaton is equipped with a finite set ofclocks: variables
whose valuation is a mapping from variable name to a time domain. In the theory of Timed-Automata [1],
an assignment to a clockx is restricted tox→ R+, whereR+ is a non-negative real domain. That is, a
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clock can only be assigned a constant value.
The UPPAAL model checker, which is based on the theory of Timed Automata, places similar restric-

tions on assignments to clocks. In UPPAAL, a clock is variable of typeclock and can only be assigned
the value of an integer expression. Moreover, UPPAAL transition guards are limited to conjunctions of
simpleclock conditions or data conditions, where a clock condition is a clock compared to an integer
expression or another clock, and a data condition is a comparison of two integer expressions.

Integer Clocks Many real-time systems require more clock manipulations than UPPAAL can provide.
For example, it is not possible in UPPAAL to read a clock value and send it as a message along a channel,
as is required, for example, in time-sychronization protocols such as TPSN and FTSP [8]. The reason is
that in UPPAAL, it is not possible to advance a clock by any arbitrary amount. Instead, when a transition
occurs, the resulting clock values, with the exception of those that are reset to zero by the transition, are
constrained only to lie within the region (convex polyhedron) formed by the conjunction of the invariant
associated with the transition’s source state and the transition guard. One therefore cannot in general
determine the exact value of a clock when a particular transition occurs.

To address this problem, we introduce the notion of aninteger clock, which is simply an integer
variable whose value advances periodically. To enforce clock advance, we introduce a stand-aloneUni-
versal Pulse Generator (UPG) process which, at every time unit, broadcasts a signal(pulse) to all other
UPPAAL processes in the system. All processes having integer clocks are required to catch this signal
and increment their respective integer clocks. Using this mechanism, we mimic discrete-time clocks
that possess an exact desired value when a Timed Automaton transition occurs. Because integer clocks
are just integers whose valuations are under the control of the UPG, it is possible to directly perform
arithmetic operations on them as needed.

To improve code readability, we introduce the new derived type intclock as follows: typedef int

intclock; and the UPG process is given by:

broadcast chan time_pulse;

process universal_pulse_generator()

{ clock t;

state S { t <= 1 };

init S;

trans

S -> S { guard t == 1; sync time_pulse!; assign t = 0; }; }

Processes deploying integer clocks must, at every state, specify transitions (one per integer clock)
that respond totime_pulse events. For example, the following transition specifies a perfect (zero-drift)
integer clockx: S -> S { sync time_pulse?; assign x = x+1;}

In the following example, processA sends out its current clock value to another processB after
waiting a certain amount of time after initialization. Without using integer clocks,A’s clock cannot be
read.

chan AtoB;

meta int msg;

process A()

{

const int wait = 3;

meta intclock x;

state INIT, SENT;

init INIT;

trans

INIT -> INIT { sync time_pulse?; assign x = x+1; },/* time advance */

SENT -> SENT { sync time_pulse?; assign x = x+1; }, /* time advance */

INIT -> SENT { guard x >= wait; sync AtoB!; assign msg = x; };

}
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The drawback of using integer clocks is an increase (albeit modest) in model complexity, through the
addition of one process (the UPG) and the corresponding time-advance transitions, one for every state
of every process. The additional code needed to implement integer clocks is straightforward, and can be
seen as a small price to pay for the benefits integer clocks bring to the specification process.

Time Drift Time-synchronization protocols such as TPSN are needed in sensor networks due to the
phenomenon oftime drift: local clocks advancing at slightly different rates. Time drift can be modeled
using integer clocks by allowing a process to either ignore or double-count a UPG pulse event after
a certain number of pulses determined by thetime-drift rate (TDR). Integer clocks with time drift are
used in Section 4 to model a sensor network containing nodes with a positive TDR (pulse events are
double-counted periodically), a negative TDR (pulse events are ignored periodically), and a TDR of
zero (no time drift) for the root node. As we show in Section 5,the TPSN protocol achieves periodic
network-wide resynchronization with the root node.

For example, an integer clock having a TDR of 5 means that its value is incremented by 2 every 5
time units (and by 1 every other time unit). An integer clock having a TDR of -10 means that its value
remains unchanged every 10 time units. A TDR of 0 means that the integer clock strictly follows the
UPPAAL unit time-advance rate. The UPPAAL code for implementing integer clocks with TDR-based
time drift appears in functionlocal_time_advance() of the TPSN specification; see Appendix A in
the online version of the paper.

4 Uppaal Model of TPSN

In this section, we use integer clocks to model TPSN in UPPAAL. In particular, we use integer clocks for
each node’s local time. We still, however, rely fundamentally on UPPAAL’s built-in clock type for other
modeling purposes, including, for example, the modeling ofmessage channel delays. We consider a
sensor network whose initial topology is a ring ofN nodes indexed from 0 toN−1. Each node therefore
has exactly two neighbors, and nodes are connected by communication channels. Node 0 is considered
to be the root node. Note that the choice of a ring for the initial topology is not essential. The TPSN
protocol constructs a spanning tree from the network topology, and the synchronization phase operates
over this spanning tree.

Nodes and channels are modeled as UPPAAL processes. A node process maintains information about
its neighbors, level in the spanning tree, parent, and localclock. Nodes send and receive packets through
the channels processes. We cannot simply use UPPAAL’s built-in chan type to model channels because
we need to model the delay in the network, which is required inthe protocol. Upon sending or receiving
packets, a node switches its state and alter its data accordingly.

A node process takes three parameters, its id and the id of itstwo neighbors, and is declared in UP-
PAAL as follows:process node(int[0,N-1] id, int[0,N-1] neighbor1, int[0,N-1] neighbor2)

Channels also have ids. Channelk represents the communication media surrounding nodek, and
therefore is only accessible to nodek and its neighbors.

Using Integer Clocks The TPSN protocol involves clock-value reading (a parent node sends its local
time to a child node during the synchronization phase) and clock-value arithmetic (calculating∆ and
d). We use integer clocks to model these operations. In a node process, we declare an integer clock as:
meta intclock local_time;

A node process has seven states. There are therefore seven time-advance transitions in its specifica-
tion; e.g.initial -> initial { sync time_pulse?; assign local_time = local_time+1; }

Level-Discovery Phase Three UPPAAL states are used to model the level-discovery phase:initial,
discovered, discovered-neighbors. When the system starts, all nodes except the root enter the
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initial state. The root goes directly to thediscovered state, which indicates that a node has ob-
tained its level in the hierarchy (zero for the root). After acertain delay, the root initiates the level-
discovery phase by broadcasting alevel_discovery message to its neighbors and then enters the
discovered-neighbors state, means it has done the task to discover its neighbors’ level. A node in
theinitial state enters thediscovered state upon receiving alevel_discovery message, or sim-
ply ignores this message if it is already indiscovered or discovered-neighbors state. A node in
thediscovered state waits for some delay and then emits alevel_discovery, changing its state to
discovered-neighbors. As described in Section 2, this procedure will occur all over the network
until eventually all nodes are in thediscovered-neighbors state, indicating the entire network is
level-discovered.

In our model, there are only two level-discovery transitions: frominitial to discovered and from
discovered todiscovered-neighbors. Consider, for example, the former, which occurs upon receipt
of alevel_discovery message:

initial -> discovered {

select i:int[0,N-1];

guard level == UNDEF && neighbors[i];

sync lev_recv[i]?;

assign level = msg1[i]+1, parent = i;

},

If a node is not yet discovered (guard level == UNDEF) and thelevel_discovery message
(through channellev_recv[i]) is sent by its neighbor (guard neighbor[i]), then it sets its level
to one greater than its neighbor’s level (msg1[i]+1); i.e. this neighbor becomes its parent.

Synchronization Phase We consider statediscovered-neighbors to be the initial state of the syn-
chronization phase, and introduce four additional states:sync-ready, sync-sent, sync-received
andsynchronized. The root, which is the absolute standard of time, broadcasts atime_sync mes-
sage to its neighbors, and then goes directly fromdiscovered-neighbors to synchronized. The
time_sync message notifies the root’s children that they can now synchronize with their parent. The
root’s children then transit fromdiscovered-neighbors to sync-ready (see Section 2). A node in
thesync-ready state will send asynchronization_pulse to its parent and then entersync-sent.
The parent, which must be already synchronized, goes fromsynchronized to sync-received, where
it will remain for a certain amount of delay. When the delay isover, it returns to thesynchronized state
and sends anacknowledgment message to the child. The child then adjusts its local clock using the
information carried in these messages and goes to thesynchronized state. All of these messages are
actually broadcasted, which allows a child’s child to overhear thesynchronization_pulse message
and turn itself intosync-ready. The state transition diagram for this phase is depicted in Figure 1.

discovered-
neighbors

sync-ready sync-sent

synchronized sync-received

Figure 1: State Transition Diagram for the SynchronizationPhase
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For example, consider the transition a node makes fromsync-sent to synchronized upon receipt
of anacknowledgment message:

sync_sent -> synchronized {

select i:int[0,N-1];

guard id != ROOT_ID && i == parent;

sync ack_recv[i]?;

assign adjust_local_time();

}

This transition occurs if the node is not the root (guard id != ROOT_ID) and the incomingack-
nowledgment message is from its parent as determined during level-discovery (guard i==parent).
The transition’s affect is to adjust the node’s local time (an integer clock) by calling functionad-
just local time(), which simply calculates the time drift∆ and adds∆ to local_time.

Time Drift TPSN addresses time drift in a sensor network by periodically performing resynchro-
nization to ensure that each node’s local clock does not diverge too much from the root. Since we have
modeled local clocks using integer clocks, we cannot use arbitrary rational numbers for the TDR. Rather,
we let the root advance its local clock at the pace of the UPG-generated pulse events and non-root nodes
either skip or double-count a pulse after every certain number of pulses determined by an integer TDR.
Since the TDR is fixed for each node, time drift appears linearin the long run. Figure 2 illustrates
integer-clock-based time drift in a 5-node sensor network having respective TDRs [0,−8,10,16,−10].
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Figure 2: Integer-clock-based Time Drift

Resynchronization The resynchronization phase is almost identical to the synchronization phase ex-
cept that the root will periodically jump from thesynchronized state to thediscovered-neighbor state.
As in the synchronization phase, the root will soon re-enterthe synchronized state and re-broadcast
time_sync. We also let nodes in thesynchronized state return to thesync-ready state on receiv-
ing time_sync or synchronization_pulse. Thus, anothertime_sync message will trigger another
round of the synchronization phase, which is precisely the intent of resynchronization. The primary issue
here is to set the resynchronization interval long enough toensure synchronization has first completed.
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System The system-level specification consists ofN nodes,N channels, and the UPG processes:

n0 = node(0,1,2); n1 = node(1,0,3); n2 = node(2,0,4); n3 = node(3,1,4); n4 = node(4,2,3);

c0 = channel(0); c1 = channel(1); c2 = channel(2); c3 = channel(3); c4 = channel(4);

system n0, n1, n2, n3, n4, c0, c1, c2, c3, c4, universal_pulse_generator;

The choice of node-process parameters reflects the initial ring topology we are considering for the sys-
tem. The system definition can be easily scaled using the process-parameter mechanism, as long as one
carefully sets the neighbors of each node.

5 Simulation and Verification Results

We verified our model of the TPSN protocol given in Section 4, including the level-discovery, synchro-
nization and periodic-resynchronization phases, using the UPPAAL model checker. We regard the root
node as the node with the ideal clock (zero time drift) and allother nodes have (distinct and fixed) pos-
itive and negative TDRs. Since nodes are initially unsynchronized, each node is given a different initial
clock value. Our model is also parameterized by the minimum and maximum node-response delay (20
and 40, respectively), channel delay (4), and minimum and maximum resynchronization interval (10 and
20, respectively), for which we have provided appropriate values.

Simulation Results We used the UPPAAL TRACER tool, and a resynchronization interval of 200 time
units, to obtain simulation results for our model with periodic resynchronizations of the local clocks of
all nodes. Figure 3 is obtained by extracting the local clockvalues of all nodes from a random simulation
trace. This was accomplished by first saving the history of states to a trace file and then using the
external program UPPAAL TRACER to convert the data in the trace file into to a readable form. Figure 2
of Section 4 was obtained similarly.
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Figure 3: Integer Time Drift with a resynchronization interval of 200 time units

In Figure 3, plotting starts at time 30 since the root’s starting clock value is set to 30. Between
time 30 and 100, the network executes the level-discovery phase. The synchronization phase takes place
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approximately between time 100 and 120. From there, all local clocks advance at their own rate, which,
as can be seen, consists of four relative clocks each having adistinct TDR. At time 300, and then again at
time 500, the system performs a resynchronization, which brings non-root local-clock values very close
to 0. Notice that different nodes get synchronized at different times. Nodes 1 and 2 are synchronized at
the same time because they are adjacent to the root. Nodes 3 and 4 are synchronized after them because
of node response time and packet delay.

Verification Results We used UPPAAL to verify the following properties of our model. (Correctness
properties can be specified in UPPAAL using a subset of the CTL temporal logic.)

No Deadlock: A[]not deadlock
Absence of deadlock.

Synchronized: A[](<>ni.state == synchronized)
All nodes enter asynchronized state at least once. This implies that the level-discovery and syn-
chronization phases are correctly implemented.

Relative Time Bounded: A[]abs(ni.local clock−n0.local clock) < X
A node’s local time relative to the root is bounded at all times (X = 25), which implies correct
repeated resynchronization.

Relative Time Close: A[](<>abs(ni.local clock−n0.local clock) < Y )
A node’s relative time will always eventually get very closeto 0 (Y = 5), another implication of
correct repeated resynchronization.

We used UPPAAL to perform model checking of these properties on networks having N = 3− 5
nodes. The corresponding verification results (CPU time andmemory usage) are given in Table 1. In all
cases, UPPAAL reported that the four properties are true. (The second and fourth properties, which are
“infintiely often” properties, are verified only up to the time bound determined by the maximum UPPAAL

integer value of 32,767.) All results are obtained on a LinuxPC with a 2GHz Intel Pentium CPU and
2GB memory. UPPAAL’s default settings were used.

N No Deadlock Synchronized Relative Time Bounded Relative Time Close

3 0.61sec/21MB 2.06sec/24MB 0.62sec/21MB 2.11sec/24MB
4 6.5sec/22MB 68.0sec/31MB 6.7sec/22MB 70.2sec/31MB
5 6.1min/126MB 214.9min/181MB 6.3min/126MB 236.4min/181MB

Table 1: Verification Results: Time and Memory Usage

6 Related Work

In [6], the FTSP flooding-time synchronization protocol) for sensor networks has been verified using
the SPIN model checker. Properties considered includesynchronization of all nodes to a common root
node, andeventually, all nodes get synchronized, for networks consisting of 2-4 nodes. In [4], UPPAAL

has been used to verify a time-synchronization protocol fora time-division-multiple-access (TDMA)
communication model. The aim of this protocol is to ensure that the clocks of nearby (neighboring) nodes
are synchronized. UPPAAL has also been used to demonstrate the correctness of the LMACmedium
access control protocol for sensor networks [11], and the the minimum-cost forwarding (MCF) routing
protocol [12] for sensor networks [5].
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Time-triggered systems are distributed systems in which the nodes are independently-clocked but
maintain synchrony with one another. In [9], real-time verification of time-triggered protocols has been
performed using a combination of mechanical theorem proving, bounded model-checking and SMT
(satisfiability modulo theories) solving. Calendar automata, which use sparse-time constraints, are used
in [2] for the modeling and verification of the fault-tolerant, real-time startup protocol used in the Timed
Triggered Architecture [10].

7 Conclusions

We used the UPPAAL model checker for Timed Automata to obtain a number of critical verification
results for the TPSN time-synchronization protocol for sensor networks. Clock-synchronization algo-
rithms for sensor networks such as TPSN must be able to perform arithmetic on clock values to calculate
clock drift and network propagation delays. They must be able to read the value of a local clock and
assign it to another local clock. The introduction of theinteger clock (with time drift) derived UPPAAL

type greatly facilitated the encoding of these operations,as they are not directly supported by the theory
of Timed Automata. We also used the UPPAAL TRACER tool to illustrate how integer clocks can be used
to capture clock drift and resynchronization during protocol execution.
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Abstract

In the context of EDEMOI -a French national project that proposed the use of semiformal and
formal methods to infer the consistency and robustness of aeronautical regulations through the analysis
of faithfully representative models- a methodology had been suggested (and applied) to different
(safety and security-related) aeronautical regulations. This paper summarizes the preliminary results
of this experience by stating which were the methodology’s expected benefits, from a scientific point
of view, and which are its useful benefits, from a regulatory body’s point of view.

1 Introduction

In order to safeguard civil aviation against accidental events (which is the concern of aviation safety) and
against intentionally detrimental acts (which is the concern of aviation security), governments worldwide
have imposed regulatory requirements upon the different aviation participants or, as they will be refer to
in this paper, entity-classes1.

Under the vigilant eyes of regulatory bodies, safety/security requirements are imposed on the entity-
classes in order to (1) prevent the body of causes that may directly or indirectly lead these entity-classes
into a hazardous operating/behavioral state, and/or (2) mitigate the consequences associated to such
states.

However, in order to be effectual, the regulatory requirements need to be robust, consistent and
pertinent. Indeed, their robustness ensures that the requirements exhaustively cover all the safety/security
relevant scenarios within the regulation’s domain of competence, or purview. Their consistency ensures
that they will not be mutually contradictory or incompatible. And their pertinency ensures that they are
relevant to enhancing aviation safety/security. Yet these three qualities can only be achieved through a
complete understanding of the regulatory domain, and of the concerned (or participating) entity-classes,
including their mutual interactions.

For this reason, regulatory bodies seek to fully identify all of the safety/security-concerned entity-
classes that exist within their purview, including their relevant (universe of) states2. This information,
along with their extensive practical and theoretical expertise, enables the regulatory bodies to adequately
determine the preventative or mitigative measures that they should impose onto the entity-classes, in
order to reduce their associated safety/security risks.

1This paper uses the term entity-classes to refer globally to the types of aviation participants upon which the regulatory
requirement are imposed. The nature of these participants can range from the persons involved in civil aviation operations,
to the objects that they use and the infrastructures that they employ. Some examples of an entity-class are: PASSENGER,
FLIGHT CREW MEMBER, AIRCRAFT, AIRPORT, COCKPIT.

2An entity-class’ relevant universe of state is the grouping of all of its pertinent possible states. In other words, the
grouping of all the states with: (a) a direct or indirect effect on the overall safety and/or security level and (b) a possibility
of occurrence greater than zero. An example of a pertinent and possible state for the FLIGHT CREW MEMBER entity-class
is the incapacitated state. Indeed, safety regulations have identified that the in-flight pilot incapacitation scenario is a remote
(4.5x10-7 per flight hour) but possible scenario with consequential impacts on safety. Therefore, regulators ensure that this
scenario is taken into account by their regulations
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This way, but rather unwittingly, regulatory bodies created a composite, abstract and subjective de-
scription of their purview, corresponding to their Conceptual View of the Real World. This conceptual
view is in fact implicitly found within their regulations, and it affords them a manageable (although
approximate) model of their regulated domain that helps them better grasp their regulatory domain’s
structure, correlations and interactions. It also serves them as an arbitrarily well-defined categorization
that groups individual entities (e.g. passenger Alice and passenger Bob) into a uniquely defined sets
of entities (e.g. the entity-class PASSENGER), upon which the regulatory requirements can then be
affixed3. Indeed, through well-defined categorizations such as this one, the regulatory bodies can specif-
ically denote the sets/subsets of entity-classes that are concerned with a specific regulatory requirement.

This means that the regulator’s Conceptual View of the Real World is intimately tied to a regulation’s
innate quality because: what can be expected of a regulation whose regulator has a distorted view of the
Real World? Or, if this view is missing relevant elements and/or relations?

Therefore, the regulator’s Conceptual View of the Real World needs to be checked to ensure the
validity of its assumptions and statements, but also the robustness (comprehensiveness) of their concern.

The figure shown below (Figure 1) elucidates on the notion of the Conceptual View of the Real World
(Figure 1, ACV) and on how it influences the pragmatic aspects of the regulatory framework.

Expressed
in terms of

Regulation

Regulatory Body

Real World

Represents their view of`

Constrains 

Intended World

Conceptual View
of the Real World

Steer 
towards

ARR

ACV

AIW

RW

Shapes

Shapes

Regulatory Requirements

Figure 1: Conceptual Representation on the Operational description of the Regulatory Framework.

However, due to the (ever-growing) complexity of civil aviation and to its ever-changing state of
affairs -brought on by adjusting factors4- regulators often find themselves overwhelmed by the challenge
of continuously safeguarding such a dynamical and complexly interrelated industry.

Indeed, the process of ’developing/updating’ the regulations undeniably entails the need to define
and modify many of the fixed and context-dependent axioms and assumptions5 that are the basis for the
regulator’s Conceptual View. This can result in the possible invalidation of some previously valid axioms
and assumptions, as they change to reflect the new reality of the system.

3In accord with the principle that law must be general (i.e. impersonal).
4An adjusting factor is any operational, ideological and/or technological change whose introduction, into the civil aviation

system, obliges a change in the contemporary regulations to preserve the appropriate overall functioning of the system.
5The axioms and assumptions are, respectively, the necessary truths and the generalized results that serve as the basis for

the argumentation and/or inference of the regulatory requirements. They represent the Domain Knowledge shown in Figure 2
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The Conceptual View of the Real World is therefore a crucial element in understanding the regula-
tions, ensuring their pertinence and verifying their actuality. It is in this context that EDEMOI advocated
the use of semiformal and formal methods and tools, to enhance the analysis (and consequently improve
the inherent quality) of aeronautical safety and security regulations. In other words, EDEMOI sought to
design an employable methodology6 that would facilitate the assessment of regulatory requirements.

2 The Proposed Methodology

The underlying approach for the EDEMOI methodology was to determine the analogies that could be
made between the domains where ’Requirements Analysis and Design in Systems and Software engi-
neering’is successfully used, and ’civil aviation safety/security’. This was done with the objective of
identifying the methods and tools used for these domains, to determine if they could be successfully im-
plemented in the assessment of aviation safety/security requirements by way of a tailored methodology.

The EDEMOI methodology proposed enhancements to the rulemaking procedure currently used by
civil aviation authorities. These enhancements included the incorporation of simulation and counterex-
ample checking tools into the regulation’s already established validation phase. This, with the objective
of better ensuring the requirements’ innate quality without any fundamental changes to the established
rulemaking procedure.

The methodology is centered on a two-step approach (see Figure 2) involving two kinds of stake-
holders: the Aviation Authorities, which establish regulations concerning civil aviation safety/security,
and the Model Engineers, who translate these natural language documents into semiformal and formal
models.

Given that regulations are rarely built from scratch, the methodology focused on studying/comparing
the evolutions of existing regulations in search of possible regressions.

In the first step of this approach, a Model Engineer extracts the security goals and the imposed
requirements from the original regulatory texts, and translates them into a semiformal (graphical) model
that faithfully represents their structure and relations (while reducing the use of inherently ambiguous
terms). Indeed, this model embodies the Conceptual View of the Real World that is partly implicit in
the regulation (as discussed in Section 1). This Graphical Model, understandable by both kinds of
stakeholders, is later revised and validated by the Aviation Authority, giving way to the methodology’s
second step, in which the Model Engineer performs a systematic translation of the semiformal model to
produce a Formal Model that can be further analyzed.

This methodology was used in the formalization of various international and supranational aeronauti-
cal regulations7 [7], [3] with discerning purviews and objectives. This allowed us to test the methodology,
and conclude that it provides some interesting benefits. However, not all of them can be fully exploited
by the regulatory bodies. The following sections provides a brief overview of the useful advantages of
the methodology (Section 3) and of its shortcomings (Section 4).

6The EDEMOI methodology was not designed as a substitute for the practices currently employed in the assessment of
regulatory requirements. On the contrary, it was designed to complement existing safety/security managements tools. Indeed,
the traditional assessment methods such as the regulation’s preliminary impact assessments, as well as the open (or closed)
consultation periods before their enactment, are sufficiently effective in identifying the more common errors. However, and
this was the motivation behind the EDEMOI project, new assessment techniques can allow the detection of the more elusive
shortcomings and errors.

7Parts of the following regulations were formalized : ICAO’s Annex 17 (International Airport security), ICAO’s Annex
II (Rules of Air), Regulation (EC) No. 2320/2002 (European Airport Security), Directive 2008/114/EC (Security of European
Critical Infrastructure) and Regulation (EC) No. 2096/2005 (regarding the provision of Air Navigation Services).
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Figure 2: The Methodology proposed relies on the use of semiformal and formal tools to analyze regu-
latory requirements and enhance their innate quality.

3 The Methodology’s useful benefits

3.1 Introduction

As was mentioned previously, aeronautical regulations are natural language documents that impose re-
quirements onto real world entity-classes through a tacit abstract view of these entity-classes and of their
environment. This was said to be the aviation authority’s Conceptual View of the Real World. Formally
specifying this Conceptual View yields a detailed documentation of its underlying assumptions and ax-
iomatic base. Furthermore this formal specification can be accomplished while preserving a relatively
high fidelity between the Conceptual View and the resulting models. Because, the Conceptual View is
already an abstract and simplified model of the real world. This frees up the model engineer from the
burden/responsibility of creating the models from zero.

Furthermore, formal tools can genuinely provide a sound basis for the comprehensive comparison
of the abstract view and the real world it is supposed to embody. This, in order to detect diverging
conceptions since a flawed view of the real world will suggest ineffectual or futile requirements. Also,
using formal tools can facilitate the detailed understanding and analysis of the regulations’ predicted
implementation.

Figure 3 shows a side-by-side qualitative summary that synthesizes our experience and feedback
with regards to the communicative aspects of semiformal and formal models for safety/security experts
working within regulatory bodies. These results are part of the Assessment of Legislative and Regulatory
Requirements for ATM Security (ALRRAS) project, a feasibility study into the use of computer science
methods and tools to improve the assessment of pan-European aeronautical requirements. The eight
criteria were selected based on the available literature [6], [4], [5], [2] and because practical knowledge
of aviation safety/security identified them as facilitators of a regulation’s quality.

With respect to these criteria, semiformal models (whose performance is shown in red diagonals)
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Figure 3: Graphical representation of a qualitative assessment of the communicative aspects of Aeronau-
tical Regulatory Documents. Also shown, how these aspects are influenced by the complementary use
of semiformal (in red diagonals) and formal models (in solid blue).

were found to be, overall, more consistent in their communicating capacities. Also, they have proven
to be an enhancement for laypersons in terms of complementing their understanding of the aeronautical
regulations.

Formal models, on the other hand (whose performance is shown in solid blue) stood out for their
preciseness, exactness and their protection against ambiguity. However, as the qualitative values in the
diagram need to be pondered for each modeling-type (to take into account the weight given to each
criterion by regulatory bodies), the formal model’s excellent protection against ambiguity was quickly
overshadowed by its very poor comprehensibility by both laypersons and aviation safety/security experts.

Understandably, regulatory bodies, being less familiar with formal notations, need to be extremely
cautious when validating/invalidating formal models, as they may be less able to detect specification
errors8. This is especially true for regulators with a background in legal-studies, as they have been less
exposed to such notations than their colleagues with an engineering background.

For this reason, the methodology foresaw the complementary use of semiformal and formal models
(see Figure 2). Indeed, the process called for a semiformal model to be built directly from the regulatory
text. This semiformal model was enriched with Object Constraint Language (OCL) expressions and -

8For the most part, regulators needed few instructions to be able to understand/interpret the semiformal notations
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after having been analyzed and not invalidated9 by the corresponding authority- used as the basis for a
formal model.

A direct consequence of this methodology is that it provides a common semantic/understanding of
the regulatory requirements that is (almost10) independent of any natural language. This is true for both
the semiformal and formal models.

Also -and this is a byproduct of any specification process- the methodology can help identify impre-
cision, ambiguities and inconsistencies within the regulatory requirements.

More explicitly, we can say that formally specifying a regulation affords us:

• The ability to check where there are some holes in the regulations (a situation which is of a partic-
ular importance for security regulations!), and

• The ability to detect whether any regulatory amendments will introduce safety/security regressions.

3.2 Benefits of using Semiformal Models

The benefits provided by the semiformal models were, among others:

• Developing a common and understandable abstraction of the regulated domain and the participat-
ing entity-classes.

• Making the regulator’s Conceptual View of the Real World explicit, enhancing the manipulation of
their regulatory requirements.

• Providing a deeper linkage (traceability) between the different elements that comprise the regula-
tory framework.

The mixed semiformal/formal approach was indeed necessary, as was justified in figure 3. Through
the use of UML-like notations, model engineers with a double competence in law and computer sciences
can create semiformal models of the regulation’s addressees. which convey their static (using class
diagrams) and dynamic (using state-transition diagrams) properties. The utility of these models is that
they can be used to represent, in a less ambiguous manner, how the regulatory requirements impact
the entity-classes’ structural and behavioral aspects. That is, the models can be used to show how the
regulations reshape their static and dynamic properties.

Also, static models provide a deeper traceability between the different entity-classes and regulatory
requirements. This allows a holistic view of normally separate (yet interrelated) regulations, and rec-
onciles their domain-oriented structuring with their class-entity oriented implementation (e.g. all rules
pertaining to the flight of an aircraft vs. all rules applicable to the FLIGHT CREW MEMBER entity-
class). All of this helps facilitate the impact analysis of adjusting factors, as well as the regression
analysis of the subsequent regulatory amendments.

Coupled with this, semiformal methods can help identify where the regulations are open for diverg-
ing interpretations. Moreover, these types of models can be used to create very rigorous specification
of certain aspects of the entity-classes, particularly the dynamic diagrams (such as a state-transition dia-
gram) where the use of guards can be very formal (more or less: IF ... THEN ... ELSE .. the presence of
ELSE being mandatory for completeness reasons!). The advantage of this type of model is that the gain
in formalism is not coupled with a loss in comprehensibility.

9When verifying the models, regulatory bodies are better positioned to detect errors within a specification -and therefore
to ’invalidate’ a model- rather than ’validating’ them as being free of errors.

10The final models keep only remnants of the original regulatory text, preserving entity-class names, attribute and states
descriptors.
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3.3 Benefits of using Formal Models

Among the benefits provided by the use of formal models we can mention:

• It allows the regulation’s meaning to be specified with more precision and exactness, helping
the model engineer identify the more tricky areas (i.e. where the regulation can be interpreted
differently).

• It affords the ability to automatically derive testing material.

Formal methods can be used to perform a comparative analysis between the Real World (Figure 1,
RW) and the legislator’s Conceptual View of the Real World (Figure 1, ACV). Using a formal models
and tools for this analysis entails two benefits. Firstly, the act of formally specifying both the Real
World and the regulator’s Conceptual View of the Real World can be a preliminary way of identifying
their differences/incongruities. Secondly, the formal specifications can be put through a comprehensive
comparative analysis that is not possible by other means.

Much like the semiformal models, formal models also help identify some areas where the regulation
may be interpreted differently, but since they allow the regulation’s meaning to be better specified, they
undoubtedly help the model engineer identify more clearly those areas where the regulation can be inter-
preted differently but also help them make sense of these tricky parts. Indeed, revisiting the semiformal
model after having developed the formal one allowed us to make significant improvements in the semi-
formal model, particularly in terms of simplifying the model, but also by helping identify specification
errors.

This was the case during the formal specification of a European airport security regulation, where a
subtle language lapse in one of its articles11 was discovered only after it had been formally specified. It
had gone undetected in the original regulation, its eleven different language translations, and in its first
semi-formal model. The article establishes the conditions (and limits) by which an airport can be labeled
as ’small’, and therefore be derogated from applying the stringent (and expensive) security standards
enforced at larger airports. But, as shown in figure 4, the original text version alleviated only a fraction
of the small airports it was supposed to exempt.* The original version of article 4.3.(a) was inconsistent with the stated hypothesis that “airports 

with a lower frequency of operations (usually) present a lower level of threat." 

“…airports with a yearly average of 

2 commercial flights per day…” day

flights
rageyearly ave  2=

* The original version of article 4.3.(a) was inconsistent with the stated hypothesis that “airports with a lower 

frequency of operations (usually) present a lower level of threat." 
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Figure 4: During the formal specification of Regulation (EC) 2320/2002, a subtle language lapse was
identified. Although this wording error did not have a negative effect in terms of security -as it made
the regulatory requirements more restrictive than originally intended-, it did have an economical impact
on those small airports that where technically considered as large. The figure above transcribes the
original regulatory requirement (on top) and its amended version (at the bottom). Also, the requirement
is represented in two additional ways. In the center, as a mathematical expression. At the far right, as a
one-dimensional graph.

11Regulation (EC) No. 2320/2002. Article 4.3.(a) Criteria for Small Airports
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It is undoubtedly clear that formalization helps regulatory bodies to better understand and check their
regulations from a technical point of view. But, what are the real uses and advantages that will result
from this methodology?

4 The Methodology’s shortcomings

As mentioned previously (Section 2), the methodology has both positive and negative aspects that need
to be weighed, in order to define its utility as a tool to enhance the analysis of aeronautical safety and
security regulations. This section will discuss its most consequential ’faults’ or shortcomings.

From the previous section (Section 3), it is undoubtedly clear that formalizing regulatory require-
ments helps (from a technical point of view) regulatory bodies better understand their regulations by
providing them with supplementary insight of their regulated domain and concerned entity-classes. How-
ever, it is not so clear from a practical standpoint.

Indeed lawyers are experts in law but they have a hard time understanding or, even more, developing
such formal models [8]. Therefore, there will always be a need for a model engineer to develop the
models. But, even when a model engineer develops a formal model of the regulations, the lawyers are
unable to directly validate it, as they have a hard time understanding the notation. This leaves little use
for such models. However there is a work-around to this problem. An alternative ’validation’ solution is
to animate/simulate the formal model in order to indirectly validate it. This indirect validation is done
by comparing the results of the scenarios animatied/simulated, with the expected results of their actual
implementation. The disparities between both results becoming the focus area for a detailed revision.
However, this alternative solution also entails many difficulties, as regulations are very abstract texts,
impossible to animate/simulate ’as is’. As shown in the following figure (Figure 5), regulatory texts need
to be complemented by various other sources in order to have a model capable of being animated/simu-
lated. Indeed, regulations need to be more or less stable through time -to ensure stakeholder’s awareness
of their obligations-, and the best way for ensuring this stability is for their regulatory requirements to
be written using broad and general statements. Nevertheless other non-mandatory documents such as
guidance material, industrial best practices, and standard procedures can help fill in the gaps between the
regulation’s abstract text and its detailed description, thereby enabling its animation/simulation.

For instance, the following regulatory requirement12 concisely imposes that each country shall screen
their originating passengers: 4.4.1 Each Contracting State shall establish measures to ensure that origi-
nating passengers of commercial air transport operations and their cabin baggage are screened prior to
boarding an aircraft departing from a security restricted area.

This text could lead to a very simple binary animation/simulation of the passenger screening which
would be interesting if this where the first time the regulation is being enacted, to test its basic logic.
However, since this requirement has been around since 1975, the requirement has to be complemented by
its associated guidance material and by integrating the domain knowledge and best practices, to produce
a more complete animation/simulation of the same process, and try to find the more elusive errors.

The fact that lawyers cannot easily understand formal models entails another problem. Since the
formal models cannot be directly validated by the regulatory bodies, there will never be a benchmark
formal specification of the Real World! Any model-to-model comparison (such as the one between the
Real World and the legislator’s Conceptual View of the Real World) will only provide a relative assertion
into their validity. In fact, since there is no single ’valid’ model to which others can be compared, all that
can be expected from a model-to-model comparison is a measure of compatibility among the compared
models, without any clear reference into which one of the discerning models is preferable.

12ICAO - Annex 17. Eighth Edition, 11th Amendment. Measures relating to passengers and their cabin baggage.
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Figure 5: Regulations are not comprehensive sources of information so their modeling will not be able
to produce an animatable/simulatable model. These models have to be completed through other sources
in order to produce a ’runnable’ model.

Nevertheless, one can look at the ’half-full’ part of the glass and say that: even though the compar-
isons will only be relative, the disparities/incongruities between the compared models will help legisla-
tors by giving them a focus area or some starting points for their conventional validation process. And,
in the end, this could lead to a more concrete and/or accelerated validation process (i.e. improve the
assertiveness and reactiveness of the process).

Finally, the methodology is necessarily a collaborative modeling process, as it requires the regulatory
body to validate the models produced by the model engineer. This can be done through a cross-reading of
the semiformal models. Unfortunately, this does nothing to improve the quality of the validation process
currently used13). This is because the validation process is still exposed to erroneous assessments -a
false appreciation of the model that leads it to be validated as a faithful representation of the regulations.
Nevertheless, an extensive traceability between the regulations and the produced models should strongly
limit this situation.

5 Conclusion

The regulator’s Conceptual View of the Real World is a crucial element for understanding the regulations,
ensuring their pertinence and verifying their actuality. As such, it needs to be made explicit and checked
to ensure the validity of its assumptions, of its statements and the robustness (comprehensiveness) of
their concern.

Through the formalization of various international and supranational aeronautical regulations we
have concluded that, in order to achieve this, it should be mandatory to integrate the use of semiformal
methods into the current rulemaking process! Indeed, as mentioned in Section 3.2, semiformal methods

13For more information concerning the current rulemaking process see [1]
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that have been enriched with OCL expressions allow regulatory bodies to ’master the complexity’ of
their regulations, by providing them with a comprehensible, structured and maintainable representation
of their Conceptual View of the Real World, where the entity-classes and regulatory requirements are
interlinked. This last point is very important as it promotes the holistic analysis/view of the regulations,
and facilitates their regression analysis in case of amendments.

Granted, formal methods could also contribute to the accomplishment of these improvements, how-
ever their low comprehensibility by regulators (see Figure 3) means that they can only be used ’behind
the scenes’, to help disambiguate the most tricky elements/parts of the regulations before presenting
them to the regulatory authorities via semiformal models. Otherwise, one must consider the costs asso-
ciated to (and the time consumed in) training regulators in the use/utilization of formal notations. These
costs, weighed against the foreseen benefits, have convinced us that, presently, this alternative is not a
worthwhile enterprise.

Nevertheless, if one decides to undertake this course, and adopt formal methods as the primary tool
for assessing civil aviation regulations, they should not undermine the importance of having the model
validated by the aviation authority. For this, they should opt for a validation process involving a third
trusted party. This party, external to the civil aviation authority and to the model engineers could be
composed of engineers with a double-competency in civil aviation regulations and in formal methods.
This double-competency would allow them to validate the formal models and help with the analysis of
the regulations.
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Abstract

Greedy algorithms exploit problem structure and constraints to achieve linear-time performance.
Yet there is still no completely satisfactory way of constructing greedy algorithms. For example, the
Greedy Algorithm of Edmonds depends upon translating a problem into an algebraic structure called
a matroid, but the existence of such a translation can be as hard to determine as the existence of a
greedy algorithm itself. An alternative characterizationof greedy algorithms is in terms of dominance
relations, a well-known algorithmic technique used to prune search spaces. We demonstrate a pro-
cess by which dominance relations can be methodically derived for a number of greedy algorithms,
including activity selection, and prefix-free codes. By incorporating our approach into an existing
framework for algorithm synthesis, we demonstrate that it could be the basis for an effective engi-
neering method for greedy algorithms. We also compare our approach with other characterizations
of greedy algorithms.

1 Introduction

A greedy algorithm repeatedly makes a locally optimal choice. For some problems this can efficiently
lead to a globally optimal solution. Edmonds [Edm71] characterized greedy algorithms in terms of
matroids. In 1981, Korte and Lovasz generalized matroids to definegreedoids[KLS91]. The question of
whether a greedy algorithm exists for a particular problem reduces to whether there exists a translation
of the problem into a matroid/greedoid. However, the characterization does not provide any guidance
on how to construct this translation. In addition, there areproblems that have greedy solutions, such as
Activity Selection and Prefix-free Codes, [CLRS01], that donot seem to fit within the matroid/greedoid
model. A number of other attempts have been made to characterize greedy algorithms, [BM93, Cur03,
Cha95, HMS93] but the challenge in all of these approaches isestablishing the conditions required for a
given problem to meet that characterization. Thus, there has been very little work in helping a developer
actually construct greedy algorithms.

An alternative approach to constructing algorithms is to take a very general program schema and
specialize it with problem-specific information. The result can be a very efficient algorithm for the given
problem, [SPW95, SW08, NC09]. One such class of algorithms,Global Search with Optimality (GSO)
[Smi88], operates by controlled search, where at each levelin the search tree there are a number of
choices to be explored. We have recently [NSC10] been working on axiomatically characterizing a class
of algorithms, called Greedy Global Search (GGS), that specializes GSO, in which this collection of
choices reduces to a single locally optimal choice, which isthe essence of a greedy algorithm. Our
characterization is based on dominance relations [BS74], awell-known technique for pruning search
spaces. However, this still leaves open the issue of deriving a greedy dominance relation for a given
problem, which is what we address in this paper. We start witha specialized form of the dominance
relation in [NSC10] which is easier to work with. Our contribution is to introduce a tactic which enables
the two forms of dominance to be combined and also show how themain greediness axiom of GGS
theory can be constructively applied. We have used this approach to derive greedy solutions to a number
of problems, a couple of which are shown in this paper.

Although our derivations are currently done by hand, we haveexpressed them calculationally as
we hope to eventually provide mechanical assistance for carrying them out. In addition to providing a
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Algorithm 1 Program Schema for GGS Theory--given x:D satisfying i returns optimal (wrt. cost fn c) z:R satisfying o(x,z)function solve :: D -> {R}solve x =if Φ(x, r̂0(x) ∧ i(x)) then (gsolve x r̂0(x) {}) else {}function gsolve :: D -> {R̂} -> {R} -> {R}gsolve x space soln =let gsubs = {s | s∈subspaces x space ∧ ∀ss ∈ subspaces x space,s δx ss}soln' = opt c (soln ∪{z | χ(z,space) ∧ o(x,z)})in if gsubs = {} then soln'else let greedy = arbPick gsubs in gsolve x greedy soln'function opt :: ((D,R) -> C) -> {R̂}-> {R̂}opt c {s} = {s}opt c {s,t} = if c(x,s)>c(x,t) then {s} else {t}function subspaces :: D -> R̂-> {R̂}subspaces x r̂ = {ŝ: ŝlx r̂∧Φ(x,ŝ)}
process for a developer to systematically construct greedyalgorithms, we also believe that our approach
has a potential pedagogical contribution. To that end, we show that, at least in the examples we consider,
our derivations are not only more systematic but also more concise than is found in algorithms textbooks.

2 Background

2.1 Greedy Global Search (GGS) Theory

GSO, the parent class of GGS, is axiomatically characterized in [Smi88]. The definition contains a
number of type and abstract operators, which must be instantiated with problem specific information.
GGS [NSC10] specializes GSO with an additional operator, and axioms. The operators of GGS theory,
which we informally describe here, are namedr̂0,χ ,∈,l,δ ,Φ along with an additional typêR ; they
parametrize the program schema associated with the GGS class (Alg. 1). D,R,C,o andc come from the
problem specification which is described in Section 2.2.

Given aspaceof candidate solutions (also called apartial solution) to a given problem (some of
which may not be optimal or even correct), a GGS program partitions the space intosubspaces(a process
known assplitting) as determined by a subspace relationlx. Of those subspaces that pass afilter (a
predicateΦ which is some weakened efficiently evaluable form of the correctness condition,o ) one
subspace is greedily chosen, as determined by a dominance relation δx, and recursively searched1. If
a predicateχ on the space is satisfied, a solution is extracted from it. If that solution is correct it is
compared with the best solution found so far, using the cost functionc. The process terminates when no
space can be further partitioned. The starting point is an initial space, computed by a function̂r0, known
to contain all possible solutions to the given problem. The result, if any, is an optimal solution to the
problem. Because spaces can be very large, even infinite, they are rarely represented extensionally, but
instead by adescriptorof some typêR. A relation∈ determines whether a given solution is contained in
a space.

The process of algorithm development using this theory consists of the following steps:

1. Formally specify the problem. Instantiate the types of GGS theory.

2. Develop a domain theory (usually associativity and distributivity laws) for the problem.

1Such an approach is also the basis of branch-and-bound algorithms, common in AI
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3. Instantiate the abstract search-control operators in the program schema. This is often done by a
mechanically-assisted constructive theorem proving process calledcalculation that draws on the
domain theory formulated in the previous step

4. Apply further refinements to the program such as finite differencing, context simplification, partial
evaluation, and datatype refinement to arrive at an efficient(functional) program.

Our focus in this paper is on Step 3, in particular how to derive the dominance relation, but we also
illustrate Steps 1 and 2. Step 4 is not the subject of this paper. Specware [S], a tool from Kestrel
Institute, provides support for carrying out such correctness preserving program transformations. Details
can be found in [Smi90].

2.2 Specifications

A problem specification(Step 1) is a 6-tuple〈D,R,C, i,o,c〉, whereD is an input type (the type of the
problem instance data),R an output type (the type of the result),C a cost type,i : D → Booleanis pre-
condition defining what constitutes a valid input,o : D×R→ Booleanis anoutput or post condition
characterizing the relationship between valid inputs and valid outputs. The intent is that an algorithm
for solving this problem will take any inputx : D that satisfiesi and return asolution z: R that satisfies
o (making it afeasiblesolution) for the givenx. Finally c : D×R→C is acost criterionthat the result
must minimize. When unspecified,C defaults toNat andi to true. A constraint satisfaction problemis
one in whichD specifies a set of variables and a value set for each variable,R a finite map from values
to variables, ando requires at least that each of the variables be assigned a value from its given value-set
in a way that satisfies some constraint.

2.3 Dominance Relations

A dominance relation provides a way of comparing two spaces in order to show that one will always
have a cheaper best solution than the second. The first one is said todominatethe second, and the second
can be eliminated from the search. Dominance relations havea long history in operations research,
[BS74, Iba77]. For our purposes, letẑ be a partial solution in some type of partial solutionsR̂, and let
ẑ⊕ebe a partial solution obtained by “extending” the partial solution with some extensione : t for some
problem-specific typet using an operator⊕ : R̂× t → R̂. The operator⊕ has some problem-specific
definition satisfying∀z· z∈ ẑ⊕ e⇒ z∈ ẑ. Lift o up to R̂ by definingo(x, ẑ) = ∃z · χ(z, ẑ)∧ o(x,z).
Similarly, lift c by definingc(x, ẑ) = c(x,z) exactly when∃!z · χ(z, ẑ). Then

Definition 1. Dominanceis a relationδ ⊆ D× R̂2 such that:

∀x, ẑ, ẑ′ · δ (x, ẑ, ẑ′)⇒ (∀e′ · o(x, ẑ′⊕e′)⇒∃e · o(x, ẑ⊕e) ∧ c(x, ẑ⊕e)≤ c(x, ẑ′⊕e′))

Thus,δ (x, ẑ, ẑ′) is sufficient to ensure that̂z will always lead to at least one feasible solution cheaper
than any feasible solution in̂z′. For readability,δ (x, ẑ, ẑ′) is often writtenẑδx ẑ′. Because dominance in
its most general form is difficult to demonstrate, we have defined a stronger form of dominance which is
easier to derive. This stronger form of dominance is based ontwo additional concepts: Semi-congruence
and extension dominance, which are now defined.

Definition 2. Semi-Congruenceis a relation ⊆ D× R̂2 such that

∀x,∀e, ẑ, ẑ′ ·  (x, ẑ, ẑ′) ⇒ o(x, ẑ′⊕e)⇒ o(x, ẑ⊕e)

That is, semi-congruence ensures that any feasible extension of ẑ′ is also a feasible extension ofẑ. For
readability, (x, ẑ, ẑ′) is written ẑ x ẑ′.

Proceedings of NFM 2010, April 13-15, 2010, Washington D.C., USA. 99



Synthesis Of Greedy Algorithms Using Dominance Relations Nedunuri,Smith,Cook

And

Definition 3. Extension Dominanceis a relationδ̂ ⊆D× R̂2 such that

∀x,e, ẑ, ẑ′ · δ̂ (x, ẑ, ẑ′)′⇒ o(x, ẑ⊕e) ∧ o(x, ẑ′⊕e)⇒ c(x, ẑ⊕e)≤ c(x, ẑ′⊕e)

That is, extension dominance ensures that one feasible completion of a partial solution is no more expen-
sive than the same feasible completion of another partial solution. For readability,̂δ (x, ẑ, ẑ′) is written
ẑδ̂x ẑ′. Note that both x and δ̂x are pre-orders. The following theorem and proposition showhow the
two concepts are combined.

Theorem 2.1. Let c∗ denote the cost of the best feasible solution in a space. If is a semi-congruence
relation, andδ̂ is an extension dominance relation, then

∀x, ẑ, ẑ′ · ẑδ̂xẑ
′∧ ẑ x ẑ′⇒ c∗(x, ẑ)≤ c∗(x, ẑ′)

Proof. See Appendix

It is not difficult to see that̂δx∩ x is a dominance relation.The following proposition allows us
to quickly get an extension dominance relation for many problems. We assume we can apply the cost
function to partial solutions.

Proposition 1. If the cost domain C is a numeric domain (such as Integer or Real) and c(x, ẑ⊕e) can

be expressed aŝc(x, ẑ)+k(x,e) for some functionŝc and k then̂δx whereẑδ̂x ẑ′ = ĉ(x, ẑ)≤ ĉ(x, ẑ′) is an
extension dominance relation.

Proof. See Appendix

In addition to the dominance requirement from Theorem 2.1, there is an additional condition onδ ,
[NSC10]:

i(x)∧ (∃z∈ r̂ · o(x,z)) ⇒
(∃z∗ · e(z∗, r̂)∧o(x,z∗)∧c(x,z∗) = c∗(r̂))∨∃ŝ∗lx r̂,∀ŝlx r̂ · ŝ∗ δx ŝ (2.1)

This states that, assuming a valid inputx, an optimal feasible solutionz∗ in a spacêr that contains feasible
solutions must be immediately extractable or a subspaceŝ∗ of r̂ must dominate all the subspaces ofr̂.

2.4 Notation

The following notation is used throughout the paper:7→ is to be read as “instantiates to”. A type decla-
ration of the form{a : T,b : U , · · · } whereT andU are types denotes a product type in which the fields
are accessed bya,b, . . . using a “dot” notationo.a,o.b, etc. An instance of this type can be constructed
by {a = v,b = w, . . .} wherev,w, · · · are values of typeT,U, · · · resp. The notationo{ai = v,a j = w, . . .}
denotes the object identical too except fieldai has the valuev, a j hasw, etc. [T] is the type of lists of
elements of typeT, asi accesses theith element of a listas, [a] constructs a singleton list with the element
a, [a | as] creates a list in which the elementa is prefixed onto the listas, andas++bsis the concatenation
of lists asandbs, as−bs is the list resulting from removing fromasall elements that occur inbs. first
andlast are defined so that for a non-empty listas= first(as)++[last(as)]. Similarly, {T} is the type of
sets of elements of typeT. T�U is the type of finite maps fromT to U .
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3 A Process For Deriving Greedy Algorithms

We first illustrate the process of calculating andδ̂ by reasoning backwards from their definitions on a
simple example.

Example 1. Activity Selection Problem [CLRS01]

Suppose we have a setS= {ai ,a2, . . . ,an} of nproposed activities that wish to use a resource,
such as a lecture hall, which can be used by only one activity at a time. Each activityai has a
start timesi and finish timefi where 0≤ si < fi < ∞. If selected, activityai takes place in the
half-open time interval[si , fi). Activities ai anda j are compatible if the intervals[si , fi) and
[sj , f j) do not overlap. The activity selection problem is to select amaximum-size subset of
mutually compatible activities.

Step 1 is to formally specify the problem. The input is a set ofactivities and a solution is subset of that
set. Every activity is uniquely identified by anid and a start time (s) and finish time (f ). The output
condition requires that activities must be chosen from the input set, and that no two activities overlap.
For convenience we define a precedence operator� :

D 7→ {Activity}
Activity= {id : Nat,s : Nat, f : Nat}

R 7→ {Activity}
o 7→ λ (x,z) · noOvp(x,z)∧z⊆ x

noOvp(x,z) .= ∀i, j ∈ z · i 6= j ⇒ i � j ∨ j � i
i � j = i. f ≤ j.s

c 7→ λ (x,z) · ‖z‖

In order to devise a greedy algorithm, the question is what should the basis be for an optimal local choice?
Should we always pick the activity that starts first? Or the activity that starts last? Or the activity that
overlaps the least number of other activities? Or somethingelse? We now show how to systematically
arrive at the answer.

Most of the types and operators of GGS theory are straightforward to instantiate. We will just set
R̂ to be the same asR. The initial space is just the empty set. The subspace relation l splits a space
by selecting an unchosen activity if one exists and adding itto the existing partial solution. The extract
predicateχ can extract a solution at any time:

R̂ 7→ R
r̂0 7→ λx · /0
l 7→ λ (x, ẑ, ẑ′) · ∃a∈ x− ẑ · ẑ′ = ẑ∪{a}
χ 7→ λ (z, ẑ) · z= ẑ
Φ 7→ ?
δ 7→ ?

The tricky bit is finding bindings forδ andΦ to complete the instantiation, which we will do in step 3.
First, in step 2 we explore the problem and try and formulate adomain theory. The composition operator
⊕ is just∪. The� relation can be lifted up to sets of activities by defining thestart and finish times of a
set of activities, namely(u⊕v). f = max{u. f ,v. f} and(u⊕v).s= min{u.s,v.s}. The following theorem
will come in handy:

Theorem 3.1. noOvp(s) ⇔∃s1, . . .sn ⊆ s · s =
⋃

1≤i≤nsi ∧ (∀i · 1≤ i < n⇒ si � si+1∧ noOvp(si))∧
noOvp(sn)

Proceedings of NFM 2010, April 13-15, 2010, Washington D.C., USA. 101



Synthesis Of Greedy Algorithms Using Dominance Relations Nedunuri,Smith,Cook

o(x, ŷ⊕{a}⊕e)
= {defn}
noOvp(ŷ∪{a}∪e)∧ ŷ∪{a}∪e⊆ x
⇐{Theorem 3.1 above}
ŷ� {a} � e∧noOvp(ŷ)∧noOvp(e)∧ ŷ∪{a}∪e⊆ x
⇐{noOvp(ŷ)∧noOvp(e)∧ ŷ∪e⊆ x by assumption}
ŷ� {a} � e∧a∈ x
⇐{ŷ� {a′} � e, apply transitivity}
ŷ� {a}∧a. f ≤ a′. f ∧a∈ x

Figure 3.1: Derivation of semi-congruence relation for Activity Selection

This says that any set of non-overlapping activities can be partitioned into internally non-overlapping
subsets that follow each other serially.

For Step 3, we instantiate Definition 2 and reason backwards from its consequent, while assuming the
antecedent. Each step of the derivation is accompanied by a hint (in {}) that justifies the step. Additional
assumptions made along the way form the required semi-congruence condition. First note that a solution
z′ 6= /0 can be expressed asŷ∪{a′}∪eor alternativelŷy⊕{a′}⊕e, for somêy,a′,e, such that, by Theorem
3.1,ŷ� {a′} � e. Now consider the feasibility of a solution̂y⊕{a}⊕e, obtained by switching outa′ for
somea, assumingo(x, ŷ⊕{a′}⊕e) as shown in Fig. 3.1

That is, ŷ⊕ a can be feasibly extended with the same feasible set of activities asŷ⊕ a′ providedŷ
finishes beforea starts anda finishes beforea′ finishes anda is legal. By lettingŷ⊕ a and ŷ⊕ a′ be
subspaces following a split of̂y this forms a semi-congruence condition betweenŷ⊕a andŷ⊕a′. Since
c is a distributive cost function, and all subspaces of a givenspace are the same size, the dominance
relation equals the semi-congruence relation, by Proposition 1. Next, instantiating condition 2.1, we
need to show that if̂y contains feasible solutions, then in the case that any solution immediately extracted
from ŷ is not optimal, (ie. the optimal lies in a subspace ofŷ) there isalwaysa subspacêy⊕ a that
dominates every extension ofŷ. Unfortunately, the dominance condition derived is too strong to be able
to establish the instantiation of 2.1. Logically, what we established is asufficientdominance test. That
is ŷ� {a}∧a. f ≤ a′. f ∧a∈ x⇒ ŷ⊕{a}δx ŷ⊕{a′}. How can we weaken it? This is where the filterΦ
comes in. The following theorem shows how to construct a simple dominance relation from a filter:

Theorem 3.2. Given a filterΦ satisfying∀ẑ′ · (∃z∈ ẑ′ · o(x,z))⇒Φ(x, ẑ′), ¬Φ(x, ẑ′)⇒∀ẑ · ẑδx ẑ′.

The theorem says that a space that does not pass the necessaryfilter is dominated by any space.On
a subspacêy⊕a′, one such filter (that can be mechanically derived by a tool such as KIDS [Smi90]) is
ŷ� {a′}. Now, we can combine both dominance tests with the 1st order variant of the rule(p⇒ r∧q⇒
r)⇒ (p∨q⇒ r) , reasoning backwards as we did above as shown in Fig. 3.2.

The binding formabove shows that 2.1 is satisfied by picking an activity inx− ŷ with the earliest fin-
ish time, after overlapping activities have been filtered out. Note how in verifying 2.1 we have extracted
a witness which is the greedy choice. This pattern of witnessfinding is common across many examples.
The program schema in Alg. 1 can now be instantiated into a greedy solution to the Activity Selection
Problem.

In contrast to our derivation, the solution presented in [CLRS01] starts off by assuming the tasks are
sorted in order of finishing time. Only after reading the pseudocode and a proof is the reason for this
clear (though how to have thought of it a priori is still not!). For us, the condition falls out of the process
of investigating a possible dominance relation. Note that had we partitioned the solution̂y⊕{a′}⊕ e
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∃a∈ x− ŷ,∀a′ ∈ x− ŷ · ŷ⊕aδx ŷ⊕a′

⇐{ŷ� {a}∧a. f ≤ a′. f ∧a∈ x⇒ ŷ⊕{a}δx ŷ⊕{a′} & ŷ � {a′} ⇒ ŷ⊕{a}δx ŷ⊕{a′}}
∃a∈ x− ŷ,∀a′ ∈ x− ŷ · ŷ � {a′}∨ (ŷ� {a}∧a. f ≤ a′. f )
= {logic}
∃a∈ x− ŷ · ŷ� {a}∧∀a′ ∈ x− ŷ · ŷ� {a′}⇒ a. f ≤ a′. f
= {logic}
∃a∈ x− ŷ · ŷ� {a}∧∀a′ ∈ x− ŷ∩{b | ŷ� {b}} · a. f ≤ a′. f
= {definea≤ b = a. f ≤ b. f}
∃a∈ x− ŷ · ŷ� {a}∧∀a′ ∈ x− ŷ∩{b | ŷ� {b}} · m≤ a′⇒ a. f ≤ a′. f
wherem= min≤ x− ŷ∩{b | ŷ� {b}}
= {law for monotonep : (∀x∈ S · m≤ x⇒ p(x)) ≡ p(m)}
∃a∈ x− ŷ · ŷ� {a}∧a. f ≤m. f wherem= min≤ x− ŷ∩{b | ŷ� {b}}
= {law for anti-monotonep : (∃x∈ S · m≤ x∧ p(x))≡ p(m)}
m. f ≤m. f wherem= min≤ x− ŷ∩{b | ŷ� {b}}
=
true

Figure 3.2:

differently ase� {a′} � ŷ, we would have arrived at an another algorithm that grows theresult going
backwards rather than forwards, which is an alternative to the solution described in [CLRS01].

Next we apply our process to the derivation of a solution to a fairly non-trivial problem, that of
determining optimum prefix-free codes.

Example 2. Prefix-Free Codes

Devise an encoding, as a binary string, for each of the characters in a given text file so as to
minimize the overall size of the file. For ease of decoding, the code is required to beprefix-
free, that is no encoding of a character is the prefix of the encoding of another character (e.g.
assigning “0” to ’a’ and “01” to ’b’ would not be allowed).

D.A. Huffman devised an efficient greedy algorithm for this in 1952. We show how it can be system-
atically derived. Step 1 is to specify the problem. The inputis a table of character frequencies, and the
result is a table of bit strings, one for each character in theinput, satisfying the prefix free property.

D 7→ Char� Frequency
Char= Frequency= Nat

R 7→ Char� [Boolean]
o 7→ λx,z. dom(z) = dom(x)∧∀c 6= c′ ∈ dom(z) · ¬prefixOf(z(c),z(c′))

prefixOf(s, t) = ∃u · t = s++u∨s= t++u
c 7→ λx,z. ∑c∈dom(z) ‖z(c)‖×x(c)

Often a good way of ensuring a condition is to fold it into a data structure. Then the rules for
constructing that data structure ensure that the conditionis automatically satisfied. It turns out that a
binary tree in which the leaves are the letters, and the path from the root to the leaf provides the code for
that letter, ensures that the resulting codes are automatically prefix-free2. One obvious way to construct

2It is possible to systematically derive this datatype by starting with an obvious datatype such as a set of binary stringsand
folding in a required property such as prefix-freeness. However, we do not pursue that here
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Figure 3.3: An extension applied to a partial solution with 5trees

such a tree is by merging together smaller trees. This will bethe basis of thel relation: the different
subspaces arise from thet(t−1)/2 choices of pairs of trees to merge, wheret is the number of trees at
any point in the search. The starting pointr̂0 is the ordered collection of leaves representing the letters.
The extract predicateχ checks there is only one tree left and generates the path to each leaf (character)
of the tree, which becomes the code for that character. With this information, we can instantiate the
remaining terms in GGS, except forδ (〈〉 is the non-elementaryBinTreeconstructor)

R̂ 7→ [BinTree]
r̂0 7→ λx · asList(dom(x))
l 7→ λ (x, ẑ, ẑ′) · ∃s, t ∈ ẑ. ẑ′ = [〈s, t〉 | (ẑ−s− t)]
χ 7→ λ (z, ẑ) · ‖ẑ‖= 1∧∀p∈ paths(ẑ) · z(last(p)) = f irst(p)

paths(〈s, t〉) = (mapprefix0 paths(s))++(mapprefix1 paths(t))
paths(l) = [l ]
prefix0(p) = [0 | p], prefix1(p) = [1 | p]

Φ 7→ true
δ 7→ ?

One interesting difference between this problem and the Activity Selection problem is that every
subspace leads to a feasible solution. For that reason,Φ is just true. It is not obvious what the crite-
rion should be for a greedy choice. Should it be to combine thetrees with the least number of leaves,
or those with the least height, or something else? To proceedwith our process and apply Defs. 2 and
3, we will define⊕ as a left-associative binary operator whose net effect is tomerge twoBinTrees
from its left argument together into anotherBinTree. The right argument specifies which trees are to
be merged. That is,̂z⊕ (i, j) = [

〈
ẑi , ẑj

〉
| ẑ− ẑi − ẑj ]. For example, Fig 3.3 shows the merger of trees

s andt and the merger of treesu andv in a partial solution̂z to form two subtrees with rootsa andb.
This is described by the expression(ẑ⊕ (1,3))⊕ (3,4) = ẑ⊕ (1,3)⊕ (3,4). The extension in this case is
(1,3)⊕ (3,4). A semi-congruence condition is shown in Fig. 3.4. Assumingo(x, ẑ′⊕e) and a definition
of lvs(ẑ) = maplast(paths(ẑ)). (Note we omit the remainder of the output condition since itis implied by
the Binary Tree construction) This says that any two partialsolutions of the same size are extensible with
the same feasible extension. This semi-congruence condition is trivially satisfied by any two subspaces
of a split. For the extension dominance condition, it is easyto show thatc(x, ẑ⊕e) can be expressed as

ĉ(x, ẑ)+ k(x,e) for somek whereĉ(x, ẑ) = ∑|lvs(ẑ)|
i=1 d(ẑ)(i) · x(lvs(ẑ)i) whered(ẑ) is a function returning

the depth of its argument leaf within the treeẑ, and therefore by Prop. 1, it is sufficient to determine
conditions under whicĥc(x, ẑ) ≤ ĉ(x, ẑ′). However, if we try to calculate such a condition as we have
done for semi-congruence we will end up with an expression that involves the depths of individual leaves
in the trees. Is there a simpler form? We have been investigating ways to provide a developer with hints
about how to proceed. We call thesetactics. In earlier work [NSC09] we introduced tactics for the
derivation of operators for non-optimization problems. Wenow introduce a tactic for dominance rela-
tions. We have used this tactic to derive greedy solutions for a number of problems, including Machine
Scheduling, several variations on the Maximum Segment Sum Problem,[NC09], Minimum Spanning
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o(x, ẑ⊕e)
= {defn ofo on R̂}
∃z · χ(z, ẑ⊕e)∧o(x,z)
= {defn ofχ ,o}
∃z · ‖ẑ⊕e‖= 1∧∀p∈ paths(ẑ⊕e) · z(last(p)) = f irst(p)∧dom(z) = x∧ ·· ·
= {intro defn}
‖ẑ⊕e‖= 1∧dom(z) = x∧ ·· ·
wherez= {last(p) 7→ f irst(p) | p∈ paths(ẑ⊕e)}
⇐ {o(x, ẑ′⊕e)⇒ dom(z′) = x wherez= {last(p) 7→ f irst(p) | p∈ paths(ẑ′⊕e)}}
‖ẑ⊕e‖= 1∧asSet(lvs(ẑ)) = asSet(lvs(ẑ′))
= {split does not alter set of leaves}
‖ẑ⊕e‖= 1
= {‖ẑ⊕e‖= ‖ẑ‖−‖e‖ ,‖ẑ′⊕e‖= 1}
‖ẑ‖= ‖ẑ′‖

Figure 3.4: Derivation of extension dominance relation forHuffman problem

c(ẑ)≤ c(ẑ′)
= {unfold defn ofc}

∑|lvs(s)|
i=1 (d(s)(i)+h) ·x(lvs(s)i )+ ∑|lvs(t)|

i=1 (d(t)(i)+h) ·x(lvs(t)i )
+∑|lvs(u)|

i=1 (d(u)(i)+2) ·x(lvs(u)i )+ ∑|lvs(v)|
i=1 (d(v)(i)+2) ·x(lvs(v)i )

≤
∑|lvs(u)|

i=1 (d(u)(i)+h) ·x(lvs(u)i )+ ∑|lvs(v)|
i=1 (d(v)(i)+h) ·x(lvs(v)i )

+∑|lvs(s)|
i=1 (d(s)(i)+2) ·x(lvs(s)i )+ ∑|lvs(t)|

i=1 (d(t)(i)+2) ·x(lvs(t)i )
= {algebra}

(h−2) ·∑|lvs(s)|
i=1 x(lvs(s)i)+ (h−2) ·∑|lvs(t)|

i=1 x(lvs(t)i)
≤ (h−2) ·∑|lvs(u)|

i=1 x(lvs(u)i)+ (h−2) ·∑|lvs(v)|
i=1 x(lvs(v)i)

⇐ {algebra}
∑|lvs(s)|

i=1 x(lvs(s)i)+ ∑|lvs(t)|
i=1 x(lvs(t)i)≤ ∑|lvs(u)|

i=1 x(lvs(u))+∑|lvs(v)|
i=1 x(lvs(v)i)∧h > 2

Figure 3.5:

Tree, and Professor Midas’ Driving Problem.Exchange Tactic : Try to derive a dominance relation by comparing a partial solution ŷ⊕a⊕α ⊕b (as-
suming some appropriate parenthesization of the expression) to a variant obtained by exchanging a pair
of terms, that is,̂y⊕b⊕α⊕a, with the same parenthesization

Given a partial solution̂y, suppose treess andt are merged first, and at some later point the tree con-
taining s andt is merged with a tree formed from mergingu andv (treesatcubvin Fig. 3.3), forming
a partial solution̂z. Applying the exchange tactic, when is this better than a partial solution ẑ′ resulting
from swapping the mergers in̂z, ie mergingu andv first and thensandt? Letd(T)i be the depth of leaf
i in a treeT, and leth be the depth ofs (resp.u) from the grandparent ofu (resp. s) in ẑ (respẑ′), (the
distance fromc to the root ofs in Fig. 3.3). The derivation of the extension dominance relation is shown
in Fig. 3.5.

That is, if the sum of the frequencies of the leaves ofs and t is no greater than the sum of the
frequencies of leaves ofu andv thens and t should be merged beforeu andv. (The conditionh > 2
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simply means that no dominance relation holds when〈u,v〉 is immediately merged with〈s, t〉. It is clear
in that case that the tree is balanced). How does this help us derive a dominance relation between two
subspaces after a split? The following theorem shows that the above condition serves as a dominance
relation between the two subspaces[〈s, t〉 | (ŷ−s− t)] and[〈u,v〉 | (ŷ−u−v)]:

Theorem 3.3. Given a GGS theory for a constraint satisfaction problem,(∃α · (ŷ⊕a⊕α ⊕b)δx (ŷ⊕
b⊕α⊕a))⇒ ŷ⊕a δx ŷ⊕b

By using a witness finding technique to verify condition 2.1 as we did for Activity Selection, we
will find that the greedy choice is just the pair of trees whosesums of letter frequencies is the least.
This is the same criterion used by Huffman’s algorithm. Of course, for efficiency, in the standard al-
gorithm, a stronger dominance test is used:∑|lvs(s)|

i=1 x(lvs(s)i) ≤ ∑|lvs(u)|
i=1 x(lvs(u)i)∧∑|lvs(t)|

i=1 x(lvs(t)i) ≤
∑|lvs(v)|

i=1 x(lvs(v)i) and the sums are maintained at the roots of the trees as the algorithm progresses. We
would automatically arrive at a similar procedure after applying finite differencing transforms, [Smi90,
NC09]. In contrast to our stepwise derivation, in most presentations of Huffman’s algorithm, (e.g.
[CLRS01]) the solution is presented first, followed by an explanation of the pseudocode, and then several
pages of lemmas and theorems justifying the correctness of the algorithm. The drawback of the conven-
tional approach is that the insights that went into the original algorithm development are lost, and have to
be reconstructed when variants of the problem arise. A process for greedy algorithm development, such
the one we have proposed here, is intended to remedy that problem.

4 Related Work

Curtis [Cur03] has a classification scheme for greedy algorithms. Each class has a some conditions that
must be met for a given algorithm to belong to that class. The greedy algorithm is then automatically
correct and optimal. Unlike Curtis, we are not attempting a classification scheme. Our goal is to simplify
the process of creating greedy algorithms. For that reason,we present derivations in a calculational style
whenever the exposition is clear. In contrast, Curtis derives the “meta-level” proofs, namely that the
conditions attached to a given algorithm class in the hierarchy are indeed correct, calculationally but the
“object-level” proofs, namely those showing a given problem formulation does indeed meet those con-
ditions, are done informally. We believe that this should bethe other way around. The meta-level proofs
are (hopefully) carried out only a few times and are checked by many, but the object level proofs are car-
ried out by individual developers, and are therefore the ones which ought to be done calculationally, not
only to keep the developer from making mistakes but also witha view to providing mechanical assistance
(as was done in KIDS, a predecessor of Specware). Another difference between our work and Curtis is
that while Curtis’s work is targeted specifically at greedy algorithms, for us greedy algorithms are just a
special case of a more general problem of deriving effectiveglobal search algorithms. In the case that the
dominance relation really does not lead to a singleton choice at each split, it can still prove to be highly
effective. This was recently demonstrated on some Segment Sum problems we looked at, [NC09]. Al-
though the dominance relation we derived for those problem did not reduce to a greedy choice, it was
nonetheless key to reducing the complexity of the search (the width of the search tree was kept constant)
and led to a very efficient breadth-first solution that was much faster than comparable solutions derived
by program transformation.

Another approach has been taken by Bird and de Moor [BM93] whoshow that under certain con-
ditions a dynamic programming algorithm simplifies into a greedy algorithm. Our characterization in
[NSC10] can be considered an analogous specialization of (aform of) branch-and-bound. The difference
is that we do not require calculation of the entire program, but specific operators, which is a less onerous
task.
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Helman [Hel89] devised a framework that unified branch-and-bound and dynamic programming.
The framework also incorporated dominance relations. However, Helman’s goal was the unification of
the two paradigms, and not the process by which algorithms can be calculated. In fact the unification,
though providing a very important insight that the two paradigms are related at a higher level, arguably
makes the derivation of particular algorithms harder.

Charlier [Cha95], also building on Smith’s work, proposed anew algorithm class for greedy algo-
rithms that embodied the matroid axioms. Using this class, he was able to synthesize Kruskal’s MST
algorithm and a solution to the 1/1/∑Ti scheduling problem. However he reported difficulty with the
equivalent of the Augmentation (also called Exchange) axiom. The difficulty with a new algorithm class
is often the lack of a repeatable process for synthesizing algorithms in that class, and this would appear
to be what Charlier ran up against. In contrast, we build on top of the GSO class, adding only what is
necessary for our purposes. As a result we can handle a wider class of algorithms than would belong in
Charlier’s Greedy class, such as Prim’s and Huffman’s.
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5 Appendix: Proofs of Theorems

5.1 Proofs of Theorem 2.1 and Proposition 1:

Theorem 2.1: If is a semi-congruence relation, andδ̂ is a extension dominance relation, then

∀x,∀ẑ, ẑ′ · ẑδ̂xẑ
′∧ ẑ x ẑ′⇒ c∗(x, ẑ)≤ c∗(x, ẑ′)

Proof. By contradiction. (input argumentx dropped for readability). Suppose thatẑδ̂xẑ′ ∧ ẑ x ẑ′ but
∃z′∗ ∈ ẑ′, O(z′∗)∧c(z′∗) < c∗(ẑ), that isc(z′∗) < c(z) for any feasiblez∈ ẑ . We can writez′∗ asẑ′⊕e for
somee. Sincez′∗ is cheaper than any feasiblez∈ ẑ, specifically it is cheaper thanz= ẑ⊕e, which by the
semi-congruence assumption and Definition 2, is feasible. But by the extension dominance assumption,
and Definition 3, this meansc(z) ≤ c(z′∗), contradicting the initial assumption.

Proposition 1: If the cost domainC is a numeric domain (such asIntegeror Real) andc(x, ẑ⊕ e)
can be expressed asĉ(x, ẑ)+k(x,e) for some functionŝc andk thenδ̂x whereẑδ̂x ẑ′ = ĉ(x, ẑ)≤ ĉ(x, ẑ′) is
an extension dominance relation

Proof. By showing that Definition 3 is satisfied.c(ẑ⊕ e) ≤ c(ẑ′⊕ e) = ĉ(ẑ) + k(e) ≤ ĉ(ẑ′) + k(e) by
distributivity of c which is justc(ẑ)≤ c(ẑ′) after arithmetic.
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Abstract

The automatic generation of test cases is an important issuefor conformance testing of several
critical systems. We present a new method for the derivationof test suites when the specification is
modeled as a combined Finite State Machine (FSM). A combinedFSM is obtained conjoining previ-
ously tested submachines with newly added states. This new concept is used to describe a fault model
suitable for incremental testing of new systems, or for retesting modified implementations. For this
fault model, only the newly added or modified states need to betested, thereby considerably reducing
the size of the test suites. The new method is a generalization of the well-known W-method [4] and
the G-method [2], but is scalable, and so it can be used to testFSMs with an arbitrarily large number
of states.

1 Introduction
Test case generation for reactive and critical systems using formal methods has been widely studied
[1, 2, 4, 6, 8, 11, 12, 14]. In such methods, system requirements are described by means of mathematical
models and formally specified functionalities. When using formal specification models, the automatic
generation of adequate test cases rises as an important problem. Methods to automate the generation of
test suites must beefficient, in terms of test suites size, andaccurate, in terms of fault detection [3, 11].
When test suites are applied, the notion of conformance [5] can be used, so that if an implementation
passes a test suite, its behavior is said to conform to the behavior extracted from the specification.

Finite State Machines (FSMs) are the basic formalism in manymethods that automate the generation
of conformance test case suites. For surveys, see [1, 11, 14]. Among such methods, the W-method [4]
is based on the notion of characterization sets, and provides full fault coverage for minimal, completely
specified and deterministic FSMs. Several derivations havebeen proposed around it. In particular, the
G-method [2] is a generalization of the W-method that does not depend on characterization sets.

These methods assume that the system specification is treated in a monolithic way. However, in
many situations, systems are modular, with their specifications being formed by several subsystems. If
one such subsystem is also modeled by a FSM, we call it a submachine. Then, the full FSM model is a
combination of several submachines, with the aid of a few newstates and transitions. In this article, we
propose a new approach to test combined FSMs when submachineimplementations are assumed correct.

Testing using the combined FSM abstraction is useful in at least two situations. If a new system is
modeled as a combination of several submachines, then we canimplement and test each submachine in-
dependently. Later, we can then test the combined machine using a smaller test suite. In this incremental
testing approach, if an implementation does not pass a test suite, only a few states need to be retested,
avoiding reapplying large test suites, as in the W-method. On the other hand, suppose that a given speci-
fication is changed, then only the corresponding part of a former implementation gets modified. If we use
methods like the W-method or the G-method, we would have to test the entire system again. However, if
the specification is a combined machine, only the affected submachines need to be retested.

There are related works on retesting modified implementations. But they are restricted to certain
types of errors and modifications, and require that implementations maintain the same number of states

∗Work supported by FAPESP grant 08/07969-9.
†Work supported by FAPESP grant 02/07473-7.
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Figure 1: Finite State Machines.

as in the specification [7, 10]. In this paper, we do not restrict the types of errors in an implementation,
neither how it is modified, and we allow implementations withmore states than in the specification.

In Section 2, we review the FSM model and related conventions. In Section 3, we describe equiv-
alence relations of FSMs and introduce the concept of separators, a powerful tool to test FSMs. In
Section 4, we formalize the notion of combined FSMs. In Section 5, we present the new test case gener-
ation method, here named the C-method. In Section 6, we compare our method with the W-method, and
discuss that the C-method is scalable, that is, it can be usedto test FSMs with a large number of states.

2 Basic definitions
Let A be an alphabet. ThenA∗ is the set of all finite sequences of symbols, or words, overA. The
length of a wordρ ∈ A∗ will be denoted by|ρ |, andε will denote the empty word. So,|ε | = 0. The
concatenation, or juxtaposition, of two wordsα , β ∈ A∗ will be indicated byαβ .

2.1 Finite State Machines

A FSM is a tupleM = (X,Y,S,s0,δ ,λ ), where: (i)X is a finite input alphabet, (ii)Y is a finite output
alphabet, (iii)S is the set of states, (iv)s0 ∈ S is the initial state, (v)δ : X×S→ S is the transition
function, and (vi)λ : X×S→Y is the output function.

From now on we fix the notationM = (X,Y,S,s0,δ ,λ ) andM′ = (X,Y′,S′,s′0,δ ′,λ ′). Sequences of
input symbols will be represented by wordsρ ∈X∗, and sequences of output symbols will be represented
by wordsσ ∈Y∗. The end state after the successive application of each input is given by the extended
function δ̂ : X∗×S→ S, and the output extended function isλ̂ : X∗×S→Y∗, defined by

δ̂ (ε ,s) = s, δ̂ (aρ ,s) = δ̂ (ρ ,δ (a,s)),
λ̂ (ε ,s) = ε , λ̂ (aρ ,s) = λ (a,s)λ̂ (ρ ,δ (a,s)).

for all a∈ X, ρ ∈ X∗ ands∈ S.
Usually, a FSM is represented by a state diagram. Figure 1 illustrates two FSMs with initial statess0

ands4, respectively. We will refer to this figure through the paper.

2.2 Concatenation of words and relative concatenation

We adopt the usual notation of concatenation of two sets of words and denote byXn the set of all input
words with length at mostn. For the sake of completeness, we give a definition below.

Definition 1. Let A,B⊆ X∗ and let n be a non-negative integer. Then, (i) AB= {αβ |α ∈ A,β ∈ B}, (ii)
Xn = {ρ ∈ X∗| |ρ|= n}, and (iii) Xn =

⋃n
k=0 Xk. ❚

Suppose that a set of input words,Z, must be applied to a set of states,S. To accomplish this, we
generate test cases, by selecting a set of words,Q, to reach the states inS, and concatenatingQ with Z.
For example, ifZ = {a}, S= {s1,s2} and we may reachs1 ands2 applyinga andab to s0, respectively,
then we may selectQ = {a,ab}, and generate test casesQZ = {aa,aba}. Now, suppose that specific
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sets are applied to distinct states, that is,Z1 = {a} is applied tos1, andZ2 = {b} is applied tos2. In this
case, the conventional concatenation is not useful. To address this problem, the relative concatenation
was introduced [8]. First, we need the following, whereP(A) stands for the power set of a setA.

Definition 2. Let M be a FSM and letΠ a partition of S. A state attribution is a functionB : S→P(X∗).
A class attribution is a functionB : Π→P(X∗). ❚

A class attribution induces a state attribution a in a natural way. If B is a class attribution over a
partitionΠ, then the induced state attribution,B, is defined byB(s) =B(C), for all s∈C and allC∈Π.

Definition 3. Let M be a FSM, A⊆ X∗, andB be a state attribution of M. Given a state s, we define the
s-relative concatenation of A andB as A⊗

s
B = {αβ |α ∈ A,β ∈ B(δ̂ (α ,s))}. ❚

Whenevers= s0, we may drop the state index and simply writeA⊗ B. If B is a class attribution,
then we may also writeA⊗

s
B to meanA⊗

s
B . The usual concatenation may be thought of as a particular

case of the relative concatenation, as observed below.

Observation 4. Let M be a FSM and A,B be sets of input word. Let alsoB be a state attribution such
thatB(s) = B for all s∈ S. Then A⊗

s
B = AB. ❚

2.3 State Reachability

Definition 5. Let M be a FSM. A state s is reachable if and only if there existsρ ∈ X∗ such that s=
δ̂ (ρ ,s0). M is connected if and only if every state is reachable. ❚

When applying an input wordρ to a start states, if all we know is that the length ofρ is at mostn,
then the output fetched when applyingρ starting ats will depend only on states that are at a distance of
at mostn from s. Such states arounds form aneighborhood, defined as follows.

Definition 6. Let M be a FSM.
1. The k-radiusof a state s, denoted byrad(s,k), is the set of states that can be reached starting at s

and using input words of length at most k. That is, r∈ rad(s,k) if and only if there exist an input

word ρ ∈ X∗ such that r= δ̂ (ρ ,s) and |ρ | ≤ k.
2. The k-neighborhoodof a set of states C, denoted bynbh(C,k), is formed by the k-radiuses of states

in C. That is,nbh(C,k) =
⋃

s∈C rad(s,k). ❚

2.4 Cover sets

Cover sets are used in many FSM test methods in order to guarantee that every state is reached from
the initial state and that every transition in the model is exercised at least once. But, if we know that
some states have already been tested, then we do not need to reach them or exercise their corresponding
transitions. In this situation, only untested states must be covered, and partial cover sets are sufficient.

Definition 7. Let M be a FSM and C be a set of states. A set P⊆ X∗ is a partial transition cover set for
C if, for every state s∈C and every symbol a∈ X, there existρ ,ρa∈ P such that s= δ̂ (ρ ,s0). ❚

WheneverC is the set of all states,P is, in fact, a transition cover set as defined in [2, 4, 8]. A
transition cover set may be obtained from a labeled tree forM [4]. A procedure to construct the labeled
tree is given in [2]. Although that is intended to cover the entire set of states, one can modify this
procedure in a straightforward way in order to obtain a partial cover set.

3 State equivalence and state separators
In this section, we define state equivalences and introduce the essential notion of a separator.
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3.1 State equivalence

Definition 8. Let M and M′ be two FSMs over the same input alphabet, X, and let s and s′ be states of
M and M′, respectively.

1. Letρ ∈ X∗. We say that s isρ-equivalent to s′ if λ̂ (ρ ,s) = λ̂ ′(ρ ,s′). In this case, we write s≈ρ s′.
Otherwise, s isρ-distinguishable from s′, and we write s6≈ρ s′.

2. Let K⊆ X∗. We say that s is K-equivalent to s′ if s is ρ-equivalent to s′, for everyρ ∈ K. In this
case, we write s≈K s′. Otherwise, s is K-distinguishable from s′, and we write s6≈K s′.

3. State s is equivalent to s′ if s is ρ-equivalent to s′ for everyρ ∈ X∗. In this case, we write s≈ s′.
Otherwise, s is distinguishable from s′, and we write s6≈ s′. ❚

In Figure 1, states1 in (a) isbb-distinguishable from states4 in (b), so we writes1 6≈bb s4.
We say that two FSMs,M and M′, are equivalent, ifs0 ≈ s′0. So, we say that a FSM correctly

implements another FSM if the initial states of the corresponding machines are equivalent.
If M and M′ are the same machine, the definition above can be taken as specifying equivalence

relations over sets of statesC⊆ S. In this case, for a set of input wordsR⊆ X∗, the relation≈R induces
a partition of the states inC. We denote such partition by[C�R]. For example, in Figure 1(a), with
C = {s0,s1,s2,s3}, R= {aaaa} induces the partition[C�R] = {{s0},{s1},{s2,s3}}.

The number of pairwise distinguishable states of a FSM is called its index, as defined below.

Definition 9. Let M be a FSM and C be a set of states. The number of equivalenceclasses induced by
the≈ relation over C is denoted byι(C). The index of M isι(S). If ι(S) = |S|, then the machine is said
to be minimal. ❚

3.2 State separators

From Definition 8, two statess andr are distinguishable if and only if there exists a wordγ with s 6≈γ r.
Whenever this happens, we say thatγ separatess andr. We extend this notion, so that we canseparate
any two sets of states. In this case, we use a collection of input sequences instead of just one sequence.

Definition 10. Let M be a FSM, let A,B be two subsets of states, not necessarily disjoint, and letR⊆ X∗

be a set of input words. R is a(A,B)-separator if and only if for each pair of distinguishable states s and
r, such that s∈ A and r∈ B, we have s6≈R r. ❚

To exemplify this new concept, consider machine (a) in Figure 1, and letA = {s0,s1}, B = {s0,s2}
andC = {s0,s3}. The set of input sequencesR = {ab} is a (A,B)-separator, but, sinces2 ≈R s3, and
s2 ∈ B,s3 ∈C, R is not a(B,C)-separator. Note that states0 is a common element ofA andB.

Notice that, in this paper, we adopt a more flexible definitionof characterization sets than that found
in [9]. In the latter, the FSM being minimal is a necessary condition for the existence of a characterization
set, while in our definition, any FSM has a characterization set. The same happens with respect to
identification sets as defined in [8]. We don’t even require a characterization set or an identification set
to be minimal. Also, note that, in Definition 10, the setsA andB may have a nonempty intersection. This
often happens in the case of characterization sets, which are used to separate any pair of distinguishable
states of the machine. Actually, we impose no restriction onwhat sets of states we may select.

A number of special cases are worth noticing: (i) A(S,S)-separator is acharacterization setfor
M. (ii) An identification setfor a states is any({s},S)-separator. (iii) For a given setC⊆ S, a (C,C)-
separator is also called apartial characterization set for C. (iv) If R⊆ X∗ is a(A,B)-separator such that
r 6≈R s, for every pairr ∈ A, s∈ B, thenR is also called astrict (A,B)-separator.

In Section 5,R is a separator that exemplifies a number of situations: it will be an identification set
for a states, a partial characterization set for a set of statesC, and a strict separator for sets of statesA,B.

Next, we point out some useful separator properties.
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Observation 11. Consider a FSM, M. Let A,B,C and D be subsets of states, not necessarily disjoint,
and let T and U be sets of input sequences. Let also r and s be states of M. Then,

1. T is a(A,B)-separator if and only if T is a(B,A)-separator;
2. If T is a(A,B)-separator and U is a(C,D)-separator, then T∪U is a (A∪C,B∩D)-separator;
3. If T is a strict(A,B)-separator, r∈ A and r≈T s, then s6∈ B;
4. If T is a(A,B)-separator, r∈ A, s∈ B and r≈T s, then r≈ s;
5. If T is a(A,B)-separator, C⊆ A and D⊆ B, then T is a(C,D)-separator. ❚

We can use a separator to construct another one. With the nextlemmas and corollary, we obtain a
partial characterization set from a weaker separator. The proofs are available in [13].

Lemma 12. Let M be a FSM. Let C⊆ S be a set of states, let B= nbh(C,1) be its close neighborhood
and let R be a(B,B\C)-separator such that R partitions C into at least n classes, that is,|[C�R]| ≥ n. If
there exist two distinguishable states r,s∈C such that r≈R s, then XR∪R separates C in at least n+1
classes, that is,|[C�(XR∪R)]| ≥ n+1. ❚

Suppose that we applied the last lemma and obtained a new separator X1R. If there exist two dis-
tinguishable states inC that areX1R-equivalent, then we may use the lemma again to obtain a stronger
separator,X2R. In fact, the lemma may be used several times successively. We do this in the following.

Lemma 13. Let M be a FSM. Let C⊆ S be a set of states, let B= nbh(C,1) be its close neighborhood
and let R be a(B,B\C)-separator such that R partitions C into at least n classes, that is,|[C�R]| ≥ n. If
m is an upper bound on the number of≈-equivalence classes in C, and l is an integer such that n≤ l ≤m,
then Xl−nR separates C in at least l classes, that is,|[C�Xl−nR]| ≥ l. ❚

Corollary 14. Xm−nR is a(C,C)-separator. ❚

This corollary can be used to obtain a partial characterization set forC. It generalizes a known result
from Chow [4], demonstrated in [2], that gives us the abilityto generate characterization sets. The latter
result is, in fact, a particular case of Corollary 14, whenC = S.

A separator for two sets of statesA andB can be obtained by selecting a minimal subset of a charac-
terization set that is also a(A,B)-separator. Standard methods to reduce a FSM and to obtain a character-
ization set for it are known [9]. Although this can be used forany FSM, we may obtain shorter separators
if we take into consideration the specificities of the FSM being tested.

4 Combined Finite State Machines
Many systems are actually aggregations of other, smaller, subsystems. When modeling such systems,
it is usual to adopt thebuilding block strategyfor the development cycle, in which each subsystem is
designed, implemented and tested separately. Though each individual part of the system is tested and
deemed correct, we have no guarantee that the integrated final implementation is also correct. In order
to test such systems efficiently, we formalize below the concepts of combined FSMs.

Definition 15. Let M= (X,Y,S,s0,δ ,λ ) be a FSM. A FSṀN = (Ẋ,Ẏ, Ṡ, ṡ0, δ̇ , λ̇ ) is called a submachine
of M if and only ifẊ = X, Ẏ ⊆Y, Ṡ⊆ S and, for every a∈ X and s∈ Ṡ, we havėδ (a,s) = δ (a,s) and
λ̇ (a,s) = λ (a,s). ❚

The definition ensures that a state of a subsystem behaves exactly in the same way, regardless of
whether it is considered a state of a submachine or as new state of the combined machine. A combined
FSM is formed by conjoining one or more submachines. That is,a FSM may be constructed by adding
new states and new transitions to connect a set of submachines. Since each subsystem has only one entry
point, every transition that enters a submachine should endin that submachine initial state. If, for specific
needs, a submachine has more then one entry point, then we mayconsider several submachines, with the
same set of states and the same transitions, but with different initial states.
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Figure 2: A Combined Finite State Machine and a candidate implementation.

Definition 16. Let M be a FSM and N be a set of submachines of M. Define SN = {s∈ Ṡ|Ṅ ∈ N} as the
set of all submachine states, and SM = S\SN as the set of additional states. Also, define IN = {ṡ0|Ṅ ∈N}
as the set of all submachines initial states. Then, M is N-combined if and only if s0 ∈ SM and, for every
pair of states s and r such that s∈SM and r∈SN, if there exists a∈X such that r= δ (a,s), then r∈ IN. ❚

In Figure 2(a), we illustrate a combined FSM. The set of submachines,N, is formed by the machines
defined in Figure 1. For this machine, we haveSN = {s0,s1,s2,s3,s4}, IN = {s0,s4} andSM = {s5,s6}.
The initial state iss5 ∈ SM. We notice that, in fact, this machine satisfies the properties of Definition 16.
For example, for statess5 ∈ SM ands0 ∈ SN, sinces0 = δ (b,s5), s0 ∈ IN.

We shall use the notation introduced in Definitions 15 and 16.So, given a machineM and a set of
submachinesN, we have the setsSN, SM, IN and submachineṡN in N. Moreover, decorations carry over
uniformly, e.g., from a FSMM′ and a set of submachinesN′, we have the setsS′M , S′N, and so forth.

5 The C-method
We present a new method, named the C-method, to test combinedFSM specifications. We assume that
an implementation is also a combined FSM in which each submachine is already tested and deemed
correct. Also, the number of additional states is limited toa fixed upper bound. If these conditions are
satisfied, then the C-method automatically yields a test case suite with full fault coverage.

A submachine can be itself a combined FSM. It can, of course, also be tested using the C-method,
giving rise to a recursive testing approach. Notice that theset of submachines may be empty, so one can
always use the C-method to directly test FSM specifications.In this particular case, using the C-method
is equivalent to using the G-method [2]. Also, notice that itis necessary to test a submachine only once,
and then implementations that use it can be tested several times at a reduced cost. Further, retesting is
possible, so that, if the specification is changed, only the affected submachines need to be retested. Next,
we formalize our fault model. Then, we describe the construction of the test suite.

5.1 The fault model

The system specificationM is a combined FSM, obtained from a setN of submachines. We assume that
M is connected, and that for every pair of states,s∈ SM andr ∈ SN, we haves 6≈ r. Such assumptions
are reasonable, because there is no meaning in having unreachable states in the specification, or in reim-
plementing the behavior of an already available submachinestate. We also assume that each submachine
Ṅ ∈ N has a correct implementatioṅN′, and denote the set of submachine implementations byN′. A
system implementationM′ is a combination of submachines fromN′ with up tom new states. The goal
is to testM′ againstM. But, first, we need to describe the fault model.
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Definition 17. Let M be a FSM specification and let N be a set of submachines of Msuch that M is
N-combined. Let N′ be a set of FSMs and m be a positive integer. A FSM candidate implementation M′

is (N′,m)-combined if: (i) M′ is N′-combined; (ii)ι(SM) ≤ |S′M| ≤m; (iii) for everyṄ ∈ N, there exists
Ṅ′ ∈N′ such thatṡ0≈ ṡ0

′; and (iv) for everyṄ′ ∈ N′, there existṡN ∈N such thatṡ0
′ ≈ ṡ0. ❚

Figure 2(b) illustrates a candidate implementation for thecombined machine depicted in Figure 2(a).
We claim that the former obeys Definition 17 withm= 4. Clearly, 2= ι(SM)≤ |S′M | ≤m= 4. Also, each
state inSN has a corresponding state inS′N. For instance, we haves0 ∈ SN andr4 ∈ S′N such thats0≈ r4.
Notice that each submachine implementation need not be minimal. For example, we haver9≈ r10.

5.2 Test suite generation

The C-method is now presented. We first obtain some intermediate sets of input words, namely, a partial
transition cover setP, and two separatorsR andT. We useR to determine a parametern, while R and
T are used to define a state attributionZ. Then, we use the relative concatenation operator to connect P
andZ, thus obtaining the final test suite. Procedure 1 summarizesall steps. We expand on each step.

THE COVER SET P: It is a partial transition cover set forSM with ε ∈ P. This set is used to reach every
additional state in the specification, so that one can exercise the corresponding transitions. Since
states inSN are known to be already correctly implemented, there is no need to cover them.

THE SEPARATORR: We selectRas any(IN∪SM,SN)-separator. This set assumes several different roles,
depending on the states we are testing. For example, as a strict (SM ,SN)-separator,R is used to
distinguish submachine states from additional states. As a(IN,SN)-separator,R may be used to
identify initial states of submachines, and so on.

THE PARAMETER n: The relation≈R induces partitions onM. Based on this, we define a parameterl by
letting l = |[S�R]|− |[SN�R]|. Similarly,≈R induces a partition on the states ofM′. In this case,
we have tochoosea parameterl ′ with the proviso thatl ′ ≤ |[S′�R]|− |[S′N�R]|. If no information
aboutM′ is available, we can always choosel ′ = 0. Then, we setn = max{l , l ′}. This parameter
influences the size of the test suite, that is, the largern is, the smaller the test suite will be. As
suggested in the G-method [3], if knowledge is available about the implementation, thenl ′ may be
set to larger values, thus giving rise to more succinct test suites. We notice that we always have
m≥ n, otherwise no correct candidate implementation would be possible.

THE SEPARATORT : It is used to complementR, whenever there is a need to identify states in neighbor-
hoods ofIN. We defineA = nbh(IN,m−n−1) and selectT to be any(A,SN)-separator. Notice that
in the casem= n, A contains no element, so we may defineT as the empty set.

THE STATE ATTRIBUTION Z: We useT only for input words that reach states inSN. Then, to avoid
generating unnecessary test sequences, we use a class attributionR , given byR (SN) = T ∪Rand
R (SM) = R. We then define a state attributionZ by lettingZ(s) = Xm−n⊗

s
R , for all s∈ S.

THE TEST SUITEπ : The test suite generated by C-method is computed asπ = P⊗Z.

The correctness of C-method is guaranteed by the following theorem.

Theorem 18. Let M be a FSM specification and M′ be a FSM candidate implementation, as described
in Subsection 5.1. Obtain a test suiteπ using Procedure 1. Then, s0≈ s′0 if and only if s0≈π s′0.

Proof sketch.The proof relies on Corollary 14. We use a weaker separatorR to obtain a partial charac-
terization set,Z = Xm−nR, for the set of additional statesS′M . We then useT to separate implementation
states that are distinguishable only by sequences that reach the initial states of submachines. Once we
have a partial characterization set forS′M, we use arguments similar to those appearing in proofs involving
the the G-method. We give a complete and detailed proof of theC-method correctness in [13]. ❚
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Procedure 1:Test suite construction for C-method
Input: M, m Output: π
begin

Obtain a partial transition cover setP for SM such thatε ∈ P ;
Obtain a(SM ∪ IN,SN)-separatorR ;
Definel ←− |[S�R]|− |[SN�R]| ;
Choosel ′ ≤ |[S′�R]|− |[S′N�R]| ;
Definen←−max{l ′, l} ;
DefineA← nbh(IN,m−n−1) ;
Obtain a(A,SN)-separatorT ;
DefineR (SM)←− R andR (SN)←− R∪T ;
foreachs∈ Sdo

DefineZ(s)←− Xm−n⊗
s
R ;

return π ←− P⊗Z ;

6 Comparison and Discussion
In this section, we briefly review the W-method and generate test suites for an example specification
using W-method and C-method. For this example, we limit the number of sequences generated by each
method and give the number of unique and prefix-free test cases [3]. Then, we discuss the general case.

6.1 The W-method

The W-method applies to minimal, completely specified and deterministic FSMs. The set of implemen-
tation candidates comprehends all faulty machines with up to mW states. Test suites for this fault model
are calledmW-complete. The method depends on two sets,PW andW. PW is a transition cover set forS,
andW is a characterization set forS. Then, an intermediate setZW is defined asXmW−nWW, wherenW is
the number of specification states. The final test suite is given byπW = PWZW.

6.2 Example

We will generate test suites for the specification depicted in Figure 2(a). The test suites are intended for
(N′,m)-combined candidate implementations, withm= 4 and whereN′ is illustrated in Figure 2(b).

USING THE W-METHOD: The specification in Figure 2(a) hasnW = 7 states and the candidate imple-
mentation has|S′N| = 7 submachines states and up tom = 4 additional states. So the minimum
value formW we may choose ismW = 7+4 = 11. Next, we select a transition cover set,PW, and
then we choose a minimal characterization set,W. Finally theZW set is computed.
• PW = {ε ,a,b,aa,ab,aaa,aab,ba,bb,baa,bab,baaa,baab,baba,babb};
• W = {aaaa,bb};
• ZW = XmW−nWW = X4W.

So,πW = PWZW and|πW| ≤ |PW||X4||W|= 930. In fact,πW has 256 prefix-free words.

USING THE C-METHOD: We selectP as a minimal subset ofPW that is a partial transition cover set for
SM . Then a(SM ∪ IN,SN)-separatorR is extracted fromW. Notice thatR is a weaker separator than
W, since, for example,s2 ≈R s3, but s2 6≈W s3. Next, we first partition the states ofM and obtain
the valuel . Since no specific information is available aboutM′ we choosel ′ = 0. From those two
values we obtain the parametern. Proceeding, we defineA as the(m−n−1)-neighborhood ofIN,
and then we select a(A,SN)-separatorT from W. Finally, we calculate the state attributionZ:
• P = {ε ,a,b,aa,ab,aaa,aab,ba,bb};
• R= {aaaa};
• [S�R] = {{s0},{s1},{s2,s3},{s4},{s5},{s6}};
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• [SN�R] = {{s0},{s1},{s2,s3},{s4}};
• l ′ = 0, l = |[S�R]|− |[SN�R]|= 2 and son = max{l ′, l}= 2;
• A = nbh(IN,m−n−1) = nbh({s0,s4},1) = {s0,s1,s4};
• T = {aaaa};
• R (SN) = T ∪R= RandR (SM) = R;
• Z(s) = Xm−n⊗

s
R = Xm−nR= X2R for everys∈ S.

So,π = P⊗ Z = PX2R and|π| ≤ |P||X2||R| = 63. In fact,π has 20 prefix-free test cases. Also,
the submachines of Figure 2(a) may have been tested previously using 24 test cases. So, one can
use the C-method to test the entire specification using only 44 words.

Comparing the results, the gains afforded by the C-method are evident.

6.3 Discussion

The difference between the two test suites obtained in the previous example is mainly due to two factors.
First, in the C-method, we use a partial cover set, and so we can use a subset of the cover set used by
W-method. Second, sincem− n≤ mW− nW, the setXm−n used by C-method may have exponentially
less sequences than the setXmW−nW used by W-method. This can be seen by the following theorem. The
proof is available in [13].

Theorem 19. Let M be a minimal connected N-combined FSM. Assume that|X| ≥ 2. Consider the fault
model defined by all implementations M′ such that M′ is (N′,m)-combined,|S′M | = m and|S′N| = k. Let
πW be the test suite generated by the W-method, with PW the set used as a transition cover set. Then, we
can use the C-method and obtain a test suiteπ, associated with a partial transition cover set P obtained
from PW, in such a way thatπ ⊆ πW, and satisfying

(i)
|PW|
|P| ≥ 1+

|X|
|X|+1

j
l
, (ii) |π| ∈O(l( j + l)2|X|m−l+1), and (iii) |πW| ∈O(( j + l)3|X|m−l+k− j+1),

where l= |SM | and j= |SN|. ❚

This result allows us to compare the test suites generated byboth the W-method and the C-method.
Clearly, both test suites depend on the cover sets that are used. The first claim in Theorem 19, estimates
the ratio between the sizes of the cover sets. It indicates that the larger is the number of submachines
states,j, compared to the number of additional states,l , the greater is the advantage of using C-method.
This is expected, since, when using C-method, we do not need to test submachine states. In Theorem 19,
the second claim gives a bound to the size of the test suites generated by the C-method. The factorl |X|
corresponds to the cover setP, the factor( j + l)2 is a rough limit on the size of separatorR, and the factor
|X|m−l comes from the setXm−l . This set is used to allow the test of implementations with more states
than the specification. Claim (iii) at Theorem 19 concerns the W-method. We have a similar bound,
except that there is an extra factor of|X|k− j , which corresponds to the difference between the number of
submachine states in the implementation,k, and in specification,j. Since submachines are known to be
correctly implemented, we do not need to deal with these states when using the C-method. This indicates
that the C-method may generate test suites with exponentially less test cases than W-method.

We also argue that the C-method is scalable. That is, unlike the W-method, which requires that
specifications have a small number of states, with the C-method we can test systems with a high number
of states, provided that the number of additional states is kept low. This is due the fact that, in spite of the
specification being arbitrarily large, the size of the generated test suite is only polynomial on the number
of submachines states. Compare this to the bound obtained for W-method. We conclude that scalability
is a major advantage of the C-method when testing systems designed with a building block strategy.
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7 Conclusions
The W-method [4] is widely used to test critical systems modeled as FSMs. However, if the number of
states is large, this method, and derivations from it, become impractical. Moreover, in several common
situations, using the W-method is inefficient. Such cases include testing modified implementations with
minor specifications changes and testing new systems modeled by the building block strategy.

To address these issues, we introduced the concept of combined FSMs, thus capturing the situation
when the specification is given by a composition of other, previously tested, submachines. With this new
concept, we were able to represent the above situations in a specific fault model. This resulted in the
C-method, which can generate smaller test suites for combined FSMs.

We also introduced separators, generalizing the notion of characterization sets. Separators showed to
be useful tools to prescribe the generation of test suites. By using separators, instead of characterization
set, as in the W-method, we can distinguish only as few statesas we need and, therefore, we may use
smaller sets of distinguishing sequences, thereby reducing the size of the test suites beg generated.

Further, although the C-method can always obtain test suites that are subsets of those generated using
W-method, our method may, in fact, generate exponentially less sequences than W-method.

Finally, we showed that C-method is scalable, provided thatthe number of additional states is kept
small. This means that we can test FSMs with an arbitrarily large number of states if we apply a building
block strategy during system development and maintenance.
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Abstract

We present a library of PVS meta-theories that verifies a class of distributed systems in which
agent communication is through message-passing. The theoretic work, outlined in [4], consists of
iterative schemes for solving systems of linear equations, such as message-passing extensions of the
Gauss and Gauss-Seidel methods. We briefly review that work and discuss the challenges in formally
verifying it.

1 Introduction

We present a framework for verifying a class of distributed message passing systems with faulty commu-
nication. In this class processes (agents) communicate by exchanging messages that can be lost, delayed
or reordered. In earlier work, we introduced and analyzed the theoretic basis for this protocol by pre-
senting a class of iterative message-passing schemes for solving systems of linear equations [4]. This
class of problems has practical applications in areas such as robot pattern formation protocols [15, 5].
For example, decentralized schemes where groups of robots form a fence around a dangerous area can be
expressed as message-passing algorithms where agents solve a system of linear equations. Our previous
work formalized this class of systems and proved their convergence to the solution, even in the presence
of faulty communication. This paper is an addendum to that work, providing a formal model of the
problem in PVS [16], and presenting its verification using the tool.

A challenge that arises in verification of distributed systems in general, and this problem in particu-
lar, is that systems exhibit a dense state space operating over continuous time. These systems are highly
nondeterministic and contain uncountable data-types. Such properties make its verification using imple-
mentation based tools, such as model checkers, difficult, and in some cases impossible. As is outlined in
this paper, a theorem prover is an appropriate tool to address these issues.

Our model consists of a library of PVS meta-theories [17] built on top of I/O automata [11, 2] with
extensions for timed and hybrid systems [10, 14, 13]. The library offers a solution to the verification
of distributed linear system solvers in general. By exposing various assumptions, it is applicable to
instances of this problem in particular. Our work follows a very large body of literature where theorem
provers have been used for modeling [7, 8, 1, 3], and verification [9, 12, 6]

This paper is organized as follows. Section 2, summarizes the class of distributed systems we focus
on. Section 3 describes the architecture of our framework, showing PVS code fragments where necessary.
Section 4 discusses our verification procedure and presents an application of our framework to an existing
pattern formation protocol. We conclude with Section 5.

2 Faulty Message Passing Distributed System

In this section, we discuss a class of distributed systems where agents interact by sending messages.
Messages may be lost, delayed or arrive out of order. This class consists of message-passing iterative
schemes for solving systems of linear equations of the form Ax = b, where A is a real-valued matrix of
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size N×N, and x,b are real-valued vectors of length N, with N > 0. The goal of these systems is to
iteratively compute the vector x starting from an initial guess vector x0. The message passing version of
the Gauss, Jacobi and Gauss-Seidel algorithms are examples of iterative schemes belonging to this class.

We model this as a distributed system of N agents that communicate via a faulty broadcast channel.
Each agent is responsible for solving a specific variable using a specific equation of the system of linear
equations. For example, agent i is responsible for solving the variable x[i] using the i-th equation. We
consider schemes where each agent repeatedly broadcasts a message containing the current value of its
variable, x[i]. We assume agents broadcast their value infinitely often, where the number of messages
sent within a finite time interval is assumed to be finite. Upon receiving a message, an agent computes a
value for its variable using its equation. It assumes that its variable is the only unknown of the equation
and sets the values of the other variables to the last message received from the corresponding agents. For
example, agent i sets the value x[i] as follows:

x[i] := b[i]−∑
j 6=i

A[i, j]x[ j] (1)

where x[ j] stores the last message received from agent j. We assume that the matrix A (D1) is invertible,
(D2) has diagonal entries are all equal to 1, (D3) is weakly diagonally dominant (∀i : ∑ j 6=i A[i, j]≤ A[i, i]),
and (D4) is strictly diagonally dominant in at least one row (∃k : ∑ j 6=k A[k, j] < A[k,k]).

Agents within our model use two variables, x and z, to represent the solution of their equation. Given
agent i, the value of x[i] is the current solution to Eq. (1), while the value of z[i] is the agents current
estimate of the solution. Initially, both x[i] and z[i] are set to x0[i]. When an agent receives a message,
it updates the solution x[i] using Eq. (1). The variable z[i] is updated when the agent “moves,” at which
point it evolves z[i] according to some predefined dynamics towards x[i].

Using two variables to store the solution vector gives us a better means to represent continuous
dynamics. In real-world applications, it is unrealistic to assume instantaneous updates of the solution
vector x; thus, we maintain the current estimate vector z. In robotics, for example, systems of equations
are used in pattern formation protocols, where x can be thought of as agent positions. When a robot
receives a message, the move from its current location to its newly computed one is not instantaneous.
Instead, the robot moves according to some time-related dynamics. In robotics application, z models the
current robot positions while x represents their destination locations.

In earlier work, we have provided sufficient conditions for proving correctness of this class of dis-
tributed systems [4]. Specifically, these schemes are correct if x and z converge to the solution of the
system A−1b as time approaches infinity. More formally,

Theorem 1 ([4]). If A satisfies D1–4, then the system converges to A−1b.

In the proof, it is shown that the maximum error of the system at each point of the computation
eventually decreases by a factor of α , with α ∈ [0,1). Convergence is then proven using induction over
the agent set. As a base case, we show that eventually the maximum error of the agents satisfying D4 is
reduced by α . Then, assuming that this is the case for agents at distance k from some agent satisfying D4,
we show that the property holds for all agents at distance k +1. This induction proof can be represented
as a forest of trees of size N, rooted at agents satisfying D4. Iterating the proof, it is possible to show that
starting from some initial maximum error of the system, E0, the error eventually decreases to αE0, then
to α2E0, then α3E0, . . ., converging to 0 as time goes to infinity.

3 PVS Verification Framework

In this section we describe the tool for verifying this class of distributed systems. Our framework [17],
summarized in Figure 1, has been built on the top of the PVS formalization of I/O automata [11, 2] and
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Vector

Matrix

Tree

Mathematical PVS Theories

System
state, initial state predicate, actions, 
transition function, enabled predicate

System PVS Theory

Proof of Convergence

Error Model

Verification PVS Theories

Figure 1: The structure of our PVS framework. A set of mathematical theories describe generic data-
types (Section 3.1). These are used by the theory that models a distributed message passing system
(Section 3.1). Finally, we verify that the system converges to the solution using properties of the mathe-
matical structures (Section 3.2).

its extensions to timed and hybrid I/O automata [10, 14, 13]. Our library uses the parts of the PVS NASA
library [1]. First, we present the formalization of the system, then discuss the proof of correctness.

3.1 Modeling a Distributed Message-Passing System

The system is modeled using the automaton meta-theory [14] that we have specialized for matrix algebra.
The automaton consists of system state (Figure 2), system action (Figure 3(b)), enabling condition for
those actions (Figure 4(b)), and transition functions (Figure 4(a)). The enabling condition is a means of
defining which subset of actions are valid in a given state. Our action set handles system communication
and timing, along with subsequent agent state changes. In this section, we describe the system’s overall
operation from the standpoint of our action set.

We have added the appropriate linear algebra types for the matrices and vectors to the automaton
theory:

Vector: TYPE = [Index -> real]
Matrix: TYPE = [Index , Index -> real]

A vector is modeled as a function from type Index to real numbers, and a matrix as a function that
maps an Index pair to a real number. We have defined these types functionally to facilitate manipulation
in PVS. Users supply our library with instances of these types, which we refer to throughout with the
variables A, of type Matrix, and b and x0, of type Vector. The type Index is an interval of natural
numbers bounded by N, with N being the number of agents in the system

Index: TYPE = below(N)

That is, Index = {0, . . . ,N− 1}. The type Vector and Index belong to the PVS NASA library [1],
while the type Matrix is our extension to this library.

3.1.1 System state

The state of the system is made up of the state of the agents, along with the state of the communication
channel. An agent is responsible for its current and target values, along with the set of messages in the
communication channel for which it is the recipient. We define the system state in PVS with the record
type S, outlined in Figure 2. The fields target, and lastmsg describe the state of the agents, while
buffer describes the state of the channel. The field now corresponds to the clock of the system, storing
the current time. The field next is a vector containing, for each agent, the future time that that agent is
allowed to execute a send action. The target field stores the target value of each agent. The lastmsg

Proceedings of NFM 2010, April 13-15, 2010, Washington D.C., USA. 121



Verification of Faulty Message Passing Systems in PVS Pilotto and White

S: TYPE = [# target: Vector , % vector of agents

lastmsg: Matrix , % matrix of values

buffer: [Index , Index -> Pset], % state of the channel

now: nonneg_real , % system clock

next: [Index -> nonneg_real] #] % agent send deadlines

Figure 2: System state. Refer to Figure 3(a) for the definition of Pset.

Msg :TYPE = [# loc: real ,
id: Index #]

Pkt :TYPE = [# msg: Msg ,
ddl: posreal #]

Pset:TYPE = set[Pkt]
b :posreal
d :posreal

(a) Channel types

ACS: DATATYPE BEGIN
send(p:Pkt , i:Index , d1:posreal ): send?
receive(p:Pkt , i:Index): receive?
move(i:Index , delta_t:posreal ): move?
msgloss(p:Pkt , i:Index): msgloss?
nu_traj(delta_t:posreal ): nu_traj?

END ACS

(b) Actions of the system

Figure 3: Components of the system automaton

field is a matrix in which the diagonal entries hold the current value of each agent; the non-diagonal
entries store the last message that agent i has received from agent j. The target and the diagonal entries
of lastmsg correspond to the variables x and z, respectively, from the mathematical model outlined in
Section 2. The field buffer models the communication between agents; each pair of agents (i, j) has a
directed communication channel, with i being the sender of the messages in the channel and j being the
receiver. The entry buffer(i)(j) of type Pset contains the set of packets sent by i and not yet received
by j. The type Pset is defined in Figure 3(a).

The initial condition of the system is described using the predicate starts?. It holds in the state s if
the global clock of this state is set to 0, and the target set to the initial guess, x0:

start ?(s: S): bool =
now(s) = 0 AND (FORALL(i: Index): next(s)(i) <= d) AND
target(s) = x0 AND (FORALL(i, j: Index): lastmsg(s)(i,j) = x0(i))

The condition on next vector is necessary because in our model agents send messages infinitely often.
This condition ensures that all agents will execute a send action in bounded time. Parameter d, defined
formally in Section 3.1.2, is the upper bound on an agents sending rate. Note that the communication
channels are not necessarily empty initially.

3.1.2 Communication channel

The communication layer is a broadcast channel allowing for lost, delayed, or out-of-order messages.
Our model assumes that (C1) messages are either lost or delivered in finite but unknown time and (C2) for
each pair of communicating agents the receiver receives infinitely many messages. The first assumption
models a communication medium with bounded, but unknown, delay. The second assumption ensures
that there are no permanent partitions between communicating agents.

To model such faulty communication, we consider not only packets and channels, but timing and
ordering properties as well. Figure 3(a) outlines the PVS data types used for this purpose. Messages
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trans(a: ACS , s: S): S =
CASES a OF
nu_traj(delta_t ): % ...

move(i,delta_t ): % ...

send(p,i,d1): % ...

receive(p,i): % ...

msgloss(p,i): % ...

ENDCASES

(a) Transition function of the system
describing the behavior of each action
of the system.

enabled(a: ACS , s: S): bool =
CASES a OF
nu_traj(delta_t ): % ...

move(i,delta_t ): % ...

send(p,i,d1): % ...

receive(p,i): % ...

msgloss(p,i): % ...

ENDCASES

(b) Enabling predicate of the system describing the
enabling condition of each action of the system.

Figure 4: Components of the system automaton. The body of the transition function and enabling predi-
cate are defined in Section 3.1.3

sent between agents (Msg) are represented as a record, consisting of the agent’s location and identifier.
Messages, along with their delivery deadline, are contained within packets (Pkt). Sets of packets (Pset)
make up a dedicated, directed, channel between two agents. Because a set lacks ordering, it makes it
an appropriate type for a communication channel that allows for out-of-order messages. Timing within
the channel is handled by the constants b and d. The former is an upper bound on packet deadlines—at
most b units of time—and models maximum message delay. In our model, each packet can be received
at any time in the interval [now,now+ b]. The constant d is an upper bound on the interval between
consecutive send actions. Combined with next, it ensures that the send action is executed infinitely
often. The future time that an agent is allowed to execute a send action is set to a value in the interval
[now,now+d].

3.1.3 System actions

Actions within our system consist of agent movement and message transmission, channel manipulation,
and system clock maintenance. Their corresponding PVS definitions are outlined in Figure 3(b) and 4.
The send, receive, and move actions are executed by agents, while the msgloss action is used by the
communication channel to simulate packet loss. Finally, the nu traj action updates the system time.
This section describes the behavior of each action, implemented by the function trans (see Figure 4(a)),
and when they are enabled, implemented by the predicate enabled (see Figure 4(b)).

New trajectory. The nu traj action advances the time variable of the system, now, by delta t units,
where delta t is the input parameter of the action;

nu_traj(delta_t: posreal ): s WITH [now := now(s) + delta_t]

It is enabled when the new value of the global clock does not violate a packet deadline:

nu_traj(delta_t ): FORALL(p: Pkt): ddl(p) >= now(s) + delta_t

Agent move. The move action models the movement of an agent from its current value to one based
on its locally computed solution to the equation of the system. The parameters of the action are the agent
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that moves and the time interval. In our implementation, agent i sets z[i] (stored in lastmsg(i,i)) to x[i]
(stored in target(i)) and advances the global clock of delta t units. In PVS

move(i: Index , delta_t: posreal ): s WITH
[ lastmsg := lastmsg(s) WITH [ (i,i) := target(s)(i) ],

now := now(s) + delta_t]

This action can be executed only if packet deadlines are not violated by the new time of the system:

move(i, delta_t ): FORALL(p: Pkt): ddl(p) >= now(s) + delta_t

Agent send. When executing a send action, agent i broadcasts its packet p to all agents in the system
and schedules its next send action:

send(p: Pkt , i: Index , d1: posreal ): s WITH [
buffer := LAMBDA (k, j: Index):
IF ((k = i) AND (j /= i)) THEN union(p, buffer(s)(k,j))
ELSE buffer(s)(k,j)
ENDIF ,

next := next(s) WITH [(i) := next(s)(i) + d1 ]]

In updating the buffer, the agent is adding its packet, p, to all of its outgoing channels. Notice that an
agent does not send a message to itself. The send action is executed only if the time when the agent is
allowed to send is equal to the global time of the system. Furthermore, the sent packet must contain the
identifier of the agent, its current target location, and correct packet deadline. The detailed PVS code
follows

send(p, i, d1): next(s)(i) =
now(s) AND d1 <= d AND id(msg(p)) = i AND
loc(msg(p)) = target(s)(i) AND ddl(p) = now(s) + b

Agent receive. When agent i receives packet p, it updates the lastmsg variable, computes a new value
for its target, and removes the packet from the channel:

receive(p: Pkt , i: Index):
LET m: Msg = msg(p), j: Index = id(m), l: real = loc(m),

Ci: vector = update(row(lastmsg(s), i), j, l) IN s WITH
[ buffer := buffer(s) WITH

[ (j,i) := remove(p, buffer(s)(j,i)) ],
lastmsg := lastmsg(s) WITH [ (i,j) := l ],
target := target(s) WITH [ (i) := gauss(Ci ,i) ]]

The gauss function implements Eq. (1). The action can be executed if the p is in the channel from
msg(p) to i, and its deadline does not violate the global time of the system,

receive(p,i): buffer(s)(id(msg(p)), i)(p) AND ddl(p) >= now(s)

Message loss. Message loss is modeled by removing a given packet from a directed channel:

msgloss(p: Pkt , i: Index): LET m: Msg = msg(p), j: Index = id(m) IN s
WITH [ buffer := buffer(s)

WITH [ (j,i) := remove(p, buffer(s)(j,i)) ]]
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It is enabled only if the packet belongs to this channel:

msgloss(p,i): buffer(s)(id(msg(p)), i)(p)

3.2 Verification Meta-Libraries

This subsection focuses on proving system correctness. We discuss how the error of the system is rep-
resented, and how it is used to prove convergence in PVS. As outlined in [4], and briefly discussed in
Section 2, we prove that the error of each agent converges to 0 as time tends to infinity.

3.2.1 Error Model

The error of an agent is defined as the distance between its current value and its desired value. We define
the vector of desired values, xstar, axiomatically, using the standard definition:

xstar_def_ax: AXIOM FORALL(i: Index): xstar(i) = gauss(xstar ,i)

During system execution, the value of an agent is represented in three places: within its state, within
the set of packets in transit on its outgoing channels, and within the received message field of other
agents. Although these are all values of the same agent, agent dynamics, message delay and reordering
do not guarantee their equality. In the proof of correctness, it is enough to consider only the maximum
error of these values. We define the error of the system axiomatically

me_all_error: AXIOM FORALL(i: Index): mes(s,i) <= me(s)
me_ex_error: AXIOM EXISTS(i: Index ): mes(s,i) = me(s)

where mes is the maximum error of agent i within in the system, and me is the error of the system,
defined as maximum of all agents errors within the system.

3.2.2 Proof of Correctness

As discussed in Section 2, our proof of correctness relies on certain assumptions about the given ma-
trix A (see D1–4). Invertibility, along with diagonal and strict-diagonal dominance, were modeled, re-
spectively, as

inv?(m): bool = EXISTS(n: Matrix ):
prod(m,n) = prod(n,m) AND diag?(prod(m,n))

dd?(m): bool = FORALL(r: Index): sum(row(abs(m),r),r) <= abs(m(r,r))
sdd?(m): bool = EXISTS(r: Index): sum(row(abs(m),r),r) < abs(m(r,r))

where m is of type Matrix. Using these definitions, we can describe the assumptions on A made by
the model. We use the PVS assumption facility to access these properties within the meta-theory and
obligate users of our library to discharge them;

ASSUMING
inverse_exist: ASSUMPTION inv?(A) % D1

diag_entry: ASSUMPTION FORALL(i: Index ): A(i,i) = 1 % D2

diag_dominant: ASSUMPTION dd?(A) % D3

strictly_diag_dominant: ASSUMPTION sdd?(A) % D4

ENDASSUMING.

Reasoning about system convergence requires the analysis of the system along an arbitrary execu-
tion. Our responsibility is to show that (E1) the error of the system does not increase, and that (E2) it
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eventually decreases by a lower-bounded amount. Using the diagonally dominant assumption on A, we
can prove E1:

not_incr_error: LEMMA enabled(a,s) IMPLIES me(s) >= me(trans(a,s))

To prove E2, as discussed in Section 2, we built a representation of the forest structure in PVS. The tree is
represented by functions ancs, root t? and parent using the PVS list structure defined in the prelude.

ancs: FUNCTION[Matrix , Index -> ListIndex]
root_t ?(m: Matrix , i: Index): bool = sdd?(m,i) AND null?(ancs(m,i))
parent(m: Matrix , i: Index): Index =

IF root_t ?(m,i) THEN i ELSE car(ancs(m,i)) ENDIF

where ancs is a function which, given a matrix and agent identifier, returns the complete path of the agent
to a rooted node in the tree. The path is defined as a list of agent identifiers having type ListIndex.
Note that rooted agents satisfy D4.

Next, we define a factor α by which the system will eventually decrease. Given the rooted forest, for
each node of the forest we recursively define the quantity p value. We prove that this value is positive
and (strictly) upper bounded by 1. The factor α is the maximum of these quantities. In PVS,

alpha_all: AXIOM FORALL(i: Index ): p_value(i) <= alpha
alpha_ex: AXIOM EXISTS(j: Index ): alpha = p_value(j)

Using induction on the forest, we prove that the maximum error of the system eventually decrease
by α . Assuming that the error of the system is upper-bounded by W , the base case is to prove that the
error of the roots of the tree eventually decreases by α . From there, we prove that eventually the error of
the node is upper bounded by W ·α , assuming that the error of all ancestors of a node is upper-bounded
by the same quantity. To handle this within the theorem prover, we defined our own induction scheme:

p: VAR [Index -> bool]
induct_ancs: THEOREM

(null?(ancs(m,i)) IMPLIES p(i)) AND
(cons?(ancs(m,i)) AND p(car(ancs(m,i))) IMPLIES p(i))

IMPLIES FORALL(j: I | member(j, ancs(m,i)) OR j = i): p(j)

This theorem ensures that if we prove that some property holds at the root of the tree, and, given a node,
we prove that it holds at the node, given that it holds for its parent, then we can safely derive that the
property holds for all nodes along a path of the tree. In this case, that property is the factor of α decrease.

4 Framework Discussion

In this section, we offer commentary on our experience using PVS and present an application of our
framework.

4.1 PVS Implementation

Our library consists of over 30 lemmas, almost 2000 proof steps. We took advantage of PVS pre- and
user-defined types for modeling agent and channel states. Implementation of the system infrastructure
consumed about 30% of our effort. Vectors, matrices and trees were used extensively throughout our
library. The PVS NASA libraries provided some relief, but modeling diagonally dominant matrices and
proving lemmas on products of matrices and vectors forced us to extend them. Although NASA does
provide a representation of trees, their recursive implementation made proving properties we required
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very difficult. Unlike the NASA implementation, where they visit the tree starting from the leaves, we
were more interested in both proving properties on the tree starting from the root and inducting over the
structure as well. Further, the NASA library has limited support for weighted directed graphs, something
critical for our model. For these reasons, we preferred to give an implicit definition of trees and ensure
the needed properties axiomatically.

While proving the convergence property of the system, we gave implicit definitions to many nonlinear
functions for convenience within the proofs. For example, we did not define the maximum error of the
system recursively. We preferred, instead, to use two axioms and define the maximum as the upper
bound on the error of the agents such that the value is reached by some agent (see me all error and
me ex error in Section 3.2.1). This choice reduced the number of proofs in the library, as we did not
derive these facts from their recursive definitions. Proving these facts in PVS is possible, but beyond the
scope of our work.

We managed the proof of Theorem 1 by breaking it into smaller lemmas. This allowed us to tackle
small proofs where the goal was to show that eventually a specific property held. For example: proving
that the error of the target position of an agent eventually decreases by the constant factor α; then proving
that its error in the outgoing channels eventually decreases by this factor; and finally showing that its error
stored in the state of the remaining agents eventually decreases by this factor. We showed these lemmas
using the two assumptions on the communication medium (see C1–2). These assumptions simplified
our proofs since we did not consider traces of the automaton in the proof of convergence. Using this
collection of sub-lemmas, we were able to prove, directly, that after d +b time units the maximum error
of the agent decreases by the factor α .

4.2 Applications

In earlier work, we discussed a specific pattern formation protocol where the goal of the system was
for agents to form a straight line [5]. The system consisted of N robots, with robot 0 and N− 1 fixed
throughout the execution. Agent i (0 < i < N− 1) only communicated with its immediate neighbors,
robots i− 1 and i + 1. Based on this communication, i computed its new position as the average of the
left and right received values.

This protocol can be modeled as a system of linear equations, and, as such, can be verified using
our library. We instantiate the matrix A with a tri-diagonal matrix having the value 1 along the main
diagonal, and −0.5 on the secondary diagonals (with the exception of rows 0 and N− 1, which have 0
on the secondary diagonals). Given this structure, we are obligated to discharge the assumptions of the
library outlined in Section 3.2.2: that the input matrix A satisfies D1–4.

5 Conclusions

We have presented a verification framework for distributed message-passing systems that takes into
account a faulty communication medium. This framework consists of a library built within the PVS
theorem prover that allows for the verification of distributed algorithms for solving systems of linear
equations. We have also detailed the implementation of the framework, outlining our use of a special-
ized automaton theory and induction scheme. We have discussed challenges in the implementation and
presented an application where the framework is used to verify a specific robot pattern formation proto-
col. Future work includes extending these results to a richer class of systems, such as non linear convex
systems of equations, and providing their corresponding verification using a theorem prover.
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Abstract 

 

A feasibility study was performed on a representative aerospace system to determine the following: (1) 

the benefits and limitations to using SCADE®, a commercially available tool for model checking, in 

comparison to using a proprietary tool that was studied previously [1] and (2) metrics for performing the 

model checking and for assessing the findings. This study was performed independently of the 

development task by a group unfamiliar with the system, providing a fresh, external perspective free from 

development bias. 

 

1 Introduction 
 

Reviewing software requirements for a system is an important task, as during the requirements phase 

approximately 70% of errors are introduced [2]. The earlier those errors are detected, the less costly they 

are to fix, making the requirements phase an opportune time to find and correct errors. However, typically 

only 3.5% of errors are removed during the requirements phase [2]. Model checking makes requirements 

reviews more efficient than manual techniques, as it can identify more defects in less time. 

 

Historically, major drawbacks to the application of formal methods to industry included the reluctance to 

introduce more time and expense into the software lifecycle process and the fear that formal methods is 

too proof-heavy and therefore requires expert knowledge of mathematics. However, studies have shown 

that using a process to formally verify software actually can save time and money during a project [3]. 

Furthermore, while some knowledge of mathematics is needed, expertise is certainly not necessary 

because formal methods have evolved from being solely an academic pursuit and is now gaining 

acceptance in the industrial realm. With this evolution comes improved ease of use and applicability.  

 

A previous feasibility study was performed on a representative aerospace system to assess the viability of 

a particular set of techniques and tools to perform formal verification of the software requirements [1]. 

The study explored the types of potential safety issues that could be detected using these tools and 

determined the level of knowledge required, the appropriateness and the limitations of the tools for real 

systems, and the labor costs associated with the technique.   

 

The conclusions for the previous study were: 

1) The model checking tool set was useful in detecting potential safety issues in the software 

requirements specification. 

2) The particular tool set was not able to model the entire system at one time.  The model had to be 

partitioned, and then assumptions had to be verified about the interfaces between the sections. 

3) With basic training in Matlab®/Simulink® and specific training on the tool, engineers were able 

to become productive with this method in a reasonable time frame.  

4) The costs to perform the analysis were commensurate with the system being modeled. 
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The purpose of this, the subsequent study, was to: 

1) Determine if another tool set offers increased scalability and is able to model and verify the entire 

system with no partitioning. 

2) Determine if another tool set is more user-friendly, including better commercially available 

training, fewer bugs and crashes, and increased ease of use. 

3) Develop metrics for the number of requirements that can be modeled and verified per labor hour 

and the number of safety and other defects found per requirement. 

4) Prototype methods for modeling and verifying design aspects. 

5) Document training requirements and guidelines. 

 

2 Overview of System 
 

In this phase of the study, the same aircraft vehicle management system (VMS) was analyzed as in the 

previous phase. The VMS determines the overall health status of the aircraft to allow for maximum 

availability of critical systems. The VMS consists of two redundant computers that are both safety- and 

mission-critical. The VMS interfaces with the aircraft avionics and the radio communication systems. A 

data link between the redundant computers provides channel state data and synchronization. The VMS is 

subdivided into 18 individual managers such as a Communications Manager and Electrical Systems 

Manager. Due to the proprietary nature of the system, Figure 1 is purposefully general. Elements are 

encapsulations of functionality either described in the SRS or included by the modelers for clarity and 

organization. 

 

 
Figure 1:  Overview of the System 

 

The VMS performs vehicle mode, flight planning, navigation, and vehicle health functions.  There are 

redundant VMS computers, with one always acting as a master.  If the master is determined to be bad, 

then the slave VMS will assume control of the vehicle.  The VMS interfaces with sensors, avionics, and 

actuators that perform the low-level communications, position, and control surface functions. 

 

The model consisted of 104 block diagrams and 11 state machines, all organized hierarchically. Some 

state machines were depicted in the requirements document, while the modelers added others when the 

requirements nicely fit into one. 

 

3 Methodology 
 

3.1 Stages of Analysis 

 

Analysis begins with a system safety engineer generating system safety requirements based on the system 

requirements definition and system design. These system safety requirements form the basis of safety 

properties, which are translated into SCADE® design verification operators.  Concurrently, a model of 

the software requirements is built in SCADE®. Then the SCADE® Design Verifier™ tool is used to 

determine if the safety properties hold over the entire software requirements model. 
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For example, the VMS can have one of two designations: master or slave. Having exactly one VMS 

designated as master is very important for the correct functioning of the entire system, and therefore 

having one and only one VMS declared as master was a safety property. To determine if this safety 

property always held, we ran verifiers such as the following: both VMSs are simultaneously master, both 

VMSs are simultaneously slave, and one VMS is master while the other VMS is slave. All verifiers 

returned true, meaning that it is possible for the system to have one master, two masters, or no masters; 

the latter two situations can lead to hazardous outcomes. 

 

Additional algorithm detail is then modeled in Stage 2 using the software design.  The safety properties 

are modified as necessary and formally verified against the design model. 

 

After performing Stages 1 and 2 of the safety analysis, the analyst prepares a safety property report, 

which lists assumptions made while verifying the system, requirements and design defects found, 

potential safety hazards, and any other pertinent findings. Based on the safety property report, refinements 

to the system and software requirements and designs can be made. Changes in requirements or design 

trigger a new round of analysis. The cycle can continue until no more defects are detected. 

 

 
Figure 2: Safety Analysis Stages 

 

3.2 Toolset 
 

The tool set consisted of SCADE® version 6.1 including SCADE® Simulator and Design Verifier™. 

After creating the requirements model in SCADE® Simulator, the model is automatically loaded into the 

Design Verifier™. The safety properties are also automatically loaded into Design Verifier™. From 

there, Design Verifier™ determines the status of each property and returns either valid or invalid. Those 

findings are summarized in the safety property report. 
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Figure 3: Safety Analysis Toolset 

 

3.3 Detailed Methodology 
 

The first step is to create a SCADE® model based on a set of requirements. When creating the model, it is 

important to keep the model as true to the requirements as possible. Any differences with the 

requirements from either introducing or eliminating defects weaken the overall effectiveness of the 

analysis. Any assumptions made in creating the model should be recorded in the safety property report.  

These requirements assumptions must then be dispositioned by the software requirements engineering 

team. 

 

After the model is made, the properties to be checked are modeled in SCADE® alongside the 

requirements model. Four main categories of properties are considered: those based on critical safety 

conditions, those based on inputs, those based on requirements, and those based on system safety.  

 

The properties based on safety conditions are modeled upon the safety conditions as they are written. 

Sometimes it is necessary to add constraints to the properties because the safety conditions are vague or 

unclear. Such constraints are noted and kept to a minimum. 

 

A second method is to model properties based on inputs: each input to the SCADE® model is assessed 

for its range of values and the possible system repercussions of each of those values. For example, what 

should occur if both VMSs report a health status of unhealthy? What should occur if a VMS receives an 

invalid address? These types of properties are written to show that the system behaves as expected based 

on varying inputs.  

 

A third method is to model properties based on requirements to verify the SCADE® implementation. 

These properties mainly test functionality, like “If both VMSs are not healthy, then the software in VMS 

1 shall assume the responsibility as master.” These properties check that the SRS was modeled correctly 

and behaves as expected. These properties are not very interesting, in that they are meant to show that the 

modelers faithfully modeled the requirements. 

 

The system safety properties are modeled from a standpoint overlooking the various systems, their overall 

behavior, and the interactions among them. These properties included ones like “Subsystem A must send 

signal B to subsystem C before action D takes place.” 
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The next step is to assess the validity of the properties using the SCADE® Design Verifier™, a 

companion to SCADE® Simulator. The Design Verifier™ is backed by Prover® Plug-In, a commercially 

available proof engine. The analyst creates a proof objective for each property. He then executes each 

proof in Design Verifier™, with the results being either true (the property always holds), false (the 

Verifier™ found a counterexample), or undetermined (meaning either the model has errors or certain 

settings are preventing the Verifier™ from completing its run). 

 

If a property returns false, then three points of error should be considered. First, the error can come from 

incorrect implementation of the property. Second, the error can come from incorrect implementation of 

the model. If both the model and property are correct, then the error can come from an incorrect 

requirement in the SRS. These sources of error are usually checked in the stated order and the fix to the 

appropriate area is made, or in the case of an incorrect requirement, the error is documented. 

 

If the error is a result of an incompatible SRS requirement, then the property can be edited to include 

additional constraints or invariants not specified in the software requirements. The addition of these 

constraints and invariants can lead to a true property, meaning that the original software requirements 

lacked specificity, were poorly worded, or otherwise were incompatible with the system. It is important to 

note that when adding constraints to a property, adding the fewest number of constraints leads to the 

strongest property. That is, too many constraints can narrow the focus of a property to the point it is no 

longer useful or meaningful. 

 

This process of modeling properties, checking properties, and modifying properties continues. From this 

process, certain areas of the requirements specification usually emerge as vulnerable. The design and 

implementation of these at-risk areas should be reconsidered, as they might affect the safety of the system 

under analysis. 

 

The entire analysis process can be repeated, incorporating more critical software requirements and design 

components. 

 

3.4 Process Recommendations 
 

These actions were found to save time, make the model checking process easier, and solve several 

bookkeeping issues. The first three actions are SCADE®-specific. A note about operators: In SCADE®, 

an operator is a computing unit or block with inputs and outputs. Operators can be pre-defined, like a 

Boolean not operator, or they can be user-defined, such as an operator that computes a custom equation or 

performs a specific function. 

 Hierarchically organize the model using packages. (Packages are like folders.) 

 Use structures to compose an operator’s inputs and outputs. That way, when an operator gains an 

input, only the structure changes. 

 An operator’s contents can be spread across multiple layers so each layer is confined to the 

dimensions of one screen. 

 Use comments to identify requirements and safety properties. 

 The organization of proof objectives should match the organization of the model. That is, each 

operator should have its own set of proof objectives. 

 

4 Results 
 

4.1 Portion of System Modeled 
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Out of 1124 requirements in the SRS, we modeled 925 requirements, or 82%. We modeled requirements 

from every system described in the SRS. Of the 20 systems, we modeled 100% of 17 of them and more 

than 90% of two additional ones. The remaining 18% of requirements either did not add value to the 

model or were not related to software. The remaining requirements included ones that described 

hardware-software interaction and design. 

 

4.2 Assumptions 
 

We classified assumptions as any educated guess, clarification, or specification we had to make that we 

felt was missing from the SRS. We limited assumptions to those clarifications that we felt the 

requirements authors themselves assumed but did not include in the documented requirements 

specification. Making the assumptions allowed more of the model to function as expected, which let us 

investigate deeper and uncover more complex defects. Assumptions were needed to either refine a 

requirement or to disambiguate among multiple interpretations of a requirement. For example, we had to 

assume a precedence for every transition in the state machines because no precedence was stated. This 

kind of assumption was common. An example of a more severe assumption would be assuming that the 

VMSs are communicating in order for some requirements to always be true. We tracked assumptions both 

in a spreadsheet and as a note in the model itself. SCADE® does have the capability to create assertions, 

which are assumptions embedded into the model. We did not use assertions. 

 

In order to create the model and thereby properly formalize the SRS, we made 121 assumptions, which is 

about one assumption per every 7.6 requirements.  The following table gives some examples of 

assumptions and their associated requirements. 

 

Requirement Assumption 

If the VMS is in State S and is the master, it shall 

send a synchronization message to the other VMS. 

The VMSs are communicating. 

 

Thirty-five seconds after power up, the VMS shall 

begin periodic communications with the other 

VMS. 

“Periodic” communications occur on every cycle. 

 

When counting the number of times Event E 

occurs, the software shall not log more than the 

limit specified in the spreadsheet. 

The name of the spreadsheet and where to find it 

are not indicated. Assumed that the limit was a 

constant. 

The software shall read the RT address of its 

terminal to determine its own identity. 

The RT address signal is latched. 

 

Table 5: Examples of Assumptions 

 

The following example illustrates how formalizing requirements can lead to early defect detection. A 

requirement like the following, whose combinatorial logic is ambiguous, can be interpreted in more than 

one way: “When the following is true, the software shall clear variable A: variable B has been below 88% 

for at least 2 seconds and either variable C is true or variable D is true and variable E is false.” It is 

unclear which combination should be implemented, as both of the following formal interpretations fit the 

English specification. 

 

 (B < 0.88 for >= 2 seconds) & (C | D) & (!E) (1) 

 

 (B < 0.88 for >= 2 seconds) & (C | (D & !E)) (2) 

 

As the expression (2) was the one intended, simply separating the requirements as shown below resolves 

the ambiguity. 
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 (B < 0.88 for >= 2 seconds) & C (3) 

 

 (B < 0.88 for >= 2 seconds) & D & !E (4) 

 

4.3 Defects Detected 
 

Whereas requirements that needed further refinements warranted assumptions because we felt 

comfortable making a decision about the intention of the requirement, other requirements problems were 

not as easy to solve. We called these problems “defects” because we did not feel capable of resolving 

them ourselves, even with assumptions. For example, several inconsistencies among requirements were 

found and documented. These include duplicated requirements and conflicting requirements. 

 

Out of the 925 requirements we modeled, we found 198 requirements defects, or about one defect per 

every 4.7 requirements. Fifty-four (27%) of the defects were found through traditional IV&V methods. 

Sixty-seven (34%) were found while building the model, and 77 (39%) were found using Design 

Verifier™. Some representative defects are in the following table. 

 

Method of Detection Requirement and Defect 

Manual IV&V If in State A and Input I is true, go to State S. 

If in State A and Input I is true, go to State T. 

Requirements conflict because states S and T are mutually exclusive. 

Model Creation If the VMS is Master and the other VMS fails, then it shall remain Master. 

What if the VMS is Slave and the other VMS fails? 

Model Checking If the Launch Abort Command input is true, then the launch abort sequence 

should begin. 

Modeled property shows a counterexample where receiving a “Launch Abort 

Command” does not result in the software signaling to abort the launch 

sequence. 

Table 6:  Example Defects 

 

We classified each requirement that returned a counterexample in one of four categories: catastrophic, 

critical, marginal, or negligible. Analysis of the system through model verification found 62.5% of all 

potentially catastrophic defects we found. 

 
Figure 4:  Categorization of Defect Origin 

 

Some counterexamples were helpful in determining the exact reason that a property failed. These 

counterexamples tended to be short (demonstrated over only a few cycles) and involve few inputs. Other 
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counterexamples were more complex and difficult to follow. Where possible, we documented a 

description of the counterexamples as an explanation for a failed property. 

 

We also found problems by verifying some safety properties. The source documents for most of the safety 

properties were other configured documents specific to the system, such as the Safety Hazard Analysis 

and Software Safety Analysis. Some safety properties were generated by analyzing the SRS. 

 

We modeled 215 safety properties. Of these 215 properties, 68 or 32% evaluated to false and returned a 

counterexample. Some examples of safety properties are in the following table. 

 

Safety Property Verification Operator Implemented As Returned 

If the datalink is broken, can 

both VMSs be master? 

After the first cycle, if VMS_A is not communicating 

and VMS_B is not communicating, then VMS_A is 

not master or VMS_B is not master. 

false 

An invalid VMS is declared 

halted. 

If a VMS is not valid, then it is in the halted state. false 

If the engine oil temperature is 

out of range a fault will be set. 

If the oil temp is less than -50 or greater than 110, 

then oilTempFault will be true. 

false 

Before the engine started 

message is sent, the engine start 

request message must be 

received. 

Is it true that the signal engineStartComAccepted has 

never been true and the signal engineRunning is true? 

 

false 

Table 7: Example Safety Properties 

 

4.4 Return on Investment 
 

We spent approximately 934 hours modeling and verifying properties. Given that we modeled 925 

requirements, our modeling and verification rate was about one requirement per hour. We spent 498 hours 

building the model, 436 hours using Design Verifier™, and 63 hours in training.  

 

Training consisted of three days of formal instruction by representatives of Esterel Technologies. During 

training, we learned the basic functionalities of SCADE Suite® and practiced making operators. 

SCADE® is not difficult to learn, especially if one has knowledge of another graphic modeling tool like 

Simulink®. 

 

Of the 498 hours spent building the model, the initial model creation took 424 hours. There were another 

74 hours of editing the model after running Design Verifier™ to fix errors we had introduced to the 

model and to improve the model’s organization. 

 

The time spent in Design Verifier™ accounts for creating the safety properties, running the Verifier™, 

and editing the properties as needed. 

 

This method is easy to learn and integrates well into the typical software lifecycle. In fact, by using well 

established rates of productivity based on the number of lines of code [4], we calculated that reviewers 

would spend approximately 40% less time in requirements review using this method over traditional 

IV&V methods. We also calculated a total project cost savings of 5% for the system we studied. On top 

of that savings, the model can be reused to automatically generate code and tests. The time required for 

training is minimal, though additional maturation with the tool occurs as the modelers gain experience. 

Considering a post-learning execution time and the number and significance of our findings, this process 

is not only a feasible inclusion to the software development lifecycle, but is also a valuable asset to the 
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lifecycle. It can lead to cost savings plus the detection of safety-critical defects that may prevent a 

catastrophic failure during flight test or operation. 

 

5 Conclusions 

 
5.1 Training Recommendations 

 

The training provided by Esterel was adequate to begin creating the model. As with most tools, as we 

gained experience with SCADE®, we found certain methods and shortcuts for improved efficiency. 

Perhaps a follow-up training session a few weeks after the initial training would have been useful for 

instruction in some finer details and higher-level usage of the tool’s more advanced capabilities. The 

graphical modeling environment of SCADE® is very similar to that of Simulink®. Engineers familiar 

with Simulink® should have a smooth transition to SCADE®. 

 

The specific concepts that should be understood prior to training include knowledge of logical operators 

(and, or, not, implies), Boolean algebra, and state transition diagrams. In general, an engineer who has 

had college-level math or logic is capable of benefitting from the training. 

 

5.2 Objectives Revisited 

 

We had five objectives for this phase of the study. Our conclusions based on those objectives are as 

follows: 

1) Determine if another tool set is able to model and verify the entire system at one time. We were 

able to model 82% of a software requirements document in one SCADE® model. Scalability was 

not an issue. 

2) Determine if another tool set is more user-friendly, including better commercially available 

training, fewer bugs and crashes, and increased ease of use. We found SCADE® to be easy to 

learn, and the training provided was adequate to begin modeling. However, the first release of 

SCADE® that we were given was unreliable. We had to back up our work several times a day to 

prevent losing it because SCADE® crashed often. It was not unusual for SCADE® to crash once 

or even twice a day for every engineer using it. The second release of SCADE® that we were 

given was much more reliable and the number of times that this version crashed was few. 

3) Develop metrics for the number of requirements that can be modeled and verified per labor hour 

and the number of safety and other defects found per requirement. We modeled approximately 

one requirement every hour. There was approximately one defect for every 4.7 requirements and 

one assumption per every 7.6 requirements. 

4) Prototype methods for modeling and verifying design aspects. We were not able to complete this 

objective. 

5) Document training requirements and guidelines. We were not able to complete this objective. 

 

5.3 Limitations 

 

There are two main constraints in using this method. One is the faithfulness of the model to the 

requirements. Is the model behaving as the software behaves? Is the model introducing or eliminating 

bugs? As the number and complexity of requirements increases, more assumptions are introduced to the 

model. This limitation applies to any model-checking method, not just SCADE’s method. The other 

limitation is the difficulty of merging work among multiple modelers. We were not able to introduce a 

satisfactory method of combining the work of multiple modelers. The best we did was to divide the tasks 

each modeler worked on and manually combine models once a week. The difficultly lies in merging 

operators that more than one modeler has edited and in connecting and adding inputs and outputs. 
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SCADE® does not have the capability to “drop in” different versions of operators, even if their inputs and 

outputs are the same. 

 

5.4 Efficacy of Model Checking Methods 

 

This technique has value as a method for checking models. It can be used to determine software functions 

that contribute to potentially unsafe conditions. It is also a cost-effective means to ensure safety, as it can 

identify potential software safety defects early in the software’s lifecycle, thereby reducing cost. 

Additionally, this technique can indicate critical software functions that need further testing. This 

technique also identifies requirements ambiguities. Clarifying these ambiguities helps improve safety and 

reduces software development and testing costs by minimizing re-work. 

 

We found a total of 198 requirements defects during our analysis, and only 54 of those were found 

through traditional IV&V methods. The additional 144 defects were discovered while building the model 

and while running Design Verifier™. Thus traditional IV&V methods missed 73% of the total defects we 

found. 

 

5.5 Recommendations for the Future 

 

The main deficit we recognize is the need for a systematic way to manage and merge versions. We 

suspect that a free version control tool like CVS would work for managing versions. An efficient way to 

merge versions proves more elusive. 
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Abstract
Bluespec SystemVerilog (BSV) is a Hardware Description Language based on the guarded action

model of concurrency. It has an elegant semantics, which makes it well suited for formal reasoning.
To date, a number of BSV designs have been verified with hand proofs, but little work has been
conducted on the application of automated reasoning. We present a prototype shallow embedding of
BSV in the PVS theorem prover. Our embedding is compatible with the PVS model checker, which
can automatically prove an important class of theorems, and can also be used in conjunction with the
powerful proof strategies of PVS to verify a broader class of properties than can be achieved with
model checking alone.

1 Introduction

Bluespec SystemVerilog (BSV) [Nik04] is a language for high-level hardware design, and produces hard-
ware that’s competitive with hand-written Register Transfer Level designs in terms of time and area for
many applications [WNRD04, Nik04]. It developed from research using Term Rewriting Systems (TRS)
to produce hardware specifications that could be synthesised and formally verified [AS99]; in common
with TRS, BSV is semantically elegant, which makes it well suited for formal reasoning [ADK08].
However, only one previous investigation has been made into the mechanised verification of BSV de-
signs [SS08], which concentrated on direct model checking of BSV designs in the SPIN model checker
[Hol03], without the capacity for interactive reasoning or abstraction.

In this paper we present a prototype shallow embedding of BSV in the PVS theorem prover [ORS92].
Our embedding is compatible with the PVS model checker [ORR+96], which can automatically prove
an important class of theorems. Furthermore, the PVS model checker can be used in combination with
the powerful proof strategies of PVS to verify a far broader class of properties than can be achieved with
model checking alone.

We use a novel application of monads to capture the complex state-encapsulation mechanisms of
BSV in a concise and readable way. Our embedding supports several advanced language features of
BSV, including module instantiation, side-effecting methods and rule composition from side-effecting
methods. In this work we present an embedding strategy: we have yet to build a BSV-to-PVS compiler,
which will be developed in conjunction with our related research into automated abstraction of BSV
designs.

The material in this paper is presented at length in the principal author’s PhD thesis [Ric10a], and
the associated code is available online [Ric10b]. Throughout the paper we present code fragments in
BSV and PVS; to make the difference clear, all BSV code is presented in Courier font and surrounded
by frames labeled ‘BSV’. All PVS code is presented in Times New Roman, without surrounding frames.

2 Bluespec SystemVerilog

BSV is a language for high-level hardware design. For an in-depth introduction, see the online lecture
series at [Blu]. In BSV, hardware is specified in terms of ‘modules’ that associate elements of state with
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‘rules’ (guarded actions) that transform the state and ‘methods’ that can be called by other modules to
return values from the state, and possibly transform it in the process.

A simple example of a module is Reg, which specifies a register with one element of state, no
internal rules and two methods, _read and _write. Other modules can create instances of Reg, and use
the methods _read and _write in their own rules and methods. For example, the following rule uses
two registers, request and acknowledge, both of which hold elements of type Bool1:

rule request_rl (!(request._read() || acknowledge._read()));
request._write(True);

endrule
BSV

The rule has a guard, which is a predicate on the state of the registers, and an ‘action’, which transforms
the state of the request register. In general, a rule has the form:

rule my_rule (rl_guard);
statement_1;
statement_2;
...

endrule
BSV

The statements in the rule body are individual actions that transform the state in some way. The set of
statements are applied in parallel to the state; each statement is applied to the state as it was immediately
before the rule was activated, so that the changes made by statement_1 aren’t seen by statement_2,
or any other statement. The BSV compiler ensures that the statements in a rule don’t conflict with each
other by simultaneously attempting to write to the same elements of state.

3 The Challenges of Embedding BSV in PVS

BSV uses guarded actions to express concurrency, which makes it similar to the guarded action lan-
guages that were developed for the formal study of concurrency; these include UNITY [CM88], Promela
[Hol03], the SAL language [dMOR+04] and the model checkable subset of the PVS language [ORR+96].
There is a rich body of literature on the use of model checkers and, to a lesser extent, theorem provers
for verifying systems expressed in these languages. However, BVS is a more complex language in some
respects, being intended for hardware design rather than abstract specification:

1. Complex encapsulation of state. As seen in §2, BSV has a ‘module’ construct that allows el-
ements of state to be associated with ‘rules’ and ‘methods’. Rules can be composed from the
methods provided by other modules; in this way, the execution of a rule in one module can alter
the state in another.

2. Widespread presence of data paths. Model checking is a useful tool for efficiently verifying
finite state concurrent systems, but can be confounded by the presence of data paths (circuits that
hold elements of data). Data paths can have very large state spaces, which can cause state space
explosions in model checkers; for this reason, model checking has been more widely used to
verify control-based systems. When abstract specification languages such as UNITY are used for
hardware verification, a model can be constructed that only specifies the control-based components

1BSV users will notice that we’ve de-sugared the method calls for Regs; we do this throughout the paper to simplify the
semantics, and also to emphasize the use of methods inside rules.
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of a design (when the data path is irrelevant to the properties being verified), or specifies some
abstract interpretation of the data path. With an embedding of BSV, however, the hardware design
is the specification; we can’t chose to omit data paths from our formal model. Because of this, we
must find a tractable way to abstract away from data path complexity within our proof environment.

So, in order to produce a usable general purpose embedding of BSV in a formal guarded action
language, we must first bridge the semantic gap by expressing the constructs of BSV with the more
limited constructs of our target specification language, preferably in such a way that equivalence between
the two can easily be established [CDH+00]. When we have achieved this, we must also bridge the
abstraction gap, to obtain abstract specifications that can be efficiently verified [SS99, CDH+00].

In this paper we concentrate on the first of these two steps. We offer an embedding strategy that
bridges the semantic gap between BSV and the model checkable subset of PVS with a novel use of mon-
ads [Bir98]. In further work, we hope to employ automatic abstraction [SS99] to our PVS specifications
in order to bridge the abstraction gap.

We actually introduce two embedding strategies with different strengths and weaknesses, and com-
bine them in a hybrid technique that preserves the strengths of both. In §5 we introduce an embedding
strategy that we call ‘primitive embedding’, where we specify BSV modules with ‘primitive transition
relations’. Primitive transition relations can be efficiently model checked, but bear little resemblance to
the BSV modules they represent, and we discuss the problems that this creates. In §6 we introduce an
embedding strategy that we call ‘monadic embedding’, where we specify BSV modules with ‘monadic
transition relations’. Monadic transition relations are syntactically similar to the BSV modules they rep-
resent, which cleanly bridges the semantic gap. However, verification is demanding in terms of CPU
time. We go on to introduce a hybrid technique that allows us to perform proofs over monadic tran-
sition relations with the efficiency normally associated with proofs over primitive transition relations.
We demonstrate the practical applicability of our approach in §7 with a hand embedding of a BSV fair
arbiter, for which we verify deadlock freedom, mutual exclusion and fairness properties.

4 The Semantics of a BSV Module

The behavior of a BSV module can be understood in terms of a simple semantics called Term Rewriting
System (TRS) semantics, also called ‘one-rule-at-a-time’ semantics. According to TRS semantics, a
module evolves from a given state by choosing one rule for which the guard is true and applying the
associated action to transform the state. If more than one guard is true, a nondeterministic choice is
made. When actual hardware is generated from BSV designs, a number of optimisations are applied
(for example, a clock is introduced and multiple rules are executed per clock cycle) but the behavior is
guaranteed to comply with the TRS semantics.

The TRS semantics gives the designer a simple, high-level way of understanding his design, and we
use it in our embedding. In PVS, we describe a rule as a predicate over pairs of states:

my rule (pre, post: Module State): bool = rl guard (pre) ∧ post = rl action (pre)

Here, rl guard and rl action are the PVS representations of the rule’s guard and action, and Module State
is the PVS representation of the module’s state. We can then express the TRS semantics of a module by
composing its rules together:

TRS transition relation (pre, post: Module State): bool = rule1 (pre, post) ∨ rule2 (pre, post) ∨ ...

TRS transition relation is a binary relation on ‘pre’ and ‘post’. It relates ‘pre’ to ‘post’ if any of its
constituent rules relates them when applied in isolation: we have a nondeterministic, one-rule-at-a-time
semantics. We consider the possible forms of Module State and rule1 etc. in the following sections.
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5 A Primitive Embedding of BSV in PVS

PVS has a set of proof strategies for using model checking to verify temporal logic assertions about
guarded action systems [ORR+96, SS99]. The state of a system can be defined inductively from boolean
and scalar types, using tuples, records or arrays over subranges, and the transition relation is defined as a
binary relation over pairs of states (as with TRS transition relation in §4).

Consider the following rule, which comes from the arbiter example of §7:

rule ack1_with_tok (token1._read() && req1._read()
&& !(ack1._read() || ack2._read() || ack3._read()));

ack1._write (True);
move_token;

endrule
BSV

The guard of this rule is a predicate over the state of five registers and the action changes the state of
register ack1, and also calls the ‘local action’ move_token:

Action move_token = (action token1._write(token3._read());
token2._write(token1._read());
token3._write(token2._read()); endaction);

BSV

We can specify the state of the Reg module as a PVS record with one field, and use this to specify
the state of our arbiter system (which has nine boolean registers):

Reg: TYPE =
[
# val: T #

]

Arbiter: TYPE =
[
# req1, req2, req3, ack1, ack2, ack3, tok1, tok2, tok3 : Reg

[
bool

]
#
]

The state of the Reg module could be expressed with a variable of type T, rather than a single-element
record. In general, however, modules have more complex states (for example, even a simple two element
‘First In, First Out’ buffer would need at least 3 variables) so we factor the complexity of nested module
states into records. This also helps to simplify our monadic embedding in §6.

We can now express the rule ack1_with_tok as a predicate over pairs of Arbiters:

ack1 with tok concrete (pre, post: Arbiter): bool =
pre‘tok1‘val ∧ pre‘req1‘val ∧ ¬ (pre‘ack1‘val ∨ pre‘ack2‘val ∨ pre‘ack3‘val)
∧ post = pre WITH

[
(ack1) := (# val := TRUE #),
(tok1) := (# val := pre‘tok3‘val #),
(tok2) := (# val := pre‘tok1‘val #),
(tok3) := (# val := pre‘tok2‘val #)

]

This is a straightforward way to express rules, and it’s compatible with the PVS model checker.
The state of the module is expressed as a record; rule guards are then expressed as predicates over the
fields of this record, and rule actions are expressed as record updates. When a statement calls a local
action, the action can be expanded in-place to a series of record updates (as we did here with the local
action move_token). Methods, which generally return some value and perform an action to transform
the state, can be expanded in-place by expressing the value they return as a pure function on the state,
and the action as a series of record updates. When methods appear in the guard, they will be side-effect
free (this is guaranteed by the BSV compiler) and can be expanded to pure functions on the state. This
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is our ‘primitive’ embedding strategy. We can represent a BSV module by specifying all of its rules in
this way, and combining them using the TRS transition relation function of §4; we then refer to this as a
‘primitive transition relation’.

This approach seems quite simple, but it has a drawback. If we express a rule by fully expanding all
of the actions and method calls, we expose its full complexity; BSV provides the module and method
constructs to avoid just this. If we specify a more complex module in this way (for example, one where
rules and methods call methods that themselves call methods, all returning values and producing side-
effects) we end up with a long-winded specification that bears little resemblance to the BSV module it
represents. If we assume that the process of translating from BSV to PVS is not formally verified, it
becomes difficult to provide assurance that the translation is accurate; we have a large and unverified
semantic gap. This makes it difficult to rule out false positives when a property is proven, or conversely
false negatives when a property is disproved. We would like to have a PVS representation that’s compat-
ible with the PVS model checker, but also relates back to the BSV code in a simple and transparent way.
Our solution is to use a variation of the state monad from functional programming [Bir98].

6 A Monadic Embedding

Monads are a technique for representing state in pure functional languages. A monad is simply a function
that takes an element of state as input and returns a value and a new state. Monads can by composed
sequentially in the same way as statements in a procedural language; this is achieved with the infix
operator# (pronounced ‘seq’), which is equivalent to the semi-colon in procedural languages, and also
a related function#= (‘bind’).

In this section we show that monads allow us to embed BSV rules at a higher level of abstraction
than our primitive embedding of §5. If this is your first exposure to monads, the first half of the section
should be fairly accessible (up to the definitions of #= and #). The rest of the section may require
some background reading; for example, [Bir98] has an excellent chapter on monads. Also, the principal
author’s PhD thesis [Ric10a] gives an introduction to monads in the context of the work presented here.

We develop a new embedding strategy for rules, where actions and method calls are expressed as
monads, rather than being expanded in-place. Before getting into the details, let’s take a look at the
result. This is our monadic embedding of the rule used in §5:

ack1 with tok = rule (tok1‘read ∧ req1‘read ∧ ¬ (ack1‘read ∨ ack2‘read ∨ ack3‘read))
(ack1‘write (TRUE) #
move token)

At the level of syntax, this is very similar the original rule. In contrast to the primitive embedding strategy
of §5, the complexity of methods and actions is factored out into monads. This yields rule specifications
that are syntactically similar to the BSV rules that they represent, so that errors in the BSV-to-PVS trans-
lation process will be discernible by inspection; with a far smaller semantic gap, false positives and false
negatives can be more easily ruled out. Because of the syntactic similarity, the BSV-to-PVS translator
will be simpler; translation will essentially be a task of converting between two very similar concrete
syntaxes. This is important because we expect that the BSV-to-PVS translator won’t be formally veri-
fied, so we must keep it as simple as possible. Furthermore, we hope that the structured, compositional
nature of our monadic specifications will simplify deductive reasoning when it’s necessary.

ack1 with tok is a function. It has the type
[[

Arbiter, Arbiter
]
→ bool

]
and is, in fact, extension-

ally equivalent to ack1 with tok primitive from §5; it’s just a more concise way of writing the same
function. If we fully expand all of the functions in the definition of ack1 with tok, we end up with
the definition of ack1 with tok primitive; a simple function involving record updates and functions over

Proceedings of NFM 2010, April 13-15, 2010, Washington D.C., USA. 143



A Prototype Embedding of Bluespec SystemVerilog in PVS Richards and Lester

record fields (we can do this in the PVS proof environment with the (expand*) proof strategy). We
can specify a BSV module by forming monadic specifications of its rules, and combining them using the
TRS transition relation function of §4; we then refer to this as a ‘monadic transition relation’.

The PVS model checker fails when it’s called directly on a monadic transition relation; this is pos-
sibly because of the extensive use of higher order functions. One solution is to expand the monadic
transition relation to the equivalent primitive transition relation with the (expand*) proof strategy, then
call the (model-check) strategy, and finally discharge a small number of subgoals with the (grind)
strategy. In our experience, this approach is fine for small examples but the expansion step is quite
demanding in terms of CPU time, which might become problematic for larger examples.

We can avoid expanding the monadic transition relation during every proof if we compile a PVS
theory containing the primitive transition relation. We can state in a lemma that the primitive transition
relation is extensionally equivalent to the monadic transition relation, and prove it with a single applica-
tion of the proof strategy (grind-with-ext). The PVS prover then treats the lemma as a rewrite rule,
so that we can call the (model-check) proof strategy directly on the monadic transition relation, and
the prover automatically rewrites it to the equivalent primitive transition relation, which can be efficiently
model checked. This approach makes proofs faster in CPU time because we don’t need to expand the
monadic transition relation during every proof. There are additional overheads incurred because we must
prove the equivalence lemma and compile the PVS theory containing the primitive transition relation, but
these are only done once and can be re-used for all proofs. We evaluate the two verification approaches
in §7. However, we can’t yet evaluate the overhead incurred by compilation of the primitive transition
relation because we have yet to build a BSV-to-PVS translator; we currently compile by hand.

6.1 A State Monad in PVS

So, how can we use monads to express actions and methods without expanding their full complexity
in-place? Consider the body of action move_token:

token1._write(token3._read());
token2._write(token1._read());
token3._write(token2._read());

BSV

We have three statements, each composed of two method calls. The meaning we want to capture for
the whole statement block is that an initial state is transformed independently by the three statements,
and the changes made by each are combined to give a new state. We can actually achieve the same effect
by applying the statements sequentially; we can apply the first statement to get a partially updated state,
then apply the second statement to update this new state, and apply the third statement to update the
result. This is possible because the statements are conflict-free; no two statements will update the same
element of state, so we don’t need to worry about later statements over-writing the updates made by
earlier statements. However, each statement needs access to the initial state, as earlier statements might
update elements of state that later statements need to read. This suggests that we specify statements as
instances of the type:

Monad: TYPE =
[[

S, S
]
→
[
A, S

]]

‘S’ is the type of the module’s state (in the case of move_token, it’s Arbiter from §5). ‘A’ is the type of
some return value; for the statements under consideration, it’s Null. Instances of Monad take two copies
of the module state (representing the initial state, and a partially updated state) and return a value and a
new instance of the state, with any additional updates added to those of the partially updated state. We
can compose statements to form rule bodies with the standard monad connectors (see [Bir98] for a good
introduction) with#= adapted to accept a pair of input states rather than a single input state:
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#= (m: Monad
[
S,A

]
, k:

[
A →Monad

[
S, B

]]
): Monad

[
S, B

]
=

λ (init, updates: S): LET (val, new updates) = m (init, updates) IN k (val) (init, new updates)

# (m: Monad
[
S, A

]
, n: Monad

[
S, B

]
): Monad

[
S, B

]
= m #= λ (val : A) : n

Shortly, we will introduce monads that specify register methods token1._read, token1._write
etc. and call them tok1‘read, tok1‘write etc. We can use these to compose a specification of move_token:

move token: Monad
[
Arbiter, Null

]
= tok1‘read #= tok2‘write #

tok2‘read #= tok3‘write #
tok3‘read #= tok1‘write

6.2 Monad Transformers

What form will the monads tok1‘read, tok1‘write etc. have? Given that move tok has type Monad
[
Arbiter,

Null
]
, they are constrained to have the type Monad

[
Arbiter, T

]
for some T; that is to say, they must op-

erate on instances of the Arbiter state, despite the fact that they only influence one register within that
state. We can achieve this by specifying the two generic register methods (read and write) as monads
that act on type Reg

[
T
]
, and lifting them to monads that act on type Arbiter with monad transformers:

read : Monad
[
Reg

[
T
]
, T

]
= λ (init, updates: Reg

[
T
]
): (init‘val, updates)

write (d: T ) : Monad
[
Reg

[
T
]
, Null

]
= λ (init, updates: Reg

[
T
]
): (null, (# val := d #))

Transformer : TYPE =
[
Monad

[
R, A

]
→ Monad

[
S, A

]]

transform (get R:
[
S → R

]
, update R:

[[
S, R

]
→ S

]
): Transformer =

λ (m: Monad
[
R, A

]
) (init, updates: S) : LET (val, new updates) = m (get R (init), get R (updates))

IN (val, update R (updates, new updates))

A function of type Transformer takes a monad over state R and lifts it to become a monad over state
S. We can use the ‘transform’ function to produce a Transformer that lifts the generic register functions
(read and write) to operate on our Arbiter state. For example, we can do this for the tok1 register:

tok1T: Transformer
[
Reg

[
bool

]
, Arbiter, T

]
= transform(get tok1, update tok1)

where get tok1 and update tok1 access and update the tok1 field of an Arbiter record. We can then define
our lifted monads tok1‘read and tok1‘write:

tok1:
[
# read : Monad

[
Arbiter, bool

]
, write :

[
bool→Monad

[
Arbiter, Null

]]
#
]

= (# read := tok1T
[
bool

]
(read), write := λ (x : bool) : tok1T

[
Null

]
(write (x)) #)

We can use these monads in the guard if we overload the standard Boolean and equality operators
with functions over monads. For example:

∧ (m, n: Monad
[
S, bool

]
) : Monad

[
S, bool

]

= λ (init, updates : S) : LET b1 = (m (init, updates))‘1, b2 = (n (init, updates))‘1
IN (b1 ∧ b2, updates)

This allows us to construct guard predicates in a readable way, having a concrete syntax similar to guards
in BSV. An example of this was seen earlier in the section, in the guard of rule ack1 with tok.

Finally, when we have monadic specifications of a rule’s guard and body, we can form a ‘rule’ that
is a predicate over pairs of states, using the function:
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rule (guard: Monad
[
S, bool

]
) (action: Monad

[
S, Null

]
) (pre, post: S): bool =

(guard (pre, pre))‘1 ∧ post = (action (pre, pre))‘2

7 Experimental Results: Embedding a Fair Arbiter

To evaluate our embedding strategy, we produced a BSV design for the control circuitry of a 3-input fair
arbiter, which we embedded in PVS and verified with the PVS model checker. Our design is a variation
of the synchronous bus arbiter presented in [dM04], and amounts to just over 100 lines of BSV.

We represent the three inputs by Boolean ‘request’ registers, which are used to request access to the
output. The arbiter also has a Boolean ‘acknowledge’ register for each input, which is used to inform the
input client that its request has been acknowledged, and that it has exclusive access to the output until the
request is removed. In order to guarantee fair access to the output, the arbiter also has a separate Boolean
‘token’ register for each input; of the three ‘token’ registers, only one is set to true at any time. When an
input ‘has the token’ the arbiter gives it priority over all other incoming requests. Each time a request is
granted, the token is cycled round to another input, so that all inputs are guaranteed to receive the token
(and therefore access to the output) infinitely often.

We use the Computation Tree Logic of PVS [ORR+96] to specify deadlock freedom, mutual exclu-
sion and fairness properties for our arbiter, using an initial state defined by mkArbiter. The deadlock
freedom theorem declares that every state that can be reached from the initial state by repeated applica-
tion of the transition relation can reach another, different state with one more application. The mutual
exclusion theorem declares that no two inputs will ever be acknowledged (and hence have access to the
output) at the same time. The fairness theorem declares that a request by any input will be acknowledged:

deadlock freedom: THEOREM AG (transitions, λ a : EX (transitions, λ a1 : a %= a1) (a)) (mkArbiter)

mutex: THEOREM AG (transitions, mutex pred) (mkArbiter)
WHERE mutex pred (a) =

¬ (a‘ack1‘val ∧ a‘ack2‘val ∨ a‘ack2‘val ∧ a‘ack3‘val ∨ a‘ack3‘val ∧ a‘ack1‘val)

fairness: THEOREM AG (transitions, fairness pred) (mkArbiter)
WHERE fairness pred (a) = (a‘req1‘val ∧ ¬ a‘ack1‘val⇒ AF (transitions, λ a1: a1‘ack1‘val) (a))

∧ (a‘req2‘val ∧ ¬ a‘ack2‘val⇒ AF (transitions, λ a1: a1‘ack2‘val) (a))
∧ (a‘req3‘val ∧ ¬ a‘ack3‘val⇒ AF (transitions, λ a1: a1‘ack3‘val) (a))

We proved all three theorems with the ‘expansion’ and ‘rewrite’ approaches introduced in §6. With
both approaches, the proofs are relatively simple to carry out. For the ‘expansion’ approach, we call
(expand*) followed by (model-check) and (grind). The ‘rewrite’ approach requires a proof of
equivalence between the monadic and primitive transition relations, which could be done with the strat-
egy (grind-with-ext), and thereafter the theorems of interest are verified with (model-check) and
(grind). In terms of CPU time, we found that the ‘rewrite’ approach was significantly faster:

Theorem Proof with Expansion Proof with Rewrite Speedup

deadlock freedom 39 secs 0.54 secs × 72
mutex 15 secs 0.39 secs × 38
fairness 79 secs 2.0 secs × 40
equivalence of transition relations – 3.3 secs –

The figures were obtained on a MacBook Pro with an Intel Core 2 Duo 2.53 GHz processor and 2 GB
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1067 MHz DDR3 memory. We could not quantify the extra CPU time required to compile the primitive
transition relation in the ‘rewrite’ approach, as we currently compile by hand.

8 Related Work

Prior to our research, there was one investigation into the mechanised verification of BSV designs. In
[SS08] Singh and Shulka present a translation schema from a subset of BSV into Promela, the spec-
ification language of the SPIN model checker. They use SPIN to verify that rule scheduling is a valid
refinement, and also to verify LTL assertions. The subset of BSV that they consider is similar to ours, but
doesn’t include: instantiation of non-trivial nested modules; methods with arbitrary side-effects and re-
turn values; rule composition from methods with arbitrary side-effects and return values. They translate
directly to Promela, in contrast to our approach, which uses monads to bridge the semantic gap.

In addition to the PVS embedding in this paper, we have also embedded the same subset of BSV
in the SAL model-checker [RL10]. There are a number of advantages in compiling to a specialized
model checker such as SAL. The PVS model checker is symbolic, but it’s often useful to have access
to explicit or bounded model checking; SAL provides both of these. Also, the PVS model checker
doesn’t provide counter-example traces when it fails to prove a property, whereas SAL does. However,
we could not recreate our monadic embedding in SAL, because it requires interactive proof strategies.
Instead, we produce a primitive embedding in SAL and use PVS to prove that instances of this embedding
are equivalent to instances of a monadic embedding expressed in PVS. This is a good example of the
benefits of interactive theorem proving, even for systems which at first inspection seem to fit well into
fully automated proof tools.

In the wider literature, our work sits somewhere between theorem prover embeddings of formal
guarded action languages and model checking of main-stream hardware and software languages. There
are a number of theorem-prover embeddings of guarded action languages. In [Pau00], Paulson embeds
UNITY in the Isabelle [Pau94] theorem prover. Rather than using model checking to discharge repetitive
proofs, he uses a set-based formalism in his embedding that allows efficient use of Isabelle’s proof tactics.
In [CDLM08], Chaudhuri et. al. present a proof environment for TLA+ [Lam02]; as with Paulson, they
use automated deduction rather than model checking to lessen the proof burden.

Because languages like UNITY and TLA+ were developed for specification rather than design, there
is less emphasis on the use of abstraction for state-space reduction, which will be necessary in a general-
purpose verification tool for BSV. There have been a number of applications of abstraction and model
checking to verify programs expressed in main-stream hardware and software languages. Some of the
larger projects include the Java model checkers Bandera [CDH+00] and Java PathFinder [VHBP00], and
the C model checkers FeaVer [HS00] and SLAM [BR02]. All of these tools employ some combination
of static analysis, slicing, abstract interpretation and specialization to reduce the state space.

Monads have been used several times before to express state in theorem prover specification lan-
guages; notable examples include [Fil03, KM02, BKH+08].

9 Conclusions and Further Work

We have presented a shallow embedding for a subset of Bluespec SystemVerilog in the PVS theorem
prover. Our embedding uses monads to bridge the semantic gap, whilst allowing efficient use of the PVS
model checker to discharge several important classes of proofs.

In further work, we plan to extend our approach with automated abstraction. PVS has a number
of proof strategies for automatic predicate abstraction [SS99] that are closely integrated with the PVS
model checker; this will be our first line of investigation. We hope to combine our work in PVS and SAL
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by producing a translator that compiles BSV designs to both languages, giving users the benefits of both
tools. We intend to road-test our combined system by verifying a BSV model of the communications
network of the SpiNNaker super-computer, which we have previously verified using Haskell [RL09].
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Abstract

MATLAB Simulink is a member of a class of visual languages that are used for modeling and
simulating physical and cyber-physical system. A Simulink model consists of blocks with input and
output ports connected using links that carry signals. We extend the type system of Simulink with
annotations and dimensions/units associated with ports and links. These types can capture invariants
on signals as well as relations between signals. We define a type-checker that checks the well-
formedness of Simulink blocks with respect to these type annotations. The type checker generates
proof obligations that are solved by SRI’s Yices solver for satisfiability modulo theories (SMT).
This translation can be used to detect type errors, demonstrate counterexamples, generate test cases,
or prove the absence of type errors. Our work is an initial step toward the symbolic analysis of
MATLAB Simulink models.

1 Introduction

The MATLAB Simulink framework models physical and computational systems using hierarchical block
diagrams. Simulink provides the framework for building and simulating systems from a set of basic
building blocks and libraries. Blocks have input and output ports and the ports of different blocks are
connected via links. Simulink has a basic type system for annotating ports and links, along with a limited
capability for checking type correctness. There is, however, no systematic design-by-contract capability
for Simulink. We have developed a SimCheck capability that allows contracts [Mey97, ORSvH95] to be
specified by means of type annotations associated with the ports and links. SimCheck can be used to carry
out type inference for basic types, annotate links with expressive types, unit types, generate test cases,
capture interfaces and behaviors, monitor type conformance, and verify type correctness relative to such
expressive types. The SimCheck type system can be used to specify and verify high-level requirements
including safety objectives.

Unlike prior work [RdMH04, AC05, KAI+09, AKRS08, BHSO07, WCM+07] in the verification and
testing of Simulink/Stateflow designs, we pursue an approach that is closer to the correct-by-construction
paradigm. Our SimCheck tool is similar to the type-checker of the strongly-typed functional languages
(e.g. OCaml, Haskell etc.). The SimCheck tool is written in Matlab language and is integrated with
MATLAB Simulink. The designer can annotate the Simulink blocks with a type written in a simple
annotation language. SimCheck tool can type-check the model with respect to the type and provide
feedback to the designer whether the design behaves in the intended manner. If it does not, then the tool
generates the inputs that are responsible for the design to fail the type-checker. The designer can simulate
the generated test inputs on the design via dynamic monitoring of type constraints during simulation. The
designer can repeatedly fix the design and type-check the modified design in the design-cycle until the
SimCheck type-checker passes the design. Thus the integration of the SimCheck tool with the Simulink
diagrams provides a powerful, interactive tool to the designer.

There is a long tradition of work on adding units and dimensions to type systems [ACL+05, Ken97,
Ken96]. Many system errors occur because of incompatibilities between units. For example, in 1985,
∗This research was supported by NSF Grant CSR-EHCS(CPS)-0834810 and NASA Cooperative Agreement

NNX08AY53A.
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a strategic defense initiative (SDI) experiment went awry because the space shuttle pointed its mirror
at a point 10,023 nautical miles, instead of feet, above the earth. In 1999, the Mars Climate Orbiter
entered an incorrect orbit and was destroyed because of confusion between metric and imperial units of
measurement. Though Simulink deals primarily with physical quantities, we know of no prior work on
developing a type system with dimensions and units for it.

Each Simulink model consists of network of blocks. Each block has some common parameters: the
block label, the function, default initial values for state variables, and input and output ports. Blocks can
be hierarchical so that they are composed from sub-blocks connected by links. Simulink can be used to
model both continuous and synchronous systems. Each output of a Simulink block is a function of its
inputs. In a continuous-time model, the output of a block varies continuously with the input, whereas in
a discrete-time block, the signals are update synchronously in each time step. A block can also contain
state variables so that the output can be a function, in both the discrete and continuous-time models, of
the input and current state. We develop four analyzers for Simulink models:

1. An expressive type system that can capture range information on signals as well as relationships
between signals. Type correctness can be proved using the Yices solver.

2. A test case generator that produces inputs that conform to the specified type constraints, or that
illustrate type violations.

3. A unit analyzer that looks at the actual unit dimensions (length, mass, time, etc.) associated with a
numeric type.

4. A verifier for properties using bounded model checking and k-induction.

While we make heavy use of Yices to solve the constraints involved in type inference, analysis,
and test case generation, it is quite easy to plug in a different back-end solver. The target applications
for SimCheck are in various fields including hardware/protocol verification, Integrated Vehicle Health
Management (IVHM) and in cyber-physical systems (CPS). In these cases, the type system is used to
capture the safety goals of the system to generate monitors for the primary software in order to generate
alerts.

2 Types and Simulink

In Simulink, parameters, ports and signals have types. The basic types range over bool, int8, int16,
int32, uint8, uint16, uint32, and single and double floating point numbers. Complex
numbers are represented as a pair of numbers (integer or floating point). We ignore enumerated types
which contain string values. Fixed point real numbers are supported in an extension, but we do not
consider them here. The datatype for a port can be specified explicitly or it can be inherited from that
of a parameter or another port. The type of an output port can be inherited from a constant, an input
port, or even from the target port of its outgoing link. Simulink has structured types which are vectors or
matrices of the basic Simulink types. Simulink also supports objects and classes which are ignored here.
We do not address basic typechecking for Simulink since this is already handled by MATLAB. We add a
stronger type-checking to the built-in type-checker. In this paper, however, we focus on more expressive
type annotations for Simulink covering dimensions and units, predicate subtypes and dependent types,
and bounded model checking. A solver for Satisfiability Modulo Theories (SMT) can determine if a given
formula has a model relative to background theories that include linear arithmetic, arrays, data types, and
bit vectors. Yices[DdM06] is an SMT Solver developed at SRI International. Our annotations are written
in the constraint language of the Yices SMT solver. We use Yices as our main tool in checking contracts
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and finding test cases and counterexamples. We provide a basic introduction to the Yices solver in the
Appendix.

3 Translation of Designs to the Yices Language

The translation scheme is illustrated with the example of the trajectory of a projectile. Figure 1 shows
the MATLAB model and it takes three inputs: the firing angle θ with respect to the horizontal, the initial
velocity v, and the height h0 above the ground. The model computes the horizontal and vertical distance
of the projectile at time t from the origin (0,0) via dx and dy respectively. The quantity vy denotes the
vertical velocity of the projectile.

Figure 1: Projectile Subsystem

Parsing MDL Files : Simulink diagrams are textually represented as mdl files. We have used the built-
in Simulink functions to create an abstract syntax tree (AST). Algorithm 1 resolves the types of every
signal by block and connector information. Matlab blocks generally have polymorphic types. All the
blocks in Figure 1 can take different types. However Yices is a strongly-typed language; so the algorithm
needs to resolve the types of each signal before the translation process. The algorithm traverses the
Simulink blocks from the source blocks (e.g. Constant blocks) and obtains the type information for the
ports /signals gradually. For some signals and ports the concrete type information is not available and
the tool creates an equivalence type-map for these variables. For example, type of v is equivalent to
the type of first input of Product block in Figure 1. The algorithm traverses the blocks in the design
in a Breadth-First Search (BFS) manner. The only interesting cases are when the algorithm dequeues
a subsystem block or an outport of a subsystem block. In the first case, the algorithm appends all the
inports of the subsystem block. The outport of a subsystem block appends the successor blocks of the
parent subsystem.

Block Translation: The function dump2yices (Algorithm 2) translates every visited block and connec-
tor transition into the Yices language. The procedure printBlockInfo(block,d) dumps the type information
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Algorithm 1 MDL2YICES (model)
visitedBlocks = /0

1. create the block transitions by parsing the connectors
2. push source blocks of the design into a queue
3. while queue is non-empty
4. block x = dequeue()
5. parse block x for description, type information and block-transitions
6. visitedBlocks = visitedBlocks ∪ {x}
7. if block is subsystem then append inports of x
8. else if block is an outport then append the successors of its parent subsystem
9. else append its successor of x
10. end if
11.end while
12.dump2yices(model,visitedBlocks,1)

of the ports to the Yices file. The procedure also provides the transition-function of the block from the
input ports to the output ports.

Example 1. The type information and the block transitions of the Divide block are as follows:

(define Divide ::(-> real real real ))
(define DivideIn1 :: real )
(define DivideIn2 ::( subtype (n :: real ) (/= n 0)))
(define DivideOut :: real )
(assert (= DivideOut ( Divide DivideIn1 DivideIn2 )))

The algorithm printConnectors translates the connector assignments. Each connector signal obtains
the value and type from its source block. Similarly, the signal variables propagate the type and value to
its destination block inputs. We provide translation schemes for all other basic blocks in the Appendix.
The algorithm parseDescription parses the user-given annotations for the type-checking and verification
step. We describe the annotation grammar in the next section.

Algorithm 2 dump2yices(model,visitedBlocks,depth)
1. descr = ’ ’
2. for d ∈ {1,2, . . . ,depth+1}
3. for block ∈ visitedBlocks
4. descr = descr + parseDescription(block,d)
5. printBlockInfo(block,d)
6. end for
7. printConnectors(d)
8. end for
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4 An Expressive Type System

In the SimCheck tool, the user can provide the constraints and properties for type-checking as well as ver-
ification via annotations. These annotations can be written as block descriptions or simulink annotation
blocks. The simple grammar of the annotation language has the following syntax:

blockannotation = def | constraints
def = scopedef | typedef | unitdef
scopedef = ( input | output | local) <varname>
typedef = type <varname> :: <vartype>
unitdef = unit <varname> :: <varunitvalue>
constraints= ( prop | check | iinv | oinv | bmcprop | kind ) <expressions>

where, the terminal tokens are shown in bold. The start symbol of the grammar blockannotation consists
of two parts : definitions and properties. The definitions can provide the details about the scope, data-
type or units of the given signal. The tokens < varname >, < vartype >, < varunitvalue > denote the
scope, type, units of the signals respectively. The constraints are in either input-output invariant (tokens
iinv and oinv respectively) style or the assume-guarantee (tokens check and prop respectively) style. We
use the tokens bmcprop and kind for bounded-model-checking and k-induction purposes. The token
< expressions > denotes a prefix notation of the expression over the signal variables (syntactically the
same as Yices expressions). Figure 2(a) shows an example of user-given block description.

Compatibility Checking The user can provide various constraints over different Simulink blocks. The
tool checks the compatibility of the design with user-provided constraints. Let Cmodel and Cuser denote the
set of assertions from the model and user-provided constraints respectively. If the user-given constraints
are not satisfiable with respect to the Simulink design, then the tool declares that the design blocks are
not compatible with the constraints. In other words, the Yices solver returns unsat result for the query
∩cs∈(Cmodel∪Cuser)cs. There is no environment (i.e test input) that can satisfy the given user-constraints and
the design.

Example 2. For example, Figure 2(b) illustrates that the divider block only accepts non-zero inputs. If
the design connects constant zero to the second input of the divider block the design fails the compatibility
checking. The translation algorithm adds the following lines to the codes of Example 1:

(assert (= DivideIn2 0))
(check)

→ unsat

Dependent Types and Refinement Types: The expressive type-systems of the SimCheck tool are sim-
ilar to the PVS type-system and our tool supports predicate subtypes and dependent subtypes. Predicate
subtyping can be used to capture constraints on the inputs to a function, such as, the divisor for a division
operation must be non-zero. They can also be used to capture properties on the outputs, so that, for ex-
ample, the output of the absolute value function is non-negative. Finally, dependent typing can be used
to relate the type of an argument or a result to the value of an input. For example, we can constrain the
contents array of a stack data type to have a size equal to the size slot. We can also ensure that the length
of the result of appending two lists is the sum of the lengths of these two lists.

Example 3. Figure 3 shows the expressive power of the type-systems via thermostat example. The out-
put signal on can only take two integer values 0 and 1 (predicate subtype). The input signals ref and
houseTemp are dependent in such a way that the value of houseTemp should be always higher or equal
to 5 degrees below of ref (dependent types).
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(a) Annotation Block (b) Compatibilty

Figure 2: Expressive Types

Figure 3: Thermostat Example with Dependent and RefinementTypes

With this kind of expressive typing, we can generate test cases that conform to input constraints.
The test criterion can itself be expressed as a type constraint. When a type constraint does not hold, we
can construct test cases that illustrate the violation. If no such violations are found, this validates type
correctness relative to the expressive type annotations. Of course, this assumes that we have a sound and
complete decision procedure for the proof obligations arising from such type constraints, but this is not
always the case. Many Simulink models are finite-state systems and expressive type checking can be
decidable, even if it is not practical. However, for the purpose of expressive type checking, we assume
that the signal types are taken from mathematical representations such as integers and real numbers.

Test Case Generation A test-case generator produces inputs that conform to the specified type con-
straints, or illustrate type violations. Let S and C denote the set of signals and user-constraints in a design
respectively. For every signal s ∈ S and for every constraint cs ∈C on signal s, the tool asks for the sat-
isfiability of the (¬cs)∩ (C \ cs). The Yices solver returns either a negative answer (unsat) or a positive
answer with a satisfying variable assignment. In the former case, we learn that there is no input that
can satisfy (¬cs)∩ (C \ cs). In the latter case, the variable assignment can provide a test-case that fails
exactly one of the user-given constraints and satisfies the other constraints.

Example 4. Figure 4 shows a design with various user-given input assumptions C = {(/ = s 0),(<=
x 8),(>= z 5)} of a design. Figure 2(a) shows the constraints of the Add block in the Figure 4. We can
verify that each of the three test-cases represents one case where all except one constraint is satisfied.
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Figure 4: Test Case Generation

5 Property Verification via BMC and k-induction

Most practical designs contain memory elements and state variables; thus the effect of inputs spans
multiple clock-cycles. Hence, for a design with state-variables, the errors can only be detected with a
sequence of test inputs. The type checking for the sequential Simulink models can be extended to the
verification of the systems by bounded model-checking and k-induction algorithms. Algorithm 3 and
Algorithm 4 provide the pseudo-code for the bounded model checking and k-induction respectively for
a property φ and a user-given depth k.

Algorithm 3 BMC(k,vBlocks,φ ,model)
1. transition(1,k +1) = dump2yices(model,vBlocks,k)
2. ψ = ∨d∈{1,2,... ,k+1}¬φd

3. check(transition,ψ)

Example 5. Figure 5 shows a design of a modulo-3 counter using 2 memory bits and an invariant
property that both bits cannot become 1 together. We have

transition(i, i+1) = (m0(i+1) = ¬(m0(i)∨m1(i)))∧ (m1(i+1) = (m0(i)∧¬(m1(i))))

and φi = ¬(m0(i)∧m1(i)). If the design is correct then the counter will never reach 3 and the given
property will hold for any k. For any user-given depth k, the bounded model checking (BMC) tool asks
the following query to the Yices solver : ∧i∈{1,2,... ,k}transition∧ (∨i∈{1,2,... ,k}¬φi). For a correct design,
the negated invariant property will never get satisfied and the BMC will return the unsat result .

Algorithm 4 K-Induction(k,vBlocks,φ ,model)
1. transition(1,k +1) = dump2yices(model,vBlocks,k)
2. ψ = (∧d∈{1,2,... ,k}φd)∧¬φk+1
3. check (transition,ψ)
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Figure 5: Bounded Model Checking

6 Specifying and Checking Dimensions

Most types in Simulink are numeric. Dimensions add interpretation to such types. A signal may have
a numeric type without indicating whether the numeric quantity represents force or volume. Dimension
checking can also highlight errors. For instance, the time derivative of distance should yield velocity, and
the time derivative of velocity should yield acceleration. Multiplying a mass quantity with an acceleration
quantity should yield a force. Each of these, distance, velocity, acceleration, mass, and force can also
be represented in different units. Confusion about units has led to some software-related failures. In
September 1999, NASA’s Mars Climate Orbiter was placed into a 57km orbit around Mars instead of
a 140-150km orbit because some calculations used pound force instead of Newtons. We use Novak’s
classification [Nov95] of units into a 7-tuple consisting of distance, mass, time, temperature, current,
substance, and luminosity. We have other dimensions like angle and currency, but these are distinct from
the basic ones considered above. The dimension of a quantity is represented as a 7-tuple of integers. For
example, 〈1,0,−1,0,0,0,0〉 represents velocity since it is of the form distance

time . A dimension of the form
〈0,0,0,0,0,0,0〉 represents a dimensionless scalar quantity. Figure 6 shows the projectile design and
the output of the dimension checker tool. The projectile subsystem block already shown in the Figure 1
We infer dimensions for Simulink signals from the annotations for the input signals and the outputs of
constant blocks. When a summation operation is applied to a set of input signals, the dimensions of
these signals must match, and the resulting summation has the same dimension. When two or more
inputs are multiplied, the dimension of the corresponding output is given by the pointwise summation of
the dimensions.

Figure 6: Unit and Dimensions
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7 Related Work

Our work covers the verification and validation of MATLAB Simulink models through type annotations.
We use the Yices SMT solver to both verify type correctness as well as to generate test cases. We focus
in particular on expressive types that go beyond signal datatypes to capture dynamic ranges and rela-
tionships between signals. We also employ types to describe and check dimension and unit information.
Finally, we employ bounded model checking and k-induction to verify invariant properties and generate
counterexamples.

There is a substantial body of work [RdMH04, AC05, KAI+09, AKRS08, CK03, Sys, TSCC05,
WCM+07] in all of the above areas. The Reactis tool [Sys] generates and simulates test cases for
Simulink/Stateflow models including embedded C code. The Mathworks Simulink Design Verifier also
performs test generation. The Simulink Design Verifier is also capable of generating test cases and for
proving and refuting functional properties of Simulink blocks. The CheckMate tool [CK03] analyzes
properties of hybrid systems represented by Simulink/Stateflow models using a finite state abstraction of
the dynamics. The Honeywell Integrated Lifecycle Tools and Environment (HiLiTE) [BHSO07] from
Honeywell Research uses static analysis to constrain the ranges of inputs in order to generate test cases,
detect ambiguities and divide-by-zero errors, and unreachable code. The HiLiTE tool bases its analy-
sis on numeric techniques on a floating-point representation, whereas our approach is based on sym-
bolic constraint solving over the real numbers. The Simulink-to-Lustre translator defined by Tripakis, et
al [TSCC05], performs type inference on Simulink models and the resulting Lustre output can be ana-
lyzed using model checkers. The Gryphon tool suite [WCM+07] integrates a number of tools, including
model checkers, for analyzing properties of Simulink/Stateflow models.

There is a long tradition of work on adding units and dimensions to type systems. These are surveyed
in Kennedy’s dissertation [Ken96] where he presents a polymorphic dimension inference procedure.
Kennedy [Ken97] also proves that these programs with polymorphic dimension types are parametric so
that the program behavior is independent of the specific dimension, e.g., whether it is weight or length,
or its unit, e.g., inches or centimetres. The resulting type system, in which the numeric types are tagged
by dimension, has been incorporated into the language F#. The recently designed Fortress programming
language for parallel numeric computing also features dimension types [ACL+05]. We use an approach
to dimensions that is based on a fixed set of seven basic dimensions. Operations are parametric with
respect to this set of dimensions. The type is itself orthogonal to the dimension, so that it could be an
int32, float, or double, and still have a dimension corresponding to the weight. We use an SMT
solver to perform type inference with dimensions, and use scaling to bridge mismatched units.

8 Future Directions

This work is our first step toward type-based verification of physical and cyber-physical models described
in Simulink. Our work can be extended in a number of directions. Many models also contain Simulink
blocks to represent discrete control in the form of hierarchical state machines. For static type checking
and bounded model checking, we can extract the relationships between inputs and outputs of the State-
flow descriptions. We can also associate interface types that capture the temporal input-output behavior
of Stateflow state machines. Our current translation to Yices maps the Simulink bounded integer types
to the unbounded integer types of Yices, and the floating point types of Simulink are mapped to the real
numbers in Yices. This makes sense for checking the idealized behavior of the models. We can also
map these types to their bounded representations or even directly to bit vectors. The latter translations
are more useful when checking the execution behavior of the models or in validating the code gener-
ated from the models. The SimCheck type system and Yices translation can also be extended to capture
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more extensive checking of Simulink models. We would like to extend our checks to cover Simulink
S-functions which are primitive blocks defined in the M language. We also plan to cover other properties
such as the robustness of the model with respect to input changes, error bounds for floating point compu-
tations, and the verification of model/code correspondence through the use of test cases [BHSO07]. The
type system can also be extended to handle interface types [dAH01, TLHL09] that specify behavioral
constraints on the input that ensure the absence of type errors within a block. Finally, we plan to translate
Simulink models to SAL and HybridSAL representations for the purpose of symbolic analysis.

9 Conclusions

We have outlined an approach to the partial verification of Simulink models through the use of an ex-
pressive type system. This type system can capture constraints on signals, the dimensions and units of
signals, and the relationships between signals. Our annotations are already expressed in the constraint
language of Yices. The resulting proof obligations are translated to the Yices constraint solver which is
then used to check compatibility with respect to dimensions, generate counterexamples and test cases,
and to prove type correctness. We also use Yices to perform bounded model checking and k-induction
to refute or verify type invariants. SimCheck represents a preliminary step in exploiting the power of
modern SAT and SMT solvers to analyze the Simulink models of physical and cyber-physical systems.
Our eventual goal is to use this capability to certify the correctness of such systems.
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A Appendix

A.1 Satisfiability Modulo Theories and Yices

The formula language for Yices is similar to that of PVS and is quite expressive. It includes a higher-
order logic with predicate subtypes and dependent types. Interaction with Yices occurs through some
basic commands

1. (define 〈identi f ier〉 :: 〈type〉〈expression〉): Defines a constant.

2. (assert 〈 f ormula〉): Asserts a formula to the context.

3. (check): Checks if the context is satisfiable.

There are other commands for resetting the context, pushing and popping contexts, setting various flags,
and invoking weighted satisfiability. As a simple example, Yices responds with unsat to the input

(define x::real)
(assert (< (+ x 1) x))

Yices also returns unsat on the following integer constraints.

(define i::int)
(assert (> i 0))
(assert (<= (* 2 i) 1))

On the other hand, if we relax the second constraint to a non-strict inequality, we get sat with an
assignment of 0 for i.
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(define i::nat)
(assert (<= (* 2 i) 1))
(check)

Yices can of course handle large problems with thousands of variables and constraints involving
Booleans, arrays, bit vectors, and uninterpreted function symbols. We can run Yices in the batch mode :
./yices ex1.ys. Yices also provides a basic typechecker.

A.2 Block Translation Details

Memory Blocks One memory element with initial value 70 can be translated in two consecutive clock
cycles as follows:

(define Memory__Out1__time1 :: real)
(define Memory__In1__time1 :: real)
(assert (= 70 Memory__Out1__time1))
(define Memory__Out1__time2 :: real)
(define Memory__In1__time2 :: real)
(assert (= Memory__Out1__time2 Memory__In1__time1))

Basic Blocks We exploit the YICES operators directly to translate basic arithmetic and logical operator
blocks. For example, Product block in Figure 1 is translated as

(define Product__In1__time1 :: real )
(define Product__In2__time1 :: real )
(define Product__Out1__time1 :: real )
(assert (= Product__Out1__time1 (* Product__In1__time1

Product__In2__time1 )))

Constants Simulink constant blocks can have either a scalar value, a vector or a matrix. In the trans-
lation process we assume the matrix of type t as a function of type int → int → t The translation
process can catch the following problems via type checking rows and columns- (1) row-column
mismatches between blocks, (2) calling out of indices (for vectors/arrays as well as matrices). For
example, Constant1 block in Figure 1 is translated as

(define Constant1__Out1__time1 :: real )
(assert (= Constant1__Out1__time1 2))

Signal Connectors For example, the signal c in Figure 1 adds the following translations

(define c__time1 :: real )
(assert (= c__time1 Constant__Out1__time1 ))
(define Product3__In2__time1 :: real )
(assert (= Product3__In2__time1 c__time1 ))
(define Product2__In2__time1 :: real )
(assert (= Product2__In2__time1 c__time1 ))
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Abstract

In black-box testing, the tester creates a set of tests to exercise a system under test without re-
gard to the internal structure of the system. Generally, no objective metric is used to measure the
adequacy of black-box tests. In recent work, we have proposed threerequirements coverage metrics,
allowing testers to objectively measure the adequacy of a black-box test suite with respect to a set
of requirements formalized as Linear Temporal Logic (LTL) properties. In this report, we evaluate
the effectiveness of these coverage metrics with respect tofault finding. Specifically, we conduct an
empirical study to investigate two questions: (1)do test suites satisfying a requirements coverage
metric provide better fault finding than randomly generatedtest suites of approximately the same
size?, and (2)do test suites satisfying a more rigorous requirements coverage metric provide better
fault finding than test suites satisfying a less rigorous requirements coverage metric?

Our results indicate (1) only one coverage metric proposed—Unique First Cause (UFC) coverage—
is sufficiently rigorous to ensure test suites satisfying the metric outperform randomly generated test
suites of similar size and (2) that test suites satisfying more rigorous coverage metrics provide better
fault finding than test suites satisfying less rigorous coverage metrics.

1 Introduction
When validating a system under test (SUT), the creation of a black box test suite—a set of tests that
exercise the behavior of the model without regard to the internal structure of the model under test—
is often desirable. Generally, no objective standard is used for determining the adequacy of test suite
with respect to a set of requirements. Instead, the adequacyof such suites is inferred by examining
different coverage metrics on the executable artifact defining the SUT, such as source code. However,
given formalized software requirements it is possible to define meaningful coverage metricsdirectly
on the structure of the requirements. Of interest here is previous work in which we adopted structural
code coverage metrics to define three increasingly rigorousrequirements coverage metrics over Linear
Temporal Logic (LTL) requirements:requirements coverage, antecedent coverage, andUnique First
Cause (UFC) coverage[19]. The relationship between the criteria forms alinear subsumption hierarchy,
as test suites satisfying more rigorous coverage metrics are guaranteed to satisfy less rigorous coverage
metrics.

In this work we empirically evaluate the fault finding ability of test suites satisfying these require-
ments coverage metrics. Specifically, we investigate if (1)in general a test suite satisfying a requirements
coverage metric provides greater fault finding than a randomly generated test suite of the same size and
(2) the linear subsumption hierarchy between metrics reflects the relative fault finding of test suites sat-
isfying these requirements coverage metrics. Our study is conducted using four commercial examples
drawn from the civil avionics domain. For each case example,we generate 600 mutants, a test suite

∗This work has been partially supported by NASA Ames ResearchCenter Cooperative Agreement NNA06CB21A, NASA
IV&V Facility Contract NNG-05CB16C, and the L-3 Titan Group.
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satisfying each requirements coverage metric, and 1,000 random tests. We resample these sets to create
25 sets of 200 mutants and 25 reduced test suites for each coverage metric. For each reduced test suite,
we create a random test suite of approximately the same size by resampling from the set of 1,000 random
tests. We explore fault finding using each set of mutants and each test suite. In total, we examine the
fault finding of 15,000 combinations of case examples, test suites, and mutant sets.

From our results we draw the following observations. First,the relative rigor of the requirements
coverage metrics reflects the fault finding ability of test suites satisfying them. Second, the structure
of requirements significantly impacts the fault finding of test suites satisfying the coverage metrics, an
observation previously made in relation to other coverage metrics [16]. Finally, test suites satisfying
the UFC coverage criterion often provide greater fault finding than randomly generated test suites of
equal size, while test suites satisfying the other coveragemetrics do not. This indicates that of the three
coverage metrics evaluated, only UFC coverage is a consistent measure of the adequacy of test suites—
the intuition behind the other metrics may be useful, but they are not rigorous enough to be used as
an objective measure of test suite adequacy. Our results highlight how this lack of rigor creates the
potential for test suites to “cheat” a coverage criterion bytechnicallysatisfying the criterion, but doing
so in an uninteresting or non-representative manner. This is particularly a problem when using automatic
test generation tools, as these tools generally have no concept of realistic tests and tend to generate the
simplest possible tests satisfying a coverage criterion.

2 Related Work
In [19], we formally defined the requirements coverage metrics studied in this paper and outlined our
rationale for each. As detailed in [19], these metrics are related to work by Beer et al., Kupferman
et al., and Chockler et al. onvacuity checkingand coverage metricsfor temporal logics [2, 4, 10].
More recently, we examined the fault finding effectiveness of test suites satisfying UFC coverage of
the requirements on a system and MC/DC (Modified Condition/Decision Coverage) over the system
itself [16]. We determined that test suites satisfying MC/DC generally outperform test suites satisfying
UFC coverage (though fault finding was often close). This study, however, did not investigate the fault
finding effectiveness of requirements and antecedent coverage as compared to UFC.

Fraser and Gargantini [5] and Fraser and Wotawa [6] exploredautomatic test generation using
NuSMV for a number of coverage criteria, including UFC and mutation coverage. Neither of these works
compare the effectiveness of test suites satisfying UFC coverage to randomly generated tests suites of
equal size or perform any analysis that considering the sizeof the test suite.

3 Requirements Coverage Metrics
Previously, we defined three requirements coverage metrics: requirements coverage, antecedent cover-
age, andUnique First Cause (UFC)coverage [19]. Each requirements coverage metric is definedover
formalized requirements expressed as Linear Temporal Logic (LTL) properties [15]. These coverage
metrics provide different levels of rigor for measuring test adequacy and form a linear subsumption hier-
archy, with requirements coverage as the weakest and UFC coverage as the strongest.

Requirements Coverage:To satisfyrequirements coverage, a test suite must contain at least one test
per requirement that—when executed—causes the requirement to be met. Consider the following nat-
ural language requirement:“The onside Flight Director cues shall be displayed when theAuto-Pilot is
engaged.” A test derived from this requirement might examine the following scenario: (1) Engage the
Auto-Pilot, and (2) Verify that the Onside Flight Director comes on. Alternatively, the test might simply
leave the Auto-Pilot turned off. Technically, this test meets the requirement, albeit in a way that is not
particularly illuminating.
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Antecedent Coverage:Requirements, such as the previous example, are often implications, formally
G(A→ B). A on the left hand side of→ is referred to as theantecedent, andB on the right hand side as
theconsequent. To satisfy antecedent coverage, a test suite must contain at least one test case per require-
ment that, when executed, causes the requirement to be met and causes the antecedent to evaluate totrue.

Unique First Cause (UFC) Coverage:Requirements are often more complex than the simple exam-
ple given previously. For such complex requirements (and often simple ones), it is desirable to have a
rigorous coverage metric that requires tests to demonstrate the effect of each atomic condition in the re-
quirement; this ensures that every atomic condition is necessary and can affect the outcome of the prop-
erty. Requirements and antecedent coverage cannot do this.Therefore, we defined a coverage metric
calledUnique First Cause (UFC)coverage over LTL requirements. It is adapted from the MC/DCcrite-
rion [3, 9], a structural coverage metric designed to demonstrate the independent effect of basic Boolean
conditions (i.e., subexpressions with no logical operators) on each Boolean decision (expression) within
source code.

A test suite satisfies UFC coverage over a set of LTL requirements if executing the test cases in the
test suite will guarantee that (1) every basic condition in each formula has taken on all possible outcomes
at least once and (2) each basic condition in each formula hasbeen shown to independently affect the
formula’s outcome.

4 Study
Based on the subsumption hierarchy between these metrics outlined in the previous section we expect that
test suites satisfying UFC coverage will provide better fault finding than test suites satisfying the other
requirements coverage metrics, and we expect that test suites satisfying antecedent coverage will provide
better fault finding than test suites satisfying requirements coverage. Furthermore, we expect that a test
suite satisfying a coverage metric will provide better fault finding than a randomly generated test suite
of equal size since a test suite satisfying a requirements coverage metric is designed to systematically
exercise the system.

We conducted an experiment to evaluate the following hypotheses:

Hypothesis 1 (H1): A test suite satisfying a requirements coverage metric provides greater
fault finding than a randomly generated test suite of approximately equal size.
Hypothesis 2 (H2): A test suite satisfying a requirements coverage metric provides greater
fault finding than a test suite satisfying a less rigorous requirements coverage metric.

We used four industrial systems in our experiment. For each case example, we performed the following
steps:

1. Generated a test suite for each coverage metric:We generated three suites providing UFC,
antecedent, and requirements coverage. (Section 4.2.)

2. Generated random tests:We generated random inputs for 1,000 random tests. (Section4.3.)
3. Generated mutants:We generated 600 single-fault mutants (Section 4.4.)
4. Ran test suites with mutants and case example:We ran each mutant and the original case

example using the three generated test suites and the randomtest suite.
5. Generated reduced requirements coverage test suites:Each requirements coverage test suite

was naı̈vely generated and thus highly redundant. We generated 25 reduced test suites that maintain
the original coverage from each full test suite. (Section 4.2.)

6. Generated random test suites:For each reduced requirements coverage test suite, we randomly
generated a random test suite approximately the same size asthe reduced requirements coverage
test suite by sampling the 1,000 random tests previously generated. (Section 4.3.)
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7. Generated mutants sets:We randomly generated 25 sets of 200 mutants by resampling from the
600 mutants. (Section 4.4.)

8. Assessed fault finding ability of each reduced test suite:For each test suite and each mutant set,
we determined how many mutants were detected by the test suite.

In the remainder of this section, we describe in detail our experimental approach.

4.1 Case Examples
In our experiment, we use four industrial avionics applications from displays and flight guidance systems.
All four systems were modeled using the Simulink notation from Mathworks Inc. [12] and were trans-
lated to the Lustre synchronous programming language [8] totake advantage of existing automation [13].
For more information on these systems, see [16].

4.2 Requirement Test Suite Generation and Reduction
We have used an automated approach to generate test cases from a model of the system behavior. This
model represents the knowledge of the desired system behavior a domain expert might possess. Using
this technique, we can generate the large number of tests required for our experiments. Furthermore,
the approach tends to generate the shortest, simplest teststhat satisfy obligations, and, thus, the tests
generated are unlikely to be unusually effective (and may infact be unusually poor), a phenomenon
previous observed in [16].

Several research efforts have developed automatic test generation techniques based on formal models
and model checkers [7, 18]. The technique we use is outlined in [18] and operates by generating NuSMV
counterexamples through trap properties. Using this technique, we can create test suites achieving the
maximum achievable coverage for a specified coverage metric.

A test suite generated using this approach will be highly redundant, as a single test case will often
satisfy several obligations. Such a test suite is not representative of the coverage metric, as it may
contain far more tests than are needed and may therefore biasthe test suite’s fault finding ability. We
therefore reduce each test suite using a greedy algorithm. First, we randomly select a test case from the
generated test suite, determine which obligations are satisfied by the test and add it to a reduced test suite.
We continue by randomly choosing another test case from the generated test suite, determining if any
obligations not satisfied by the reduced test suite are satisfied by the test case selected, and if so adding
the test case to the reduced test suite. This process yields arandomly reduced test suite achieving the
same requirements coverage as the the original test suite. We generated 25 reduced test suites for each
coverage metric and each case example to avoid threats to validity due to a small sample size.

4.3 Random Test Suite Generation and Reduction
We generated a single set of 1,000 random tests for each case example. Each individual test contains
between 2-10 steps with the number of tests of each test length distributed evenly in each set of tests.
For each reduced requirements coverage test suite we createa random test suite with the same number of
steps (or slightly more) by randomly sampling from the set of1,000 random tests generated. As a result,
each set of reduced requirements coverage test suites satisfying a coverage metric has a corresponding set
of random test suites of approximately the same size. The number of steps was used as a measurement
of size rather than the number of tests as this avoids creating a random test suite with significantly longer
or shorter tests on average than the corresponding reduced requirements coverage test suite.

4.4 Mutant Generation
We created 600mutants(faulty implementations) for each case example by introducing a single fault into
the correct implementation. Each fault was introduced by either inserting a new operator into the system
or by replacing an operator or variable with a different operator or variable. The faults seeded include
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RC RC-RAN AC AC-RAN UFC UFC-RAN

DWM 1 77.8% 78.7% 78.6% 78.7% 88.0% 81.6%
DWM 2 0.0% 1.60% 0.0% 1.29% 5.41% 9.42%

Latctl Batch 17.1% 49.8% 59.0% 62.1% 85.2% 82.7%
Vertmax Batch 22.4% 26.6% 46.9% 42.5% 81.5% 72.2%

AC:RC Imp UFC:RC Imp UFC:AC Imp RC:RC-RAN Imp AC:AC-RAN Imp UFC:UFC-RAN Imp

DWM 1 1.01% 13.1% 12.0% -1.0% -0.1% 7.8%
DWM 2 0.0% ∞ ∞ -100% -100% -42.0%

Latctl Batch 244.1% 396.9% 44.4% -65.0% -5.1% 3.0%
Vertmax Batch 108.9% 262.4% 73.5% -15.0% 10.3% 12.9%

Table 1:Average and Relative Improvement in Fault Finding
Column Header (X : Y) Denotes Relative Fault Finding Imp. Using Test SuiteX over Test SuiteY

RC = Requirements Coverage, AC = Antecedent Coverage
X-RAN = Random Test Suite w/ Size≈ Size of a Reduced Test Suite SatisfyingX Coverage

UFC ≤ AC UFC ≤ RC AC ≤ RC UFC ≤ UFC-RAN AC ≤ AC-RAN RC ≤ RC-RAN

DWM 1 <0.001 <0.001 <0.001 <0.001 0.62 1.0
DWM 2 <0.001 <0.001 1.0 1.0 1.0 1.0

Latctl Batch <0.001 <0.001 <0.001 <0.001 1.0 1.0
Vertmax Batch <0.001 <0.001 <0.001 <0.001 1.0 1.0

Table 2:Statistical Analysis forH01 andH02
RC = Requirements Coverage, AC = Antecedent Coverage

X-RAN = Random Test Suite w/ Size≈ Size of a Reduced Test Suite SatisfyingX Coverage

arithmetic, relational, boolean, negation, delay introduction, constant replacement, variable replacement
and parameter replacement and are described in more detail in [16].

We generated 600 mutants for each case example. From these 600 mutants, we generated 25 sets of
200 mutants. We generated multiple sets of mutants to avoid threats to validity due to a small sample
size. Note that we did not check that generated mutants are semantically different from the original
implementation. This weakness in mutant generation does not affect our results since we are interested
in the relative fault finding ability between test suites.

5 Results
To determine the fault finding of a test suiteT and a mutant setM for a case example we simply compare
the output values produced by the original case example against every mutantm∈ M using every test
caset ∈ T. The fault finding effectiveness of the test suite for the mutant set is computed as the number
of mutants killed divided by the number of mutants in the set.We perform this analysis for each test suite
and mutant set for every case example yielding 7,500 fault finding measurements per case example. We
use the information produced by this analysis to test our hypotheses and infer the relationship between
coverage criteria and fault finding.

The complete analysis is too large to include in this report1. For each case example, we present in
Table 1 the average and relative improvement in fault findingfor each coverage metric and for the random
test suites corresponding to each coverage metric. We limitthe discussion in this section to statistical
analysis, a discussion of these results and their implications follows in Section 6.

5.1 Statistical Analysis
To evaluate our hypotheses (from Section 4), we first evaluate each hypothesis for each combination of
a case example and requirements coverage metric (forH1) or pairing of requirements coverage metrics
(for H2). Using these results, we determine what conclusions can begeneralized across all systems.

1Our data can be retrieved athttp://crisys.cs.umn.edu/public datasets.html and is available to the research
community for additional analysis.
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UFC > AC UFC > RC AC > RC UFC > UFC-RAN AC > AC-RAN RC > RC-RAN

Supported Supported Unsupported Unsupported Unsupported Unsupported

Table 3:Conclusions for Hypotheses Across All 4 Case Examples
RC = Requirements Coverage, AC = Antecedent Coverage

X-RAN = Random Test Suite w/ Size≈ Size of a Reduced Test Suite SatisfyingX Coverage
Each column (X > Y) Denotes Hypothesis of “Test Suites SatisfyingX Have Greater Fault Finding Than Test Suites SatisfyingY”

Each of the individual hypotheses states that one set of fault finding measurements should be in gen-
eral higher than another set of fault finding measurements. For example, we hypothesize that fault finding
measurements for reduced test suites satisfying UFC coverage are better than fault finding measurements
for the set of comparably sized random test suites (for each oracle and case example). To evaluate our
hypotheses, we use a bootstrapped permutation test, a non-parametric statistical test that determines the
probability that two sets of data belong to the same population [11], and explore 1,000,000 permutations
when calculating eachp-value. From a practical standpoint, we are only interestedin scenarios where
test suites satisfying a requirements coverage metric outperform random test suites and where test suites
satisfying a more rigorous coverage metric outperform a less rigorous coverage metric. Consequently,
we formulate our null hypotheses asone-tailedtests, restatingH1 andH2 as the null hypothesesH01 and
H02, respectively:

H01: For case example CE, the data points for percentage of mutants caught by test suites satisfying
coverage metric C are less than or equal to the data points forpercentage of mutants caught by
random test suites of approximately the same size.

H02: For case example CE, the data points for percentage of mutants caught by test suites satisfying
coverage metric C1 are less than or equal to the data points for percentage of mutants caught by
test suites satisfying a less rigorous coverage metric C2.

We evaluateH01 andH02 using 4 case examples and 3 coverage metrics or 3 pairings of coverage
metrics, respectively. We therefore produce 12p-values each forH01 andH02, listed in Table 2. These
p-values are used to generalize across our results.

We use the Bonferonni correction, a conservative method forguarding against erroneously rejecting
the null hypothesis when generalizing results. The Bonferonni correction sets the alpha required for
each null hypothesis at 1/n times the alpha desired for the entire set, wheren is the number of results
generalized; in this case, the alpha is set at 1/4∗ 0.05 = 0.0125 for each hypothesis. We present the
results in Table 3.

Given these results, we can evaluate our original hypotheses:

Hypothesis 1 (H1): A test suite satisfying a requirements coverage metric provides greater
fault finding than a randomly generated test suite of approximately equal size.
Hypothesis 2 (H2): A test suite satisfying a requirements coverage metric provides greater
fault finding than a test suite satisfying a less rigorous requirements coverage metric.

The majority of test suites satisfying a coverage metric provide worse fault finding than random test
suites of similar size, and thusH1 is not statistically supported. Furthermore, test suites satisfying an-
tecedent and requirements coverage provide similar levelsof fault finding for theDWM 2 case example,
and thusH2 is not statistically supported.

However, we note here several interesting results from Tables 2 and 3, and explore them in Section 6.
First, H2 fails only when test suites satisfying antecedent and requirements coverage find no faults.
Second, test suites satisfying UFC coverage outperform random test suites 75% of the time (3 of 4
case examples). Finally, random test suites always outperform test suites satisfying requirements and
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antecedent coveragewith statistical significance(derivation of this significance is not shown), indicating
that the random tests are not simply equivalent to the tests generated to satisfy a coverage metric, but
preferable. These results and our recommendations are explored in Section 6.

5.2 Threats to Validity
External Validity: We only used four synchronous reactive critical systems in the study. We believe,
however, that these systems are representative of the critical systems in which we are interested and that
our results can therefore be generalized to other related systems.

As our implementation language we used the synchronous programming language Lustre [8] rather
than a more common language such as C or C++. Systems written in Lustre are similar in style to
traditional imperative code produced by code generators. Therefore, testing Lustre code is sufficiently
similar to testing reactive systems written in C or C++ to generalize the results to such systems.

We have used automatically seeded faults to evaluate the fault finding ability of tests suites. It is
possible the faults seeded are not representative. Nevertheless, previous work indicates fault seeding
methods similar to our own are representative of real faultsencountered in software development [1].

We only report results using test oracles based on output variables. In pilot studies, we observed that
test oracles considering internal variables in addition tooutput variables produced similar results.

Finally, we used automatic test generation rather than a domain expert when creating test suites.
Clearly, the tests produced by an automated tool differ fromtests likely to be produced by a domain
expert, particularly in the case of requirements coverage.Nevertheless, we are interested in evaluating
the coverage metrics, not domain experts, and thus view the worst-case test generation provided by
the tools to be preferable—these tools tend to highlight deficiencies in coverage metrics, and thus our
evaluation is not influenced by the skill of a domain expert.

Conclusion Validity: For each case example, we have performed resampling using a random test
suite containing 1,000 tests and a set of 600 mutants. These values are chosen to yield a reasonable cost
for the study. It is possible that sampling from larger random test suites may yield different results, or
that the number of mutants is too low. Based on past experience, however, we have found results using
200 mutants to be representative [17, 16], and thus believe 600 mutants to sufficient.

For each case example, we have generated 25 reduced test suites for each coverage metric, a cor-
responding set of 25 random test suites for each coverage metric, and 25 sets of 200 mutants. These
numbers were chosen to keep the cost of resampling reasonable. It is possible that the fault finding
measurements that result do not accurately represent the set of possible results. Nevertheless, the low
variance in fault finding measurements observed in the sets of test suites and mutants—coupled with the
consistency of our results across case examples—indicatesour conclusions are accurate.

6 Discussion
In Section 5, we showed that neither hypothesis was statistically supported. Nevertheless, the results lead
to several worthwhile observations. First, despite the lack of statistical significance, the subsumption
hierarchy between coverage metrics generally reflects the relative fault finding of test suites satisfying a
coverage metric; the more rigorous the coverage metric, themore effective the corresponding test suite
will be. This indicates a useful tradeoff in test suite rigorand test suite size exists.

This observation, however, is rendered largely moot by the effectiveness of random testing. For
both requirements and antecedent coverage, random test suites provide greater fault finding than test
suites satisfying these coverage metrics, often with statistical significance. Furthermore, for theDWM 2
system, test suites satisfying UFC coverage do not outperform randomly generated test suites. The
former result highlights problems with using automatic test generation tools to generate tests satisfying a
coverage criterion. The latter result highlights how the structure of requirements can affect the usefulness
of a coverage metric.
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In the remainder of this section, we will discuss the implications of these results and recommenda-
tions concerning requirements coverage metrics.

6.1 Pitfalls of Automatic Test Generation
As mentioned in Section 4.2, automatic test generation tends to produce tests that satisfy coverage obli-
gations using minimal effort. Tests generated tend to frequently use the default inputs (e.g., all signals set
to false), and may in that way technically satisfy obligations while not exercising useful or representative
scenarios. Consequently, a test suite generated to meet a coverage criterion might do mostly nothing,
while a random test suite of equal size will generally do something (albeit something arbitrary). This
accounts for the relatively good fault finding achieved by random test suites.

The degree to which this is a problem depends on the complexity of the coverage obligations. For
example, the coverage obligations produced using requirements coverage for theDWM 2 system are
very simple, and consequently every test generated is exactly the same; therefore, one test satisfies every
obligation. Conversely, the coverage obligations produced using UFC coverage for theVertmaxBatch
system are quite complex, requiring over 10 times as many tests as needed to satisfy requirements or
antecedent coverage for the same system. When using complexobligations, automatic test generation
must generate tests meeting a wide variety of constraints, including specific sequences of events, and
consequently the test cases produced tend to be more realistic and more effective.

6.2 Pitfalls of Requirements Structure
For theDWM 2 system, the randomly generated test suites outperform the test suites satisfying UFC
coverage. We have observed similar issues in previous work [16] where we noted the requirements for
this particular system are structured such that the UFC criterion is rendered ineffective as compared to
our other case examples2.

LTLSPEC G(var_a > (

case

foo : 0 ;

bar : 1 ;

esac +

case

baz : 2 ;

bpr : 3 ;

esac

));

Figure 1: Original LTL Requirement

LTLSPEC G(var_a > (

case

foo & baz : 0 + 2 ;

foo & bpr : 0 + 3 ;

bar & baz : 1 + 2 ;

bar & bpr : 1 + 3 ;

esac

));

Figure 2: Restructured LTL Requirement

We note that many of the requirements for theDWM 2 system were of the form (formalized as
SMV [14]) in Figure 1. Although this idiom may seem unfamiliar, this use of case expressions is not
uncommon when specifying properties in NuSMV. Informally,the sample requirement states thatvar a
is always greater than the sum of the outcomes of the two case expressions. Generating UFC obligations
for the above requirement yields very simple test obligations since there are no complex decisions – we
simply need to find tests where the top-level relational expression and each atomic condition has taken
on the values true and false.

This requirement can be restructured without changing the meaning as shown in Figure 2. Achieving
UFC coverage over this restructured requirement will require more obligations than before since the
boolean conditions in the case expression are more complex and we must demonstrate independence of
each condition in the more complex decisions. Thus, the structure of the requirements has a significant
impact on the number and complexity of UFC obligations required. For this experiment, we did not
restructure any requirements. Consequently, the UFC obligations for theDWM 2 do not have as complex

2This discussion is partially adopted from [16] as we encountered the same phenomenon in that investigation.
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of a structure as those for the other three systems, and automatic test generation (as with requirements
and antecedent coverage) produces poor tests.

6.3 Recommendations

The goal of using a coverage criterion is to infer the efficacyof a test suite. By verifying that a test suite
satisfies a coverage criterion, one hopes to provide evidence that the test suite is “good” and is likely to
uncover faults. While no objective standard for “good” fault finding exists, at a minimum a test suite
satisfying a useful coverage criterion should provide better fault finding than a randomly generated test
suite of similar size; otherwise, little confidence in the quality of a test suite is gained by showing it
satisfies the coverage criterion.

The test suites generated by automatic test generation to satisfy requirements and antecedent cover-
age are in some sense “worst-case” test cases, and it is likely a domain expert using these metrics as a
guide would produce far better tests. We are, however, not evaluating our coverage metrics as guidelines
for developing tests, but as objective measure of black-boxtest suite adequacy, and our results clearly
demonstrate that it is easy to satisfy requirements or antecedent coverage using inadequate test suites.
We therefore conclude thatrequirements and antecedent coverage are not sufficiently rigorousto ensure
a test suite satisfying one of these metrics is better than a random test suite of equal size—the intuition
behind the metrics may be useful, but merely satisfying the metric does not provide convincing evidence.

Conversely, the test suites generated to provide UFC coverage, despite also being “worst-case” test
cases, generally outperform random test suites of approximately the same size. The caveat to this is
requirements structure—by breaking up complex requirements into several less complex requirements,
the benefits of UFC coverage can be diminished. Nevertheless, our results indicate that the adequacy
of black-box tests can be inferred using UFC coverage. We therefore conclude that UFC coverage is
sufficiently rigorous to ensure a test suite is better than a random test suite of equal size provided the
requirements are not structured to mask complexity. Admittedly, this is a rather weak conclusion and
more research is needed to identify coverage criteria that are more effective and more robust with respect
to the structure of the requirements.

Thus, in practice, testers who wish to objectively infer theadequacy of a black-box test suite with
respect to a set of requirements formalized as LTL properties should use UFC coverage while noting the
pitfalls outlined above.

7 Conclusion
In [19], we defined coverage metrics over the structure of requirements formalized as Linear Temporal
Logic (LTL) properties. Such metrics are desirable becausethey provide objective, model-independent
measures of the adequacy of black-box testing activities. In this paper, we empirically demonstrated that
of the three coverage metrics explored, only the UFC coverage criterion is rigorous enough to be a useful
measurement of test suite adequacy. We also noted that the usefulness of the UFC coverage criterion
is influenced by the structure of the requirements. Consequently, we conclude that testers who wish to
measure the adequacy of a test suite with respect to a set of LTL requirements should use a coverage
criterion at least as strong as UFC coverage, but should be mindful of the structure of their requirements.

Furthermore, our work highlights the difference between using coverage metrics as guidelines for
developing test suites, and using coverage metrics as objective measurements of test suite adequacy. We
demonstrate how using an insufficiently rigorous coverage criterion for inferring test suite adequacy can
lead to incorrectly concluding a test suite that technically meets the criterion is adequate, when the test
suite is no better than a randomly generated test suite of approximately the same size. We believe this
has implications in domains such as avionics and critical systems, where test coverage metrics are used
by regulatory agencies to infer the efficacy of a testing process and thus the quality of a software system.
We hope to investigate this problem in depth in future work.
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Abstract

The ARINC-653 standard defines a common interface for Integrated Modular Avionics (IMA)
code. In particular, ARINC-653 Part 1 specifies a process- and partition-management API that is
analogous to POSIX threads, but with certain extensions andrestrictions intended to support the
implementation of high reliability flight code.

MCP is a software model checker, developed at NASA Ames, thatprovides capabilities for model
checking C and C++ source code. In this paper, we present recent work aimed at implementing
extensions to MCP that support ARINC-653, and we discuss thechallenges and opportunities that
consequentially arise. Providing support for ARINC-653’stime and space partitioning is nontrivial,
though there are implicit benefits for partial order reduction possible as a consequence of the API’s
strict interprocess communication policy.

1 Introduction

NASA missions are becoming increasingly complex, and, moreand more of this complexity is imple-
mented in software. In 1977, the flight software for the Voyager mission amounted to only 3000 lines.
Twenty years later, the software for Cassini had grown by a factor of ten, and more strikingly, the soft-
ware for the Mars Path Finder mission amounted to 160 KLOCs (thousands of lines of code). Nowadays,
the software for the Space Shuttle has reached half a millionlines of code (0.5 MLOCs). Moreover the
software for the International Space Station has exploded to 3 MLOCs and it is still increasing. Some ex-
perts have estimated that the software required by the Constellation project will reach at least 50 MLOCs.
Yet, NASA is still relying on traditional (and expensive) testing and simulation to verify its software.

Naturally, NASA is now exploring new ways to speed up the testing process, reduce its cost, and
increase its efficiency. Model checking is seen as a way of helping verifying software, especially for
multi-threaded code. Our colleagues at JPL developed the well-known SPIN model checker [12]. Un-
fortunately, it requires translating code into a modeling language called Promela, which is not always
feasible or practical. However Promela models are compiledinto C programs that perform the model
checking activity. JPL therefore developedmodel-driven verification[13]; it consists of embedding C
code fragments into the compiled Promela models. This technique allows them to partially check C pro-
grams. NASA Ames has taken a different approach called software model checking. For example, the
JPF (Java PathFinder) model checker can check Java programswithout any translation [11].

Experience from the JPF project has demonstrated the utility of software model checking(i.e. model
checking that acts directly on a program, rather than on a model that has been manually extracted from
it). However, current flight software is mostly implementedin C, not Java, and in the future it seems
increasingly likely that C++ will become the platform of choice. The MCP model checker is being
developed to fill the requirement for an explicit-state software model checker, in the style of JPF and
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SPIN, that fully supports the C++ language. Moreover, we envision designing a continuum of tools for
the verification of C and C++ programs and test case generation. The tools will span techniques ranging
from static analysis to model checking.

1.1 ARINC-653

The ARINC-653 standard [1, 3, 2] specifies the software interface to be used by developers of Integrated
Modular Avionics flight software. It is comprised of three parts:

Part 1: Avionics software standard interface (APEX).This part defines the operating system’s interface
to avionics code, with specific focus on partition management, process management and error
handling.

Part 2: APEX extensions.Since Part 1 is insufficient on its own to support many kinds of practical code,
Part 2 extends the standard to provide interfaces for file handling, communications and a few other
commonly used operating system services.

Part 3: Compliance testing specification.Part 3 does not define extra functionality in and of itself –
rather, it specifies how compliance testing should be carried out for implementations of parts 1
and 2.

In this paper we concentrate on ARINC-653 Part 1. In a very real sense, Part 1 can be thought of as
occupying the same part of the software food chain as POSIX threads [15], though its execution model
is somewhat different.

1.1.1 Partitions

The key defining feature of ARINC-653 is its inclusion ofpartitions. A partition is analogous to a
Unix process, in the sense that it runs in its own, separate memory space that is not shared with that of
other partitions. Partitions also have strictly protected time slice allocations that also may not affect the
time slices of other partitions – the standard’s aim is to ensure that if a partition crashes, other correctly
functioning partitions are unaffected. It is not possible, in standards-compliant code, to define areas of
shared memory between partitions – all interpartition communication must be mediated via the APEX
API.

One area where partitions differ considerably from Unix processes is in their strict adherence to a
well-defined start up and shutdown mechanism, with strict prohibition of dynamic allocation and recon-
figuration. On cold- or warm-boot1, only the partition’s primary process may execute. It then starts any
other processes, creates and initializes interprocess and interpartition communications channels, allocates
memory and performs any other necessary initialization. The primary process then sets the partition’s
state to NORMAL, at which point no further dynamic initialization (including memory allocation) is
allowed. Setting the partition’s state to IDLE causes all threads to cease execution.

1.1.2 Processes

ARINC-653 processes are analogous to POSIX threads2. A partition may include one or more processes
that share time and space resources. Processes have strictly applied priorities – if a process of higher
priority than the current process is blocked and becomes able to run, it will preempt the running process

1The exact meaning of cold and warm is left to the implementer.
2Arguably, the usage of the word ‘process’ in the standard is unconventional, and can be confusing.

Software Model Checking of ARINC-653 Flight Code with MCP Thompson, Brat, Venet

Proceedings of NFM 2010, April 13-15, 2010, Washington D.C., USA. 172



immediately. Processes that have equal priority are round-robin scheduled. Memory is shared between
all processes within a partition.

1.1.3 Error handling

Each partition has a special, user-supplied, error handling process that runs at a higher priority than all
other processes in the partition. Normally it sits idle, consuming no time resources, until it is invoked as
a consequence of an error detected by the operating system or explicitly raised by the running code. It
then defines how the partition should respond, and can (for example) cause a partition to be restarted if
necessary.

It is possible to define watchdog timeouts for processes that cause the error handler to be invoked
automatically if time limits are exceeded.

1.1.4 Events

ARINC-653 Part 1 events are similar, though somewhat simpler than, the event synchronization facilities
provided in most other threading APIs. Events may be explicitly in asetor resetstate – when set, they
allow all processes waiting on the event to continue. When reset, all processes waiting on the event are
blocked. No support for self-resetting events, or events that allow only a single process to proceed are
supported, nor is there explicit support for handling priority inversion.

1.1.5 Semaphores

Semaphores in Part 1 behave in the traditional way – they are typically used to protect one or more
resources from concurrent access. A semaphore created with an initial resource count of 0 and a resource
count limit of 1 behaves exactly like the mutex facilities found in other threading APIs.

1.1.6 Critical Sections

APEX defines a single, global, critical section that, when locked, prevents scheduling. This is a little
different, and more extreme in effect, in comparison with the critical section facilities in POSIX threads
and in the Windows threading API – rather, it is analogous to turning off interrupt handling.

1.1.7 Buffers and Queuing Ports

ARINC-653buffersare actually thread-safe queues intended for interprocess, intrapartition communica-
tion. They are constructed with a preset maximum length and maximum message length which may not
be varied at run time. Messages consist of blocks of arbitrarily formatted binary data. Processes attempt-
ing to read from an empty buffer block until another process inserts one or more messages. Similarly,
attempting to write to an already-full buffer will cause the sending process to block until space becomes
available.

Queuing portsare the interpartition equivalent to buffers, and provide queued communication be-
tween partitions.

1.1.8 Blackboards and Sampling Ports

Blackboards,ARINC-653’s other interprocess/intrapartition communications mechanism, are analogous
to buffers, except that they store exactly zero or one messages. Processes may write to blackboards at
any time without blocking – the message that they send replaces the existing message, if any. Reading
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from an empty blackboard causes the reading process to block until another process writes a message to
the blackboard.

Sampling portsare the interpartition counterpart to blackboards. Their semantics are slightly differ-
ent, in that neither sending or receiving processes ever block. They also add a timestamping facility that
makes it easy for a receiving process to check whether the data it has retrieved has become stale.

1.2 The MCP Model Checker

The MCP (Model Checker for C++) project began as an attempt to reimplement the JPF architecture for
C++: JPF implements an extended virtual machine interpreting Java bytecode with backtracking, and
the first version of MCP had a similar architecture, substituting LLVM [16] for Java. MCP’s current
architecture is closer to that of SPIN than of JPF, however – rather than running code in an instrumented
virtual machine with backtracking, we use program transformation techniques to instrument the program
itself, then run it natively in an environment whose run-time system implements backtracking.

1.2.1 LLVM: Low Level Virtual Machine

Modified gcc

front-end

LLVM 

optimiser

LLVM

bitcode

LLVM

bitcode

LLVM just-in-time

compiler

LLVM interpreter

LLVM

code generator

Native

executable

In-memory

native code

Figure 1: Simplified LLVM architecture

Fig. 1 shows a simplified version of the LLVM flow3. A modified version of thegcc front-end is
used to parse the C++ source code and to lower most of the language’s constructs to a level closer to
that of a typical C program. The originalgcc back-end is discarded in favour of emittingLLVM bitcode,
which is then optimised and passed on to various alternative back-ends.

The LLVM bitcode format was specifically designed to support program analysis, transformation and
optimization – a Static Single Assignment (SSA) representation [8] is adopted, making many analyses
and transformations (including ours) far more straightforward than they might otherwise be.

1.2.2 The MCP Architecture

Fig. 2 shows an outline of the MCP architecture. Functionality is split across several subsystems:

Transformation PassesSeveral MCP-specific transformations that instrument the code under test are
implemented as an extension module for LLVM’sopt program transformation framework.

3Many LLVM tools have been omitted here for clarity – LLVM is a large, rich toolset, so we concentrate on the subsystems
that are specifically relevant to MCP.
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Figure 2: MCP Architecture

Run-time System A run-time system is implemented in C++, compiled with LLVM’sgcc front-end,
then linked with the program under test after it has been transformed. Its primary purpose is to
intercept system calls that MCP needs to handle differently,e.g.,printf, malloc, free, memset,
memmove andmemcpy. This approach also provides a convenient place to implement compati-
bility wrappers that allow code written to specific operating system APIs to be handled without
modification – the ARINC-653 subsystem is implemented as an extension to the run-time system.

JIT Environment/User Interface Model checking is initiated by users by running themcp command-
line application. Themcp tool comprises an instance of the LLVM just-in-time (JIT) compiler envi-
ronment, as well as MCP’s implementations of memory versioning, hashing, state space searching
etc.

1.2.3 Emulating Threading

One of the trickier issues surrounding the model checking of C++ source code is the fact that the language
standard specifically does not mandate any particular threading model. Real-time program semantics are
therefore dependent upon the execution environment, so any attempt to analyse multithreaded code must
inevitably make some kind of assumption about the underlying threading model.

MCP implements its own low-level API, on top of which arbitrary threading models may be con-
structed. This API is deliberately designed to, as far as possible, serve as a superset of all of the threading
models that are of interest.

1.2.4 Memory Management, State Storage and Backtracking

Model checking C and C++ directly is significantly complicated by the languages’ widespread use of
weakly typed pointers and of pointer arithmetic. Legal programs can cast pointers to other types, in-
cluding integers, or directly access the memory in which the pointer is stored – many pointer analyses
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therefore, attempted statically, though feasible for a subset of programs become equivalent to the halt-
ing problem for the general case. As a consequence, in order to maintain the primary goal of being
able to support the entire programming language, there was little alternative other than to maintain a
very concrete memory model that is in practice identical to that of a normally executing program. Pro-
grams running within the MCP environment access memory in the same way that normal executables
do (including pointer arithmetic), with the exception that the run-time system tracks and records all
non-thread-local reads and writes. Context switches record changes to stack frames and CPU register
contents. This information, along with source line and intermediate code tracing information is recorded
in a tree structure that, by means of undoing or redoing recorded changes, makes it possible to recreate
any previously recorded memory and CPU state. All state changes are stored compactly as deltas – com-
plete states are never stored. State hashes are computed incrementally and collision checked, though it is
also possible to hand-annotate code in order to allow states to be matched abstractly.

1.2.5 Search Algorithms

MCP implements several built-in search strategies:4.

Breadth-first search Paths through the search space are explored in breadth order.

Depth-first search Paths are executed to completion before backtracking continues.

User-specified heuristic search In this strategy, the test harness provides a ranking function that allows
MCP to implement a best-first search strategy.

Randomised search Randomised search explores the search space in a random order. In practice,
randomised search has a ‘look and feel’ somewhere between that of breadth- and depth-first search, but
in practice it has less tendency to get stuck in local minima.

Interpreted mode In this mode, the program is executed normally, without backtracking, with thread-
ing implemented by a fair scheduler. Programs are still traced in just as much detail as in any other mode,
however, so a backtrace is still generated on termination.

Skew-First Search In this mode, search concentrates on a fair schedule first, then works toward cases
where threads have increasing relativeskew5 as the search progresses. In practice, this mode resembles
depth-first search, though it is more aggressive in avoiding the favoring of any thread over any other. Used
in an incomplete search, skew-first search essentially begins by running the program conventionally, then
tries alternatives that are decreasingly close to a fair schedule until a time, memory or search depth limit
is hit.

Reverse Skew-First Search This mode essentially negates the search metric used in skew-first search.
As a consequence, the search explores corner cases with maximum relative skew first, working toward a
fair schedule last.

4Since MCP’s partial order reduction algorithm does not presuppose any particular execution order, MCP does not have a
performance bias toward any particular search strategy.

5MCP counts the number of program steps executed by each thread, with the difference between the minimum and maxi-
mum step count across all running threads being regarded as theskew.
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Coverage-First Search MCP has the ability to track source line coverage6, primarily for the purpose
of providing a code coverage report on termination. However, since coverage metrics are available
dynamically, it was possible to feed this back as a search strategy, allowing the model checker to optimize
its search strategy in order to execute as much of the program as possible as soon as possible.

Per-thread independent search strategies MCP has the capability of setting a search strategy inde-
pendently for each thread, thereby giving the user a lot of control over search order without requiring
user-specificied heuristics. For example, if a problem is suspected to exist between a pair of threads, it is
possible to perform exhaustive depth- or breadth-first search on those threads, whilst merely interpreting
other threads. Though used in this way this leads to incomplete analyses, it allows many problems that
are too large or too complex for complete search to be addressed straightforwardly.

Kill mode In this mode, the program is not executed at all, and terminates immediately7.

1.2.6 Assertions and Backtrace Generation

Following practical experience in applying the JPF software model checker, a decision was made to move
away from the more typical approach of specifying properties in terms of, for example, Linear Temporal
Logic (LTL). Though LTL is convenient for many kinds of high-level properties, it does not lend itself
well to low-level properties that require, for example, assertions about consistent pointer and memory
usage – in such cases, expressing properties directly in C++ tends to be more natural, and of course C++,
unlike LTL, is Turing-complete. Some experiments have been carried out on a C++ template library that
implements LTL, which when more mature will allow users to specify properties in LTL if that is their
preference, however.

When an assertion occurs or when MCP detects an error (e.g.,due to a segmentation fault, deadlock,
assertion failure or some other problem in the code under test), it generates a backtrace from the begin-
ning of execution of the current execution trace until the most recently executed instruction is reached.
Backtrace logs may optionally include all executed LLVM instructions, executed source lines and all
memory contents that are read or written by the program. Only the actual trace from the currently ex-
ecuting code fragment is generated – the (usually enormous and irrelevant) logging information from
other traces that did not lead to errors are ignored.

2 Model checking ARINC-653 code

Since MCP supports the entire C++ programming language, the special considerations required for
checking ARINC-653 code are specifically related to the implementation of its peculiar threading seman-
tics. Generally, when dealing with library functionality in an explicit state model checking environment
it is difficult to simply create a simplistic library implementation consisting only of stubs for each func-
tion – where such libraries affect program semantics by means of creation or manipulation of threading
behavior, this is compounded significantly. Consequentially, our ARINC-653 implementation therefore
needed in practice to become a fairly complete implementation of the standard, similar to that which
might be included in an actual real-time operating system kernel. Though much of ARINC-653 can
be mapped to existing approaches, there is sufficient oddity that a simplistic approach such as mapping
APEX to an existing POSIX threads implementation is not sufficient.

6At the time of writing, other coverage metrics, particularly MCDC, are being considered for inclusion in a future version.
7Kill mode is not generally useful when applied to a whole program, but when applied just to one or more threads it can be

used to dynamically search a program slice that excludes those threads.
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Time management Like most threading APIs, ARINC-653 Part 1 provides facilities for dealing with
time, ranging from sleeping for a particular interval, waiting until a specific time, timeouts on
waiting on blocking synchronization objects, etc. It also supplies some facilities that are squarely
aimed at avionics code, such as watchdog timeouts and automatically detecting stale data.

Ideally, it would be preferable to be able to accurately model program execution time. However,
since actual flight code is likely to be targeted at an entirely different CPU architecture [14, 22]
and compiled with a different toolchain [9], this is impractical, and indeed it could be potentially
dangerous to extrapolate results from one platform to another. Therefore, code is assumed to run
arbitrarily (though not infinitely) quickly, unless it explicitly waits via an API call. We therefore
concentrate on modeling time at the level of explicit waits and timeouts rather than at the level of
instructions.

Since MCP backtracks, its time implementation must also be able to backtrack. Consequentially,
time is emulated rather than taken from a real-time clock. This has a number of benefits, not least
of which being that arbitrarily long wait intervals can be emulated without needing to actually wait
for the specified length of time – modeling, for example, Earth-Mars communications links with
very long packet round-trip times, becomes feasible and efficient.

Process managementARINC-653 Part 1 processes map fairly directly to MCP’s existing thread model,
so could be accommodated relatively straightforwardly. Partitions were trickier to support, because
they required a new memory protection system to be implemented that could segment memory
access and check that it is being accessed with appropriate partitions. This turned out to be the
single largest change necessary to MCP in order to support the APEX API.

Partition start up/initialization control Most of the requirements of partition start-up and initialization
control involve parameter checking within API calls, so this is dealt with largely with assertions
in the API implementation. MCP’s memory manager was extended to support a flag that causes
memory allocation to throw an error, making it possible to detect accidental memory allocations
while a partition is in NORMAL mode.

Sampling ports, queuing ports, buffers and blackboardsThese communications APIs were imple-
mented fairly straightforwardly, and did not require alteration to the MCP core. Synchronization
was implemented purely in terms of MCP’s native event mechanism.

Events, semaphores, critical sections and error handlingThese APEX API features mapped more or
less directly to MCP’s existing facilities. Some changes were necessary, but these were mostly
consequential to the partitioned memory model support.

3 Partial order reduction under a partitioned memory model

Partial order reduction is carried out by model checkers in order to reduce the impact of the exponential
time complexity inherent in backtracking. GivenN representing the size of the program fragment under
test anda representing the amount of possible nondeterminism at each decision point, time complexity
for explicit state model checking has an upper bound proportional toaN. It therefore behooves us to try
to geta down to as close to 1 as possible, because this has a dramatic effect on the size of programN that
can be practically analyzed. Partial order reduction techniques typically attack this in two ways: making
the execution steps bigger by bundling thread-local operations together (thereby effectively reducing
N), and where possible bundling together nondeterministic choices that have equivalent consequences
(reducinga where possible). MCP does both – it leverages LLVM’s static analysis and optimization
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capability in order to make the steps between yield points as large as possible, and second mechanism
tracks reads and writes to shared memory, suspending evaluation lazily when only a subset of currently
running threads have touched the relevant locations.

Though MCP’s existing partial order reduction strategy can be applied to ARINC-653 code, there
are some potential benefits available as a consequence of the partitioned execution scheme. In particular,
the decision to only allow partitions to affect each other via API calls has profound consequences. A
partition with a single process, or with multiple processes none of which having the same priority, is
inherently deterministic. Therefore, nondeterminism may only arise as a consequence of timing relation-
ships between such partitions. The MCP APEX implementation optionally treats partitions as executing
atomically between API calls, offering a huge speedup with minimal time or memory overhead. Initial
results are encouraging, though at the time of writing this functionality is too new for it to be possible to
quote performance statistics.

4 Related work

Structurally, MCP probably bears closest resemblance to JPF (Java Pathfinder) [11], though at the time
of writing it does not approach JPF’s maturity. The most significant differences between JPF and MCP
stem from the differences between Java and C++; for example, JPF takes advantage of reflection and the
standard threading package in Java, which MCP can not since those features are not present in C or C++.

Since JPF is a explicit-state model checker “a la SPIN”, MCP is also a close cousin to SPIN [12]. Be-
sides the explicit-state model, MCP also shares with SPIN the concept of compiling the model checking
problem into an executable program. SPIN starts with Promela models while MCP performs transfor-
mations on C/C++ programs to embed the model checking problem into the original program.

Another model checker directly addressing C++ is Verisoft [10], which takes a completely different
approach. Verisoft follows a stateless approach to model checking while MCP follows a conventional
explicit-state model similar to SPIN [12].

CBMC is a bounded Model Checker for C and C++ programs [5]. It can check properties such as
buffer overflows, pointer safety, exceptions and user-specified assertions. CBMC does model checking
by unwinding loops and transform instructions into equations that are passed to a SAT solver. Paths are
explored only up to a certain depth.

There are, however, several model checkers that address C. SLAM [4] is really more of a static
analyzer than a model checker. It relies heavily on abstractions, starting from a highly abstracted form
and building up to a form that allows a complete analysis. CMC [17] uses an explicit-state approach, but
it requires some manual adaptation when dealing with complex types (pickleandunpicklefunctions).

Finally, there have been some attempts within NASA to use the Valgrind tool [18, 20] as a model
checker. Unfortunately, it implies using very crude steps between transitions.

Other approaches to model checking code involve a translation step, be it automatic or manual.
For example, Bandera [7] provides model checking of Java programs by translating automatically the
program into a PVS [19], Promela [21] or SMV [6] model.

5 Conclusions

The ARINC-653 Part 1 support in MCP is very new and still under development, so the purpose of this
paper is to provide a first look at the capability within NASA’s wider formal methods community.

Other than a requirement for detailed testing and attention to detail with respect to standards compli-
ance, the Part 1 implementation is largely complete at the time of writing. We hope, over the next few
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months, to put together a larger demonstration of the technology based on a moderate-sized, ARINC-
653-based flight code model example, which will help us further tune our APEX implementation. If
sufficient interest is shown, extending our implementation to encompass Part 2 would be feasible.

We hope also to take advantage of MCP’s ability to set its search strategy independently on a per-
thread basis in order to parallelize incomplete search. Since many threading problems exist only between
pairs (or at least a small subset) of threads, enumerating all possible pairwise combinations and searching
them in parallel, then proceeding to all 3-way combinations, then all 4-way combinations, etc., makes it
possible to execute these searches in parallel on separate CPU cores or physically separate computers in
a cluster.

At the time of writing, MCP is not publicly available. However, we are progressing an internal NASA
release process that, if successful, will eventually allow MCP to be released as open source software.
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Abstract

Recently a set of guidelines, or cookbook, has been developed for modelling and refinement
of control problems in Event-B. The Event-B formal method is used for system-level modelling by
defining states of a system and events which act on these states. It also supports refinement of models.
This cookbook is intended to systematise the process of modelling and refining a control problem
system by distinguishing environment, controller and command phenomena. Our main objective
in this paper is to investigate and evaluate the usefulness and effectiveness of this cookbook by
following it throughout the formal modelling of cruise control system found in cars. The outcomes
are identifying the benefits of the cookbook and also giving guidance to its future users.

1 Introduction

Systems which consist of parts to interact with and react to the evolving environment continuously are
known as embedded systems. They are complex and often used in life critical situations which means
costs of their failure are usually high. Thus, reliability, safety and correctness in such systems are impor-
tant [7, 11] and techniques such as formal methods can help to examine the behaviour of these systems
in early development stages [12]. However the process of modelling itself can present considerable
challenges and following modelling guidelines [8, 9] and patterns [16] can be helpful.

One of these is a set of guidelines, or cookbook, which has been developed recently for modelling and
refinement of control problems in Event-B. Event-B formal method is used for system-level modelling.
The main objective of this paper is to investigate how effective and useful having such a set of guidelines
is by applying it to a real application. Cruise control system (CCS) is the chosen real application for the
modelling, since the attempt of this cookbook is to outline the necessary steps of modelling an embedded
system which consists of a controller, a plant and an operator. Also, in order to make this model a good
example for the future users of the cookbook, some of the main points which helped us during the
modelling are explained as tips.

This paper is organised into 5 sections. In Section 2 the background of this work is discussed. Here
we look at Event-B and its tool Rodin. After that an outline of CCS and the cookbook are given. In
Section 3 the modelling process is explained in more details. The most abstract level of the model is
described in Section 3.1 and the refinement steps in 3.2 and 3.3. The refinement proofs related to these
steps have been verified with Rodin tool. Finally in Section 4 and 5 we evaluate the cookbook and
consider limitations and future work.

2 Background

2.1 Event-B and Refinement

Formal methods are mathematical based techniques which are used for describing the properties of a sys-
tem. They provide a systematic approach for the specification, development and verification of software
and hardware systems and because of the mathematical basis we can prove that a specification is satisfied
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by an implementation [19]. The formal method used in our work is Event-B [5] which is extended from
B-method [2]. It has simple concepts within which a complex and discrete system can be modelled. The
main reasons for choosing Event-B are firstly that it is the language used in the cookbook and secondly,
it has advantages such as simplicity of notations and extendibility and thirdly its tool support.

Structure of Event-B Event-B models consist of two constructs, contexts and machines [5, 13]. Con-
texts which specify the static part of a model and provide axiomatic properties, can contain the following
elements: carrier sets, constants and axioms. Machines represent the dynamic part of a model and can
contain variables, invariants and events. An event consists of two elements, guards which are predicates
to describe the conditions need to hold for the occurrence of an event, and actions which determines
how specific state variables change as a result of the occurrence of the event. A context may extend an
existing context and a machine may refer to one or more contexts.

Event-B Tool Unlike programming languages, not all formal methods are supported by tools [19].
However, one of the advantages of Event-B is availability of an open source tool which is implemented
on top of an extension of the Eclipse platform. This tool, known as RODIN, provides automatic proof
and a wide range of plug-ins such as the ProB model checker and Camille Text Editor which were used
in our work [1, 6, 13].

Refinement In some systems because of the size of states and the number of transitions, it is impossible
to represent the whole system as one model. Here, refinement can help us to deal with the complexity
in a stepwise manner by working in different abstract levels [19]. There are two forms of refinement;
firstly, feature augmentation refinement (also known as horizontal refinement [10]) where in each step
new features of the system are introduced. Secondly, data refinement (also known as vertical or structural
refinement [10]) which is used to enrich the structure of a model to bring it closer to an implementation
structure.

2.2 Cruise Control System

In order to have a better understanding of CCS an overview of its external observation is given in Figure 1
(based on [4]). This figure shows the relation between cruise control with the driver and the car. The role
of the cruise control that we are interested in is maintaining the car speed as close as possible to the target
speed which is set by the driver. The ways a driver and the car can interact with CCS are categorised as:

• Driver can switch CCS on or off, define a target speed for the system and increase or decrease this
target speed. Also, the driver can regain the control of the car by using the accelerator, brake, or
clutch.

• The car sends the actual speed as a feedback to the cruise control system.

• CCS signals the desired acceleration to the motor.

2.3 Overview of Cookbook

As mentioned the focus of the cookbook is on control systems which consist of plants, controllers and
in some cases operators who can send commands to the controller (Figure 21). The modelling steps
suggested in the cookbook are based on the four-variable model of Parnas [18] and can be divided into

1The diagram uses Jackson’s Problem Frame notation [15].
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Figure 1: Interaction between driver, cruise control and car (based on [4]).

two major categories. Firstly, identifying the phenomenon in the environment and secondly representing
the phenomena used for interaction between the controller and the environment (plant and operator) [8,
9].

Variables shared between a plant and a controller, labelled as ‘A’ in Figure 2, are known as en-
vironment variables [8] and are categorised into monitored variables whose values are determined by
the plant and controlled variables whose values are set by the controller. There are also environment
events and control events which update/modify monitored and controlled variables respectively. Also,
in order to add design details the cookbook defines two steps of vertical refinement for introducing in-
ternal controller variables. Firstly adding sensed variables which defines how a controller receives the
value of monitored variable. Secondly, adding actuation variables which sets the value of controlled
variable [8, 9].

Figure 2: A control problem system [8, 9].

In addition to the variables introduced in four-variable model, the cookbook suggests the identifica-
tion of the phenomena shared between controller and the operator in the cases where the system involves
an operator, labelled as ‘B’ in Figure 2. These phenomena are represented by command events which are
the commands from an operator and commanded variables whose values are determined by command
events and can affect the way other events behave. The refinement step for defining when a controller
receives a request from the operator is through introducing buttons [8, 9].

3 Cruise Control Model

The process of modelling CCS is divided into 3 main sections; First of all, in Section 3.1 M0 as the most
abstract machine is defined. In order to do this we start with identifying the monitored, controlled and
some of the commanded variables and also their corresponding events as suggested in the cookbook. In
Section 3.2 we discuss horizontal refinements which represent the requirement specification of the system
by introducing the remainder of the command events and commanded variables. Lastly, in Section 3.3

Proceedings of NFM 2010, April 13-15, 2010, Washington D.C., USA. 184



Evaluation of a Modelling Cookbook Yeganefard, Butler, and Rezazadeh

vertical refinements are defined to introduce the design steps through sensing, actuation and operator
requests.

3.1 Initial Model (M0)

The process of modelling in the most abstract level starts with identifying the monitored, controlled and
commanded variables. As was mentioned the role of the CCS which we are interested in is maintaining
the actual speed of the car as close as possible to the target speed by controlling the acceleration of the
car.

Monitored Variable and Environment Event Based on the role of the CCS, we identified the actual
car speed as the monitored variable. This variable is represented by sa. Since the value of sa cannot
be bigger than the maximum car speed, a constant named n was defined to represent the maximum car
speed (n ∈ N). Therefore, sa can be defined as sa ∈ 0..n. It is also necessary to add the environment
event UpdateActualSpeed which can update or modify the value of the monitored variable sa.

Tip 1: The source which determines the value of a variable is important and a variable will be cate-
gorised as monitored, if the environment determines its value.

Commanded Variables and Command Events One of the identified commanded variables is st which
represents the target speed determined by the driver. Based on the requirement, the target speed must
be within a specific range. To model this the two lb and ub constants were defined to demonstrate
the minimum and maximum of target speed. This results in having the invariant stFlg = T RUE ⇒
st ∈ lb..ub, showing that when st is defined it must be within the accepted range. The variable stFlg
shown in the previous invariants is a boolean variable which turns to TRUE when st is set by the driver
(stFlg ∈ BOOL). This flag is defined to represent whether the target speed has been defined or not. This
is necessary as the CCS will control the car speed only when it has been switched on (status = ON) and
the target speed has been defined (stFlg = TRUE).

The other commanded variable is named status. This variable is an element of a set called STATUS
and shows the current status of CCS (status ∈ STATUS). The set STATUS represents the three possible
statuses that CCS can be in at one moment of time. These three statuses are ON, OFF and SUSPEND
which means CCS does not control the car speed as the result of the driver using one on the pedals. This
is discussed in more details in Section 3.2.2.

Tip 2: Variables such as target speed can also be seen as monitored variables. However, we suggest
defining them as commanded variables. This is because firstly these variables are internal to the controller
and secondly their values are determined by an operator rather than environment.

Corresponding to these commanded variables the following command events were defined:

• SetTargetSpeed: when cruise control is on, driver can set st to the actual speed of the car.

• ModifyTargetSpeed: modifying st when CCS is on and stFlg is TRUE. Notice that at this level of
abstraction we do not separate increment and decrement.

• StatusOn, Suspend, and SwitchOff : update status variable. In this level of abstraction we consider
the relation between different values of status variable regardless of what causes changes (Fig-
ure 3 (a)). For instance, it is possible to get to ON from status OFF. This is shown in Figure 3 (b)
where we added the guard grd1 that status can be OFF and the action is status := ON.
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Figure 3: (a) The relation between different statuses of the cruise control system and (b) event StatusOn.

Controlled Variable and Control Event Based on the role of the CCS we identified acceleration as
the only controlled variable (acceleration ∈ Z). Also, in order to update its value, we added the control
event UpdateAcceleration. To do this a function named accFun, which returns the value of acceleration
based on actual speed and target speed, is defined. This is a total function since there must be a value
defined for every tuple of st and sa (accFun ∈ lb..ub× 0..n→ Z). Therefore, the action which sets the
value of acceleration is defined as acceleration := accFun(st 7→ sa).

Tip 3: The source which determines the value of a controlled variable is important and a variable will
be categorised as controlled, if the controller determines its value.

3.2 Horizontal Refinements

In order to simplify the refinement steps, firstly all horizontal refinements were done and then vertical
refinements. Horizontal refinements resulted in adding machines M1 to M3 to the model where every
machine refines its previous machine. In machine M1 the action of increment and decrement of variable
st are separated. According to the requirement document driver can interact with CCS through the pedals.
The pedals are introduced to the model in machine M2. In the final step, the horizontal refinement gear
is added.

Tip 4: Separation of horizontal and vertical refinement simplifies the process of modelling.

3.2.1 First Refinement (M1)

In this step of refinement the event ModifyTargetSpeed has been separated into two increase and decrease
events In order to do this, we add the constant unit which defines the value added to/subtracted from st
to increase/decrease it. It was possible to define these two events in the initial model. However we prefer
to keep the initial model as abstract as possible to avoid any complexity.

3.2.2 Second Refinement (M2)

In this machine pedals which are a way for a driver to interact with CCS [4] are introduced to the model.
Notice that all the variables introduced in this section are commanded variables and in the chain of
horizontal refinements we only deal with commanded variables and command events.

Based on the requirement, pressing the accelerator, when CCS controls the car speed, will suspend
the system temporarily and when the driver stops using this pedal, the CCS will regain the control of the
car speed. However, using either brake or clutch causes permanent suspension and this suspension can be
resumed by the driver. To distinguish the two types of permanent and temporary suspension, we defined
a variable which shows sub-states of the super status SUSPEND. This variable, named permanentSusp is
of type of boolean and is set to TRUE when CCS is permanently suspended. The other approach would
be to introduce a new set consists of {on, off, permanentSusp, tempSusp} which refines the set STATUS.
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However this can make the process of refinement proof slightly more complicated. Also, we defined two
boolean variables brkCltchPdl and accelerationPdl to represent the relevant pedals. These variables are
set to TRUE when their relevant pedals are pressed.

In the first modelling attempt we defined four events to represent actions of pressing and releasing
of each accelerator pedal and brake/clutch pedals when CCS controls the car speed. In order to update
the value of status, some of these events must refine one of the events StatusOn or Suspend from M0.
Firstly, the event PressAcceleratorPdl refines Suspend and causes the value of status to change from
ON to SUSPEND. Also, event StopAcceleratorPdl which represents the release of the accelerator refines
StatusOn and returns the value of status to ON. In order to ensure this event can happen only when CCS
is temporarily suspended, a guard showing permanentSusp must be FALSE is added to the event.

In a very similar way event PressBrkCltchPdl refines event Suspend and causes the value of status to
change from ON or SUSPEND to SUSPEND. Notice that because pressing the brake/clutch is stronger
than pressing the accelerator, using the brake or clutch while accelerator is pressed must cause permanent
suspension. Finally, event StopBrkCltchPdl does not change variable status and only updates the vari-
able brkCltchPdl. This is because CCS stays suspended when the driver releases brake/clutch. The other
event which was defined to model the resume of the CCS from permanent suspension is Resume. This
event allows the CCS to regain the control of the car speed by changing variable status to ON and vari-
able permanentSusp to FALSE. Also this event can only happen when CCS is permanently suspended.
Therefore, the flag permanentSusp must be TRUE in order for this event to be enabled.

3.2.3 Third Refinement (M3)

The last machine of horizontal refinements is M3 where the gear is introduced, because CCS can be
switched on only when the vehicle is in second or higher gear. This is modelled by adding variable gear
whose type is a number from -1 to 5 where -1 represents reverse gear, 0 neutral and 1 to 5 represent first
to fifth gear. Also, event ChangeGear is introduced to be able to change the value of gear.

3.3 Vertical Refinements

M3 was the last machine of feature augmentation (horizontal) refinements. The remainder of our model
consists of machines M4 to M6 which represent the added design details to M3. In the same way as
horizontal refinement every machine refines its previous one. These structural (vertical) refinements are
based on the cookbook [8, 9].

The first vertical refinement suggested in the cookbook is to introduce sensors through which the
controller receives the value of monitored variable. This is modelled in machine M4 by defining an
internal variable which gets the value of sa by sensing it through an event. In the same way, CCS has
an internal variable which sets the value of controlled variable. This internal variable acts as an actuator
for the controlled variable. This design detail is introduced in machine M5. Finally, M6 represents the
design of buttons through which the driver sends a request to the CCS. According to the cookbook every
button is modelled as a boolean variable and the action of pressing that button is modelled as an event.
We will discuss these refinements further in the remainder of this section.

Tip 5: Introduce each of the three steps of vertical refinement in a separate machine in order to have
less complicated Event-B machines and consequently less proof obligations in each step.

3.3.1 Forth Refinement (M4)

CCS receives the value of a monitored variable through sensors. The sensed/received value needs to
be defined as an internal variable for the CCS in order to distinguish values of a sensed variable and a
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monitored variable [8, 9]. We defined sensedSa as the sensed variable and an event called SenseSa which
sets sensedSa to the current value of sa. Since the two monitored and sensed variables are not always
equal, their equality is represented as a boolean flag [9]. This flag is called sensFlg and becomes TRUE
when event SenseSa sets variable sensedSa to sa.

Tip 6: For every monitored variable, defining one sensed variable and one boolean flag is necessary.
The sensed variable is of the same type as its corresponding monitored variable and usually is initialised
to the same value as the monitored variable is initialised to.

Based on the cookbook, variable sa in the control event UpdateAcceleration was substituted with
sensedSa (Figure 4 (a), @act1) in this refinement. Also, this event can only happen when sensedSa is
equal to sa which is the reason for adding @grd2 in Figure 4 (a). The cookbook also suggests adding the
invariant sensFlg = T RUE ⇒ sensedSa = sa in order to ensure that when sensFlg is TRUE, sensedSa
represents the value of sa [9]. This results in a proof problem in UpdateActualSpeed, since it can change
the value of sa while sensFlg is TRUE. Therefore, it is necessary to add the guard sensFlg = FALSE to
this event. Notice that we assumed in between the CCS sensing the value of monitored variable sa and
setting the acceleration, the monitored variable does not change. This is an engineering simplification
which helps us to reduce some of the complexity of the modelling of the system.

Figure 4: (a) Event UpdateAcceleration in M4, (b) events Update actAcc in M5 and (c) event Actuatin-
gAcceleration in M5.

3.3.2 Fifth Refinement (M5)

In this machine we discuss that CCS decides on the value of acceleration distinctly from actuating it [9].
Based on the cookbook, to do this we need to define an actuation variable and a boolean flag. These are
named actAcc and actFlg respectively. The flag actFlg will be set to TRUE when the internal process of
determining the value of a controlled variable is finished and this variable can be actuated.

Tip 7: For every controlled variable, defining one actuation variable and one boolean flag is necessary.
Also, the actuation variable is of the same type as its corresponding controlled variable and usually is
initialised to the same value as the controlled variable initialisation.

According to the cookbook, we also defined two events. Firstly, an internal event called Update actAcc,
to set the value of actuation variable actAcc and set the flag actFlg to TRUE (Figure 4 (b), @act1 and
@act2). Secondly, ActuatingAcceleration which sets the value of acceleration to the value of the internal
variable actAcc and turns actFlg to FALSE (Figure 4 (c), @act1 and @act3). This event refines the
control event UpdateAcceleration, since it modifies the value of acceleration. Note that ActuatingAc-
celeration can happen only when the value of actAcc is decided by the controller, therefore the guard
actFlg = TRUE is added to this event (Figure 4 (c), @grd1).
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In addition to these variables and events, based on the cookbook it is necessary to define two invari-
ants. The first invariant represents that in between control decision on the value of actAcc and actuation
of acceleration, we assume st and sensedSa do not change. The second invariant shows that after actua-
tion of acceleration the value of this variable and actAcc are equal. Although it is not mentioned in the
cookbook, this invariant is only needed when the value of the controlled variable changes depending on
its previous value as well as some other variables. Since this is not the case in this model, defining the
second invariant is unnecessary.

Tip 8: Invariant actFlg = FALSE⇒ actAcc = acceleration mentioned in the cookbook is unnecessary
if the value of controlled variable is set independent of its previous value.

3.3.3 Sixth Refinement (M6)

In this section the operator’s command request and CCS’s response are distinguished by introducing
buttons. According to the cookbook, a boolean variable representing a button, needs to be defined for
every command event. Also the action of pressing a button should be introduced through an event which
sets the button variable to TRUE [9]. We introduced the followings as buttons: switchBtn, setBtn, incBtn,
decBtn and rsmBtn. Because CCS responds to a request only after the relevant button has been pressed,
a guard which requires the relevant button to be TRUE is added to each command event. Also, CCS
turns the relevant button back to FALSE when it responds to the request. Notice, there is no button
defined for the command events related to pedals, since pedal variables brkCltchPdl and acceleratPdl in
Section 3.2.2 count as buttons. Also, there are cases where CCS cannot respond to a coming request, for
instance when CCS is OFF. These cases are not mentioned in the cookbook, but we prefer to model these
situations as ignorance of CCS to the button’s request.

Tip 9: For every button an event can be defined to represent cases where there should be no response
to the pressed button. We add this event by defining its guards as the negation of the conjunction of all
the guards in the command event corresponds to the button.

This is the last machine of our model and we have modelled the CCS based on the requirement
document and the cookbook. In the remainder of this paper we reflect on the results of this work.

4 Results and Limitations

4.1 Evaluation of the Cookbook

The cookbook is mainly a guideline on vertical refinement. In addition to vertical refinement guidance,
the cookbook suggests identifying monitored, controlled and commanded variables and their correspond-
ing events at the most abstract level of a model. Once the variables are found, identifying events which
modify and update them in horizontal refinements becomes straightforward. Also, the focus of the cook-
book is mainly on the discrete aspects such as status, pedals and buttons and less on continuous, since
many of the complexity of the requirements are related to discrete aspects.

One of the other advantages of using cookbook is that almost all the necessary variables, events and
invariants for every step of vertical refinement are described. This can be helpful for the designers with
not a lot of knowledge on formal modelling in Event-B. In addition, some proof problems caused by
the invariants mentioned in the cookbook can help to identify errors of the model. In our work, the
process of modelling machines M4 to M6, which was done based on the cookbook, was reasonably easy.
In particular, M4 where the sensor was introduced had the most effortless refinement. However, the
cookbook lacks a means of dealing with some issues which can raise during modelling process, such as
modelling ignorance of a button, mentioned in Section 3.3.3.
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Finally, based on the achieved results we believe the main advantage of following the cookbook is
the structure that it gives to the process of modelling and refinement. While deciding on how to organise
the refinement steps is known as a source of difficulty in the usage of refinement [3], modelling a control
problem domain based on the cookbook can help to identify the required steps of refinement quicker and
easier. In the case of this work the steps of vertical refinements in machines M4 to M6 were decided
purely based on the cookbook.

4.2 Limitations

The limitations of this work can be categorised into two types. Firstly, limitations imposed by formal
methods themselves, although we should consider that gained benefits may outweigh these limitations.
A detailed discussion is beyond the scope of this paper but as an outline one of the limitations is that
models can only cover some aspects of a system’s behaviours, because mapping formal model and the
real world in limited [12]. The second types of limitations are what we have not considered in the
process of modelling. First of all we have not considered fault-tolerance and failure of the hardware and
it is assumed that the components do not fail. Also, timing and time constraints are not discussed. It
is important to notice that our intention was not to prepare a model which is ready to be implemented.
Therefore, such limitations will be considered in future work.

5 Related work, Future work and Conclusion

5.1 Related Work

One of the other approaches for development of embedded systems is Problem Frames (PFs) developed
by Michael Jackson. This approach focuses on the separation of problem (what the system will do) and
solution (how it will do it) domain. PFs describe any system engineering problem through the concept of
a machine which is going to be design by a software application, problem world and requirement [17].
As part of the Deploy project a cruise control system was modelled using PFs. Here, the concepts of
PFs are as followings: Machine is the cruise control software; Problem world is anything that cruise
control software interacts with, such as pedals and driver; Requirement is controlling phenomena which
otherwise would be controlled by the driver, here controlling the car speed [17].

The other work which is related to the cookbook is SCR (Software Cost Reduction) [14]. SCR
is a requirement method for real-time embedded systems which is, in the same way as the cookbook,
based on the four-variable model of Parnas [18]. As well as identifying the four variables of the Parnas
model, SCR defines the following four constructs [14]: modes which represent states of a monitored
variable; terms which are auxiliary functions defined to make the specification more concise; conditions
to represent predicates and events to show the changes of the values in the model.

5.2 Future Work

The model of cruise control system represented in this paper contains the platform, the environment and
the software application. Separation of these concepts through decomposition in later steps of design
allows us to derive a specification of the control system, since the software and the hardware are being
separated. In addition, other aspects of an embedded system are usually analysed and modelled through
different techniques to formal methods. In order to ensure that cruise control system and other models
of the system such as a model of car engine are consistent, meta-modelling can be used.
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5.3 Conclusion

This work has achieved its main objectives in evaluation of the cookbook and preparation of the best
design model for the cruise control system. We showed how the cookbook can make the process of
modelling simpler and how it can help to find modelling errors. Also, the model of cruise control system
represented in this paper and the given tips can be used by future users of the cookbook. We believe the
outcomes of this work have contributed to the research in refinement-based methods such as Event-B
and have the potential of leading to improved patterns and guidelines.
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Abstract

We introduce a scalable proof structure to facilitate formal verification of large software sys-
tems. In our approach, we mechanically synthesize an abstract specification from the software 
implementation, match its static operational structure to that of the original specification, and orga-
nize the proof as the conjunction of a series of lemmas about the specification structure. By setting 
up a different lemma for each distinct element and proving each lemma independently, we obtain 
the important benefit that the proof scales easily for large systems. We present details of the 
approach and an illustration of its application on a challenge problem from the security domain.

1 Introduction

Formal verification of software continues to be a desirable goal, although such verification remains the 
exception rather than the rule. By formal verification, we mean verification of the functionality of the soft-
ware in the sense of Floyd and Hoare [7]. Many challenges arise in formal verification [10], and these chal-
lenges are compounded by the complexity that arises with the increasing size of the software of interest.

In this paper, we present an approach to the formal verification of large software systems. The 
approach operates within a previously developed formal verification framework named Echo [13, 14, 15]. 
Our goal with the approach to proof was to develop a technique that would be: (a) relevant, i.e., applicable 
to programs that could benefit from formal verification; (b) scalable; i.e., be applicable to programs larger 
than those currently considered suitable for formal verification; (c) accessible, i.e., could be used by engi-
neers who are competent but not necessarily expert in using formal methods; and (d) efficient, i.e, could be 
completed in an amount of time that would be acceptable in modern development environments.

We do not define “large” in a quantitative way. Rather, we claim that the approach we have developed 
can be applied successfully to software systems that are larger than those successfully verified in previous 
work, and we illustrate the approach in a case study of a system that is several thousand source lines long.

2 The Echo Approach

Details of Echo are available elsewhere [14, 15], and we present here only a brief summary. Echo verifica-
tion is based on a process called reverse synthesis in which a high-level, abstract specification (referred to 
as the extracted specification) is synthesized mechanically from a combination of the software source code 
and a low-level, detailed specification of the software. Reverse synthesis includes verification refactoring 
in which semantics-preserving transformations are applied to the software to facilitate verification.

Formal verification in Echo involves two proofs: (1) the implementation proof, a proof that the source 
code implements the low-level specification correctly; and (2) the implication proof, a proof that the 
extracted specification implies the original system specification from which the software was built.

The basic Echo approach imposes no restrictions on how software is built except that development has 
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to start with a formal system specification, and developers have to create the low-level specification docu-
menting the source code. Our current instantiation of Echo uses: (1) PVS [12] to document the system 
specification and the extracted specification; (2) the SPARK subset of Ada [3] for the source program; and 
(3) the SPARK Ada annotation language to document the low-level specification. The implementation 
proof is discharged using the SPARK Ada tools. The implication proof is the focus of this paper, and that 
proof is facilitated greatly by the implementation proof; most loop invariants, for example, are not present.

3 Structural Matching Hypothesis

We refer to our approach to formal verification of large software systems as proof by parts. The heart of 
proof by parts is the structural matching hypothesis. We hypothesize that many systems of interest have 
the property that the high-level structure of a specification is retained, at least partially, in the implementa-
tion. Ideally, a specification should be as free as possible of implementation detail. However, the more pre-
cise a specification becomes, the more design information it tends to include, especially structural design 
information. While an implementation need not mimic the specification structure, in practice an implemen-
tation will often be similar in structure to the specification from which it was built because: (a) repeating 
the structural design effort is a waste of resources; and (b) the implementation is more maintainable if it 
reflects the structure of the specification.

The hypothesis tends to hold for model-based specifications that specify desired system operations 
using pre- and post-conditions on a defined state. The operations reflect what the customer wants and the 
implementation structure would mostly retain those operations explicitly.

4 Proof Support

Proof Structure. The proof of interest is the implication proof. Given implementation I and specification 
S, this proof has to establish the implication I  S. Specifically, we prove the implication weakens the pre-
condition and decreases non-determinism from the specification:

pre S  pre I    post I  post S  
In order to establish this proof for large software systems, the proof structure involved must be scal-

able. In proof by parts, we rely upon the structural matching hypothesis, and we match the static opera-
tional structure of the extracted specification created by reverse synthesis to the original specification. We 
then organize the proof as a series of lemmas about the specification structure, i.e., proof by parts.

Each lemma is set up for declarative properties over a single distinctive element, e.g. type or operation, 
and is proved independently. The conjunction of all the lemmas then forms the whole implication theorem 
that the extracted specification implies the original specification. Since each lemma is over a different ele-
ment of the system and is proved independently without reference to the whole system, proof by parts is 
expected to scale for large software systems.

Clearly, the construction of a proof in this way is only possible for a system for which the structural 
matching hypothesis holds for the entire implementation. Inevitably, this will rarely if ever be the case for 
real software systems. For systems in which the two structures do not match, we employ a technique within 
Echo referred to as verification refactoring, to restructure the implementation to match the specification 
structure.

Verification Refactoring. There are many reasons why the structural matching hypothesis will only apply 
partially to a particular system, e.g., optimizations introduced by programmers that complicate the program 
structure. Verification refactoring consists of selecting transformations that can be applied to the source 
program, proving they are semantics preserving, and applying them to the program before specification 
extraction. Details of verification refactoring are discussed in an earlier paper [15].

Echo’s verification refactoring mechanism provides a set of semantics-preserving transformations that 
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can be applied to an implementation to facilitate verification in various ways. Several transformations help 
to reduce the length and complexity of the proof obligations to facilitate the implementation proof. 
Although the implementation proof is completed mostly by tools (the SPARK Ada tools in our current 
Echo instantiation), we have found that verification refactoring can be extremely beneficial for the imple-
mentation proof, in the limit making proof possible where the tools failed on the original program.

A second set of transformations restructures a program to align the structure of the extracted specifica-
tion with the structure of the original specification, i.e., to make the matching hypothesis apply to more of 
the program.New transformations might be developed to accommodate a particular program.  Even so, 
verification refactoring might not provide a match that will enable the implication proof in which case a 
different verification approach will be needed.

Matching Metric. We have defined a matching metric that summarizes the similarity of the structures of 
the original and the extracted specifications and thereby indicates the feasibility of proof by parts. The 
match ratio is defined as the percentage of key structural elements — data types, system states, tables, 
operations — in the original specification that have direct counterparts in the extracted specification. The 
match ratio does not necessarily imply the final difficulty of the proof, but the match ratio does provide an 
initial impression of the likelihood of successfully establishing the proof. In our Echo prototype, the metric 
is evaluated by visual inspection although significant tool support would be simple to implement.

Establishing the match ratio is fairly straightforward in many cases. Some of the matching can be 
determined from the symbols used, because the names used in the original specification are often carried 
through to the implementation and hence to the extracted specification.

5 Approach to Proof

The property that needs to be shown in the implication proof is implication not equivalence, hence the 
name. By showing that the extracted specification implies the original specification, but not the converse, 
we allow the original specification to be nondeterministic and allow more behaviors in the original specifi-
cation than the implementation. The basic definition of implication we use for this is that set out by Liskov 
and Wing known as behavioral subtyping [11].

The way in which the extracted specification is created influences the difficulty of the later proof. In 
the case where the implementation retains the structural information from the original specification, a sim-
ple way to begin proof by parts is to also retain the structure by directly translating elements of the imple-
mentation language, such as packages, data types, state/operation representations, pre-conditions, post-
conditions, and invariants, into corresponding elements in the specification language. For each pair of 
matching elements, we establish an implication lemma that the element in the extracted specification 
implies the matching element from the original specification. The final proof is organized as the conjunc-
tion of a series of such lemmas. There are three types of implication lemmas that we discuss in the next 
three subsections.

5.1 Type lemmas

For each pair of matching types, we define a retrieval function from the extracted type to the original type. 
When trying to prove the relation between each pair, two possibilities arise:
Surjective Retrieval Function. If the retrieval function can be proved to be surjective, the extracted type 

is a refinement of the original type, i.e., all properties contained in the types in the original specification 
are preserved. If the retrieval function can be proved to be a bijection, the two types are equivalent.

Non-surjective Retrieval Function. If the retrieval function is not surjective, then either: (a) there is a 
defect if the two types are intended to be matched; (b) certain values in the original specification can 
never arise; or (c) a design decision has been made to further limit the type in the implementation, i.e., 
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to make the post-condition stronger. Upon review, if the user does not confirm that there is a defect or 
does not further refine the specification, we postpone the proof by transforming the types into subtype 
predicates on the same base type (e.g. integer). These extra predicates are added as conjuncts in func-
tion pre-conditions or post-conditions depending on where they appear, and they are checked when the 
later lemmas regarding those functions are established.

5.2 State lemmas

State is the set of system variables used to monitor or control the system. State is defined over types, thus 
type lemmas can be used to facilitate proofs of state lemmas. As with type lemmas, we set up a retrieval 
function from the extracted state to the original state. For each pair, we prove the following two lemmas:
State Match. As with the type lemmas, we prove that the retrieval function is surjective to show refine-

ment (or equivalence in the bijection case). If it cannot be proved, indicating certain values of the origi-
nal state cannot be expressed by the extracted state, we again present it for user review. It is either a 
defect or, by definition, certain values of original state cannot arise.

State Initialization. For states that require initialization, the extracted specification will contain an initial-
ization function. We prove that whenever a state is initialized in the extracted specification, the corre-
sponding retrieved original state also satisfies the initialization constraints in the original specification.

5.3 Operation lemmas

System operations are usually defined as functions or procedures over the system state. When matching 
pairs of operations in the extracted specification and the original specification, we set up an implication 
lemma for each pair. The operation extracted from the implementation should have weaker pre-condition 
and stronger post-condition than the operation defined in the original specification. Specifically, we prove:
Applicability. The extracted operation has a weaker pre-condition than the original operation. For any 

state st upon which the operation operates, given R as the retrieval function for st, we prove:
FORALL st: Pre_org(R(st)) => Pre_ext(st)

Correctness. The extracted operation has a stronger post-condition than the original operation if applica-
ble. Given any st1 and st2 as input and output for an operation f, R as the retrieval function for state, 
we prove:
FORALL st1, st2 | st2 = f(st1): 

Post_ext(st2) AND pre_org(R(st1)) => post_org(R(st2))

By reasoning over predicates such as the pre-conditions and post-conditions in the low-level specifica-
tion, we avoid implementation details as much as possible when proving these implication lemmas.

5.4 Implication theorem

The conjunction of all the lemmas forms the implication theorem. All the resulting proof obligations need 
to be discharged automatically or interactively in a mechanical proof system. Since the extracted specifica-
tion is expected to have a structure similar to the original specification, the proof usually does not require a 
great deal of human effort. Also, by setting up the lemmas operation by operation rather than property by 
property and proving each operation independently, the proof structure easily scales.

6 Proof Process

Our process for applying the proof in practice is shown in Figure 1. In most situations, we choose to pro-
ceed with verification refactoring first to increase the match-ratio metric until it becomes stabilized 
through transformations. There are other types of refactoring and corresponding metrics we evaluate to 
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facilitate the proof process, e.g., to reduce the size of the proof obligations generated. Details of this verifi-
cation refactoring and metric analysis process and the benefits it brings to our proof have been discussed in 
our earlier paper [15].

After applying verification refactoring, we have a version of the implementation from which a specifi-
cation can be extracted that shows structural similarity to the original specification. We then: (a) update 
and complete the low-level specification (documented as annotations) that might have become erroneous 
during the refactoring process (e.g. by splitting a procedure); and (b) prove that the code conforms to the 
low-level specification, i.e., create the implementation proof. This technology is well established, and we 
do not discuss it further here.

Figure. 1. The proof process.

From the refactored code and the associated low-level specification, we extract a high-level specifica-
tion, i.e., the extracted specification, using custom tools. We then establish the three types of implication 
lemma and the implication theorem following the approach discussed in section 5. Finally, we prove that 
the extracted specification implies the original specification.

6.1 Specification Extraction

In this section we demonstrate how we synthesize the extracted specification from the implementation.
Extraction from annotation. For functions that are annotated with proved pre- and post-condition anno-
tations, the annotations provide a level of abstraction. This is helpful for programs that contain a lot of 
computation. For instance, when one specifies a function, the property that one cares about would be cor-
rectness of the output. The actual algorithm used is not important. If the function is annotated and the 
annotation is proved using code-level tools, we extract the specification from the annotations and leave out 
the unrelated implementation details. The proof of the annotations by the code-level tools can be intro-
duced as a lemma that is proved outside the specification proof system. An example code fragment that is 
written in SPARK Ada and the extracted specification in PVS in which the details of the procedure body 
are omitted and an additional lemma introduced is shown in Figure 2. The additional lemma indicates that 
the post-condition will be met if the pre-condition is met. The lemma is marked as proved outside and can 
be used directly in subsequent proofs.
Direct extraction from code. The expressive power of the SPARK Ada annotations with which the low-
level specification is documented is limited. Certain properties either: (a) cannot be expressed by the anno-
tation language; (b) are expressible but not in a straightforward way; or (c) are expressible but are not help-
ful in abstracting out implementation details. In such situations we extract the specification directly from 
the source code. An example of both code and extracted specification fragments, again in SPARK Ada and 
PVS, is shown in Figure 3.
Skeleton extraction. A lightweight version of specification extraction is used to facilitate the metric anal-
ysis. When verification refactoring is used, we extract a skeleton specification from the transformed code. 
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type state is 
record 

a: Integer; 
b: Integer; 

end record;
procedure foo(st: in out state) 
--# derives st from st; 
--# pre st.a = 0; 
--# post st = st~[a => 1]; 
is 
begin 
  -- procedure body 
  … 
end foo;

Figure. 2. SPARK Ada code fragment and associated PVS 
fragment derived from annotations.

state: TYPE = [# a: int, b: int #] 
foo_pre(st: state): bool = (st`a = 0) 
foo_post(st_, st: state): bool = 

(st = st_ WITH [`a := 1]) 
foo(st: state): state 
foo: LEMMA FORALL (st: state): 

foo_pre(st) => foo_post(st, foo(st))

procedure foo(st: in out state) 
is 
begin 

foo1(st); 
st.a = 1; 
foo2(st); 

end foo;

foo(st: state): state = 
LET st1 = foo1(st) IN 
LET st2 = st1 WITH [`a := 1] IN 
LET st3 = foo2(st2) IN 

st3
Figure. 3. SPARK Ada code fragment and associated PVS fragment de-

rived from source code.
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We refer to this specification as a skeleton because it is obtained using solely the type and function declara-
tions and contains none of the detail from the annotations or the function definitions. The skeleton specifi-
cation, however, does reflect the structure of the extracted specification. We can then compare the structure 
of the skeleton extracted specification with that of the original specification and evaluate the match-ratio 
metric to determine whether further refactoring is needed.
Component Reuse & Model Synthesis. Software reuse of both specification and code components is a 
common and growing practice. If a source-code component from a library is reused in a system to be veri-
fied and that component has a suitable formal specification, then that specification can be included easily 
in the extracted specification.

In some cases, specification extraction may fail for part of a system because the difference in abstrac-
tion used there between the high-level specification and the implementation is too large. In such circum-
stances, we use a process called model synthesis in which the human creates a high-level model of the 
portion of the implementation causing the difficulty. The model is verified by conventional means and then 
included in the extracted specification.

6.2 Implication Proof

The final step to complete the verification argument is the implication proof that the extracted specification 
implies the original specification. The implication argument is established by matching the structures and 
components of these two specifications and setting up and proving the implication theorem as discussed in 
section 5.

6.3 Justification of Correctness

The verification argument in Echo is as follows: (a) the implementation proof establishes that the code 
implements the low-level specification (the annotations); (b) the transformations involved in verification 
refactoring preserve semantics; (c) the specification extraction is automated or mechanically checked; (d) 
the implication theorem is proved; and (e) the combination of (a) through (d) provides a complete argu-
ment that the implementation behaves according to its specification.

Any defect in the code that could cause the implementation not to behave according to the specifica-
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tion will be exposed in either the implementation proof or the implication proof. Any inconsistency 
between the code and the annotations will be detected by the code-level tools in the implementation proof. 
An inconsistency could arise because of a defect in either or both. If both are defective but the annotations 
match the defective code, it will not be detected by the implementation proof. However the annotations 
will not be consistent with the high-level specification in this case and so will be caught in the implication 
proof.

7 The Tokeneer Case Study

In order to evaluate our proof structure approach, we sought a non-trivial application that was built by oth-
ers, was several thousand lines long, and was in a domain requiring high assurance. The target system we 
chose is part of a hypothetical system called Tokeneer that was defined by the National Security Agency 
(NSA) as a challenge problem for security researchers [4]. Our interest was in functional verification of the 
Tokeneer software, and so we applied the Echo proof approach to the core functions of Tokeneer.

7.1. Tokeneer Project Description

Tokeneer is a large system that provides protection to secure information held on a network of worksta-
tions situated in a physically secure enclave. The system has many components including an enrolment sta-
tion, an authorization station, security resources such as certificate and authentication authorities, an 
administration console, and an ID station. We used the core part of the Tokeneer ID Station (TIS) in this 
research. TIS is a stand-alone entity responsible for performing biometric verification of the user and con-
trolling human access to the enclave. To perform this task, the TIS asks the individual desiring access to 
the enclave to present an electronic token in the form of a card to a reader. The TIS then examines the bio-
metric information contained in the user’s token and a fingerprint scan read from the user. If a successful 
identification is made and the user has sufficient clearance, the TIS writes an authorization onto the user’s 
token and releases the lock on the enclave door to allow the user access to the enclave.

Much of the complexity of the TIS derives from dealing with all eventualities. A wide variety of fail-
ures are possible that must be handled properly. Since Tokeneer is a security-critical system, crucial secu-
rity properties such as unlocking only with a valid token and within an allowed time, and keeping 
consistent audit records need to be assured with high levels of confidence.

A fairly complete,high quality implementation of major parts of the TIS has been built by Praxis High 
Integrity Systems. The Praxis implementation includes a requirement analysis document, a formal specifi-
cation written in Z (117 pages), a detailed design, a source program written in SPARK Ada (9939 lines of 
non-comment, non-annotation code), and associated proofs. Since our tools operate with PVS, we trans-
lated the Z specification of the TIS into PVS. The final specification in PVS is 2336 lines long.

7.2. Echo Proof of Tokeneer

The Praxis implementation of Tokeneer was developed using Correctness by Construction [6] with the 
goal of demonstrating rigorous and cost effective development. High-level security properties were estab-
lished by documenting the properties using SPARK Ada annotations, including them in the code, and then 
proving them using the SPARK Ada tools. Our proof is of the functionality of the implementation as 
defined by the original, high-level specification. Given our proof of functionality, high-level security prop-
erties can be established by stating the properties as theorems and proving them against the high-level 
specification.

Turning now to the proof itself, upon review, we found that the TIS source program structure resem-
bled the specification structure very closely, i.e., the structural matching hypothesis held. Almost all states 
and operations in the specification have direct counterparts in the source program, e.g., the UnlockDoor
operation defined for system internal operations in the specification:
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UnlockDoor(dla_i, dla_o: DoorLatchAlarm, c: Config): bool = 
dla_o`latchTimeout = dla_i`currentTime + c`latchUnlockDuration AND 
dla_o`alarmTimeout = dla_i`currentTime 

+ c`latchUnlockDuration + c`alarmSilentDuration AND 
dla_o`currentTime = dla_i`currentTime AND 
dla_o`currentDoor = dla_i`currentDoor

is implemented by a corresponding procedure with the same name in the Door package in the source code:
procedure UnlockDoor is 

LatchTimeout : Clock.TimeT; 
begin 

LatchTimeout := Clock.AddDuration( 
TheTime     => Clock.TheCurrentTime, 
TheDuration => ConfigData.TheLatchUnlockDuration); 

Latch.SetTimeout(Time => LatchTimeout); 
AlarmTimeout := Clock.AddDuration( 

TheTime     => LatchTimeout, 
TheDuration => ConfigData.TheAlarmSilentDuration); 

Latch.UpdateInternalLatch; 
UpdateDoorAlarm; 

end UnlockDoor;

We did not include the interface functions in our verification, and after removing them and performing 
a skeleton extraction, we found the match ratio to be 74.7%. Almost all states and operations in the specifi-
cation have direct counterparts in the source program. The match ratio is not 100% (or at least close to it) 
because refinements carried out during the development added several operations that were not defined in 
the specification. We concluded that the structures of the specification and the source program were suffi-
ciently similar that we could extract the necessary specification effectively and easily without performing 
verification refactoring. The final extracted PVS specification is 5622 lines long. As an example, the 
extracted specification using direct extraction from code for the above UnlockDoor procedure is:

UnlockDoor(st: State): State = 
LET LatchTimeout = Clock.AddDuration(TheCurrentTime(st), 

TheLatchUnlockDuration(st)) IN 
LET st1 = SetTimeout(LatchTimeout, st) IN 
LET st2 = st1 WITH [`AlarmTimeout := Clock.AddDuration(LatchTimeout, 

TheAlarmSilentDuration(st))] IN 
LET st3 = UpdateInternalLatch(st2) IN 
UpdateDoorAlarm(st3)

Following extraction of the specification, we performed both the implementation proof and the impli-
cation proof. For the implementation proof, we used the SPARK Ada toolset to prove functional behaviors 
of those subprograms that had been documented with pre- and post-condition annotations. The SPARK 
Examiner generates verification conditions (VCs) that must be proved true to demonstrate that the code 
does indeed meet its specified post-conditions, within the context of its pre-conditions. The Examiner also 
generates VCs that must be satisfied to ensure freedom from run-time exceptions. Altogether there were 
over 2600 VCs generated of which 95% were automatically discharged by the toolset itself. The remaining 
5% required human intervention, and were covered in the documents from Praxis’ proof.

The implication proof was established by matching the components of the extracted specification with 
those of the original specification. Identifying the matching in the case study was straightforward, and in 
most situations could be suggested automatically by pairing up types and functions with the same name as 
showed by the above example. For each matching pair, we created an implication lemma and altogether 
there were just over 300 such lemmas. Typechecking of the implication theorem resulted in 250 Type Cor-
rectness Conditions (TCCs) in the PVS theorem prover, a majority of which were discharged automatically 
by the theorem prover itself. In 90% of the cases, the PVS theorem prover could not prove the implication 
lemmas completely automatically. However, the human guidance required was straightforward due to the 
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tight correlation between the original specification and source code, typically including expansion of func-
tion definitions, introduction of type predicates, or application of extensionality. Each lemma that was not 
automatically discharged was interactively proved in the PVS theorem prover by a single person with mod-
erate knowledge about PVS, and thus the implication theorem was discharged. The total typechecking and 
proof scripts running time in PVS is less than 30 minutes.

In section 1 we listed four goals for our proof approach. Drawing firm conclusions about our goals 
based on a single case study is impossible, but from our experience of the Tokeneer proof (and also earlier, 
smaller proofs [15]), we conclude the following general indications about our goals:

Relevant. The approach is relevant in so far as Tokeneer is typical of security-critical systems. Tokeneer 
was established by the NSA as a challenge problem because it is “typical” of the systems they require. 
The approach can be applied in other domains provided any necessary domain-specific axioms are 
available in PVS. They might have to be developed by domain experts. We anticipate that verification 
refactoring will expand the set of programs to which the technique can be applied.

Scalable. The approach scales to programs of several thousand lines provided the structural matching 
hypothesis holds. There is no obvious limit on the size of programs that could successfully be proved.

Accessible. The approach is mostly automated and relatively easy to understand, and should be accessible 
to practicing engineers who are generally familiar with formal methods. The Tokeneer proof was com-
pleted by a single individual with good knowledge of the technology in use but no special training.

Efficient. Detailed measurements could not be made of the resources used for the Tokeneer proof, but we 
observe that the resources required were well within the scope of a typical software development.
A valuable benefit of proof by parts is that location of implementation defects becomes easier. In gen-

eral, a defect is usually located inside the component for which the proof fails for the corresponding 
lemma. During the proof of Tokeneer, we found several mismatches between the source program and the 
specification, but later found that they were changes documented by Praxis.

8 Related Work

Traditional Floyd-Hoare verification [7] requires generation and proof of significant amount of detailed 
lemmas and theorems. It is very hard to automate and requires significant time and skill to complete. 
Refinement based proof like the B method [1] intertwine code production and verification. Using the B 
method requires a B specification and then enforces a lock-step code production approach on developers.

Annotations and verification condition generation, such as that employed by the SPARK Ada toolset, 
is used in practice. However, the annotations used by SPARK Ada (and other similar techniques) are gen-
erally too close to the abstraction level of the program to encode higher-level specification properties. 
Thus, we use verification condition generation as an intermediate step in our approach.

Results in reverse engineering include retrieval of high-level specifications from an implementation by 
semantics-preserving transformations [5, 16]. These approaches are similar to our extraction and refactor-
ing techniques, but the goal is to facilitate analysis of poorly-quality code, not to aid verification. Our 
approach captures the properties relevant to verification while still abstracting implementation details.

Andronick et al. developed an approach to verification of a smart card embedded operating system [2]. 
They proved a C source program against supplementary annotations and generated a high-level formal 
model of the annotated C program that was used to verify certain global security properties.

Heitmeyer et al. developed a similar approach to ours for verifying a system’s high-level security prop-
erties [8]. Our approach is focused on general functionality rather than security properties.

Klein et al. demonstrated that full functional formal verification is practical for large systems by veri-
fying the seL4 microkernel from an abstract specification down to its 8700 lines C implementation [9]. 
Proof by parts is more widely applicable and does not impose restrictions on the development process.
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9 Conclusion

We have described proof by parts, an approach to the formal verification of large software systems, and 
demonstrated its use on a program that is several thousand lines long. The approach is largely automated 
and does not impose any significant restrictions on the original software development.

Proof by parts depends upon the specification and implementation sharing a common high-level struc-
ture. We hypothesize that many systems of interest have this property. Where the structures differ, we 
refactor the implementation to align the two structures if possible. If refactoring fails to align the struc-
tures, then proof by parts is infeasible.

We expect proof by parts to scale to programs larger than the one used in our case study with the 
resources required scaling roughly linearly with program size. For software for which our hypothesis 
holds, we are not aware of a limit on the size of programs that can be verified using our approach.
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Abstract

Finding strongly connected components (SCCs) in the state-space of discrete-state models is a
critical task in formal verification of LTL and fair CTL properties, but the potentially huge number of
reachable states and SCCs constitutes a formidable challenge. This paper is concerned with comput-
ing the sets of states in SCCs or terminal SCCs of asynchronous systems. Because of its advantages
in many applications, we employ saturation on two previously proposed approaches: the Xie-Beerel
algorithm and transitive closure. First, saturation speeds up state-space exploration when computing
each SCC in the Xie-Beerel algorithm. Then, our main contribution is a novel algorithm to compute
the transitive closure using saturation. Experimental results indicate that our improved algorithms
achieve a clear speedup over previous algorithms in some cases. With the help of the new transitive
closure computation algorithm, up to 10150 SCCs can be explored within a few seconds.

1 Introduction
Finding strongly connected components (SCCs) is a basic problem in graph theory. For discrete-state
models, some interesting properties, such as LTL [8] and fair CTL, are related with the existence of
SCCs in the state transition graph, and this is also the central problem in the language emptiness check
for ω-automata. For large discrete-state models (e.g., 1020 states), it is impractical to find SCCs using
traditional depth-first search, motivating the study of symbolic computation of SCCs. In this paper, the
objective is to build the set of states in non-trivial SCCs.

The structure of SCCs in a graph can be captured by its SCC quotient graph, obtained by collapsing
each SCC into a single node. This resulting graph is acyclic, and thus defines a partial order on the
SCCs. Terminal SCCs are leaf nodes in the SCC quotient graph. In the context of large scale Markov
chain analysis, an interesting problem is to partition the state space into recurrent states, which belong
to terminal SCCs, and transient states, which are not recurrent.

The main difficulties in SCC computation are: having to explore huge state spaces and, potentially,
having to deal with a large number of (terminal) SCCs. The first problem is the primary obstacle to
formal verification due to the obvious limitation of computational resources. Traditional BDD-based
approaches employ image and preimage computations on state-space exploration and, while quite suc-
cessful in fully synchronous systems, they do not work as well for asynchronous systems. The second
problem constitutes a bottleneck for one class of previous work, which enumerates SCCs one by one.
Section 2.3 discusses this problem in more detail.

This paper addresses the computation of states in SCCs and terminal SCCs. We propose two ap-
proaches based on two previous ideas: the Xie-Beerel algorithm and transitive closure. Saturation, which
schedules the firing of events according to their locality, is employed to overcome the complexity of state-
space exploration. Pointing to the second difficulty, our efforts are devoted to an algorithm based on the
transitive closure, which does not suffer from a huge numbers of SCCs but, as previously proposed, often
requires large amounts of runtime and memory. We then propose to use a saturation-based algorithm to
compute the transitive closure, enabling it to be a practical method of SCC computation for complex
systems. We also present an algorithm for computing recurrent states based on the transitive closure.

∗Work supported in part by the National Science Foundation under grant CCF-0848463.
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The remainder of this paper is organized as follows. Section 2 introduces the relevant background
on data structure we use and the saturation algorithm. Section 3 introduces an improved Xie-Beerel
algorithm using saturation. Section 4 introduces our transitive closure computation algorithm using sat-
uration and the corresponding algorithms for SCC and terminal SCC computations. Section 6 compares
the performance of our algorithms and that of Lockstep.

2 Preliminaries
Consider a discrete-state model (S ,Sinit ,E ,N ) where the potential state space S is given by the
product SL× ·· · ×S1 of the local state spaces of L submodels, thus each (global) state i is a tuple
(iL, . . . , i1) where ik ∈Sk, for L ≥ k ≥ 1; the set of initial states is Sinit ⊆S ; the set of (asynchronous)
events is E ; the next-state function N : S → 2S is described in disjunctively partitioned form as N =⋃

α∈E Nα , where Nα(i) is the set of states that can be reached in one step when α fires in state i. We say
that α is enabled in state i if Nα(i) 6= /0. Correspondingly, N −1 and N −1

α denote the inverse next-state
functions, i.e., N −1

α (i) is the set of states that can reach i in one step by firing event α .
State-space generation refers to computing the set of reachable states from Sinit , denoted with Srch.

Section 2.2 introduces our state-space generation algorithm called saturation, which is executed prior to
the SCC computation as a preprocessing step. Consequently, Srch, the sets Sk, and their sizes nk are
assumed known in the following discussion, and we let Sk = {0, ...,nk−1}, without loss of generality.

2.1 Symbolic encoding of discrete-state systems
We employ multi-way decision diagrams (MDDs) [7] to encode discrete-state systems. MDDs extend
binary decision diagrams (BDDs) by allowing integer-valued variables, thus are suitable for discrete-
state models with bounded but non-boolean valued state variables, such as Petri nets [10]. There are two
possible terminal nodes, 0 and 1, for all MDDs. Each MDD has a single root node.

We encode a set of states with an L-level quasi-reduced MDD. Given a node a, its level is denoted
with a.lvl where L≥ a.lvl ≥ 0. a.lvl = 0 if a is 0 or 1 and a.lvl = L if it is a root node. If a is nonterminal
and a.lvl = k, then a has nk outgoing edges labeled with {0, ...,nk−1}, each of which corresponds to a
local state in Sk. The node pointed by the edge labeled with ik is denoted with a[ik]. If a[ik] 6= 0, it must
be a node at level k−1. Finally, let B(a)⊆Sk×·· ·×S1 be the set of paths from node a to 1.

Turning to the encoding of the next-state functions, most asynchronous systems enjoy locality, which
can be exploited to obtain a compact symbolic expression. An event α is independent of the kth submodel
if its enabling does not depend on ik and its firing does not change the value of ik. A level k belongs to
the support set of event α , denoted supp(α), if α is not independent of k. We define Top(α) to be the
highest-numbered level in supp(α), and Ek to be the set of events {α ∈ E : Top(α) = k}. Also, we let
Nk be the next-state function corresponding to all events in Ek, i.e., Nk =

⋃
α∈Ek

Nα .
We encode the next-state function using 2L-level MDDs with level order L,L′, ...,1,1′, where un-

primed and primed levels correspond to “from” and “to” states, respectively, and we let Unprimed(k) =
Unprimed(k′) = k. We use the quasi-identity-fully (QIF) reduction rule [13] for MDDs encoding next-
state functions. For an event α with Top(α) = k, Nα is encoded with a 2k-level MDD since it does not
affect state variables corresponding to nodes on levels L, . . . ,k+1; these levels are skipped in this MDD.
The advantage of the QIF reduction rule is that the application of Nα only needs to start at level Top(α),
and not at level L. We refer interested readers to [13] for more details about this encoding.

2.2 State-space generation using saturation
All symbolic approaches to state-space generation use some variant of symbolic image computation. The
simplest approach is the breadth-first iteration, directly implementing the definition of the state space
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mdd Saturate({NL, . . . ,N1},mdd s)
1 if InCacheSaturate(s, t) then return t;
2 level k← s.lvl;
3 mdd t← NewNode(k); mdd r←Nk;
4 foreach i ∈Sk s.t. s[i] 6= 0 do
•First saturate all its children

5 t[i]←Saturate({NL, . . . ,N1},s[i]);
6 endfor
7 repeat •Get a local fixed point on the root

8 foreach i, i′ ∈Sk s.t. r[i][i′] 6=0 do
9 mdd u←

RelProdSat({NL, . . . ,N1}, t[i],r[i][i′]);
10 t[i′]← Or(t[i′],u);
11 endfor
12 until t does not change;
13 t←UniqueTablePut(t);
14 CacheAddSaturate(s, t);
15 return t;

mdd RelProdSat({NL, . . . ,N1},mdd s,mdd r)
1 if s = 1 and r = 1 then return 1; endif
2 if InCacheConsRelProd(s,r, t) then return t; endif
3 level k← s.lvl; mdd t← 0;
4 foreach i, i′ ∈Sk s.t. r[i][i′] 6=0 do
5 mdd u←RelProdSat({NL, . . . ,N1},s[i],r[i][i′]);
6 if u 6= 0 then
7 if t = 0 then t← NewNode(k); endif
8 t[i′]← Or(t[i′],u);
9 endif

10 endfor
11 t← Saturate({NL, . . . ,N1},UniqueTablePut(t));

•Return a saturated MDD

12 CacheAddRelProdSat(s,r, t);
13 return t;

•UniqueTable guarantees the uniqueness of each node
•Cache reduces complexity through dynamic programming

Figure 1: Saturation algorithms.

Srch as the fixed point of Sinit ∪N (Sinit)∪N 2(Sinit)∪N 3(Sinit)∪ ·· · . Given a set of states X ,
their forward and backward reachable sets are f orward(X ) = X ∪N (X )∪N 2(X )∪N 3(X )∪·· ·
and backward(X ) = X ∪N −1(X )∪ (N −1)2(X )∪ (N −1)3(X )∪·· · .

Locality and disjunctive partition of the next-state function form the basis of the saturation algorithm.
The key idea is to apply the event firings in an order consistent with their Top. An event in Ek will not
be fired until the events in Eh where h < k do not further grow the explored state space. We say that a
node a at level k is saturated if it is a fixed point with respect to firing any event that is independent of
all levels above k: ∀h,k ≥ h≥ 1,∀α ∈ Eh,∀i ∈SL× . . .×Sk+1, {i}×B(a)⊇Nα({i}×B(a))

Figure 1 shows the pseudocode of the saturation algorithm. In function Saturate, the nodes in MDD
s are saturated in order, from the bottom level to the top level. Different from the traditional relational
product operation, RelProdSat always returns a saturated MDD. Saturation can also be applied to com-
puting backward(X ) by using inverse next-state functions {N −1

L , . . . ,N −1
1 }.

2.3 Previous work
Symbolic SCC analysis has been widely explored. Almost all of these algorithms employ BDD-based
manipulation of sets of states. Many efforts have been made on computing the SCC hull. The SCC hull
contains not only states in nontrivial SCCs, but also states on the paths between them. A family of SCC
hull algorithms [12] with the same upper bound of complexity is available. We review two categories of
previous work on the same problem as ours: transitive closure and the Xie-Beerel algorithm.

Hojati et al. [6] presented a symbolic algorithm for testing ω-regular language containment by com-
puting the transitive closure, namely, N + = N ∪N 2 ∪N 3 ∪ ·· · . Matsunaga et al. [9] proposed a
recursive procedure for computing the transitive closure. While it is a fully symbolic algorithm, due to
the unacceptable complexity of computing the transitive closure, this approach has long been considered
infeasible for complex systems.

Xie et al. [15] proposed an algorithm, referred as the Xie-Beerel algorithm in this paper, combining
both explicit state enumeration and symbolic state-space exploration. This algorithm explicitly picks
a state as a “seed”, computes the forward and backward reachable states from the seed and finds the
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mdd Lockstep(mdd P)
1 if(P = /0) then return /0;
2 mdd ans← /0; mdd seed←Pick(P); mdd C←0;
3 mdd Ff ront←N (seed)∩P; mdd B f ront←N −1(seed)∩P;
4 mdd F←Ff ront ; mdd B←B f ront ;
5 while(Ff ront 6= /0 and B f ront 6= /0)
6 Ff ront←N (Ff ront)∩P \F ; B f ront←N (B f ront)∩P \B;
7 F←F ∪Ff ront ; B←B∪B f ront ;
8 endwhile
9 if(Ff ront = /0) then

10 mdd conv←F ;
11 while(B f ront ∩F 6= /0) do B f ront←N (B f ront)∩P \B; B←B∪B f ront ; endwhile
12 else
13 mdd conv←B;
14 while(Ff ront ∩B 6= /0) do Ff ront←N (Ff ront)∩P \F ; F←F ∪Ff ront ; endwhile
15 endif
16 if(F ∩B 6= /0 ) then C←(F ∩B)∪ seed; ans←C; endif
17 ans←ans∪Lockstep(conv\C)∪Lockstep(P\ (conv∪ seed));
18 return ans;

mdd XB TSCC(mdd S )
1 mdd ans← /0; mdd P←S ; mdd seed,F,B;
2 while (P 6= /0)
3 seed←Pick(P); F← f orward(seed)∩P; B←backward(seed)∩P;
4 if F \B = /0 then ans←ans∪F ; endif •F ind a terminal SCC
5 P←P\B;
6 endwhile
7 return ans;

Figure 2: Lockstep for SCC computation and Xie-Beerel’s algorithm for terminal SCC computation.

SCC containing this seed as the intersection of these two sets of states. Bloem et al. [2] presented a im-
proved algorithm called Lockstep, shown in Figure 2. Lockstep(Srch) returns the set of states belonging
to non-trivial SCCs. It has been proven that Lockstep requires in O(n logn) image and preimage com-
putations (Theorem 2 in [2]), where n is the number of reachable states. As shown in Figure 2, given a
“seed” state, instead of computing sets of forward and backward reachable states separately, it uses the
set which converges earlier to bound the other. This optimization constitutes the key point in achieving
O(n logn) complexity. Ravi et al. [11] compared the SCC-hull algorithms and Lockstep. According
to our experimental results, Lockstep often works very well for systems with few SCCs. However, as
the number of SCCs grows, the exhaustive enumeration of SCCs becomes a problem. In this paper, we
compare our algorithms to Lockstep.

Xie et al. [14] proposed a similar idea in computing recurrent states in large scale Markov chains.
The pseudocode of that algorithm is shown as XB TSCC in Figure 2. From a randomly picked seed state,
if the forward reachable states (F) is a subset of backward reachable states (B), F is a terminal SCC;
otherwise (F * B), no terminal SCC exists in B, and B can be eliminated from future exploration.

The main ideas of our two approaches belong to these two categories of previous work. In the
Xie-Beerel algorithm, BFS-based state-space exploration can be replaced with saturation. For transitive
closure computation, we propose a new algorithm using saturation.
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mdd XBSaturation(mdd P)
1 if(P = /0) then return /0;
2 mdd ans← /0; mdd seed←Pick(P);
3 mdd Ff ront←N (seed)∩P; mdd B f ront←N −1(seed)∩P;
4 mdd F←Saturate({NL · · ·N1},Ff ront)∩P;
5 mdd B←Saturate({N −1

L · · ·N −1
1 },B f ront)∩P;

6 mdd C←F ∩B; if C 6= /0 then ans←C; endif •Line 6−8 are for computing SCCs
7 ans←ans∪XBSaturation(F \C)∪XBSaturation(P\F);
8 return ans;
6’ if F \B = /0 then ans←ans∪F ; endif •Line 6’−8’ are for computing terminal SCCs
7’ ans←ans∪XBSaturation(P\B);
8’ return ans;

Figure 3: Improved Xie-Beerel algorithm using saturation.

3 Improving the Xie-Beerel algorithm using saturation
A straightforward idea is to employ saturation on the state-space exploration in the Xie-Beerel algorithm.
The pseudocode of our algorithms for computing SCCs and terminal SCCs is shown as XBSaturation in
Figure 3. The merit of our algorithms comes from the higher efficiency of saturation in computing
forward and backward reachable states (B and F). However, our algorithms need to compute B and F
separately, while Lockstep can use the set that converges first to bound the other, which may reduce the
number of image computations (steps). Thus, there is a trade-off between the advantages of BFS and
saturation. From a theoretical point of view, the complexity of our algorithm can hardly be compared
directly with the result in [2], which measures the complexity by the number of steps. Since saturation
executes a series of light-weight events firing instead of global image computations, its complexity cannot
be captured as a number of steps. Furthermore, saturation results in more compact decision diagrams
during state-space exploration, often greatly reducing runtime and memory. Performance is also affected
by which seed is picked in each iteration. For a fair comparison, we pick the same seed in both algorithms
at each iteration. The experimental results in Section 6 show that, for most models, the improved Xie-
Beerel algorithm using saturation outperforms Lockstep, sometimes by orders of magnitude.

4 Applying saturation to computing transitive closure
We define the backward transitive closure (TC−1) of a discrete-state model as follows:

Definition 4.1. A pair of states (i, j) ∈ TC−1 iff there exists a non-trivial (i.e., positive length) path π
from j to i, denoted by j→ i. Symmetrically, we can define TC where (i, j) ∈ TC iff i→ j.

As TC and TC−1 are symmetric to each other, we focus on the computation of TC−1. TC can then
be obtained from TC−1 by simply swapping the unprimed and primed levels. Our algorithm is based on
the following observation:

(i, j) ∈ TC−1 iff ∃k ∈N −1(i) and j ∈ Saturate({N −1
L , · · · ,N −1

1 },{k})

Instead of executing saturation on j for each pair of (i, j), we propose an algorithm that executes on the
2L-level MDD encoding N −1. In function SCC TC(N −1) of Figure 4, TC−1 is computed in line 1
using function TransClosureSat, which runs bottom-up recursively. Similar to the idea of saturation
shown in Figure 1, this function runs node-wise on primed level and fires lower level events exhaustively
until the local fixed point is obtained. This procedure guarantees the following Lemma.
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Lemma: Given a 2k-level MDD n, TransClosureSat(n) returns an 2k-level MDD t that for any (i, j) ∈
B(n), all (i,k) where k ∈ (N −1

≤k )∗(j) belong to B(t).

Theorem: TransClosureSat(N −1) returns TC−1.
This theorem can be proved directly from Lemma and the definition of TC−1. The pseudocode of

the SCC computation using TC−1 is shown in SCC TC in Figure 4. Then, function TCtoSCC extracts all
states i such that (i, i) ∈ TC−1.

Unlike SCC enumeration algorithms like Xie-Beerel’s or Lockstep, the TC-based approach does not
necessarily suffer when the number of SCCs is large. Nevertheless, due to the complexity of building
TC−1, this approach is considered not feasible for complex systems. Thanks to the idea of saturation, our
algorithm of computing TC−1 completes on some large models, such as the dining philosopher problem
with 1000 philosophers. For some models containing large numbers of SCCs, the TC-based approach
shows its advantages. While the TC-based approach is not as robust as Lockstep, it can be used as the
substitute for Lockstep when Lockstep fails to exhaustively enumerate all SCCs.

TC−1 can also be employed to find recurrent states, i.e., terminal SCCs. As the other SCCs are not
reachable from terminal SCCs, state j belongs to a terminal SCC iff ∀i, j→ i =⇒ i→ j. Given states i, j,
let j 7→ i denote that j→ i and ¬(i→ j). We can encode this relation with a 2L-level MDD, which can
be obtained as TC−1 \TC. The pseudocode of this algorithm is shown as TSCC TC in Figure 5. The set
of {(i, j)|j 7→ i} is encoded with a 2L-level MDD L. Then, the set of states {j|∃i, j 7→ i}, which do not
belong to terminal SCCs, is computed by quantifying out the unprimed levels and can be stored in MDD
nontscc. The remaining states in SCCs are recurrent states belonging to terminal SCCs.

To the best of our knowledge, this is the first symbolic algorithm for terminal SCC computation
using the transitive closure. This algorithm is more expensive in both runtime and memory than SCC
computation because of the computation of the 7→ relation. With the help of TransClosureSat, this
algorithm works for most of the models we study. Moreover, for models with many terminal SCCs, this
algorithm also shows its unique benefits.

5 Fairness
One application of the SCC computation is to decide language emptiness for an ω-automaton. The lan-
guage of an ω-automaton is nonempty if there is a nontrivial fair loop satisfying a certain fair constraint.
Thus, it is necessary to extend the SCC computation to finding fair loops. Büchi fairness (weak fair-
ness) [5] is a widely used fair condition specified as a set of sets of states {F1, . . . ,Fn}. A fair loop
satisfies Büchi fairness iff, for each i = {1, . . . ,n}, some state in Fi is included in the loop.

Lockstep is able to handle the computation of fair loops as proposed in [2]. Here we present a
TC-based approach. Assume TC and TC−1 have been built, let Sweak be the set of states i satisfying:

⋂

m=1,...,n

[∃fm∈Fm.(TC(fm, i)∧TC−1(fm, i))]

According to the definition of weak fairness, it can be proved that Sweak contains all states in the fair
loops. The pseudocode of computing Sweak is shown in Figure 6. Fi×Srch returns a 2L-level MDD
encoding all pairs of states (i, j) where i ∈ Fi and j ∈ Srch. The main complexity lies in computing
TC(i, j)∧TC−1(i, j), which is similar to computing the 7→ relation in the terminal SCC computation.

6 Experimental results
We implement the proposed approaches in SMART [4] and report experimental results obtained on an
Intel Xeon 3.0Ghz workstation with 3GB RAM under SuSE Linux 9.1. All the models are described as
the Petri nets expressed in the input language of SMART. These models include a closed queue networks
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mdd SCC TC(N −1)
1 mdd TC−1←TransClosureSat(N −1);
2 mdd SCC←TCtoSCC(TC−1);
3 return SCC;

mdd TransClosureSat(mdd n)
1 if InCacheTransClosureSat(n, t) then return t;
2 level k← n.lvl; mdd t← NewNode(k); mdd r←N −1

Unprimed(k)
3 foreach i, j ∈Sk s.t. n[i][ j] 6= 0 do t[i][ j]←TransClosureSat(n[i][ j]); endfor
4 foreach i ∈SUnprimed(k) s.t. n[i] 6=0
5 repeat •Build a local fixed point
6 foreach j, j′ ∈SUnprimed(k) s.t. n[i][ j] 6=0 and r[ j][ j′] 6=0 do
7 mdd u←TCRelProdSat(t[i][ j],r[ j][ j′]); t[i][ j′]← Or(t[i][ j′],u);
8 endfor
9 until t does not change;

10 endfor
11 t←UniqueTablePut(t); CacheAddTransClosureSat(n, t);
12 return t;

mdd TCRelProdSat(mdd n,mdd r)
1 if n = 1 and r = 1 then return 1;
2 if InCacheTCRelProdSat(n,r, t) then return t;
3 level k← n.lvl; mdd t← 0;
4 foreach i ∈SUnprimed(k) s.t. n[i] 6=0 do
5 foreach j, j′ ∈SUnprimed(k) s.t. n[i][ j] 6=0 and r[ j][ j′] 6=0 do
6 mdd u←TCRelProdSat(n[i][ j],r[ j][ j′]);
7 if u 6= 0 then
8 if t = 0 then t← NewNode(k); endif
9 t[i][ j′]← Or(t[i][ j′],u);

10 endif
11 endfor
12 endfor
13 t← TransClosureSat(UniqueTablePut(t)); CacheAddTCRelProdSat(n,r, t);
14 return t;

mdd TCtoSCC(mdd n)
1 if n = 1 return 1; if InCacheTCtoSCC(n, t) then return t;
2 mdd t←0; level k←n.lvl;
3 foreach i ∈SUnprimed(k) s.t. n[i][i] 6=0 do
4 if TCtoSCC(n[i][i]) 6=0 then
5 if t = 0 then t←NewNode(k); endif
6 t[i]← TCtoSCC(n[i][i]);
7 endif
8 endfor
9 t←UniqueTablePut(t); CacheAddTCtoSCC(n, t);

10 return t;

Figure 4: Building the transitive closure using saturation.

(cqn) discussed in [15], two implementations of arbiters (arbiter1, arbiter2)[1], one which guarantees
fairness and the other which does not, the N-queen problem (queens), the dining philosopher problem
(phil) and the leader selection protocol (leader) [3]. The size for each model is parameterized with N.
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mdd TSCC TC(N −1)
1 mdd TC−1←TransClosureSat(N −1); mdd TC← Inverse(TC−1);
2 mdd SCC←TCtoSCC(TC−1);
3 mdd L←TC−1 \TC;
4 mdd nontscc←QuantifyUnprimed(L);
5 mdd recurrent←SCC \nontscc;
6 return recurrent;

Figure 5: Computing recurrent states using transitive closure.

mdd FairLoop TC(Srch,N
−1,{F1, . . . ,Fn})

1 mdd TC−1←TransClosureSat(N −1); mdd TC← Inverse(TC−1);
2 mdd Sweak←Srch;
3 foreach m ∈ {1, . . . ,n}
4 mdd p←QuantifyUnprimed(TC−1∧TC∧ (Fm×Srch));
5 Sweak←Sweak ∩ p;
6 endfor
7 return Sweak;

Figure 6: Computing fair loops using transitive closure.

The number of SCCs (terminal SCCs) and states in SCCs (terminal SCCs) for each model obtained from
(terminal) SCC enumeration is listed in column “SCC” (“TSCC”) and column “States” respectively. The
upper bounds for runtime and size of unique table (i.e., the storage for the MDD nodes) are set to 2 hours
and 1GB respectively. The main metrics of our comparison are runtimes and peak memory consumption
(for the unique table, storing the MDD nodes, plus the cache).

The top part of Table 1 compares three algorithms for SCC computation: the TC-based algorithm
(column “TC”) presented in Section 4, the improved Xie-Beerel algorithm (column “XBSat”) presented
in Section 3, and Lockstep (column “Previous algorithm”) in Section 2.3. Coupled with saturation,
the improved Xie-Beerel algorithm is better than Lockstep for most of the models in both runtime and
memory. Compared with Lockstep, the TC-based algorithm is often more expensive. However, for two
models, queens and arbiter2, the TC-based algorithm completes within the time limit while the other
two algorithms fail. For arbiter2, our TC-based algorithm can explore over 10150 SCCs in a few seconds,
while it is obviously not feasible for SCC enumeration algorithms to exhaustively enumerate all SCCs.
To the best of our knowledge, this is the best result of SCC computation reported, stressing that the TC-
based algorithm is not sensitive to the number of SCCs. With our new algorithm, the transitive closure
can be built for some large systems, such as the dining philosopher problem with 1000 philosophers.

The bottom part of Table 1 compares the improved Xie-Beerel algorithm, XBSaturation, (column
“XBSat”) and algorithm TSCC TC Sat (column “TC”), presented in Section 3 and 4, respectively, for
terminal SCC computation, with XB T SCC (column “Previous algorithm”) in Section 2.3. The basic
trends are similar to the results of SCC computations, XBSaturation works consistently better than the
original method, while TSCC TC is less efficient for most models. In the Xie-Beerel framework, it is
faster to compute terminal SCCs than all SCCs because a larger set of states is pruned in each recursion.
On the contrary, TSCC TC is more expensive than SCC TC due to the computation of the 7→ relation,
which has large memory and runtime requirements. Nevertheless, for models with large numbers of
terminal SCCs, such as queens, TSCC TC shows its advantage over the Xie-Beerel algorithm.

We conclude that saturation is effective in speeding up the SCC and terminal SCC computations
within the framework of the Xie-Beerel algorithm. Also, our new saturation-based TC computation can
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Model
SCC/TSCC States

TC XBSat Previous algorithm
name N mem(MB) time(sec) mem(MB) time(sec) mem(MB) time(sec)

Results for the SCC computation

cqn
10 11 2.09e+10 34.2 13.6 3.4 < 0.1 4.0 3.9
15 16 2.20e+15 64.4 73.8 5.0 0.2 89.1 44.5
20 21 2.32e+20 72.7 687.8 25.8 0.5 118.7 275.0

phil
100 1 4.96e+62 5.0 0.5 3.2 < 0.1 52.0 4.5
500 1 3.03e+316 33.0 4.0 24.5 0.1 – to

1000 1 9.18e+626 40.5 7.8 29.1 0.3 – to

queens

10 3.22e+4 3.23e+4 8.2 1.6 64.4 14.5 63.9 12.4
11 1.53e+5 1.53e+5 45.8 9.0 94.2 108.6 96.3 93.6
12 7.95e+5 7.95e+5 184.8 60.6 170.2 1220.4 281.9 1663.9
13 4.37e+6 4.37e+6 916.5 840.6 – to – to

leader

3 4 6.78e+2 6.0 1.4 20.8 < 0.1 20.8 < 0.1
4 11 9.50e+3 70.3 73.1 25.4 1.1 23.8 0.3
5 26 1.25e+5 116.6 3830.4 35.6 40.8 49.4 6.4
6 57 1.54e+6 – to 41.6 1494.9 417.2 387.9

arbiter1
10 1 2.05e+4 24.1 1.2 21.4 < 0.1 21.8 0.1
15 1 9.83e+5 128.3 63.0 45.1 < 0.1 62.1 6.8
20 1 4.19e+7 mo – 709.7 < 0.1 mo –

arbiter2

10 1024 1.02e+4 20.3 < 0.1 26.2 0.7 31.1 1.1
15 32768 4.91e+5 20.4 < 0.1 31.1 51.8 211.3 990.3
20 1.05e+6 2.10e+7 20.4 < 0.1 31.2 2393.3 – to

500 3.27e+150 1.64e+151 41.0 4.0 – to – to
Results for the terminal SCC computation

cqn
10 10 2.09e+10 37.9 15.5 21.4 < 0.1 33.5 3.4
15 15 2.18e+15 64.8 79.6 23.0 0.3 59.4 33.7
20 20 2.31e+20 72.7 691.3 26.2 0.8 90.0 280.5

phil
100 2 2 26.5 0.5 20.9 < 0.1 39.2 8.7
500 2 2 34.3 4.1 23.2 < 0.1 – to

1000 2 2 44.4 11.3 26.5 0.2 – to

queens
10 1.28e+04 1.28e+4 36.2 3.0 46.7 2.8 62.3 35.1
11 6.11e+04 6.11e+4 76.5 19.3 70.6 24.5 145.2 364.2
12 3.14e+05 3.14e+5 244.1 205.4 98.8 179.4 mo –
13 1.72e+06 1.72e+6 mo – 269.0 1940.81 mo –

leader

3 3 3 26.6 1.5 20.7 < 0.1 21.4 0.1
4 4 4 70.6 75.1 24.4 0.9 38.0 4.5
5 5 5 119.3 3845.3 30.6 26.9 41.1 87.6
6 6 6 – to 39.0 492.9 44.8 1341.5

arbiter1
10 1 2.05e+4 24.1 1.2 20.4 < 0.1 22.4 0.4
15 1 9.83e+5 128.3 63.1 20.4 < 0.1 65.3 23.3
20 1 4.19e+7 mo – 20.5 < 0.1 – to

arbiter2
10 1 1 20.4 < 0.1 20.9 < 0.1 39.6 6.4
15 1 1 20.5 < 0.1 40.6 4.6 – to
20 1 1 20.5 < 0.1 450.0 2897.8 – to

Table 1: Results for SCC and terminal SCC computations.

tackle some complex models with up to 10150 states. Finally, for models with huge numbers of SCCs,
the TC-based SCC computation has advantages over Lockstep, which detects SCCs one-by-one.

While our TC-based approach is not a replacement for Lockstep, we argue that it is an alternative
worth further research. For a model with an unknown number of existing SCCs, employing both of
these approaches at the same time could be ideal. Given current trends in multi-core processors, it is
reasonable to run the two algorithms concurrently, possibly sharing some of the common data structures,
such as the MDDs encoding the state space and next-state functions.
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7 Conclusion
In this paper, we focus on improving two previous approaches to SCC computation, the Xie-Beerel
algorithm and TC, using saturation. We first employ the saturation on the framework of the Xie-Beerel
algorithm. In the context of the asynchronous models we study, the improved Xie-Beerel algorithm using
saturation achieves a clear speedup. We also propose a new algorithm to compute TC using saturation.
The experimental results demonstrate that our TC-based algorithm is capable of handling models with
up to 10150 of SCCs. As we argue, the TC-based approach is worth further research because of its
advantages when used on models with large numbers of SCCs.
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[6] Ramin Hojati, Hervé J. Touati, Robert P. Kurshan, and Robert K. Brayton. Efficient ω-regular language

containment. In CAV, pages 396–409, 1992.
[7] Timothy Kam, Tiziano Villa, Robert K. Brayton, and Alberto Sangiovanni-Vincentelli. Multi-valued decision

diagrams: theory and applications. Multiple-Valued Logic, 4(1–2):9–62, 1998.
[8] Yonit Kesten, Amir Pnueli, and Li-on Raviv. Algorithmic verification of linear temporal logic specifications.

In ICALP ’98: Proceedings of the 25th International Colloquium on Automata, Languages and Program-
ming, pages 1–16, London, UK, 1998. Springer-Verlag.

[9] Y. Matsunaga, P.C. McGeer, and R.K. Brayton. On computing the transitive closure of a state transition
relation. In Design Automation, 1993. 30th Conference on, pages 260–265, June 1993.

[10] Tadao Murata. Petri nets: properties, analysis and applications. Proc. of the IEEE, 77(4):541–579, April
1989.

[11] Kavita Ravi, Roderick Bloem, and Fabio Somenzi. A comparative study of symbolic algorithms for the
computation of fair cycles. In FMCAD ’00: Proceedings of the Third International Conference on Formal
Methods in Computer-Aided Design, pages 143–160, London, UK, 2000. Springer-Verlag.

[12] Fabio Somenzi, Kavita Ravi, and Roderick Bloem. Analysis of symbolic SCC hull algorithms. In FMCAD
’02: Proceedings of the 4th International Conference on Formal Methods in Computer-Aided Design, pages
88–105, London, UK, 2002. Springer-Verlag.

[13] Min Wan and Gianfranco Ciardo. Symbolic state-space generation of asynchronous systems using extensible
decision diagrams. In M. Nielsen et al., editors, Proc. 35th Int. Conf. Current Trends in Theory and Practice
of Computer Science (SOFSEM), LNCS 5404, pages 582–594, Špindlerův Mlýn, Czech Republic, February
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Abstract
We present the status of a project which aims at building, formally and pervasively verifying a

distributed automotive system. The target system is a gate-level model which consists of several
interconnected electronic control units with independent clocks. This model is verified against the
specification as seen by a system programmer. The automotive system is implemented on several
FPGA boards. The pervasive verification is carried out using combination of interactive theorem
proving (Isabelle/HOL) and model checking (LTL).

1 Introduction
There are many works on formal verification of hardware, software, and protocols. However, their
interplay in a computer system is not to ignore because even if the hardware and software are correct
there is no guarantee that this software is executed correctly on the given hardware. It becomes even
more critical when considering distributed embedded systems due to the close interaction of software
and hardware parts.

The goal of our project is to show that it is feasible to formally verify a complex distributed au-
tomotive system in a pervasive manner. Pervasive verification [10, 17] attempts to verify systems
completely including the interaction of all components, thus minimizing the number of system as-
sumptions. Our desired goal is a “single” top-level theorem which describes the correctness of the
whole system.

The subproject Verisoft-Automotive aims at the verification of an automatic emergency call sys-
tem, eCall [7]. The eCall system is based on a time triggered distributed real-time system which
consists of distributed hardware and a distributed operating system.

We use Isabelle/HOL [12], an interactive theorem prover, as the design and verification environ-
ment. Our interactive proofs are supported by the model checking technique [21].

Context and Related Work Pervasive verification of a system over several layers of abstraction
is introduced in the context of the CLI stack project [2]. However, the application of such verification
techniques to an industrial scenario without strong restrictions (e.g. on the programming language)
poses a grand challenge problem as by J. S. Moore [10]. Rushby [14] gives an overview of the formal
verification of a Time-Triggered Architecture [15] and formally proves the correctness of some key
algorithms. Automated correctness proofs for abstract versions of protocols for serial interfaces using
k-induction are reported in [13]. There are also recent efforts on the fully automated verification of
clock domain crossing issues [9]. It would be highly desirable to reuse results of this nature for
a pervasive correctness proof of distributed automotive system. However, putting all these efforts
together in a pervasive correctness proof arguing about several layers of abstraction has not been
reported.

In the following section we present the automotive system and its components. In Section 3
we describe the hardware environment and system implementation. Section 4 exposes verification
challenges. We conclude the paper by summary and future work.

∗The authors were supported by the German Federal Ministry of Education and Research (BMBF) in the Verisoft project
under grant 01 IS C38
†The reported work has been done while author was affiliated with Saarland University
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Figure 1: Several ECUs interconnected by a communication bus.

2 Automotive System
The automotive system [8] is inspired by the demands of the automotive industry and based on the
FlexRay standard [4]. Our automotive system is a distributed asynchronous communication system
represented by a set of electronic control units (ECUs) connected to a single bus. The overview of
such a distributed system is illustrated in Figure 1. The ECU is built on the base of a formally verified
generic gate-level platform [20]. This platform is a complex gate-level computer system, which
consists of a pipelined processor with out-of-order execution and a number of memory mapped I/O
devices.

Each ECU has its own clock and contains a bus controller and a processor. The bus controller is
attached to the processor via a device interface. Besides the control logic, each bus controller contains
two buffers: a send and a receive buffer. We denote the controller “ABC” standing for automotive
bus controller. Further we denote by sc

i the hardware state s in cycle c of the ith bus controller in
our network. By sc

i .rb we denote the content of the receive buffer and by sc
i .sb the content of the

send buffer. Moreover, since we argue about clock domain crossing, we model the translation of
digital values to analogous and vice-versa. We use the function hcyi : R→ N to map real time to
the corresponding hardware cycles on the ECU i. The function asri(t) : R→ {0,1,Ω} provides the
analogous value of the send register of ECU i in cycle hcyi(t). Note, that the analogues value gets
metastable (Ω) for a short amount of time right after the send register is clocked. During a message
transmission we write the content of the send buffer bitwise into this register. We write into it the
idle value ‘1’ otherwise. The real time clock period of the ith controller is denoted by τi, i.e. one
hardware cycle of the ECU i lasts τi in the analogous world.

The ECUs communicate in a time-triggered static schedule. These time intervals are the so-
called communication rounds. A communication round is a periodically recurring time unit which
is divided into a fixed number of slots. In each slot, exactly one ECU is allowed to broadcast one
message to the bus. Let αi(r, s) be the point in real time when the slot s of round r is started on the
ECU i, and ωi(r, s) be the end time of this slot. The start of each round is signalized by one special
ECU called master, all other ECUs are called slaves. As soon as a slave ECU receives this round start
signal, it begins with execution of a fixed schedule. Each ECU counts the number of passed slots
and, depending on its status in the given slot (sender or receiver), it either samples the bus value or it
sends some data to the bus. When a slave ECU reaches the maximal slot number in one round, it goes
to an idle state and waits for a new round start signal. The master ECU waits for some predefined
amount of time when it is guaranteed that all slave ECUs are waiting for a new round. Only then the
master broadcasts a start signal for the new round. The communication protocol as well as the clock
synchronization mechanism are described in details in [3].

A system run scenario can be described as follows. Assume the ECU m is acting as a sender in
slot s of a round r and before slot s ECU m copied data d from its memory to its send buffer, such that
we have at the slot start shcym(αm(r,s))

m .sb = d. After the slot start the ECU m waits off cycles before
it starts the transmission. The number of cycles off has to be big enough s.t. the start time of the
slot s on all other ECUs is before αm(r, s) + τm · off . Then, m broadcasts the content of sm.sb (data
d) bitwise to the bus during the next tc cycles (transmission length). At the end of the slot s each
receiver ECU contains d in its receive buffer: ∀i : shcyi(ωi(r,s))

i .rb = d.
Such a time-triggered communication requires that all ECUs have roughly the same notion of
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time, such that each ECU is aware of the correct slot number and its role in this slot during each
message transmission. This is one of the verification challenges (Section 4).

3 Implementation
The verified ECU design has been automatically translated to Verilog [18] directly from formal Is-
abelle/HOL hardware descriptions and has been synthesized with the Xilinx ISE software. The pro-
totype implementation consists of several FPGA boards which are interconnected into a prototype
of a distributed hardware network. Every ECU is running on either Xilinx Spartan-3 and Virtex-2
FPGA development boards [6]. Each board consists of a field programmable gate array (FPGA) and
several devices (e.g. LEDs, switches) connected to the I/O-ports of the FPGA chip.Every board has
its own clock source, thus, all ECUs are clocked independently. The boards are interconnected via
Ethernet cable. The physical layer of the data transmission is tuned to the FlexRay standard and is
provided by the low voltage differential signaling driver [11], which generates a differential signal
of ± 350 mV. We successfully tested communication between FPGA boards with the help of the
hardware logic analyzer Trektronix TLA5204 and the software Chipscope.

4 Verification Challenges
The correctness of the presented distributed system can be split into two parts: local correctness
(single ECU) and distributed correctness (asynchronous communicating ECUs).

The local part focuses on the correctness of the processor, the ABC device and their communica-
tion, e.g. instructions are correctly executed, the device registers are written and read correctly. More
details on the local correctness can be found in [19].

The distributed correctness states that during a run the exchange of data between ECUs is cor-
rect, e.g. the sent data of one ECU are the received data on another ECU. Obviously the distributed
correctness requires the local one. Moreover, this exchange requires correct asynchronous commu-
nication via a FlexRay bus. The state of the bus is a conjunction of outputs of all send registers, i.e.
it is an ∧-bus:

bus(t) =
∧

∀i

asri(t)

On the receiver side, the bus value bus(t) will be clocked into the analogous receive register,
digitalized, and clocked into the receive buffer afterwards. The correctness of the message exchange
in the automotive system is based on two properties. First, we have to ensure that if a connection
between a sender and receivers is established directly (i.e. we abstract bus by a link), then the low
level bit transmission from the sender to all receivers is correct. One of the challenges here is to
ensure that the value broadcast on the link is stable long enough so that it can be sampled correctly
by the receiver. In our case, if the sender sends n bits, the receiver will sample at least n− i of
these bits. The number i is the number of lost bits due to the clock drift between different ECUs.
This information loss happens only at the low-level bit transmission. At this level we transmit the
message encoded according to the FlexRay standard (each bit is replicated eight times) which defines
sufficient redundancy to guarantee the transmission of every single bit of the original information.
The correctness of this low-level transmission mechanism cannot be carried out in a conventional,
digital, synchronous model. It involves asynchronous and real-time-triggered register models taking
into account setup- and hold-times as well as metastability. This part of the pervasive correctness has
been formally verified and reported in [16].

The second part is the bus correctness where we have to prove that we can abstract the bus while
a sender broadcasts data to the bus. Here, we show that the bus connection can be modeled as a
direct link between sender and each receiver. The latter holds only if during each transmission only
one sender (one ECU) is broadcasting and all receivers are listening and not sending something (i.e.
they are not producing a bus contention). To avoid a bus contention each ECU has to be aware of
the correct slot number, i.e. all ABCs have roughly the same notion of the slot start and end times
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Figure 2: Time notion of an ECU.

(correctness of the scheduling unit). Therefore, due to drifting clocks a synchronization is necessary.
We use a simple approach: in the beginning of each round all slave ECUs are waiting for the round
start signal broadcast by the master ECU. After this signal all receivers are aware of the current slot
number namely zero. All consecutive slots are started and ended locally on each ECU with respect to
the maximal clock drift that can occur during a full round. Böhm has formally verified a theorem [3]
that if a slave ECU i is waiting and the master ECU m starts a new round r, then the ECU i is
aware of each new slot s of this round before the message transmission starts. He also proves that
the transmission of each slot ends before the receiver ECU “thinks” that the slot is over. We have
significantly extended these theorems and used them as an induction hypothesis to prove that on all
ECUs each slot of each round starts before and ends after the message transmission:

∀ slot s, round r, ECU m, ECU i . m is sender in slot s→
αm(r, s) + off ·τm > αi(r, s)∧αm(r, s) + (off + tc) ·τm < ωi(r, s)

Thus, we have shown that each slot of an ECU overlaps with the same slot on all other ECUs during
the message transmission as depicted in Figure 2. Since all receivers place ‘1’ on the ∧-bus we show,
that during any transmission, the bus contains value of the send register of the sender:

∀ ECU m, slot s , round r . bus(t) = asrm(t) for t ∈ [αm(r, s) + off ·τm ; αm(r, s) + (off + tc) ·τm]

We prove all real-time properties and complex hardware theorems interactively in Isabelle/HOL.
Some properties of hardware with “model-checkable state space” are expressed in LTL and proven
automatically [21].

5 Summary
In this paper we presented the status of a pervasive verification of a distributed automotive system.
The system is a distributed network of electronic control units interconnected by a single bus involv-
ing clock domain crossing. We have successfully built up a working gate-level prototype synthesized
from our formal models. We have also partially verified the automotive system. This pervasive ver-
ification is very challenging because the system exists on three levels of abstraction: 1. a formal
model of an asynchronous real-time triggered system on the bus side, 2. a formal gate-level design
of digital hardware for local properties on the controller side, 3. a formal model as seen by an as-
sembler programmer. Moreover, all our models are combined together and are formally specified in
Isabelle/HOL theorem prover.

In our previous work we have formally verified a platform for electronic control unit [20], sched-
uler correctness [3], and low-level bit transmission [16]. As part of the current work we have con-
solidated previous results which was not an easy task due to the combination of results over several
layers of abstractions. We are also finishing the verification of the asynchronous message transmis-
sion between several ABC devices. The latter includes the verification of the bus correctness (done)
and a correct transmission of send and receive messages from the corresponding buffers to / from the
bus (in progress).

For future work we see several interesting topics. First, finishing the current work. Then, we can
extend the automotive system with fault tolerance, e.g. as sketched in [1]. Another work in progress
at our chair is verification of a distributed operating system which runs on top of the presented
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distributed system [5]. We also would like to put together formal proofs for the latter operating
system and our distributed hardware.
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[3] Peter Böhm. Formal Verification of a Clock Synchronization Method in a Distributed Automo-
tive System. Master’s thesis, Saarland University, Saarbrücken, 2007.

[4] FlexRay Consortium. FlexRay – the communication system for advanced automotive control
applications. http://www.flexray.com/, 2006.

[5] Matthias Daum, Norbert W. Schirmer, and Mareike Schmidt. Implementation correctness of a
real-time operating system. In (SEFM 2009), 23–27 November 2009, Hanoi, Vietnam, pages
23–32. IEEE, 2009.
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Abstract
To combat the state-space explosion problem in model checking larger systems, abstraction tech-

niques can be employed. Here, methods that operate on the system specification before constructing
its state space are preferable to those that try to minimize the resulting transition system as they
generally reduce peak memory requirements.

We sketch a slicing algorithm for system specifications written in (a variant of) the Architecture
Analysis and Design Language (AADL). Given a specification and a property to be verified, it auto-
matically removes those parts of the specification that are irrelevant for model checking the property,
thus reducing the size of the corresponding transition system. The applicability and effectiveness of
our approach is demonstrated by analyzing the state-space reduction for an example, employing a
translator from AADL to Promela, the input language of the SPIN model checker.

1 The Specification Language

The work that is described in this paper emanates from the European Space Agency COMPASS Project1

(Correctness, Modeling, and Performance of Aerospace Systems). Within this project, a specification
language entitled SLIM (System-Level Integrated Modeling Language) is developed which is inspired
by AADL and thus follows the component-based paradigm. Each component is given by its type and its
implementation. The component type describes the interface features: in and out data and event ports
for exchanging data (instantaneous) and event messages (synchronously) with other components. The
behavior is defined in the component implementation by transitions between modes, like in a finite au-
tomaton. Transitions can have an event port associated to them as a trigger. A transition with an out
event port as trigger is enabled only if in at least one other component a transition with a corresponding
in event port as trigger can synchronously be taken and thereby react to the trigger (and correspondingly
the other way round). Furthermore, transitions can be taken only when their guard expression evaluates
to true. Transitions can be equipped with effects, i.e., a list of assignments to data elements. Within
a component implementation data subcomponents, comparable to local variables, can be declared. To-
gether with in and out data ports we refer to them as data elements. All of them are typed and can have
a default value which is used as long as it is not overwritten. The availability of each data subcompo-
nent can be restricted with respect to modes of its supercomponent. In other than these modes the data
subcomponent may not be used and on (re)activation it will be reset to its default value.

In addition to data subcomponents, components can be composed of other non-data subcomponents,
possibly using multiple instances of the same component implementation. In the resulting nested com-
ponent hierarchy, components can be connected to their direct subcomponents, to their neighbor com-
ponents in the same supercomponent and to their direct supercomponent by data flows and event port
connections between their ports. The connections can again be mode dependent. If a data flow becomes
deactivated then its target port is reset to its default value. Fan-out is always possible whereas fan-in is
not allowed for data flows and must be used carefully with event port connections. Cyclic dependen-
cies are disallowed, too. A component can send an in event to or receive an out event from any of its
subcomponents directly by using subcomponent.eventport as transition trigger.

∗Partially funded by ESA/ESTEC under Contract 21171/07/NL/JD
1http://compass.informatik.rwth-aachen.de/

Proceedings of NFM 2010, April 13-15, 2010, Washington D.C., USA. 217



Slicing AADL Specifications for Model Checking Odenbrett, Nguyen and Noll

Listing 1 gives an example SLIM specification modeling an adder component provided with random
input x,y∈ [0,30]. We refer to [2, 3] for a more detailed description of the language including a discussion
of the similarities and extensions with respect to AADL. In particular, [2] presents a formal semantics
for all language constructs, based on networks of event-data automata (NEDA).

system Main

end Main;

system implementation Main.Impl

subcomponents

random1 : system Random.Impl

accesses aBus;

random2 : system Random.Impl

accesses aBus;

adder : system IntAdder.Impl

accesses aBus;

aBus: bus Bus.Impl;

flows

adder.x := random1.value;

adder.y := random2.value;

modes

pick: initial mode;

transitions

pick -[random1.update]-> pick;

pick -[random2.update]-> pick;

end Main.Impl;

bus Bus

end Bus;

bus implementation Bus.Impl

end Bus.Impl;

system IntAdder

features

x: in data port int;

y: in data port int;

sum: out data port int;

end IntAdder;

system implementation IntAdder.Impl

flows

sum := x + y;

end IntAdder.Impl;

system Random

features

value: out data port int default 2;

update : in event port;

end RandomIntValue;

system implementation Random.Impl

modes

loop: initial mode;

transitions

loop -[update then value := 0]- > loop;

...

loop -[update then value := 30] - > loop;

end RandomIntValue.Impl;

Listing 1: Integer Adder in SLIM

2 Slicing

The term “slicing” has been coined by Weiser [9], initially for sequential programs, and the approach
was extended later on in several ways by many authors (cf. [8]). Directly related to our work is the
extension of slicing to concurrent programs by Cheng [4] and, most important, the application of slicing
to software model checking including formal notions of correctness by Hatcliff, Dwyer and Zheng [5].

The principal idea of slicing is to remove all parts of a program, typically variables and statements,
that do not influence the behavior of interest, typically the values of some variables at some statements,
described by a slicing criterion. To determine which parts are relevant, the transitive backward closure
of the slicing criterion along different kinds of dependences, typically data and control dependences, is
computed. However, finding a minimal sliced program is in general unsolvable since the halting problem
can be reduced to it (cf. [9]).

2.1 Slicing of SLIM Specifications

Given a specification S and a CTL∗ property ϕ (without next operator), slicing should yield a smaller
specification Sϕ

sliced that is equivalent to S with respect to ϕ , i.e., S |= ϕ iff Sϕ
sliced |= ϕ (cf. [5]). Conse-

quently, comparable to a slicing criterion, the property defines the initially interesting parts that must not
be sliced away: data elements and modes used in ϕ (events are not allowed in our properties but could
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be added). Subsequently, the closure of the set of interesting parts, i.e., all other aspects that have an
(indirect) influence on them and thus on the property, is calculated in a fixpoint iteration. Obviously this
iteration always terminates but in the worst case all parts of the specification become interesting.

In the following three paragraphs we describe in more detail the closure rules for adding data ele-
ments, events and modes to the set of interesting parts before the actual slicing algorithm is presented in
pseudo-code.

Identifying Interesting Data Elements Like with data flow dependence for classic program slicing,
all data elements used to calculate a new value for an interesting data element are interesting, too. Here,
this affects the right hand sides of assignments to an interesting data element, either in transition effects
or by data flows. Furthermore, comparable to control flow dependence, all data elements used in guards
on interesting transitions (see below) must be kept in the sliced specification as the evaluation of the
guard at runtime determines whether the transition can indeed be taken.

Identifying Interesting Events The main difference of SLIM specifications compared to sequential
programs is that the components can synchronously communicate by sending and receiving events.
Comparable to synchronization and communication dependences (cf. [4]), all events used as triggers
on interesting transitions are important. As events can be forwarded by event port connections all events
connected to an interesting event in any direction are interesting as well.

Identifying Interesting Modes Similarly to the program location in classical slicing, our algorithm
does not treat the mode information as a data element which is either interesting or not but tries to
eliminate uninteresting modes. The difficulty is that the questions whether a mode, a data element or an
event is interesting are related to each other since all those elements can be combined in the transition
relation: On the one hand, transitions are (partially) interesting when they change an interesting data
element, have an interesting trigger or their source or target mode is interesting. On the other hand,
triggers, guards, and source modes of those transitions are interesting. However, transitions themselves
are not considered as elements of interest in the fixpoint iteration. Instead, modes are made interesting
and with them implicitly all incoming and outgoing transitions. More concretely, besides the modes used
in the property the following modes are interesting as well:

• Source modes of transitions changing an interesting data element. This obviously applies to tran-
sitions with assignments to interesting data elements in their effects but also to transitions reacti-
vating an interesting data element, i.e., it is active in the target mode but not in the source mode,
since it will be reset to its default value.

• All modes in which a data flow to an interesting data element or an event port connection to/from
an interesting event is active. This guarantees that all transitions that deactivate a data flow to an
interesting data element and thus reset it to its default value are included in the sliced specification.

• Source modes of transitions with interesting events as triggers because of their relevance for syn-
chronous event communication.

Moreover, the reachability of interesting modes from the initial mode matters. Thus, every predecessor
of an interesting mode, that is, the source modes of transitions to interesting target modes, is interesting
as well.

Finally, for liveness properties it is additionally necessary to preserve the possibility of divergence
since no fairness assumptions are made. For example, whether a component is guaranteed to reach a
certain mode can depend on the fact whether another component can loop ad infinitum. To handle this,
all modes on “syntactical cycles”, i.e., cycles of the transition relation without considering triggers and
guards, are interesting as well. For safety properties this can be omitted.
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2.2 The Slicing Algorithm
/* Initialization */
D := {d ∈ Dat | d occurs in ϕ};
E := /0;
M := {m ∈Mod | m occurs in ϕ};
/* Fixpoint Iteration */
repeat

/* Transitions that update/reactivate interesting
data elements or have interesting triggers */

for all m
e,g, f−→ m′ ∈ Trn with ∃d ∈ D : f updates d

or ∃d ∈ D : d inactive in m but active in m′

or e ∈ E do
M := M∪{m};

/* Transitions from/to interesting modes */

for all m
e,g, f−→ m′ ∈ Trn with m ∈M or m′ ∈M do

D := D∪{d ∈ Dat | g reads d}
∪{d ∈ Dat | f updates some d′ ∈ D reading d};

E := E ∪{e};
M := M∪{m};

/* Data flows to interesting data ports */
for all d := a ∈ Flw with d ∈ D do

D := D∪{d′ ∈ Dat | a reads d′};
M := M∪{m ∈Mod | d := a active in m};

/* Connections involving interesting event ports */
for all e ; e′ ∈ Con with e ∈ E or e′ ∈ E do

E := E ∪{e,e′};
M := M∪{m ∈Mod | e ; e′ active in m};

until nothing changes;
Listing 2: The Slicing Algorithm

For the pseudo-code description given in List-
ing 2 we use the following notations: Dat, Evt
and Mod are the sets of data elements, events
and modes occurring in the specification, re-
spectively. The relation Trn contains transi-

tions of the form m
e,g, f−→m′ with source and tar-

get mode m,m′ ∈ Mod, trigger e ∈ Evt, guard
expression g over data elements and f a list of
assignments. Data flows d := a instantly as-
signing the value of an expression a to a data
element d ∈ Dat are collected in the set Flw.
Finally, Con contains connections e ; e′ be-
tween event ports e,e′ ∈ Evt. On this basis, the
algorithm can compute the sets of interesting
data elements (D), events (E) and modes (M).

Note that, in analogy to distinguishing
calling environments of procedures, slicing is
done for component instances and not for their
implementation. This is more effective since
different instances of the same implementa-
tion might be sliced differently. Therefore,
we have to distinguish identical parts of dif-
ferent component instances. For example, the
set Dat for the specification in Listing 1 does
not simply contain the name Random.value
but random1.value and random2.value to
differentiate between the different instances of
the Random component.

2.3 The Sliced Specification
After calculating the fixpoint, the sliced specification Sϕ

sliced can be generated. Essentially, it contains
only the interesting data elements (D), events (E) and modes (M) plus data flows and connections to
them, i.e., d := a ∈ Flw with d ∈ D and e ; e′ ∈ Con where e ∈ E, respectively. Their default values
and the lists of modes in which they are active stay the same. The sliced transition relation contains all

transitions m
e,g, f−→ m′ ∈ Trn leaving an interesting mode m ∈ M with slight modifications: If the target

mode is not interesting (m′ 6∈ M), it is replaced by a “sink mode” mo 6∈ Mod which is added to every
component that had uninteresting modes. For each data subcomponent, this sink mode is also added to
the list of modes in which the component is active. Furthermore, only those transition effects d := a in f
are retained that assign to an interesting data element, i.e., d ∈ D. Finally, all “empty” components, i.e.,
those that neither have interesting data elements, interesting modes nor non-empty subcomponents, are
completely removed in a bottom-up manner.

The resulting specification Sϕ
sliced is again a valid SLIM specification. In particular, every object

referenced in it is indeed declared as it was included in the fixpoint iteration, e.g., the data elements used
in the guards of interesting transitions. Beyond that, sink modes indeed do not need outgoing transitions
as it is impossible to change an interesting data element, to send or receive an interesting event or to
reach an interesting mode as soon as an uninteresting mode has been entered by the original component.
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3 Results and Conclusions

For model checking SLIM specifications we developed a translator [7] to Promela, the input language of
SPIN [6]: Every component instance is transformed to a process whose program labels reflect the modes.
Data elements are stored in global variables and communication is implemented using channels. Due to
dependencies introduced by translation details, SPIN’s slicing algorithm could not effectively reduce the
resulting Promela code.

Comparing the model checking results of sliced and unsliced specifications served as a first sanity
check for our algorithm while a general correctness proof based on the formal semantics of SLIM is to
be developed. The idea is to show that the corresponding transition systems are related via a divergence-
sensitive stuttering bisimulation, which is known to preserve the validity of CTL∗ properties without
next [1, p. 560]. Furthermore, the differences in resource demands demonstrate the effectiveness of our
approach, e.g., for the introductory example from Listing 1 as shown in the following table:

Specification Mem/State #States Memory Time
(bytes) (MBs) (seconds)

Unsliced (identical for ϕ1, . . . ,ϕ3) 136 1,676,026 272 6.0 - 7.3
Sliced for ϕ1 ≡2(0≤ adder.sum≤ 60) 116 1,437,691 211 5.4

Sliced for ϕ2 ≡2

(∧2
β=1 0≤ randomβ .value≤ 30

)
84 553,553 84 1.4

Sliced for ϕ3 ≡2(0≤ random1.value≤ 30) 76 9,379 33 0.1

All three properties are valid invariants and thus require a full state space search. The difference is
in the resulting set of interesting data elements: While for ϕ1 every data port is needed, for ϕ2 the whole
adder component can be removed and for ϕ3 only random1.value is interesting. The removal of the
empty bus component accounts for the reduction from the unsliced specification to the one sliced for ϕ1.

We conclude that our slicing algorithm can considerably reduce the state space, especially when
whole components can be removed. We end with the remark that beyond the scope of this paper the
algorithm has been extended to more involved language constructs (such as de- and reactivation of non-
data subcomponents or hybridity) and that a refining distinction between weak and strong interesting
data elements was made.
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Abstract

We describe an algebra of Edge-Valued Decision Diagrams (EVMDDs) to encode arithmetic
functions and its implementation in a model checking library. We provide efficient algorithms for
manipulating EVMDDs and review the theoretical time complexity of these algorithms for all basic
arithmetic and relational operators. We also demonstrate that the time complexity of the generic
recursive algorithm for applying a binary operator on EVMDDs is no worse than that of Multi-
Terminal Decision Diagrams.

We have implemented a new symbolic model checker with the intention to represent in one
formalism the best techniques available at the moment across a spectrum of existing tools. Compared
to the CUDD package, our tool is several orders of magnitude faster.

1 Introduction

Binary decision diagrams (BDD) [3] have revolutionized the reachability analysis and model checking
technology. Arithmetic decision diagrams [2], also called Multi-Terminal Binary Decision Diagrams
(MTBDD) [8] are the natural extension of regular BDDs to arithmetic functions. They take advantage of
the symbolic encoding scheme of BDDs, but functions with large co-domains do not usually have a very
compact representation because there are less chances for suffixes to be shared.

Edge-valued decision diagrams have been previously introduced, but only scarcely used. An early
version, the edge valued binary decision diagrams (EVBDD) [11], is particularly useful when represent-
ing both arithmetic and logic functions, which is the case for discrete state model checking. However,
EVBDD have only been applied to rather obscure applications: computing the probability spectrum and
the Reed-Muller spectrum of (pseudo)-Boolean functions.

Binary Moment Diagrams [4] were designed to overcome the limitations of BDDs/EVBDDs when
encoding multiplier functions. However, their efficiency seems to be limited only to this particular type of
functions. A new canonization rule for edge-valued decision diagrams enabling them to encode functions
in Z∪{+∞}was introduced in [6] along with EVMDDs, an extension to multi-way diagrams (MDD) [9],
but, again, this was applied to a very specific task, of finding minimum length counterexamples for safety
properties. Later, EVMDDs have been also used for partial reachability analysis.

In this paper we first present a theoretical comparison between EVMDDs and MTMDDs for building
the transition relation of discrete state systems before dealing with an implementation in a model checker
along with state-of-the-art algorithms for state space construction.

2 Background

2.1 Discrete-state Systems

A discrete–state model is a triple (S,S0,T ), where the discrete set S is the potential state space of the
model; the set S0 ⊆ S contains the initial states; and T : S→ 2S is the transition function specifying
which states can be reached from a given state in one step, which we extend to sets: T (X) =

⋃

i∈X

T (i).

We consider structured systems modeled as a collection of K submodels. A (global) system state i is
then a K-tuple (iK , . . . , i1), where ik is the local state for submodel k, for K≥ k≥1, and S is given by
SK ×·· ·× S1, the cross–product of K local state spaces Sk, which we identify with {0, . . . ,nk−1} since
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we assume that S is finite. The (reachable) state space R⊆ S is the smallest set containing S0 and closed
with respect to T , i.e. R = S0∪T (S0)∪T (T (S0)∪·· ·= T ∗(S0). Thus, R is the least fixpoint of function
X 7→ S0∪T (X).

2.2 Decision Diagrams

We discuss the extension of BDDs to integer variables, i.e., multi–valued decision diagrams (MDDs)
[9]. We assume that the variables along any path from the root must follow the order xK , . . . ,x1. Or-
dered MDDs can be either reduced (no duplicate nodes and no node with all edges pointing to the same
node, but edges possibly spanning multiple levels) or quasi–reduced (no duplicate nodes, and all edges
spanning exactly one level), either form being canonical.

3 EVMDDs

Definition 1. An EVMDD on a group (G,∗), is a pair A = 〈v,n〉, where v ∈ G is the edge value also
denoted as A.val and n is a node also denoted A.node.

A node n is either the unique terminal node 〈0,e〉 where e is the identity element of G, or a pair 〈k, p〉
where 1 ≤ k ≤ K and p is an array of edges of size nk (cardinality of Sk). The first element of the pair
will be denoted n.level and, when relevant, the i-th element in the array will be denoted by n[i].

Definition 2. For a node n with n.level = k and (ik, . . . , i1) ∈ Sk × ·· · × S1, we define n(ik, . . . , i1) as
n[ik].val if n[ik].node.level = 0 and n[ik].val∗n[ik].node(in[ik].node.level, . . . , i1) otherwise.

The function encoded by an EVMDD A, f : S→G,(iK , . . . , i1) 7→ A.val∗A.node(iA.node.level, . . . , i1) is
the repetitive application of law ∗ on the edge values along the path from the root to the terminal node,
corresponding to arcs ik, for K ≥ k ≥ 1:

Definition 3. A canonical node is either the terminal node or a node n such that n[0].val = e.
A canonical EVMDD contains only canonical nodes.

It can be proved that any function f has a unique canonical EVMDD representation [6].
Examples of graph representations of EVMDDs are given in Figure 1.
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Figure 1: EVMDDs on (Z,+) representing the same function f : {0,1,2}×{0,1}→Z,(x2,x1) 7→ x2 ·x1.
The leftmost EVMDD is reduced while the others are quasi–reduced. The rightmost EVMDD is not
canonical.

EVMDDs can be used when even the algebraic structure G is not a group. For example, [6] of-
fers a canonization rule for N∪ {+∞}. Also, (Z,×) that can be handled with the canonization rule
“gcd{n[i].val | i ∈ Sn.level}= 1 and (n[0].val, . . . ,n[nn.level].val)≥lex 0”.
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4 EVMDDs compared to MTMDDs

MTBDDs are commonly used in model checking to build the transition relation of discrete-state systems.
In this section we show that EVMDDs are at least as suited to that purpose and oftentimes significantly
better. In the following, we choose, without loss of generality, (G,∗) = (Z,+).

4.1 Space Complexity

Theorem 1. For any function f , the number of nodes of the EVMDD representing f is at most the number
of nodes of the MTMDD representing the same function f .1

4.2 Time complexity

Section 2 of [8] gives an algorithm to compute any binary operation on BDDs. The apply algorithm can

be easily generalized to MDDs for any n-ary operator �n. It computes its result in time O

(
n

∏
i=1
| fi|
)

,

where | fi| is the size (in nodes) of the MTMDD representing operand i.
Section 2.2 of [10] gives the equivalent apply algorithm for edge-valued decision diagrams.

Theorem 2. The number of recursive calls of the generic apply algorithm for MTMDDs is equal to that
for EVMDDs representing the same function [10].

Hence, EVMDD computations are at least not worse than the MTMDD counterpart. However, par-
ticular operators �n may enable much better algorithms on EVMDDs. Below is a synopsis of the basic
algorithms to manipulate EVMDDs.

• Addition of constant ( f + c): O(1).

• Multiplication with scalar ( f × c): O(| f |) [10].

• Addition ( f +g): O(| f | |g|) [10].

• Remainder and Euclidean Division: O(| f |c).
• Minimum and Maximum: O(| f |).
• Relational Operator with constant ( f < c): not better in the worst case,

but in practice the complexity can be improved, by using min and max.

• Relational Operators ( f < g): can be computed as ( f −g < 0).

4.3 Multiplication

As stated in [10], the result of a multiplication can have an EVMDD representation of exponential size in

terms of the operands. For example, let S be {0,1}K , f : (xK , . . . ,x1) 7→
K

∑
k=2

xk2k−2 and g : (xK , . . . ,x1) 7→

x1, f and g both have an EVMDD representation with K + 1 nodes whereas f ·g has 2K nodes. There-
fore, we cannot expect to find an algorithm with better worst-case complexity. However, the following
equation, coming from the decomposition of 〈v,n〉 in v+ 〈0,n〉 and 〈v′,n′〉 in v′+ 〈0,n′〉

〈v,n〉×〈v′,n′〉= vv′+ v〈0,n′〉+ v′〈0,n〉+ 〈0,n〉×〈0,n′〉
1All proofs and algorithms are given in a technical report [12], to appear.
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suggests an alternative algorithm.
The first product is an integer multiplication done in constant time. The next two are multiplications

by a constant done in O(| f |) and O(|g|), respectively. The last one is done through recursive calls. The
first addition takes constant time, the second one takes O(| f | |g|) and produce a result of size at most
| f | |g|, hence a cost of O(| f | |g| | f g|) for the last addition. The recursive function is called O(| f | |g|)
times, hence a final complexity of O

(
| f |2 |g|2 | f g|

)
.

Although we were unable to theoretically compare this algorithm to the generic apply algorithm, it
seems to perform far better on practical cases.

5 Implementation

Model Reachable CUDD SMART EVMDD

size states (in s) (in s) (in s)

Dining philosophers
100 4×1062 11.42 1.49 0.03
200 2×10125 3054.69 3.03 0.07

15000 2×109404 — — 195.29
Round robin mutual exclusion protocol

40 9×1013 4.44 0.44 0.08
100 2×1032 — 2.84 1.17
200 7×1062 — 20.02 9.14

Slotted ring protocol
10 8×109 1.16 0.19 0.01
20 2×1020 — 0.71 0.04

200 8×10211 — 412.27 25.97

Model Reachable CUDD SMART EVMDD

size states (in s) (in s) (in s)

Kanban assembly line
15 4×1010 80.43 3.41 0.01
20 8×1011 2071.58 8.23 0.02

400 6×1025 — — 74.89
Knights problem

5 6×107 1024.42 5.29 0.27
7 1×1015 — 167.41 3.46
9 8×1024 — — 32.20

Randomized leader election protocol
6 2×106 4.22 8.42 0.86
9 5×109 — 954.81 18.89

11 9×1011 — — 109.25

Table 1: Execution times for building state space using our library or CUDD (“—” means “> 1hour”).

Symbolic model checkers, such as (Nu)SMV or SAL, are based on the library CUDD[1] which offers
an efficient implementation of BDDs and MTBDDs. Our goal was to implement a new symbolic model
checking library featuring EVMDDs for the transition relation construction and saturation[5] for state
space generation. We also developed a basic model checking front-end to test the library and compare it
to CUDD. Binaries and source code for both the EVMDD library and the model checker are available at
http://research.nianet.org/˜radu/evmdd/.

5.1 Encoding the Transition Relation

We represent the transition relation T as a disjunction of events which is well suited for globally–
asynchronous locally–synchronous systems, where each event encodes some local transition. To avoid
the expensive coding of lot of identities, we use the full-identity reduction from [7].

5.2 State Space Construction

For state space construction, we use the Saturation algorithm [5] instead of the classical breadth first
search exploration. This heuristic often gives spectacular improvements when building the state spaces of
globally–asynchronous locally–synchronous systems. This is certainly the major source of improvement
of our implementation over existing BDD libraries.
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5.3 Experimental Results

Our new tool comprises 7K lines of ANSI-C code for the library and 4K lines for the simple model
checker that provides a common interface to both our library and CUDD. Table 1 shows execution times
for building the state space on a suite of classical models. Programs to generate all models can be found
in the examples folder of our source code distribution.

We collected the results on a Linux machine with Intel Core 2 processor, 1.2GHz, 1.5GB of memory.
Note that using other existing tools, such as NuSMV or SAL on these models, we get execution times

of the same order of magnitude as with the CUDD interface of our tool.
Compared to the first implementation of saturation algorithm [5] in the tool SMART, our new im-

plementation is always several (up to a few dozens) times faster. This is due to both the encoding of the
transition relation and our simple C implementation in comparison to the object-oriented C++ version.

6 Conclusions and Future Work

We have studied the advantages of the EVMDD data structure over the widely used MTBDDs for the
construction of transition relations of finite state systems and implemented them in a library, along with
state-of-the-art algorithms for state space generation. We obtained execution times several orders of
magnitude faster than the CUDD library and classical algorithms, with a reduced memory usage enabling
to handle extremely large systems. Future work should focus primarily on integrating our library into the
SAL model checker.

Our results show that symbolic model checking remains an efficient technique for analyzing globally–
asynchronous locally–synchronous systems and significant improvements are still possible.
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Abstract

The concept of (meta) modeling combines an intuitive way of formalizing the structure of an application do-
main with a high expressiveness that makes it suitable for a wide variety of use cases and has therefore become
an integral part of many areas in computer science. While the definition of modeling languages through the use of
meta models, e.g. in UML, is a well-understood process, their validation and the extraction of behavioral infor-
mation is still a challenge.
In this paper we present a novel approach for dynamic model analysis along with several fields of application.
Examining the propagation of information along the edges and nodes of the model graph allows to extend and sim-
plify the definition of semantic constraints in comparison to the capabilities offered by e.g. the Object Constraint
Language. Performing a flow-based analysis also enables the simulation of dynamic behavior, thus providing an
”abstract interpretation”-like analysis method for the modeling domain.

1 Introduction and Motivation
Meta modeling is an easy and concise way to formalize the structure of an application domain. Today, it is widely
spread in computer science, most notably in the field of software engineering where the internal design of software
is often described using models. Approaches like the Model-driven Architecture (MDA) improve the development
process e.g. through automated code generation. Arguably the most important industrial standard in this area is the
Unified Modeling Language (UML) which in turn is based on the Meta-Object Facility (MOF) framework1.

However, the abstract syntax as defined by the meta model is often not sufficient to guarantee well-formedness.
Complex restrictions that cannot be expressed through the syntax are known as static semantics. To a certain degree,
they can be implemented using the Object Constraint Language (OCL), thereby extending the expressiveness of the
modeling language. Due to the static nature of OCL, it is not capable of validating dynamic properties that are
highly dependent on the context in which the elements appear, e.g. the correct nesting of parallel paths in activities.

An advantage of using models as means of specifying systems is their versatility. In addition to code generation
or model transformation, their use can also be leveraged by extracting implicitly contained information through
an evaluation of model elements and their mutual relations. This may include metrics applicable for the modeling
domain, e.g. Depth of Inheritance Tree (DIT) or Number of Children (NOC), or the compliance with a set of
predefined modeling guidelines. Depending on the range of application, extracting knowledge about the dynamic
properties of a model may even allow to identify inactive fragments in a way similar to dead code elimination in
the translation of software programs. To statically deduce information about the dynamic behavior of a model,
e.g. to calculate the valid execution paths of workflows and thereby approximating their runtime behavior, can be
considered an abstract interpretation of dynamic semantics.

Current methods are usually not capable of performing a static analysis of dynamic aspects in order to express
context-sensitive well-formedness rules or to simulate workflows. The approach discussed in this paper is designed
to overcome these limitations by extending the static character of OCL constraints with a dynamic flow analysis,
thus offering a powerful and generically applicable method for model validation and simulation. It is based on the
data-flow analysis (DFA) technique, a well-understood formalism used in compiler construction for deriving opti-
mizations from a program’s control flow graph. The adaption of the DFA algorithm is simplified by the conceptual
similarities between the areas of compiler construction and (meta) modeling: Both rely on the definition of domain
specific languages (DSL) which operate on (at least) two layers of abstraction.

The concept of using DFA for model analysis has been introduced in [4]. In this paper we extend and update
this description along with an evaluation of the advantages, possible shortcomings and proposed solutions based on
the experience gained up to now. Additionally, we discuss several use cases which are in the focus of our research
and present the current status of our implementation.

This paper is structured as follows: The basic concept of data-flow analysis for models along with a definition
of how it can be specified and a corresponding evaluation algorithm is detailed in Section 2. Several use cases are
presented in Section 3 before we give a summary of the concepts described in this paper and an outlook on future
developments.

1Specifications are available at OMG’s website: http://www.omg.org/technology/documents/modeling_spec_catalog.htm
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2 Data-Flow Analysis on Models
As outlined in our previous literature, the conceptual similarities between context-free grammars, which form the
basis for many algorithms in compiler construction, and MOF’s multi-layered architecture of (meta) models allow
to implement a DFA-like analysis method for the modeling domain. We aligned the four MOF levels (M3-M0)
with the abstraction layers of attribute grammars2 and devised a model-based attribution technique for assigning
data-flow equations to meta model classes and evaluating them for arbitrary models.

It was proposed that the attributes containing the semantic rules (the equivalent to the data-flow equations)
should be given a type definition consisting of a name, a data type and an initial value. Occurrences of these
definitions can then be assigned to M2 classes along with a rule that will calculate the results for M1 objects
depending on the values available at other attributes. If a model shall be analyzed according to a given attribution,
these occurrences have to be instantiated at the according model objects. An evaluation algorithm is then responsible
for executing the rules in a valid order ensuring that required input arguments are available at the time of execution.
This process is repeated until all attribute values are stable (the fix-point). Several iterations of (re)evaluating the
attribute instances may be necessary until the results have been propagated along all (cyclic) paths. To keep in line
with the notion that everything is a model, a meta model describing the structure of the attribution was given.

2.1 Refined Definition

(a) Refined attribution meta model (AttrMM) (b) Attr. instance meta model (AttrM)

Figure 1: Meta models for data flow definitions

Figure 1(a) shows the refined attribution meta model AttrMM: AttributionCollections serve as containers for a
set of Attributions which consist in turn of AttributeDefinitions and AttributeExtensions. AttributeDefinitions have
to be assigned a dataType. Their initial value is returned by an AttrSemanticRule of the type AttrAssignment3.
Occurrences (AttrOccurrence) can be attached to classes in the original meta model through AttributeExtensions.
They possess an AttrSemanticRule which calculates their iteration value.

This design has the advantage of introducing dependencies only from the attribution to the meta model but not
the other way round. This way, attributes can be defined and stored separate from the meta model, an important
aspect when integrating with existing tools.

To ensure the compatibility with existing meta modeling frameworks, the resulting attribution instances were
given their own meta model AttrM which can be seen in Figure 1(b). Each AttributeInstance has a value slot for
storing intermediate and final evaluation results. Attribute instances representing the results are connected to their
defining AttrOccurrences in the attribution (and thus to the attributed meta model class) as well as to the concrete
model object to whose meta class the corresponding AttributeExtension was assigned.

An important aspect of modeling is the concept of generalization. Therefore, when creating attribute instances
and attaching them to model elements, the generalization hierarchy of the meta model has to be considered, i.e. an
attribute connected to class A should implicitly be available at instances of subclasses of A. Also, in compliance with
the MOF standard, support for the redefinition of attributes should be provided. This means if two AttrOccurrences
OA and OB of the same AttributeDefinition O were assigned to classes A and B and B is a subclass of A, then OB
overrides OA at all instances of B.

2It was shown that, while attribute grammars can be used to define data-flow equations, in their original form they are too restrictive and do
not fit seamlessly into the modeling domain. Therefore, a model-based solution was chosen that drops most of these limitations at the cost of a
slightly more complex - but also more versatile - evaluation algorithm.

3An assignment returns a value of the specified data type while a constraint just evaluates to ”true” or ”false”, ”false” representing a detected
error in the model indicated to the user by the given violationID.
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We assumed that the input dependencies, i.e. the occurrences whose instance values are required as arguments at
other instances, will be explicitly specified by the user. However, this has proven to be impractical for two reasons:
Aside from complicating the design of a DFA analysis, declaring relations on the meta layer has the drawback of
introducing unnecessary instance dependencies if only a subset is actually needed. Instead, the evaluation algorithm
is now responsible for requesting the calculation of required input for attribution rules during their evaluation.

2.2 Attribute Evaluation
DFA algorithms like the work-list approach assume that the output relationships are known beforehand in order
to update the set of depending variables after each iteration. Since we are working with dynamic dependencies,
another approach was chosen for evaluating an attribution for a given model: First, attributes must be instantiated
in accordance to the given semantics and initialized with their start value. Then, the semantic rules have to be
invoked in a valid order, backtracking their dependencies during execution, storing results and passing them as
input arguments to the calling rules. This is repeated until the fix-point of the analysis has been reached.

The dependencies between attribute instances, stemming from their use as input arguments of semantic rules,
impose the structure of a directed acyclic graph originating from a single root element on the execution order. This
graph can be viewed as the result of a depth-first search along the input relations of the attributes, however in the
case of cyclic dependencies the target x of the responsible back edge y→ x is now substituted by a newly created
virtual node x′. The resulting tree-like representation (which may still contain forward and cross edges) is referred
to as dependency chain. After each bottom-up evaluation run the virtual nodes are updated with the new value
available at their reference node, i.e. the result at x is transferred to x′. The evaluation is repeated until the value at
each virtual node equals the result at its reference node which means that the fix-point has been reached.

As an example, consider that we need to determine the set of predecessors in a flow graph lying on a direct path
from the start node while omitting optional routes. This can be achieved by adding the local node to an intersection
of the same (recursively calculated) sets at preceding nodes. Nodes with no predecessors then correspond to leaves
in the dependency chain while cyclic paths induce back edges and therefore the creation of virtual nodes.

A model may contain multiple dependency chains while at the same time a single chain may also split up into
several chains if a root attribute instance was chosen that is not the absolute root, i.e. other attributes depend on it.

Because this algorithm executes the semantic rules according to their dependencies, the amount of redundant
calculations is negligible. Nevertheless, there is still room for optimization, e.g. by calculating starting values only
for leaves, through isolated recomputation of cycles or by parallelizing the evaluation. Also, a formal and practical
evaluation of the algorithm’s performance is necessary.

3 Use Cases
To demonstrate the applicability of the approach, we now give several use case examples which can be implemented
using the model-based DFA technique: Section 3.1 demonstrates common compiler construction analysis while 3.2
and 3.3 deal with the domain of business processes (but are also applicable e.g. for UML activity diagrams).

Additional application fields which are currently under evaluation include the extraction of metrics in the area
of model-driven testing and the definition of OCL constraints that avoid complex navigation statements and can be
therefore more easily adjusted if the meta model changes.

3.1 Analysis of Control-Flow Graphs
To simulate a traditional data-flow analysis we have implemented a meta model for control-flow graphs (CFG) (cf.
Figure 2(a)) and instantiated the CFG model that can be seen in Figure 2(b) which will serve as an example.

An attribution model was created containing the following attributes for node along with their assignment rules
based on an extended OCL syntax which allows to request attribute values by triggering the evaluator module:

is reachable: self.incoming.source.is reachable()→includes(true)

is live: self.outgoing.target.is live()→includes(true)

all predecessors: self.incoming.source.name→ union(self.incoming.source.all predecessors())→asSet()

scc id: let self pred : Set(String) = self.all predecessors()→including(self.name) in
if (self.incoming.source.all predecessors()→asSet()=self pred) then self pred→hashCode() else 0 endif)

scc nodes: if (not(self.scc id() = 0)) then self.incoming.source→collect(predNode : node |
if (predNode.scc id()=self.scc id())
then predNode.scc nodes() else Set{} endif)→flatten()→asSet()→including(self.name) else Set{} endif

While is reachable determines if a node can be reached from the start node by checking if at least one predecessor
is reachable (the start node has a distinct rule setting is reachable to true), is live checks if a path to the end node
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(a) A simple control-flow graph meta model (b) An example control-flow graph model

Figure 2: Control-flow graph example

exists. As expected, the evaluation returns that X is not reachable and Y is not live. Defining the semantic rules as
constraints, corresponding exceptions are thrown indicating the type and the location of the error.

The list of transitive predecessor nodes is calculated through all predecessors by creating the union of the
all predecessors attributes at the source nodes of incoming edges and adding to it the set of names of these nodes.

The attribute scc id assigns a unique ID to each node that is part of a cyclic flow. This is accomplished by
comparing the union of the all predecessors attributes at preceding nodes to the local value of this attribute. If both
sets contain the same elements, an ID is generated from the hash codes of the nodes that take part in the cycle.

Now, using the scc id, the semantic rule for scc nodes is able to determine which nodes take part in a cycle by
building the set of predecessors with the same scc id. Figure 3 shows the final values for this attribute which can
again be used as input for the algorithms presented below.

Calculating scc nodes requires 220-310 rule executions using an unoptimized evaluation algorithm. Once the
OCL environment has been initialized, overall execution takes about 110ms on a standard desktop computer. Im-
plementing the rules in Java leads to more verbose definitions but reduces the time required to about 50ms.

3.2 Business Process Decomposition
Decomposing a business process into a hierarchical layout of single-entry-single-exit (SESE) components is a
common requirement, e.g. allowing to translate BPMN processes to BPEL or validate workflow graphs (cf. 3.3).
In [3], the authors describe a decomposition algorithm based on token flow analysis that is able to handle cyclic

Figure 3: Evaluation result: Nodes that are part of
cycles

(a) Process graph with annotated token flow

(b) A business process hierarchically divided into SESE components

Figure 4: Decomposition of (business) processes [3]

graphs and to classify the detected components. Tokens are created at branches and are propagated along the
control-flow as can be seen in Figure 4(a). In a second step, the tokens originating from the same vertex converge
and are removed (indicated by curly brackets). Similar token labelings identify the SESE components although
unambiguous classification and cyclic paths require some additional handling. Figure 4(b) shows a decomposition.
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Since the algorithm is based on the creation and propagation of information, it is an ideal use case for a generic
DFA-based approach as opposed to a proprietary implementation. Several steps of this algorithm have been realized
(including the cycle-detection presented above) with the goal of a comparison to the authors’ implementation.

3.3 BP Validation and Transformation
Using the method presented in [5], the soundness of (a)cyclic business processes - i.e. the absence of local deadlocks
and lack of synchronization - can be tested in linear time. This is accomplished by traversing the SESE hierarchy
in bottom-up direction, applying heuristics to categorize each sub-graph according to the structure of its elements.
This way, if an error is found, the SESE context in which it appears allows to track down its approximate location.
Implemented using DFA definitions, this algorithm can be easily integrated into the decomposition process in order
to perform the validation already during the component identification phase.

Making use of the SESE decomposition also enables to transform graph-oriented BPMN diagrams (Business
Process Modeling Notation) to block-oriented BPEL code (Business Process Execution Language). The author of
[1] describes data-flow equations that, if computed for the SESE fragments, yield information on how the respective
component can be translated to BPEL code. Since this algorithm is already defined in the form of a data-flow
analysis, the implementation using the model analysis approach is straightforward.

4 Conclusions and Future Investigations
In this paper we have described a refined version of our data-flow based approach to model analysis that introduces
the notion of DFA to the modeling domain and is built upon widely-accepted standards and definitions.

To the best of our knowledge there exists no comparable methodology in the context of model analysis although
different DFA techniques have been considered for use in the modeling domain: The authors of [2] discuss the
advantages of control-flow information for the testing phase of the software development process. A concrete use
case is presented in [6], using flow-analysis to derive definition/use relationships between actions in state machines.

The presented formal method completes common techniques like OCL with the possibility of describing (cyclic)
information flows in the model graph based on local propagation and (re)calculation of attribute values. This allows
a more robust definition of semantic constraints since complex navigation statements which are a common drawback
of OCL can be avoided. Instead, the required information can be ”transported” to where it is needed. Aside from
validation scenarios, the ability to extract context-sensitive data enables to analyze dynamic aspects of models,
e.g. valid execution paths in control-flows or the SESE components that make up a business process definition.
This way, model-based DFA constitutes a generic and versatile ”programming-language” for implementing a wide
variety of algorithms that would otherwise each require a proprietary definition.

To verify the feasibility of this approach, the Model Analysis Framework (MAF) project was created to serve
as basis for performance tests under realistic settings and allow to evaluate future extensions of the presented defi-
nitions and algorithms. It was designed to act as a parametrizable and modular research platform that for example
allows to choose between different inheritance semantics and evaluation algorithms as well as at the same time
being suited for productive use. MAF, which is based on the Eclipse Modeling Framework (EMF) and the Eclipse
OCL interpreter, will soon be available at http://code.google.com/p/model-analysis-framework/.

Aside from formalizing and improving the evaluation algorithm to achieve a better theoretical and practical
performance the main focus in the ongoing research is on the implementation and evaluation of further use cases.
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