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INTRODUCTION

L

On May 10-12, 1995, the formal methods team at the NASA Langley Research Center

sponsored their third workshop 1 on the application of formal methods to the design and

verification of life-critical systems. This workshop brought together formal methods

researchers, industry engineers, and academicians to discuss the potential of NASA-spon-

sored formal methods and to investigate new opportunities for applying these methods to

industry problems.

This publication constitutes the proceedings of the workshop. It contains copies of the

material presented at the workshop, summaries of many of the presentations, a complete

list of attendees, and a detailed summary of the Langley formal methods program. Much of

the material contained herein is available electronically through the World-Wide Web via

the following URL: http://atb-www.larc.nasa.gov/WS95/proceedings.html.

On behalf of the formal methods team, we thank all of the presenters and attendees for

their contributions to making this workshop a great success. We look forward to seeing all

of you again at our next workshop.

C. Michael Holloway, Workshop Co-chairman

Ricky W. Butler, Workshop Co-chairman

1 Previous workshops were held in 1990 (see NASA Conference Publication 10052) and 1992 (see NASA Conference Publication
10110).
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Wednesday, May 10, 1995

8:00- 8:45

8:45- 9:00

9:00- 9:30

9:30 - 10:30

10:30 - 11:00

11:00 - 12:00

12:00 - 12:30

12:30 - 1:30

1:30 - 2:00

2:00- 2:30

2:30- 3:00

3:00- 3:30

3:30- 5:00

5:00- 6:00

Late Registration

Session 1: Introduction to Formal Methods

Chaired by Ricky Butler

Welcome

Milton Holt, Chief, Information & Electromagnetic Technology Division

Rationale for Formal Methods

Ricky Butler, NASA Langley Research Center

An Informal Introduction to Formal Methods

Michael Holloway, Ricky Butler, and Paul Miner

NASA Langley Research Center

Break

An Informal Introduction to Formal Methods (continued)

Overview of NASA Langley's Formal Methods Program

Ricky Butler, NASA Langley Research Center

Lunch in NASA Cafeteria

Session 2: LaRC-sponsored Industrial Applications
Chaired by Ricky Butler

The AAMP51AAMP-FM Project
Steve Miller, Rockwell-Collins

Mandayam Srivas, SRI International

Union Switch & Signal Project

Joe Profeta, Union Switch & Signal

Doug Hoover, Odyssey Research Associates

Honeywell Software Development Project
Lance Sherry, Honeywell

Doug Hoover, Odyssey Research Associates

Break

Session 3: Industry Perspectives on Formal Methods

Chaired by Michael Holloway

Panel Session

Scott French, Loral A TC

Steve Miller, Rockwell-Collins

Joe Profeta, Union Switch & Signal

Lance Sherry, Honeywell

Cash Bar Social in Reid Conference Center
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8:30- 9:30

9:30 - 10:30

10:30 - 10:45

10:45 - 11:45

11:45 - 12:30

Thursday, May 11, 1995

Session 4: Software Systems (1)
Chaired by Ricky Butler

Formal Verification for Fault-Tolerant Architectures/PVS Design
John Rushby, SRI International

Formal Methods Demonstration Project for Space Applications
Ben DiVito, V/GYAN, Inc.

John Kelly, Jet Propulsion Laboratory

Break

Session 5: Software Systems (2)

Chaired by Michael Holloway

Ada 9X Language Precision Team

David Guaspari, Odyssey Research Associates

Introduction to Penelope and Its Applications
David Guaspari, Odyssey Research Associates

12:30

1:30

- 1:30

- 2:00

2:00- 2:30

2:30- 3:15

3:15- 3:30

3:30- 5:00

Lunch in NASA Cafeteria

Session 6: Hardware Systems

Chaired by Paul Miner

The Formal Verification Technology Used on AAMP5
Mandayam Srivas, SRI International

Specification and Verification of VHDL Designs

Damir Jamsek, Odyssey Research Associates

Derivational Reasoning System

Bhaskar Bose, Derivation Systems Inc.

Break

Session 7: Researcher Perspectives on Formal Methods

Chaired by Jim Caldwell

Panel Session

David Dill, Stanford University

Doug Hoover, Odyssey Research Associates

Steve Johnson, Indiana University

Natarajan Shankar, SRI Intemational

6:30- 8:00 Dinner at Captain George's Seafood Restaurant
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8:30- 9:15

9:15 - 10:00

10:00 - 10:30

Friday, May 12, 1995

Session 8: Research Issues (1)
Chaired by Michael Holloway

Safety Analysis

John Knight, University of Virginia

Non-standard Analysis and Software

Richard Platek, Odyssey Research Associates

Break

10:30 - 11:15

11:15 - 12:00

Session 9: Research Issues (2)
Chaired by Victor Carrer3o

Hybrid Fault Algorithms

Pat Lincoln, SRI International

Model Checking

David Dill, Stanford University

12:00

1:30

2:00

2:30

- 1:30

- 2:00

- 2:30

- 2:40

Lunch in NASA Cafeteria

Session 10: Research Issues (3)
Chaired by Ricky Butler

The DDD Scheme Machine

Steve Johnson, Indiana University

Formal Development of a Clock Synchronization Circuit

Paul Miner, NASA Langley Research Center

Closing Remarks

Ricky Butler, NASA Langley Research Center
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Session 1: Introduction to Formal Methods

Ricky W. Butler, Chair

• Welcome, by H. Milton Holt, Chief, Information & Electromagnetic Technology Division

• Rationale for Formal Methods, by Ricky W. Butler

• An Informal Introduction to Formal Methods, by C. Michael Holloway, Paul S. Miner, and Riclcy
W. Butler

• Overview of NASA Langley's Formal Methods Program, by Ricky W. Butler
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Session 2: LaRC-sponsored Industrial
Applications

Ricky W. Butler, Chair

• The AAMP5/AAMP-FV Project by Steve Miller, Rockwell-Collins

• Union Switch & Signal Project, by Joe Profeta, Union Switch & Signal; and Doug Hoover,

Odyssey Research Associates

• Honeywell Software Development Project, by Lance Sherry, Honeywell; and Doug Hoover,

Odyssey Research Associates
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N96-10027

The AAMP5/AAMP-FV Project

Steven E Miller Mandayam Srivas
Collins Commercial Avionics Computer Science Laboratory

Rockwell International SRI International
Cedar Rapids, IA 52498 USA Menlo Park, CA 94025 USA

spmiller@pobox.cca.rockwell.com srivas@csl.sri.com

Software and digital hardware are increasingly being used in situations where failure could be life threatening,
such as aircraft, nuclear power plants, weapon systems, and medical instrumentation. Several authors have

demonstrated the infeasibility of showing that such systems meet ultra-high reliability requirements through
testing alone [1,2]. Formal methods are a promising approach for increasing our confidence in digital systems, but
many questions remain on how it can be used effectively in an industrial setting.

This presentation describes a project, formal verification of the microcode in the AAMP5 microprocessor,
conducted to explore how formal techniques for specification and verification could be introduced into an industrial

process. Sponsored by the Systems Validation Branch of NASA Langley and by Collins Commercial Avionics,
a division of Rockwell International, it was conducted by Collins and the SRI International Computer Science
Laboratory. The project consisted of specifying in the PVS language developed by SRI [3] a portion of a Rockwell
proprietary microprocessor, the AAMP5, at both the instruction set and register-transfer levels and using the PVS
theorem prover to prove the microcode correct for a representative subset of instructions.

While this presentation includes a brief technical overview (se¢-[4,5] for a_lod technical discussion), its

emphasis is on the lessons learned in using PVS for an example of this size and the implications for using formal
methods in an industrial setting. The central result of this project was to demonstrate the feasibility of formally
specifying a commercial microprocessor and the use of mechanical proofs of correctness to verify microcode. This
is particularly significant since the AAMP5 was not designed for formal verification, but to provide a more than
three fold performance improvement, by pipelining instruction execution, while remaining object code compatible
with the earlier AAMP2. As a consequence, the AAMP5 is one of the most complex microprocessors to which
formal methods have been applied.

Another key result was the discovery of both actual and seeded errors. Two actual microcode errors were

discovered and corrected during development of the formal specification, illustrating the value of simply creating
a precise specification. Two seeded errors were systematically uncovered while doing correctness proofs. One of
these was an actual error that had been discovered after ftrst fabrication but left in the microcode provided to SRI.
The other error was designed to be unlikely to be detected by walkthroughs, testing, or simulation.

Several other results emerged during the project, including the ease with which practicing engineers became
Comfortable with PVS, the need for libraries of general purpose theories, the usefulness of formal specification in

revealing errors, the natural fit between formal specification and inspections, the difficulty of selecting the best style
of specification for a new problem domain, the high level of assurance provided by proofs of correctness, and the
need to engineer proof strategies for reuse.

Many of the costs of the AAMP5 project can be attributed to the overhead of applying an experimental method
for the In'st time. To determine how much these costs can be reduced through reuse of the AAMP5 expertise,
Collins, SRI, and NASA are conducting a follow--on project to verify the microcode in the AAMP-FV, a smaller

microprocessor design similar to those actually used in autoland systems. A report on the status of this project is
also presented.

[1] Butler, R. and G. Finelli, The Infeasibility of Experimental Quantification of Life--Critical Software Reliability, Soft-
ware Engineering Notes, Vol. 16, No.5, pg. 66-76, December 1991.

[2] Littlewood, B. and L. Strigini, Validation of Ultra-High Dependability for Software-based Systems, Communications of
theACM, Vol. 36, No. 11, pg. 69-80, November 1993.

[3] Owre, S., J. Rushby, and N. Shankar, PVS: A Prototype Verification System, In Deepak Kapur, Editor, 11th International
Conference on Automated Deduction, (CADE), pg. 748-752, Saratoga, NY, June 1992, Vol. 607 of Lecture Notes in
Artificial Intelligence, Springer-Verlag.

[4] Srivas, M. and S. Miller, Formal Verification of the AAMP5: A Case Study in the Verification of a Commercial Micro-
processor, to appear in Applications of Formal Methods, Michael G. Hinchey and Jonathan P. Bowen, Editors, Prentice-
Hall International Series in Computer Science.

[5] Srivas, M. and S. Miller, Formal Verification of an Avionics Microprocessor, to be submitted as a NASA Contractor Re-
port.
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Joe Profeta's portion of this presentation



APPLYING FORMAL METHODS TO RAILWAY CONTROL

Doug N. Hoover

Odyssey Research Associates, Inc.

In collaboration with Union Switch and Signal, ORA has been carrying on research into

applying formal methods to system-level railway control modeling and to verification of

parts of V-FRAME++, a railway control CAD system under development by US&S.

The railway modeling work has produced modeling methods powerful enough to prove

safety of the conventional block control system. We hope to apply it to newer systems for
which safety is more problematic.

The VFRAME++ work centers around correctness of translation from graphical representa-
tions of circuits to hardware implementing them. Work so far carried out consists of design

verification of a translation algorithm in PVS. Currently planned is an a posteriori checker

to show that a particular translation has been done correctly. Such a checker would have

the advantage of being simple and stand-alone, hence easy to demonstrate to be correct.
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FORMAL TOOLS AND METHODS FOR DECISION TABLES

Doug N. Hoover

Odyssey Research Associates, Inc

This work began with a problem from Honeywell: how to tell whether a specification or

code involving a complex choice of alternatives is complete (always designates a choice) and

is consistent (always designates only one choice). It turned out that Honeywell used deci-

sion tables informally to specify this kind of code. Now, decision tables are a kind of formal

specification, so we decided that the best solution was to build a specialized tool, TableWise,

to deal with the problem.

TableWise checks completeness and consistency of decision tables, as well as generating

Ada code and documentation from them. It has an original form of structural analysis that

localizes flaws that prevent decision tables from being complete and consistent. TableWise

is available from NASA Langley by anonymous ftp (airl6.1arc.nasa.gov). A paper on Table-

Wise will appear in COMPASS '95.

Continuing work related to TableWise includes generating tests from decision tables,

improving code generation, structuring decision tables to compress information, and mak-

ing decision tables part of a more all-encompassing specification methodologies.
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Session 3: Industry Perspectives on Formal
Methods

C. Michael Holloway, Chair

• Scott French, Loral ATC (No slides available)

• Steve Miller, Rockwell-Collins

• Joe Profeta, Union Switch & Signal (No slides available)

0 Lance Sherry, Honeywell

PRECEDING PAGE BLANK NOT FILMED 81



f

°_. ]

=oo _ooo _oo
E B •

f

-_-E!• _ i=_o=_,= a _

,3 "-=_-_ J

-

f--

_ 7

•= _

• E

x

v

°_

<
u

0 0 0 0 0 0 0

_i_.__ :_ _
¢¢ *" m

0 0 0 0 0 _ 0 0 0 0

• E

PRECEDi?'!G PA_IE BLANK NOT Fi_'4E_ 83



,=

= ,_

_=_

•_ .=

= .=

;d _J 0 0 _ 0

r

F

] = _-

__ _._• _- 8

_ °=
0 r_ e'-

,. = _.=,,,

.= o "-

Z Z Z 0 0

i
=.

f

i,.'Z-

_ _- _-_•__ _ _ _= _=
,_ "_ _ "_ -

= _ ,-, ... __ -_.,_

•_,_ _ .,,_ -

r_ 0 0 == 0 0 Z 0 0

II I il I

84



f

o

_==_
..= _ ,_= .-.

.,., ..-_ = =o.= =

- _ = =

_ _._ = =>_=
= _ =_ _:-:__= °=

r

==

,.=

_ =_
_ _ _ = =-_

- _ -.4

N _ 0 0 _, 0

i i R

fll=

=l
=

.=

"
o

•. _ _ ._._.__ _

"_ _ _

_ 0 0 0 ;d 0

f

i =

II I

85



f

m B i I

86



+

+

87



Session 4: Software Systems (1)

Ricky W. Butler, Chair

i

• Formal Verification for Fault-Tolerant Architectures/PVS Design, by John M. Rushby, SRI
International

• Formal Methods Demonstration Project for Space Applications, by John Kelly, Jet Propulsion
Laboratory; and Ben DiVito, VIGYAN, Inc.



FAULT-TOLERANT ALGORITHMS AND THE DESIGN OF PVS

John Rushby

SRI International

PVS is the most recent in a series of verification systems developed at SRI. Its design was strongly

influenced, and later refined, by our experiences in developing formal specifications and mechani-

cally checked verifications for the fault-tolerant architecture, algorithms, and implementations of a

model "reliable computing platform" (RCP) for life-critical digital flight-control applications.

Several of the formal specifications and verifications performed in support of RCP are individually

of considerable complexity and difficulty. But in order to contribute to the overall goal, it has of_n

been necessary to modify completed verifications to accomodate changed assumptions or require-

ments, and people other than the original developer have often needed to understand, review, build

on, modify, or extract part of an intricate verification.

In this talk, I will outline the verifications performed, present the lessons learned, and describe

some of the design decisions taken in PVS to better support these large, difficult, iterative, and col-
laborative verifications.

The following article covers this material in more detail:

"Formal Verification for Fault-Tolerant Architectures: Prolegomena to the Design of PVS" by Sam

Owre, John Rushby, Natarajan Shankar, and Friedrich von Henke (IEEE Transactions on Software

Engineering, Vol 21., No. 2, pp. 107-125).

This article is available on the World-Wide Web at the following URL:

http://www.csl.sri.com/tse95.html
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N96- 10028

FORMAL METHODS DEMONSTRATION PROJECT FOR SPACE APPLICATIONS

Ben L. DiVito /)7, '7
/

ViGYAN, Inc

The Space Shuttle program is cooperating in a pilot project to apply formal methods to live require-

ments analysis activities. As one of the larger ongoing Shuttle Change Requests (CRs), the Global

Positioning System (GPS) CR involves a significant upgrade to the Shuttle's navigation capability.
Shuttles are to be outfitted with GPS receivers and the primary avionics software will be enhanced

to accept GPS-provided positions and integrate them into navigation calculations. Prior to imple-

menting the CR, requirements analysts at Loral Space Information Systems, the Shuttle software

contractor, must scrutinize the CR to identify and resolve any requirements issues.

We describe an ongoing task of the Formal Methods Demonstration Project for Space Applications

whose goal is to find an effective way to use formal methods in the GPS CR requirements analysis

phase. This phase is currently under way and a small team from NASA Langley, ViGYAN Inc. and

Loral is now engaged in this task. Background on the GPS CR is provided and an overview of the

hardware/software architecture is presented. We outline the approach being taken to formalize the

requirements, only a subset of which is being attempted. The approach features the use of the PVS

specification language to model "principal functions," which are major units of Shuttle software.

Conventional state machine techniques form the basis of our approach.

Given this background, we present interim results based on a snapshot of work in progress. Sam-

ples of requirements specifications rendered in PVS are offered for illustration. We walk through a
specification sketch for the principal function known as GPS Receiver State Processing. Results to

date are summarized and feedback from Loral requirements analysts is highlighted. Preliminary

data is shown comparing issues detected by the formal methods team versus those detected using
existing requirements analysis methods. We conclude by discussing our plan to complete the
remaining activities of this task.
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Session 5: Software Systems (2)

C. Michael Holloway, Chair

• Ada 9X Language Precision Team, by David Guaspari, Odyssey Research Associates

• Introduction to Penelope and Its Applications, by David Guaspari, Odyssey Research Associates

_,_:_ ';jL_, _ e_,,,i _,J'_a -

,,' ..... "_:"'_ i :',._LLf b'L.Ai"IK
117





N96- 10029

FORMAL METHODS IN THE DESIGN OF ADA 95

David Guaspari

Odyssey Research Associates

,/

p,

Formal, mathematical methods are most useful when applied early in the design and implementa-
tion of a software system---that, at least, is the familiar refrain. I will report on a modest effort to

apply formal methods at the earliest possible stage, namely, in the design of the Ada 95 program-
ming language itself. This talk is an "'experience report" that provides brief case studies illustrat-

ing the kinds of problems we worked on, how we approached them, and the extent (if any) to which

the results proved useful. It also derives some lessons and suggestions for those undertaking future

projects of this kind

Ada 95 is the first revision of the standard for the Ada programming language. The revision began

in 1988, when the Ada Joint Programming Office first asked the Ada Board to recommend a plan
for revising the Ada standard. The first step in the revision was to solicit criticisms of Ada 83. A

set of requirements for the new language standard, based on those criticisms, was published in

1990. A small design team, the Mapping Revision Team (MRT), became exclusively responsible for
revising the language standard to satisfy those requirements. The MRT, from Intermetrics, is led

by S. Tucker Taft.

The work of the MRT was regularly subject to independent review and criticism by a committee of

Distinguished Reviewers and by several advisory teams---for example, by two User/Implementor

teams, each consisting of an industrial user (attempting to make significant use of the new lan-

guage on a realistic application) and a compiler vendor (undertaking, experimentally, to modify its

current implementation in order to provide the necessary new features). One novel decision estab-

lished the Language Precision Team (LPT), which investigated language proposals from a mathe-
matical point of view.

The LPT applied formal mathematical analysis to help improve the design of Ada 95 (e.g., by clari-

fying the language proposals) and to help promote its acceptance (e.g., by identifying a verifiable

subset that would meet the needs of safety-critical applications). The first LPT project, which ran

from the fall of 1990 until the end of 1992, produced studies of several language issues: optimiza-

tion, sharing and storage, tasking and protected records, overload resolution, the floating point

model, distribution, program errors, and object-oriented programming. The second LPT project, in

1994, formally modeled the dynamic semantics of a large part of the (almost) final language defini-

tion, looking especially for interactions between language features.
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INTRODUCTION TO PENELOPE

David Guaspari

Odyssey Research Associates

N96-10030

A formal program verification is a (mathematical) proof that a program executed according to its

intended model meets some specification. This proves that the algorithm defined by the program is

correct in the precise technical sense of being consistent with a particular specification. A program

correct in this sense is free from a large and important class of errors, even though its behavior may

still produce unintended results---either because the implementation of the programming language
itself does not match the model of execution, or because the specification does not correctly express
the user's intentions.

Penelope is a prototype system for interactively developing and verifying programs that are written

in a rich subset of sequential Ada. Penelope can be used to develop a program and its correctness

proof incrementally, and in concert with one another. Incrementality is used in a number of ways to

help make verification more tractable and more productive. For example, if an already-verified pro-

gram is modified, one can attempt to prove the modified version by replaying and modifying the
original verification.

Penelope's specification language, Larch/Ada, belongs to the family of Larch interface languages.
Larch/Ada scales up properly, in the sense that it is demonstrably sound to decompose a system

hierarchically and reason locally about the implementation of each piece.

Penelope has been applied in various demonstration projects---for specification (guidance control,

distributed operating system), verification (of off-the-shelf code), and formal development (by non-
expert as well as expert users). Some features of Penelope have been embodied in AdaWise, a lint-

like non-interactive tool that warns of the potential for certain dynamic semantic errors in Ada pro-
grams.
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Session 6: Hardware Systems

Paul Miner, Chair

• The Formal Verification Technology Used on AAMP5, by Mandayam Srivas, SRI International

• Specification and Verification of VHDL Designs, by Damir Jamsek, Odyssey Research Associates

• Derivational Reasoning System, by Bhaskar Bose, Derivation Systems Inc.

PRECEDING PAGE BLANK NOT F_LMED _
..... "_'_TF,its'"_' ,..', _: .',,'v

139



N96- 10031

The Formal Verification Used for the AAMP5 and AAMP-FV

It is becoming increasingly evident within the VLSI design industry that the complexity of many current p_ ¢_
hardware designs is outstripping the capability of traditional simulation-based tools to adequately verify

them. This situation was well-illustrated by the recent floating point bug discovered in Intel's Pentium pro-

cessor. The industry is beginning to look at formal verification as a technological alternative to simulation

for obtaining higher assurance than is currently possible.

Recently, SRI International and Collins Commercial Avionics, a division of Rockwell International, un-

dertook a project to explore how formal techniques for specification and verification could be introduced

into an industrial process. The project, sponsored by the Systems Validation Branch of NASA Langley

and Collins Commercial Avionics, consisted of specifying in the PVS language a portion of a Rockwell

proprietary microprocessor," the AAMP5, at both the instruction set and register-transfer levels and using

the PVS interactive proof-checker to show that the microcode correctly implemented the specified behavior

for a representative subset of instructions.

The main goal of the project was two-fold: First, to investigate the feasibility of formally specifying and

verifying a complex commercial microprocessor that was not expressly designed for formal verification.

Second, to explore effective ways to transfer the technology to an industrial setting. The choice of the

AAMP5 satisfied the first goal since the AAMP5 was not designed for formal verification, but to provide

a more than threefold performance improvement while remaining object-code-compatible with the earlier

AAMP2, which is used in numerous avionics applications, including the Boeing 737, 747, 757, and 767.

To satisfy the technology transfer objective, we had to develop a suitable verification methodology and a

formal infrastructure to make the technology usable by practicing engineers. This infrastructure includes

techniques for decomposing the microprocessor verification problem into a set of verification conditions

that the engineers can formulate and strategies to automate the proof of the verification conditions. The

development of the infrastructure was one of the key accomplishments of the project. Most of the in-

m_+_, ' general .....¢_-__t-.... t ...... ,4 ..... odolog3 are............... e,,,,_,, to be reused for other microprocessors, certain]y in the

verification of another member of the AAMP family. This methodology was used to formally specify the

entire microarchitecture and more than half of the instruction set and to verify a core set of eleven AAMP5

instructions representative of several instruction classes. However, the methodology and the formal ma-

chinery developed are adequate to cover most of the remaining AAMP5 instructions. Although PVS was

the vehicle of the experiment, the methodology is applicable to other sufficiently powerful theorem provers.

Another key result of the project was the discovery of both actual and seeded errors. Two actual microcode

errors were discovered during development of the formal specification, illustrating the value of simply cre-
ating a precise specification. Both were specific to the AAMP5 and were corrected before first fabrication.

Two additional errors seeded by Collins in the microcode were systematically uncovered by SKI, who knew

that bugs had been seeded, but not their location or identity, while doing correctness proofs. One of these

was an actual error that had been discovered by Collins after first fabrication but left in the microcode

provided to SRI. The other error was designed to be unlikely to be detected by walk-throughs, testing, or
simulation.

Steve Miller's talk earlier in the workshop, gave an overview of the AAMP5 project emphasizing the tech-

nology transfer process with its administrative and managerial aspects. This talk describes the technical

approach used in verifying the AAMP5. Please refer to Steve Miller's slides for the AAMP5 design figures.
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DERIVATION SYSTEMS, INC.

N96-10032

DRS - Derivational Reasoning System

Bhaskar Bose

Derivation Systems, Inc.

5963 La Place Court, Suite 208

Carlsbad, California 92008

Tel: (619) 431-1400

bose@dvsi.com

May 11, 1995

Abstract

The high reliability requirements for airborne systems requires fault-tolerant archi-

tectures to address failures in the presence of physical faults, and the elimination of

design flaws during the specification and validation phase of the design cycle. Although

much progress has been made in developing methods to address physical faults, design

flaws remain a serious problem. Formal methods provides a mathematical basis for

removing design flaws from digital systems.

DRS (Derivational l_.easoning System) is a formal design tool based on advanced

research in mathematical modeling and formal synthesis. The system implements a ba-

sic design algebra for synthesizing digital circuit descriptions from high level functional

specifications. DRS incorporates an executable specification language, a set of correct-

ness preserving transformations, verification interface, and a logic synthesis interface,

making it a powerful tool for realizing hardware from abstract specifications. DRS inte-

grates recent advances in transformational reasoning, automated theorem proving and

high-level CAD synthesis systems in order to provide enhanced reliability in designs

with reduced time and cost.

Copyright (c) 1995 Derivation Systems, Inc. All l%ights Reserved
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Session 7: Researcher Perspectives on Formal
Methods

Jim Caldwell, Chair

• David Dill, Stanford Urtiversity (No slides available)

• Doug Hoover, Odyssey Research Associates

• Steve Johnson, Indiana University

• Natarajan Shankar, SRI International (No slides available)
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Session 8: Research Issues (1)

C. Michael Holloway, Chair

• Safety Analysis, by John C. Knight, University of Virginia

• Non-standard Analysis and Embedded Software, by Richard Platek, Odyssey Research Associates

171



N96-10033

SAFETY ANALYSIS

John C. Knight
Department of Computer Science, University of Virginia

Charlottesville, VA 22903

Case Studies

We are engaged in a research program in safety-critical

computing that is based on two case studies. We use these

case studies to provide application-specific details of the

various research issues, and as targets for evaluation of
research ideas.

The first case study is the "Magnetic Stereotaxis System

(MSS), an investigational device for performing human

neurosurgery being developed in a joint effort between the

Department of Physics at the University of V'trginia and the
Department of Neurosurgery at the University of Iowa.

The system operates by manipulating a small permanent

magnet (known as a "seed") within the brain using an exter-

nally applied magnetic field. By varying the magnitude and

gradient of the external magnetic field, the seed can be

moved along a non-linear path and positioned at a site

requiring therapy, e.g., a tumor. The magnetic field required

for movement through brain tissue is extremely high, and is

generated by a set of six superconducting magnets located

in a housing surrounding the patient's head. The system

uses two X-ray cameras positioned at right angles to detect

in real time the locations of the seed and of X-ray opaque

markers affixed to the patient's skull. The X-ray images are

used to locate the objects of interest in a canonical frame of
reference.

The second case study is the University of Virginia

Research Nuclear Reactor (UVAR). It is a 2 MW thermal,

concrete-walled pool reactor. The system operates using 20

to 25 plate-type fuel assemblies placed on a rectangular grid

plate. There are three scramable safety rods, and one non-

scramable regulating rod that can be put in automatic mode.

It was originally constructed in 1959 as a 1 MW system,

and it was upgraded to 2 MW in 1973. Though only a
research reactor rather than a power reactor, the issues

raised are significant and can be related to the problems
faced by full-scale reactor systems.

Safety Kernel

The software in systems like those in our case studies is

very large and complex. We assume that, because of this

size and complexity, faults will remain in the software for

an application after development. An approach we are pur-
suing to deal with this is a software architecture termed a

safety kernel, a concept directly analogous to the security

kernel used in security applications.

A security kernel provides assurance that a set of security

policies is enforced independently of the application pro-
gram. Verification of the security kernel is sufficient to

ensure enforcement of those policies encapsulated within

the security kernel. The application program need not

enforce the security policies, and it can, in fact, undertake

actions that would normally lead to violation of the security

policies with no danger of actual violations taking place.

The similarity between security concerns and safety con-

cerns is considerable and the concept of a safety kernel is

appealing. If the concept were feasible, a safety kernel

would enforce a set of safety policies by monitoring

requests to devices, device actions, device status, applica-
tion software status, and so on.

We have developed an enforcement safety kemel and inte-

grated it into our MSS implementation. The safety kernel is

generated automatically from a formal specification of the
safety policies, and tests of the MSS instantiation show

excellent performance.

Testing

Systems of this complexity pose significant challenges in

the area of testing, especially in the large number of possi-

ble test cases. We are using a technique that we call specifi-

cation limitation to permit demonstration of useful

properties by exhaustive testing. By specification limitation

we mean that the specification for the application is deliber-
ately limited in several areas to restrict the total number of

test cases. For example, in the MSS the angles entered by

the operator for the required direction of motion are

rounded to 1/10 of a degree. In practice, this is not a signifi-

cant functional restriction but it permits exhaustive testing

of the angles used for setting direction. The same approach
is used with distance.

A second significant problem in testing complex systems is

correctness determination, i.e., determining whether the

outputs are correct. In our MSS implementation, we have
addressed this problem by the use of reversal checks on the

entire system. A reversal check computes a program's input

from its output and compares this with the actual input. The

current calculations for the superconducting coils, for

example, begin with a required force and are very complex.

Computing the force resulting from the coil currents, how-

ever, is simple and provides the exact inverse of the current

calculations. Thus the input can be computed and com-

pared. A variation on the idea of a reversal check is also

used by the MSS imaging subsystem.
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N96- 10034

NON-STANDARD ANALYSIS AND EMBEDDED SOFTWARE

Richard Platek

Odyssey Research Associates

richard@oracorp.com

One model for computing in the future is ubiquitous, embedded computational devices analagous to
embedded electrical motors. Many of these computers will control physical objects and processes.

Such hidden computerized environments introduce new safety and correctness concerns whose

treatment go beyond present Formal Methods. In particular, one has to begin to speak about Real

Space software in analogy with Real Time software. By this we mean, computerized systems which

have to meet requirements expressed in the real geometry of space. How to translate such require-

ments into ordinary software specifications and how to carry out proofs is a major challenge.

In this talk we propose a research program based on the use of non-standard analysis. Much detail

remains to be carried out. The purpose of the talk is to inform the Formal Methods community that
Non-Standard Analysis provides a possible avenue of attack which we believe will be fruitful.
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Session 9: Research Issues (2)

Victor Carreno, Chair

• Hybrid Fault Algorithms, by Pat Lincoln, SRI International

• Model Checking, by David Dill, Stanford University
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Hybrid Fault Algorithms

Patrick Lincoln, SRI International

In Association With:

J. Rushby spa

N. Suri Allied Signal

C. Walter (the,,)Allied Sign',fl

Sponsored by the NASA Langley Research Center

under contract NAS1 18969

Application: Digital Flight Control

• Extreme Reliability (10 -9 system failures/hour)

• Synchronous Systems

• NASA RCP

Byzantine Fault Tolerant Machine Designs

• SRI's SIFT (early 80's) was the first; used 70%

CPU cycles on overhead for voting etc.

• Allied-Signal's MAFT (late 80's) used hardware as-

sistance; numerous innovations

• Draper Lab's Asymmetric FTP: less hardware

• Others: TU Vienna MARS, AIPS, FTTP...

General Points About Verification

• Informal Proofs are Unreliable:

In the past, have Found and Corrected Flaws

in Published Algorithms and Proofs.

• PVS is an Effective Tool:

Emphasis on Minimizing Human Effort

• Proof Reuse Reduces Cost

• Still Expensive to Prove Anything Interesting

The Algorithms Used are Complex

Single Points of Failure
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GeneralPointsAbout Algorithms

• Slight Modifications to Traditional Algorithms

- Can Provide Much Greater Reliability

- Can Destroy Correctness

• Hybrid Approach Widely Applicable

- Clock Synchronization

- Byzantine Agreement

- Diagnosis

Byzantine Agreement

Set of n Generals (Processors)

m of them are Traitors (faulty)

All Good Generals Must Agree on Plan of Attack

All Good Processors Must Agree on Sensor Value

Make NO Assumptions about Behavior of Traitors

Make NO Assumptions about Behavior of Faults

Assume One Commander, Others Are Lieutenants

Assume One Transmitter, Others Are Receivers

The Byzantine Generals Problem:

Requirements

Agreement: Nonfaulty Lieutenants Agree on the Value

Received from the Commander

Validity: If the Commander is Nonfaulty, the Value

Received by Nonfaulty Lieutenants is the Value Ac-

tually Sent

The Oral Messages Algorithm (OM)

(Lamport, Shostak, Pease 1982)

• The Commander Sends Value to Each Lieutenant

• If r = 0, Each Lieutenant Accepts A Value

Otherwise, each lieutenant plays the part of the

general in OM(r - 1) to send value received to other
lieutenants

• Each Lieutenant Takes Majority Vote of the Values

Received
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Propertiesof OM
• ForAgreementandValidityRequiresn > 3a

(Best Possible Bound)

• r + i rounds of message exchange

• Exponential Number of Messages (Moses 93)

• Need Four Channels to Withstand a Single Fault

• Formally verified

(Bevier & Young '92, Rushby '92, Shankar '93)

Hybrid Fault Models

• Extreme Positions:

-Byzantine Approach: Components are Perfect

or Failed in Unknown Manner

-FMEA Approach: Components Fail in (many)

Known Ways; Design Countermeasures for each

(and combinations)

• Allied Signal's Hybrid Fault-Models:

Include Byzantine Case, Plus a Few Common Cases

(Fall-Stop, Stuck-At, .-.)

Formalizing Hybrid Fault Models:
Motivation

• Maximum Assurance

• Maximum Reliability

• Minimum Hardware

Algorithms for Hybrid Fault Models

• Extend Byzantine Fault-Tolerant Algorithms to

Deal Better With NonByzantine Faults

• Survive a Few Bad Faults

or a Lot of Simple Faults with the Same Protocol

• Allied Signal's Reliability Analysis:

This Provides Superior Reliability

(McElvany-Hugue '93)

12
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A Hybrid FaultModel

• Allied Signal (Thambidurai and Park '88)

- (a) Arbitrary (Byzantine, Asymmetric)

- (s) Symmetric (Value, Stuck-At)

- (c) Crash (Manifest, Stopped, Out-of-Bounds)

- (g) Good (Nonfaulty, OK)

Requirements for Hybrid Agreement

Agreement: All nonfaulty receivers agree on the value

ascribed to the transmitter.

Validity: If receiver q is nonfaulty, the value it ascribes

to the transmitter is

• The correct value if the transmitter is nonfaulty.

• The value actually sent to all receivers if the

transmitter is symmetric-faulty.

• The distinguished value E if the transmitter is

manifest-faulty.

Allied Signal's Algorithm Z

(Thambidurai and Park 1988)

• Like OM

• When Manifestly Bad Value Received, Record E

• Lieutenants Pass on E When Receive E

• Ignore E in majority vote

Algorithm Z: Flawed

• n = 5, r = 1, the Commander has a Crash Fault, one

Lieutenant is a Traitor

• Good Lieutenants will believe whatever they

receive from the Traitor: Protocol Fails

• MAFT Implementation Correct

16
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Importanceof Validation
• Lincoln & Rushby Specified Incorrect Algorithm

• Like Z, But Lieutenants Pass on RE

"Reported Error"

• With Incorrect Axiom "Hybrid_Majority_Vote_l"

- "Ignore Votes of Crashed Processors"

- 1-Round Case: OK

- 2-Round Case: Impossible

- Should Have Been: "Ignore E Values"

• With Axiom, "Verified" Incorrect Algorithm

• Should Validate Axioms With Implementation

Algorithm OMH

(Lincoln & Rushby '93)

• Like OM, but

• Add m + 1 kinds of error value: E, RE, R2E etc.

• If receive R'E, pass on as R_÷IE

• Ignore E in majority vote

• If vote yields R_E, selected value is RJ-1E

• Formally Specified and Verified in PVS

(Lincoln _ Rushby '93)

Validated Axioms With IVIJRTY Implementation

Doubt Anyone Could Get This Right

Without Formal Verification

i7

Algorithm OMH

r,_5,r = I

Algorithm OMH

• If r _ a, then OMH(r) Tolerates

n>2a+2s+c+r

If r = a, and s = c = 0, Then n > 3a

(Same as Traditional Bound)

• (a) Arbitrary (Byzantine, Asymmetric)

• (s) Symmetric (Value, Stuck-At)

• (c) Crash (Manifest, Stopped, Out-of-Bounds)

• (9) Good (Nonfaulty, OK)

20
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FaultCombinationsTolerated

Number of Faults

Arbitrary Symmetric Crash I

[(byzantine) (value) [ (manifest) ]

1 0 0
0 1 0 [

I

0 0 1 .__J

Number of Faults

Arbitrary [ Symmetric [ Crash
(byzantine). (value) (manifest)

1 I 0

1 0 2

0 2 0

0 1 2

0 0 5

OM

Achieved Reliability: 6 Processor OMH

• McElvany-Hugue's Reliability Analysis

• Reliability Goal: 10 -_ System Failures/Hour

- 6 Processor OM: 1.5 x 10 -7

- 6 Processor OMH: 1.5 x 10 -11

OMH

Formal Specification of OMH in PVS

umh[m : n_t, n : prelect, T : "rY:'t;, errvr : T, K, UuR : IT _ T]] : "rltt:Ogy

m_t;ln

xssumsu _t._: ASSUUrnON (V (t: T): It(t) _ error)

uU_Ct._ : AS_UMrr*O_ (v (t : T) : U_It(R(:)) = t)

_N_ASSU_Cn_;

round_: rYv_ : _ptt_rtt 1

t : VAt T

fcu : rYP_ = belo*{n]

f+_mt : "rYvm = mtoftfcu I

fcuvector: t'yr+ = [re.- T]

G,p,q,:: vAs. fcu

V,Vx,O_ : VAX fcuvector

caucu_ : vat fcu_et

r : vAi ro_xtds

t_trottrti_G linlte.c_rdln_dit). [fcu, n,id_tity[fcu]],

_|te_[fc.],

c_-d..vzt[fcu, u, ide_tib'[l'cu]],

hybrid-mjrty[2', n, emir]

statuary: rYr_ = {_rbltr4ry,symmetric,m_tife_t..o_f_ulty}

stltttt_: [fort _ _titt_]

a(_): boo[ = _ymm_trlc(_t_.tus(:))

g(.'): bo_ = tto*_f_lty(st_tu_(z))

_(c_mcus) : fcu_et = hJter(c_¢u_,a)

_s(ca.ucus) : fc_set = l_lter(c_.cu_,a)

cs(c_ucus): fc_t = tilter(c_tucus, c)

gs(c_.u, cus): fcuset = filter(c_ucu_,g)

Ic_cu_l = _(_uc.s)l + I,s(c_ucus)i + ics(c_ucus)l + tSs(caucus)[

_eud: [T, fcu, k_- 7']

_extdl: AXIOM _(p) 5 _.d(t,p,q) = I

sead2 : AX,OM c(p) D _eud(t,p,q) = error

ieud3: AXIOLI _(p) _ _nd(Lp, q) ffi _eud(:,p,_)

I_#lidlitlltltli: LI:MMA _ a(p) 3 _lld(g,p,q) = _¢lxd(t,p,:)

SM_jorlt)'(c_acus, v) : T = pmjA(hybrid-mjrty(c_uc_s,v,n))

HM_,jority I : _,_UMA

^ : # errvr ^ (V p: ¢(p) A p 6 c_ucu_ _ ,(p) = error)

HM_t_otlty(c_ucus, ¢) =

23

HM_tjority2 :t.t;_tUA

D HM_jorhy(c._ucus,vx) = HM_jority(_ucus, p_)

OMH(G,r,t,_ucus) : x_uuastv_ fcuvector =

l_'r = 0

rein (_, p : send(_,G,p))

t_L_t:().p:t_'p = G

'r._ scud(t,G,p)

Bt, s_ UuK(HM_.jorlty(c_tcus - {G},

(,k q :OMH(q,r- 1,R_eud(L G,q)),c_u_ut- {G})(p))))

u_xsux_ (A G,r,t,c_uc_s _ a_t : r)

Va_idhy_Prop(r) : boo[ =

-a(q) A p_ c.aacus A q _ c.a_cus

^ Icaucu_j > 2 x (l_c_ucus)i + I_s(caucus)l) + Ics(caucus)l + T

OMH(q,r,L_aucus)(?) = _nd(t,q,p)

V_L_dlty : _uux V_didity-Frop(r)

V_lidity.Fitt_d : 'ra_oa_u

e(P) ^ " _G) ^ 2 x laL + 2 x I.[ + [cl + ,- < n

> OMli(G,r,/,fuil_et[fcu])(p) ; _end(t,G,p)

Agl_lttel_t.._rop(r) : boo[

g(p) A g(q) A p _ c_,UCU_ A 9 E Cu_cus A : _ cu, ucus

^ l_ucusl > 2 x (l_(¢ffi_cus)l + Iss(cffiucus)D + Ics(c_ucus){ +r

^ _ _> I_(c_ucu.)i

D OMH(z,r, Lc_.Qcus)(p) = OMH(:,r,l,c_ucus)(q)

Agreeuteut : t.t;_M,*. Agrtt_eat.Prop(r)

Agr_meat.Fi_d : "ra_og_u

_(v) ^ _(q) ^ l*l < ,. ^ 2 x [el + 2 x I_l + Icl + -, < I,

OMti(G,m,t,fuihet{fce])(?) = OMa(G',.u:,fuLlset[fcu])(q)
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Axioms (Assumptions) Theorem 1

sendl: AXIOM g(p) _ send(t, p, q) = t

send2: AXIOM C(p) _ send(t,p,q) = error

send3 : AXIOM 8(p) _ send(t, p, q) =- send(t, p, z)

Validity_Final : THEOREM

(g(p) A -, a(G)
A 2 × lal + 2 × Isl + ]c I + r < n)

mbox 30MH(G, r, t, fuUset [fcu])(p) = sead(t, G,p)

sendlemma : LEMMA

-- a(p) D send(t,p,q) = send(t,p,z)

Algorithm OMH(r) satisfies Validity if there are

more than 2(a + s) + c + r processors.

Validity: If The Commander Is not Byzantine-Faulty,
The Value Received By Nonfaulty Lieutenants Is
The Value Actually Sent

25

Style of Proof
Bevier & Young, Rushby, Shankar

• Inductive Property Definition

• Induction Property Assertion (Lemma)

• Theorem in Final Form

Validity_Prop(r) : bool =

-. a(q) A p E caucus A qEcaucus

^ Icaucusl > 2 × (las(caucus)l + Iss(caucus)l)
+ Ics(caucus)l + r

D OMH(q, r,t, caucus)(p) = send(t, q,p)

Validity : LEMMA Validity_Prop(r)

Validity_Final : THEOREM

(g(p) A -. a(G)

^2 × Jal +2 × Isq+ IcF+r < n)
OMH(G,r, t, fullset[fcu])(p) = send(t, G,p)

While ReRunning Proof, We Noticed

Lemma If c = 0 (No Crash Faults), OMH _ OM

OM Is Better Than Earlier Claimed:

Corollary 1 For any r, Algorithm OM(r) satisfies

Validityifthere are more than 2(a+ s)+ r processors.

Corollary 2 For any r, Algorithm OM(r) satisfies

Agreement ifthere are more than 2(a+ s)+ r processors
andr>_a.

OMH = OM + Diagnosis of Manifest Faults

28
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More Corollaries FTP Architecture

More Theorems Derived from our New Improved

Understanding

Corollary 3: No Good Processors Are Confused

By Crash Faults: If a = s - 0 (No Byzantine, No Sym-

metric Faults), ONIH is optimal.

• Less Total Hardware

• Only need 3 voters to mask 1 Byzantine fault (!)

• Technology used in AIPS, FTTP, etc.

Corollary 4: Error Values (RE, R2E, -- .) Can Over-

lap With Real Values.

Corollary 5: (Slightly Modified) OMH(r) Allows

Implementations With Only r + 1 Error Values.

29 3o

FTP Architecture

Interstages

roeessors

Algorithm OM-FTP

• Lala 1986

• Similar to one-round OM with symmetric voters

• Formally specified in EHDM

(Harper, Alger, & Lala '91)

No proofs

• Formally specified in PVS

(Lincoln & Rushby '94)

Full formal proofs completed in PVS

Couple of days
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Hybrid Faultsin FTP

• Integrate OMH and OM-FTP

• Resist more (simple) faults with less hardware

Algorithm OMH-FTP

(Lincoln & Rushby 1994)

• Combine O__I-I and OiVI-FTP

• Voters pass on E as RE

• Interstages pass on E as E

• Voters use value reflected from interstage,

NOT original value

Formal Verification in PVS

• Proof Reuse

• Copy-and-Edit Proof of OM-FTP

• Grab parts of Proof of OMH

• M-x Edit Proof

• Rerunning Edited Proofs

• Couple of Days Effort

Copy-and-Edit a Proof

• En-,acs Interface to Edit Proof Commands

• Kill and Yank

• Mix-And-Match Partial Proofs

• Rerun Until Proof Fails

35 36
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AuthenticatedAgreement

• UseCryptographicallySecureSignatures

• Can Tolerate Many More Faults

However

• Questionable Cryptographic Assumptions

(Key Distribution, Complexity Questions)

• Traitor May Simply GUESS Generals Key

Possible, Though Very Unlikely

Agreement Using Signed Messages (SM)

(Lamport, Shostak, & Pease 1982)

• r + 1 Rounds Of Message Exchange

• If 1 Properly Signed Message At End, Adopt It

Else General Is Faulty, Adopt Default

• Requires Only n _ r For Agreement and Validity

(Best Possible Bound)

• If Signatures Broken, Protocol Fails Horribly

One Traitor with Key bre'_ks Agreement and Validity for Any Nuanber

of Rotmds, Auy Number of Processors

37

Use Signatures In OMH (OMHA)

(Gong, Lincoln, Rushby 1995)

• Same as OMH, But at Every Step Check Signatures

• Symmetric, Arbitrary Lieutenants =_ Manifest

• Except: Bad Lieutenants Could Send R(E)

• Worst Case With Secure Signatures Same As OMH

(Worse Than SM)

• If Signatures Broken, Same Tolerance as OMH

(Much Better Than SM)

It Would Be Nice to Disallow R(E)

Algorithm OMHA: Signatures Secure

(
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Algorithm OMHA: Broken Signatures

• n = 5,'r = 1, the Commander has a Crash Fault, one

Lieutenant is a Traitor with Crypto Key

• Good Lieutenants Not Fooled:

Protocol Succeeds

Use Signatures In Z (ZA)

(Gong, Lincoln, Rushby 1995)

• Same as Z, But at Every Step Check Signatures

• Symmetric, Arbitrary Lieutenants =_ Manifest

• Bad Lieutenants Cannot Send R(E)

• With Secure Signatures, ZA is Optimal

(Same as SM, Better than OMH)

• If Signatures Broken, Same Tolerance as Z

(Better Than SM, Worse Than OMH)

Algorithm ZA: Broken Signatures

• n = _, r = i, the Commander has a Crash Fault, one

Lieutenant is a Traitor with Crypto Key

• Good Lieutenants will believe whatever they

receive from the Traitor: Protocol Fails

43

Symbolic Fault Injection

(Gong, Lincoln, Rushby 1995)

• Using Dill's Mur_b Tool (Stanford)

• Specified OM, OMH, OMHA, SM, Z, ZA

• Complete, Exhaustive State Exploration

5 Processors, 4 Values

• All Above Bounds Correct

Rediscovered Flaw in Z

44

203



Symbolic Fault Injection:

Beyond The Worst Case Bound

> 20,000 Fault Configurations

(Most Beyond Above Bounds)

Clock Synchronization

• All Above Protocols Require Synchronization

• Byzantine Processors May Lie About Clock Value

• Assume Bounded Clock Drift For Good Clocks

• Goal: Maintain Bounded Clock Skew V_ithin

45 4_

Interactive Convergence Algorithm: ICA

(Lamport & Melliar-Smith '85)

• Broadcast Current Clock Value

• Compute Egocentric Mean

-Ignore Values Too Far Off

n> 3a

• Algorithm Correct

• All But One Lemma Incorrect

• Proof of Main Theorem Incorrect

• Corrected Versions Formally Verified in EHDM

(Rushby & VonHenke 93) Couple of Months Effort

• Young Formally Verified in NQTHM

Noted Perfect Clocks Excluded By Rushby

should be __ in Axiom

Other Clock Synchronization Algorithms

• Fred Schneider's General Treatment

• Natarajan Shankar Formally Specified and Verified

in EHDM

Corrected Several Small Flaws

• Verified That ICA Satisfies Corrected Properties

• Paul Miner Found Better, Weaker Assumption Set

Example Lundelius-Lynch Algorithm

47
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Hybrid InteractiveConvergence:ICAH
(Rushby94)

• Ignore E Values In Egocentric Mean

n>3a+2s+c

• Extend Hybrid Fault Model to Link Faults:

- Model Links Separate From Processors

- Links Only Introduce Manifestly Bad Values

- Two Links Between Each Pair

(In, Out)

- Asymmetric: Good or Manifest Value

n>3a+2s+c+l

• Formally Specified and Verified in EHDM

(Rushby 94)

Couple of Days Effort

Diagnosis

• Key Part of FDIR:

Detection, Identification, and Reconfiguration

• Off-Line: After/Between Missions

- Requires Record Keeping/Testing Harnesses

- Few Additional Mechanisms In-Flight

- May Miss Intermittent Faults

- Use Test Injection Sequences

• On-Line: During Mission

- Requires Additional Safety-Critical Mechanisms

- Consumes Mission Resources

- Survives More Faults During Mission

49 50

Benefits of On-Line Diagnosis

OMH Masks Crashes Already: Why Diagnose?

• Diagnose ALL Symmetric Faults

Greater Reliability

• Diagnose SOME Byzantine Faults

Greater Reliability

• Manifest Faults May Become Worse

• Stop Progression:

Manifest =_ Symmetric =_ Byzantine

• Restart Crashed Processor

On-Line Diagnosis

• Easy Without Byzantine Faults

• All Faults Are Symmetric

Private Accusations Correct

• Impossible To Perfectly Diagnose Byzantine Faults

51 52
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DesirableProperties

Correctness (Fairness, Soundness):

Every Processor Diagnosed Faulty IS Faulty

Completeness:

Every Faulty Processor is Diagnosed Faulty

On-Line Byzantine Diagnosis

• PMC, Comparison Testing Inappropriate

• Shin & Ramanathan '87 (Requires Authentication)

• Ramarao & Adams '88 (Optimal, NP-hard)

Extreme Cost

• Walter '90, Walter, Suri & Hugue '94: Spectrum

of Algorithms

PP, PLP, DD, HD

53

Algorithm PP: Walter '90

• Assume Symmetric Faults

• Correctness and Completeness

• Formally Specified and Verified in PVS

(Lincoln 95)

Couple Weeks Effort

Algorithm PP

• Monitor All Incoming Messages

• For Incorrect Messages, Record Accusation

• At End of Period, Broadcast Accusations

• If __ IN�21 Accusations, Declare Faulty

- Accuse All Non-Accusing Processors

• If <_ rN/2_ Accusations, Declare NonFaulty

- Accuse All Accusing Processors

• Iterate

56
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AlgorithmPLP: Walter '90
• PPwithLinkFaults

• Correctness and Partial Completeness

• Formally Specified and Verified in PVS

(Lincoln 95)

• Heavy Reuse of Lemmas/Proofs from PP

Couple Days Effort

Algorithm PLP

• Like PP

• Except, two kinds of Error:

Symmetric/Asymmetric

• Based on Kind of Erroneous Message

• Asymmetric Errors Assumed to Be Manifest

as Asymmetric-Looking Values

Algorithm DD: Walter, Suri, & Hugue '94

• True Byzantine Fault Diagnosis

- Local Detection

- Byzantine Agreement on Detection: OMI-I

- Combine into Diagnosis

• Correctness and Partial Completeness

• Formally Specified and Verified in PVS

(Lincoln 95)

• Heavy Reuse of Lemmas/Proofs

from OMH & PLP

Couple Hours Effort

Algorithm DD

• Monitor All Incoming Messages

• For Incorrect Messages, Record Accusation

• Use OMH to Agree on Accusations

• If _> rN/2] Accusations, Declare Faulty

• If _ rN/2] Accusations, Declare NonFaulty

• Iterate

59
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Algorithm HD:Walter,Suri,& Hugue'90
• TrueByzantineFaultDiagnosis

• DD with Penalties, Accumulation, Decay

• Correctness and Partial Completeness

• Formally Specified and Verified in PVS

(Special Case) (Lincoln 95)

• Heavy Reuse of Lemmas/Proofs From DD

Couple Hours Effort

Algorithm HD

• Like DD

• Except, Different Penalty Weights for

Different Errors

• Decay of Accusations

• Cumulative Penalty _ K, Declare Faulty

62

Benefits of Formal Verification

• Identify Exact Assumptions

• Explore Alternatives

• Extremely High Assurance

- Diagnosis Is Safety-Critical

• Documentation

Important Properties of User

• Mathematical Sophistication

• Application-Area Knowledge

• Experience

208
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Important Properties of Proof Checker

• Cite Previous Lemmas and Theorems

• Library Mechanism

• Reuse Parts of Proofs

• Fast Cycle Time (Human-Computer-Human)

• Understandable Output in the Loop

• Heavy Controllable Automation

(Rewriting, Decision Procedures)

• Exploration Tools

(Murk)

Bottom Line

Exploration of Algorithms, Assumptions

• Assurance: Formal Verification

• Little Hardware: FTP

• Cheap Reliability: Hybrid Algorithms

- Byzantine Case Ensures Coverage

- Simple Cases Handled Cheaper

- More Reliability With Same Hardware

- Widely Applicable Paradigm

Clocks, Agreement, Diagnosis

65

"The virtue of a logical proof is not that it compels

belief but that it suggests doubts" (Lakatos)

Summary

• Good Hybrid Fault-Tolerant Algorithms

• Informal Proofs are Unreliable

• Real Theorem Proving Still Expensive

• Interesting Examples Now Feasible

• Human-Computer Interaction A Key Element

• Proof Reuse Lowers Cost of Formal Verification

67
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MODEL CHECKING

David L. Dill

Stanford University

N96- 10035

Formal methods have not had the kind of impact we might have hoped. I suggest that the reason is

economic: the cost/benefit ratio is unacceptable in many cases, and unproven in most. Hence,

research should examine the question of reducing costs, in the form of labor and time.

Automatic formal verification methods for finite-state systems, also known as model-checking, suc-

cessfully reduce labor costs since they are mostly automatic. Model checkers explicitly or implicitly
enumerate the reachable state space of a system, whose behavior is described implicitly, perhaps by

a program or a collection of finite automata. Simple properties, such as mutual exclusion or

absence of deadlock, can be checked by inspecting individual states. More complex properties, such

as lack of starvation, require search for cycles in the state graph with particular properties.

Specifications to be checked may consist of built-in properties, such as deadlock or "unspecified

receptions" of messages, another program or implicit description, to be compared with a simulation,

bisimulation, or language inclusion relation, or an assertion in one of several temporal logics.

are many success stories of verification tools finding bugs in protocols or hardware control-

lers. In some cases, these tools have been incorporated into design methodology.

Research in finite-state verification has been advancing rapidly, and is showing no signs of slowing

down. Recent results include probabilistic algorithms for verification, exploitation of symmetry and
independent events, and the use symbolic representations for Boolean functions and systems of lin-

ear inequalities.

One of the most exciting areas for further research is the combination of model-checking with theo-

rem-proving methods. I will briefly describe some initial forays into this area.
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Session 10: Research Issues (3)

Ricky W. Butler, Chair

.....,y/:: •

• The DDD Scheme Machine, by Steve Johnson, Indiana University

• Formal Development of a Clock Synchronization Circuit, by Paul Miner, NASA Langley
Research Center
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N96- 10036

THE SCHEME MACHINE:

A CASE STUDY IN PROGRESS IN DESIGN DERIVATION AT SYSTEM LEVELS

Steven D. Johnson _, j
l

Indiana University

6

The Scheme Machine is one of several design projects of the Digital Design Derivation group at

Indiana University. It differs from the other projects in its focus on issues of system design and its
connection to surrounding research in programming language semantics, compiler construction,

and programming methodology underway at Indiana and elsewhere. The genesis of the project

dates to the early 1980s, when digital design derivation research branched from the surrounding

research effort in programming languages. Both branches have continued to develop in parallel,
with this particular project serving as a bridge. However, by 1990 there remained little real inter-

action between the branches and recently we have undertaken to reintegrate them.

On the software side, researchers have refined a mathematically rigorous (but not mechanized)

treatment starting with the fully abstract semantic definition of Scheme and resulting in an effi-

cient implementation consisting of a compiler and virtual machine model, the latter typically real-

ized with a general purpose microprocessor. The derivation includes a number of sophisticated

factorizations and representations and is also deep example of the underlying engineering method-
ology.

The hardware research has created a mechanized algebra supporting the tedious and massive

transformations often seen at lower levels of design. This work has progressed to the point that

large scale devices, such as processors, can be derived from first-order finite state machine specifi-

cations. This is roughly where the language oriented research stops; thus, together, the two efforts

establish a thread from the highest levels of abstract specification to detailed digital implementa-
tion.

The Scheme Machine project challenges hardware derivation research in several ways, although
the individual components of the system are of a similar scale to those we have worked with before.

The machine has a custom dual-ported memory to support garbage collection. It consists of four

tightly coupled processes---processor, collector, allocator, memory---with a very non-trivial synchro-

nization relationship. Finally, there are deep issues of representation for the run-time objects of a
symbolic processing language.

The research centers on verification through integrated formal reasoning systems, but is also

involved with modeling and prototyping environments. Since the derivation algebra is based on an

executable modeling language, there is opportunity to incorporate design animation in the design

process. We are looking for ways to move smoothly and incrementally from executable specifications
into hardware realization. For example, we can run the garbage collector specification, a Scheme

program, directly against the physical memory prototype, and similarly, the instruction processor
model against the heap implementation.

PRECEDING PAGF, BLANK NOT F_L_ED
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N96- 10037

Formal Development of a Clock Synchronization Circuit

Paul S. Miner

/

This talk presents the latest stage in a formal development of a fault-tolerant clock synchronization

circuit. The development spans from a high level specification of the required properties to a circuit realizing

the core function of the system.

An abstract description of an algorithm has been verified to satisfy the high-level properties using the

mechanical verification system EHDM [2]. This abstract description is recast as a behavioral specification

input to the Digital Design Derivation system (DDD) developed at Indiana University [1]. DDD provides

a formal design algebra for developing correct digital hardware. Using DDD as the principle design envi-

ronment, a core circuit implementing the clock synchronization algorithm was developed [3]. The design

process consisted of standard DDD transformations augmented with an ad hoc refinement justified using the

Prototype Verification System (PVS) from SRI International [4].

Subsequent to the above development, Wilfredo Torres-Pomales discovered an area-efficient realization

of the same function [5]. Establishing correctness of this optimization requires reasoning in arithmetic, so a

general verification is outside the domain of both DDD transformations and model-checking techniques.

DDD represents digital hardware by systems of mutually recursive stream equations. A collection of PVS

theories was developed to aid in reasoning about DDD-style streams. These theories include a combinator

for defining streams that satisfy stream equations, and a means for proving stream equivalence by exhibiting
a stream bisimulation.

DDD was used to isolate the sub-system involved in Torres-Pomales' optimization. The equivalence

between the original design and the optimized verified was verified in PVS by exhibiting a suitable bisimu-

lation. The verification depended upon type constraints on the input streams and made extensive use of the

PVS type system. The dependent types in PVS provided a useful mechanism for defining an appropriate
bisimulation.
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Appendix B'.

Comments from Attendees on the Workshop

• That was one of the best conferences I've attended. Not only were most of the talks good but there

was a particularly good mix of people at the workshop who were eager to talk about their work
and related ideas.

• This workshop was much more valuable than FM Europe, at a fraction of the cost.

• This was the most well organized workshop I've ever attended at Langley.

• Thanks for the conference. I picked up a lot of useful information.

• There is no regular meeting for the formal methods community. How about expanding your

meetings to be yearly with an agenda set up like the GSFC SEL? Just thought I would ask.

• ... thanks again for this year's meeting. It was great fun.

• You all did a super job! Keep up the good work.

• I thoroughly enjoyed the chance to interact with people at FMWS95.

• When will the proceedings be ready? I'm looking forward to studying them.
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Appendix C:

Detailed Overview of NASA Langley's Formal Methods Program

This paper is an expanded version of a paper presented at COMPASS 95.
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NASA Langley's Research and Technology-Transfer

Program in Formal Methods

Ricky W. Butler

James L. Caldwell
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NASA Langley Research Center

Hampton, Virginia

Ben L. Di Vito
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May 19, 1995

Abstract

This paper presents an overview of NASA Langley's research program in formal methods. The major

goals of this work are to make formal methods practical for use on life critical systems, and to orchestrate

the transfer of this technology to U.S. industry through use of carefully designed demonstration projects.

Several direct technology transfer efforts have been initiated that apply formal methods to critical sub-

systems of real aerospace computer systems. The research team consists of five NASA civil servants and

contractors from Odyssey Research Associates, SRI International, and VIGYAN Inc.
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1 Rationale For a Formal Methods Research Program

NASA Langley Research Center has been developing techniques for the design and validation of flight critical

systems for over two decades. Although much progress has been made in developing methods to accommodate

physical failures, design flaws remain a serious problem [52, 67, 35, 1, 44, 30, 74].

A 1991 report by the National Center For Advanced Technologies 1 identified "Provably Correct System

Specification" and "Verification Formalism For Error-Free Specification" as key areas of research for future

avionics software and ultrareliable electronics systems [2]. Aerospace engineers who attended the NASA-

LaRC Flight Critical Digital Systems Technology Workshop listed techniques for the validation of concurrent

and fault-tolerant computer systems high on the list of research priorities for NASA [58].

1.1 Why Formal Methods Is Necessary

Digital systems (both hardware and software) are notorious for their unpredictable and unreliable behavior:

Studies have shown that for every six new large-scale software systems that are put into operation,

two others are cancelled. The average software development project overshoots its schedule by

half; larger projects generally do worse. And three quarters of all large systems are "operating
failures" that either do not function as intended or are not used at all.

Despite 50 years of progress, the software industry remains years-perhaps decades-short of the

mature engineering discipline needed to meet the demands of an information-age society[31].

Lauren Ruth Wiener describes the software problem in her book, Digital Woes: Why We Should No_ Depend

Upon Software:

Software products--even programs of modest size--are among the most complex artifacts that

humans produce, and software development projects are among our most complex undertakings.

They soak up however much time or money, however many people we throw at them.

The results are only modestly reliable. Even after the most thorough and rigorous testing some

bugs remain. We can never test all threads through the system with all possible inputs[95].

The hardware industry also faces serious difficulties, as evidenced by the recent design error in the Pentium

floating-point unit. In response to an outcry over the design flaw in the Pentium floating point unit, Intel's

President, Andy Grove, wrote on the comp.sys.intel Internet bulletin board:

After almost 25 years in the microprocessor business, I have come to the conclusion that no

microprocessor is ever perfect; they just come closer to perfection with each stepping. In the life

of a typical microprocessor, we go thru [sic] half a dozen or more such steppings ....

In a recent Washington Post article, Michael Schrage wrote:

Pentium type problems will prove to be the rule--rather than the isolated, aberrant exceptions--
as new generations of complex hardware and software hit the market. More insidious errors and

harmful bugs are inevitable. That is the new reality[82].

For life critical systems, errors may mean disaster. The potential for errors is high, because these systems

must not only perform their functions correctly, but also must be able to recover from the effects of failing

components (in order to meet stringent ultrareliability requirements.) Often the physical fault-tolerance

features of these systems are more complex and susceptible to design error than any of the basic functions
of the system. John Rushby writes:

Organization of redundancy and fault-tolerance for ultra-high reliability is a challenging problem:

redundancy management can account for half the software in a flight control system and, if less

than perfect can itself become the primary source of system failure [70].

1A technical council funded by the Aerospace Industries Association of America (AIA) that represents the major U.S.
aerospace companies engaged in the research, development and manufacture of aircraft, missiles and space systems, and related
propulsion, guidance, control and other equipment.
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In a comprehensive assessment of formal methods [77], John Rushby discusses several notorious examples of
such failures. These include the following:

• The asynchronous operation of the AFTI-F16 and sensor noise led each channel to declare the other

channels failed in flight test 44. The plane was flown home on a single channel. Other potentially
disastrous bugs were detected in flight tests 15 and 36.

• The HiMAT crash landed without its landing gear due to a design flaw. The problem was traced to a

timing change in the software that had survived extensive testing.

• A bug in the YC-14 redundancy management was found during flight test. The bug caused a large
mistracking between redundant channels.

• In flight tests of the X31, the control system went into a reversionary mode four times in the first nine
flights, usually due t9 a disagreement between the two air data sources.

• The nationwide saturation of the AT&T switching systems on January 15, 1990 was caused by a timing
problem in a fault-recovery mechanism.

• The first Shuttle mission (STS-1) was scrubbed because the fifth backup computer could not be syn-
chronized with the other four.

Three basic strategies are advocated for dealing with the design fault problem for the life-critical system:

1. Testing (Lots of it)

2. Design Diversity (i.e. software fault tolerance: N-version programming, recovery blocks, etc.)

3. Fault Avoidance (i.e. formal specification/verification, automatic program synthesis, reusable modules)

The problem with life testing is that in order to measure ultrareliability one must test for exorbitant
amounts of time. For example, to measure a 10 -9 probability of failure for a 1 hour mission one must test

for more than 109 hours (114,000 years).

The basic idea is to use separate design and implementation teams to produce multiple versions from the

same specification. At runtime, non-exact threshold voters are used to mask the effect of a design error in

one of the versions. The hope is that the design flaws will manifest errors independently or nearly so. By
assuming independence, one can obtain ultrareliable-level estimates of reliability, even with failure rates for

the individual versions on the order of 10-4/hour. Unfortunately, the independence assumption has been

rejected at the 99% confidence level in several experiments for low reliability software [47, 48].

Furthermore, the independence assumption cannot be validated for high reliability software because of the
exorbitant test times required. If one cannot assume independence then one must measure correlations. This

is infeasible as well; it requires as much testing time as life-testing the system, because the correlations must

be in the ultrareliable region in order for the system to be ultrareliable. Therefore, it is not possible, within

feasible amounts of testing time, to establish that design diversity achieves ultrareliability. Consequently,

design diversity can create an "illusion" of ultrareliability without actually providing it. For a more detailed
discussion, see [15, 14].

We believe that formal methods offer the only intellectually defensible method for handling design faults.
Since the often quoted 1 - 10 -9 reliability is clearly beyond the range of quantification, we have no choice but

to develop life critical systems in the most rigorous manner available to us, which is use of formal methods.

1.2 What is Formal Methods

Engineering relies heavily on mathematical models and calculation to make judgments about designs. This
is in stark contrast to the way in which software systems are designed--with ad hoc technique and after-

implementation testing. Formal methods bring to software and hardware design the same advantages that
other engineering endeavors have exploited: mathematical analysis based on models. Formal methods are

used to specify and model the behavior of a system and to formally verify that the system design and
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implementationsatisfyfunctionalandsafetyproperties.In principle,thesetechniquescanproduceerror-
freedesign;however,thisrequiresacompleteverificationfromtherequirementsdowntotheimplementation,
whichis rarelydonein practice.

Thus,formalmethodsistheappliedmathematicsofcomputersystemsengineering.It servesasimilarrole
incomputerdesignasComputationalFluidDynamics(CFD)playsinaeronauticaldesign,providingameans
ofcalculatingandhencepredictingwhatthebehaviorofadigitalsystemwillbepriortoits implementation.

Thetremendousscientificpotentialof formalmethodshasbeenrecognizedby theoreticiansfor a long
time,but theformaltechniqueshaveremainedtheprovinceofafewacademicians,withonlyafewexceptions
suchastheTransputer[3]andtheIBMCICSproject[38].Thefirst fiveyearsof NASALangley'sprogram
haveadvancedthecapabilitiesofformalmethodsto thepointwherecommercialexploitationisnear.

Therearemanydifferenttypesofformalmethodswithvariousdegreesof rigor.Thefollowingisauseful
(first-order)taxonomyofthedegreesof rigorin formalmethods:

Level-l:Formalspecificationof all orpartofthesystem.
Level-$:Formalspecificationat twoor morelevelsof abstractionandpaperandpencilproofs

thatthedetailedspecificationimpliesthemoreabstractspecification.
Level-3:Formalproofscheckedbya mechanicaltheoremprover.

Level 1 represents the use of mathematical logic, or a specification language that has a formal semantics,

to specify the system. This can be done at several levels of abstraction. For example, one level might

enumerate the required abstract properties of the system, while another level describes an implementation
that is algorithmic in style.

Level 2 formal methods goes beyond Level 1 by developing pencil-and-paper proofs that the concrete

levels logically imply the abstract, property-oriented levels. Level 3 is the most rigorous application of

formal methods. Here one uses a semi-automatic theorem prover to make sure that all of the proofs are

valid. The Level 3 process of convincing a mechanical prover is really a process of developing an argument

for an ultimate skeptic who must be shown every detail.

It is important to realize that formal methods is not an all-or-nothing approach. The application of formal

methods to the most critical portions of a system is a pragmatic and useful strategy. Although a complete

formal verification of a large complex system is impractical at this time, a great increase in confidence in the

system can be obtained by the use of formal methods at key locations in the system. For more information

on the basic principles of formal methods, see [16].

2 Goals of Our Program, Strategy, and Research Team

The major goals of the NASA Langley research program are to make formal methods practical for use

on life critical systems developed in the United States, and to orchestrate the transfer of this technology

to industry through use of carefully designed demonstration projects. Our intention is to concentrate our

research efforts on the technically challenging areas of digital flight-control systems design that are currently
beyond the state-of-the-art, while initiating demonstration projects in problem domains where current formal

methods are adequate. The challenge of the demonstration projects should not be underestimated. That

which is feasible for experts that have developed the tools and methods is often difficult for practitioners in

the aerospace industry. There is often a long "learning curve" associated with the tools, the tools are not

production-quality, and the tools have few or no examples for specific problem domains. Therefore, we are

setting up cooperative efforts between industry and the developers of the formal methods to facilitate the
technology transfer process.

This strategy leverages the huge investment of ARPA and the National Security Agency in development

of tools and concentrates on the problems specific to the aerospace problem domain. NASA Langley has

not sponsored the development of any general-purpose theorem provers. However, the technology transfer

projects have lead to significant improvements in the Prototype Verification System (PVS) theorem prover[70]
that SRI International (SRI) is developing. Several domain-specific tools are being sponsored: (1) Tablewise,
(2) VHDL-analysis tool, and (3) DRS. These tools are discussed in later sections.

It is also important to realize that formal methods include a large class of mathematical techniques and

tools. Methods appropriate for one problem domain may be totally inappropriate for other problem domains.
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The following are some of the specific domains in which our program has concentrated: (1) architectural-level

fault tolerance, (2) clock-synchronization, (3) interactive consistency, (4) design of hardware devices such as

microprocessors, memory management units, DMA controllers, (5) asynchronous communication protocols,

(6) design and verification of application-specific integrated circuits (ASICS), (7) Space Shuttle software, (8)
navigation software, (9) decision tables, (10) railroad signaling systems.

We are also interested in applying formal methods to many different portions of the life-cycle, such as

(!) requirements analysis, (2) high-level design, (3) detailed design, and (4) implementation.

Often, there is a sizable effort associated with the development of the background mathematical theories

needed for a particular problem domain. Although such theories are reusable and in the long run can become

"cost-effective", the initial costs can be a deterrent for industry. Therefore, one of the goals of the NASA

Langley program is to build a large body of background theories needed for aerospace applications.

We also have been involved with standards activities in order to strengthen the United States commitment
to safety.

2.1 Technology Transfer

The key to successful technology transfer is building a cooperative partnership with a customer. In order

for this partnership to work, NASA Langley must become directly involved in specific problem domains
of the aerospace industry 2. NASA must also effectively communicate its basic research accomplishments

in a manner that reveals a significant potential benefit to the aerospace community. Equally important
is the need for industry to make an investment to work together with NASA on joint projects to devise

demonstration projects that are realistic and practical. The ultimate goal of our technology transfer process
is for formal methods to become the "state-of-the-practice" for U.S. industry development of ultrareliable

digital avionics systems. However, before we can develop new tools and techniques suitable for adoption by
industry, we must work with the system developers in industry to understand their needs. We must also

overcome the natural skepticism that industry has of any new technology.

Our basic approach to technology transfer is as follows. The first step is to find an industry representative

who has become interested in formal methods, believes that there is a potential benefit of such methods,

and is willing to work with us. The next step is to fund our formal methods research team to apply formal
methods to an appropriate example application. This process allows the industry representative to see

what formal methods are and what they have to offer, and it allows us (the formal methods team) to learn
the design and implementation details of state-of-the-practice components so we can better tailor our tools

and techniques to industry's needs. If the demonstration project reveals a significant potential benefit, the

next stage of the technology transfer process is for the industry representative to initiate an internal formal

methods program, and begin a true cooperative partnership with us.

Another important part of our technology transfer strategy is working with the Federal Aviation Ad-

ministration (FAA) to update certification technology with respect to formal methods. If the certification

process can be redefined in a manner that awards credit for the use of formal methods, a significant step
towards the transfer of this technology to the commercial aircraft industry will have been accomplished.

Langley has also been sponsoring a series of workshops on formal methods. The first workshop, held in Au-

gust 1990, focused on building cooperation and communication between U.S. formal methods researchers[18].

The second, held in August 1992, focused on education of the U.S. aerospace industry about formal methods[43].
A third workshop will be held in May 1995.

Another component of our technology transfer strategy, is to use the NASA's Small Business Innova-

tive Research (SBIR) program to assist small businesses in the development of commercially viable formal

methods tools and techniques. The first contracts under the program began in early 1994.

Finally, to facilitate technology transfer, much information on NASA Langley's formal methods research

is available on the Internet via either anonymous FTP or World Wide Web. PostScript and DVI versions

of many research papers are available through anonymous FTP on machine deduction, larc.nasa.gov (IP
address: 128. lSS. 18.16) in directory pub/fro. This directory, and much more information, is also available

through World Wide Web, using the following Uniform Resource Locator:

2To date, our efforts have concentrated on the aerospace industry, but we are actively seeking partners from other industries
also.
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http://atb-www.larc.nasa.gov/fm.html

2.2 FAA/RTCA Involvement

As the federal agency responsible for certification of civil air transports, the FAA shares our interest in

promising approaches to engineering and validating ultrareliable flight-control systems. Additionally, be-

cause the FAA must approve any new methodologies for developing life-critical digital systems for civil air

transports, their acceptance of formal methods is a necessary precursor to its adoption by industry system

designers. We are working with Pete Saraceni of the FAA Technical Center and Mike DeWalt, FAA National

Resource Specialist for Software, to insure that our program is relevant to the certification process. The

FAA has co-sponsored some of our work. John Rushby of SRI gave a tutorial on formal methods at an FAA

Software Advisory Team (SWAT) meeting at their request. The SWAT team suggested that we include an

assessment of formal methods in an ongoing Guidance Control Software (GCS) experiment in our branch;

Odyssey Research Associates (ORA) developed a formal specification of the GCS application.

John Rushby has written a chapter for the FAA Digital Systems Validation Handbook Volume III on
formal methods[20]. The handbook provides detailed information about digital system design and validation

and is used by the FAA certifiers. In preparation for this chapter, Rushby produced a comprehensive analysis

of formal methods [77].
George Finelli, the former assistant Branch Head of the System Validation Methods Branch (the Branch

in which the formal methods team worked before NASA Langley's reorganization in 1994) and a member

of the RTCA committee formed to develop DO-178B, together with Ben Di Vito (ViGYAN Inc.), was

instrumental in including formal methods as an alternate means of compliance in the DO-178B standard.

Currently, members of the Langley staff are involved in RTCA committees SC-180 (Airborne Electronic

Hardware) and SC-182 (Minimal Operating Performance Standard for an Airborne Computer Resource).

2.3 Team

The Langley formal methods program involves both local researchers and industrial / academic researchers

working under contract to NASA Langley. Currently the local team consists of five civil servants and one

contractor (VIGYAN Inc.). The lead NASA Langley formal methods researcher, Ricky W. Butler, may be

contacted through electronic mail to R. W.Butler_LaRC. NASA. GOV.

NASA Langley has recently awarded two five-year task-assignment contracts specifically devoted to formal

methods (from the competitive NASA RFP 1-132-DIC.1021). The selected contractors were SRI Interna-

tional (SRI) and Odyssey Research Associates (ORA). This was a follow-on contract from the previous
competitive contract that had awarded three contracts to SRI, ORA, and Computational Logic Inc. (CLI).

3 Current Technology Development and Transfer Projects

3.1 AAMP5/AAMP-FV Project

In 1993, NASA Langley initiated a joint project involving Collins Commercial Avionics and SRI International.

The goal was to investigate the application of formal techniques to a commercial microprocessor design,

the Collins AAMP5 microprocessor. The AAMP5 is the latest member of the CAPS/AAMP family of

microprocessors and is object code compatible with the AAMP2 processor [4]. The CAPS/AAMP family of

microprocessors has been widely used by the commercial and military aerospace industries. Some examples

of use of earlier members of the family include:

1. Boeing 747-400 Integrated Display System (IDS)

2. Boeing 737-300 Electronic Flight Instrumentation System (EFIS)

3. Boeing 777 Flight Control Backdrive

4. Boeing 757,767 Autopilot Flight Director System (AFDS)
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5. military and commercial Global Positioning (GPS) Systems.

The first phase of the project consisted of the formal specification of the AAMP5 instruction set and mi-

croarchitecture using SRI's PVS [90, 91, 11, 69, 68, 87]. While formally specifying the microprocessor, two

design errors were discovered in the microcode. These errors were uncovered as a result of questions raised

by the formal methods researchers at Collins and SRI while seeking to formally specify the behavior of the

microprocessor[59]. The Collins formal methods team believes that this effort has prevented two significant
errors from going into the first fabrication of the microprocessor.

The second phase of the project consisted of formally verifying the microcode of a representative subset of

the AAMP5 instructions. Collins seeded two errors in the microcode provided to SRI in an attempt to assess

the effectiveness of formal verification. Both of these errors (and suggested corrections) were discovered while

proving the microcode correct[59]. It is noteworthy that both the level 2 and level 3 applications of formal

methods were successful in finding bugs. Based on the success of the AAMP5 project, a new effort has been

initiated with Rockwell-Collins to apply formal methods in the design level verification of a microprocessor,

currently designated as AAMP-FV.

3.2 Tablewise Project

Under NASA funding, Odyssey Research Associates is working with Honeywell Air Transport Systems

Division (Phoenix) to study the incorporation of formal methods into the company's software development

processes. Because Honeywell uses decision tables to specify the requirements and designs for much of their
software 3, ORA is developing a prototype tool, called Tablewise 4, to analyze the characteristics of decision

tables. Tablewise uses a generalization of Binary Decision Diagrams to determine if a particular table is

exclusive (for every combination of parameter values, at most one action can be chosen) and exhaustive

(for every combination of parameter values, at least one action can be chosen). The tool is also capable of

automatically generating documentation and Ada code from a decision table [37]. We consider this a level
3 application of formal methods: although a general purpose prover is not used, the analysis is mechanized

in a computer program.

In 1995, ORA will develop algorithms to handle advanced analysis of decision tables. Two particular

areas of analysis that will be considered are testing of additional properties of tables and techniques for

efficiently handling partitioned tables. The Honeywell personnel involved in the project hope that the

concepts developed in the Tablewise project can be incorporated into an industrial-strength tool that will

significantly reduce the effort required to develop new software.

3.3 Union Switch and Signal

As part of a joint research agreement, NASA Langley formal methods researchers are collaborating with

engineers at Union Switch and Signal (US&S) to use formal methods in the design of railway switching
and control applications. Railway switching control systems, like digital flight control systems, are safety

critical systems. US&S is the leading U.S. supplier of railway switching control systems. Their Advanced

Technology Group, lead by Dr. Joseph Profeta, has applied formal methods in past efforts and turned to

NASA for expertise in integrating these techniques into their next generation products.

The initial project, started in 1993, was a cooperative effort between NASA, US&S, and Odyssey Research

Associates. The result of this first year's work was a formal mathematical model of a railway switching

network, defined in two levels. The top level of the model provides the mechanisms for defining the basic

concepts: track, switches, trains and their positions and control liners of a train (i.e. how far down the
track it has clearance to travel.) The second level is a formalization of the standard scheme used in railroad

control, the block model control system. A level 2 proof that the fixed block control system is "safe" with

respect to the top level model has been completed. Models of US&S proprietary control schemes were also
formulated.

3A decision table is a tabular format for defining the rules that choose a particular action to perform based on the values of

certain parameters.

previously called Tbell.
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The European formal methods community has addressed safety properties of certain components of

railroad control systems, but the work there has typically been at lower levels. The cooperative work with
US&S is unique in that a high level model of a railroad system has been described and used to analyze the

safety of various control schemes.

The next phase of the collaborative effort will concentrate on formal modeling and analysis of the fault-

tolerant core of US&S's next generation fail-stop control architecture.

3.4 Space Applications

A team spread across three NASA centers has been formed to study the application and technology transfer

of formal methods to NASA space programs. A consortium of researchers and practitioners from LaRC, JSC,

and JPL, together with support from Loral Space Information Systems, SRI International, and ViGYAN

Inc., has been actively pursuing this objective since late 1992. The near term goal is to define and carry

out pilot projects using portions of existing large-scale space programs. The long term goal is to enable

organizations such as Loral to reduce formal methods to practice on programs of national importance.
The NASA Formal Methods Demonstration Project for Space Applications focuses on the use of formal

methods for requirements analysis because the team believes that formal methods are more practically

applied to requirements analysis than to late-lifecycle development phases [40]. A series of trial projects
was conducted and cost effectiveness data were collected. The team's efforts in 1993 were concentrated on a

single pilot project, while later efforts in 1994 have been more diffuse.
The 1993 project was the formal specification of a very mature piece of the Space Shuttle flight control

requirements called Jet Select. Initial specifications were written to capture an existing, low-level statement
of the requirements. Few proofs were produced for the first specification, but 46 issues were identified and

several minor errors were found in the requirements. A second specification was produced for an abstract

(i.e., high level) representation of the Jet Select requirements. This abstraction, along with the 24 proofs of

key properties, was accomplished in under 2 work months, and although it only uncovered 6 issues, several

of these issues were significant.

NASA Langley's primary role in 1994 included support for two Space Shuttle software change requests

(CR). One CR concerns the integration of new Global Positioning System (GPS) functions while the other

concerns a new function to control contingency aborts known as Three Engine Out (3 E/O). Both of these

tasks involve close cooperation among formal methods researchers at NASA Langley, ViGYAN Inc., and SRI

International with requirements analysts from Loral Space Information Systems.
The Space Shuttle is to be retrofitted with GPS receivers in anticipation of the TACAN navigation system

being phased out by the DoD. Additional navigation software will be incorporated to process the position

and velocity vectors generated by these receivers. A decision was made to focus the trial formal methods

task on just a few key areas because the CR itself is very large and complex. A set of preliminary formal
specifications was developed for the new Shuttle navigation principal functions known as GPS Receiver State

Processing and GPS Reference State Processing, using the language of SRI's Prototype Verification System

(PVS). While writing the formal specifications, 43 minor discrepancies were detected in the CR and these

have been reported to Loral requirements analysts.

The Three Engine Out (3 E/O) Task is executed each cycle during powered flight until either a contin-
gency abort maneuver is required or progress along the powered flight trajectory is sufficient to preclude

a contingency abort even if three main engines fail. The 3 E/O task consists of two parts: 3 E/O Region

Selection and 3 E/O Guidance. 3 E/O Region Selection is responsible for selecting the type of external tank

(ET) separation maneuver and assigning the corresponding region index. 3 E/O guidance monitors ascent

parameters and determines if an abort maneuver is necessary.
We have developed and analyzed a formal model of the series of sequential maneuvers that comprise the 3

E/O algorithm. To date, 20 potential issues have been found, including undocumented assumptions, logical

errors, and inconsistent and imprecise terminology. These findings are listed as potential issues pending
review by the 3 E/O requirements analyst.

The GPS and 3 E/O tasks has continued into 1995. We hope to get formal methods incorporated

as a requirements analysis technique for Space Shuttle software. In addition, NASA Langley contributed
to a NASA guidebook under development by the inter-center team. The first volume of the guidebook is



intendedformanagersofNASAprojectswhowillbeusingformalmethodsinrequirementsanalysisactivities.
A secondvolumeisplannedthatwill beaimedat practitioners.NASAwill publishthefirst volumeearlyin
1995,with thesecondvolumeexpectedbyearly1996.

3.5 Requirements Analysis

Bettermethodsfor writingandanalyzingrequirementsisoneof thegreatestneedsthat commercialindus-
try facestoday.Requirementsareusuallyincomplete,poorlydefined,andchangerapidlyasa systemis
developed.Errorsintroducedin requirementsareoftenthemostseriousbecausetheymanifestthemselves
asmajordesignerrorsandareoftenveryexpensiveto correctwhentheyarediscovered,usuallylatein the
life-cycleduringimplementationtesting.

NASALangleyissponsoringworkto developspecialinterfacesto PVS,aformalspecificationlanguage
andtheoremprovingenvironmentdevelopedby SRI.Thegoalof thisworkis to developaninterfacethat
(1) is readableby Domain.Expertsandtypicalcustomers,(2) ispreciseenoughto supportformalanalysis,
(3)supportsconcurrentdevelopmentbymanyindividuals,and(4)discouragesoverspecification.

3.6 NASA Small Business Innovative Research Program

In 1993, a formal methods subtopic was a part of the NASA Small Business Innovative Research (SBIR)
solicitation. Two proposals were selected for 6-month Phase I funding for 1994: VHDL Lightweight Tools, by

Odyssey Research Associates, and DRS -- Derivation Reasoning System, A Digital Design Derivation System

for Hardware Synthesis, by Derivation Systems, Inc. of Bloomington, Indiana. After the completion of the

Phase I efforts, Derivation Systems' proposal for Phase II funding was accepted, and contract negotiations
are currently underway to initiate a 2-year effort. Contracts for these efforts just recently began.

4 Past Efforts

This section describes previous work in each of the following four focus areas: fault-tolerant systems, verifi-

cation of software, verification of hardware devices, and civil air transport requirements specification.

4.1 Fault-tolerant Systems

The goal of this focus area was to create a formalized theory of fault tolerance including redundancy man-

agement, clock synchronization, Byzantine agreement, voting, etc. Much of the theory developed here is

applicable to future fault-tolerant systems designs. A detailed design of a fault-tolerant reliable computing
base, the Reliable Computing Platform (RCP), has been developed and proven correct. It is hoped that

the RCP will serve as a demonstration of the formal methods process and provide a foundation that can

be expanded and used for future aerospace applications. It is one of the largest formal verifications ever
performed.

The RCP architecture was designed in accordance with a system-design philosophy called "Design For

Validation" [42, 41]. The basic tenets of this design philosophy are as follows:

1. A system is designed in such a manner that complete and accurate models can be constructed to

estimate critical properties such as reliability and performance. All parameters of the model that

cannot be deduced from the logical design must be measured. All such parameters must be measurable
within a feasible amount of time.

. The design process makes tradeoffs in favor of designs that minimize the number of parameters that

must be measured in order to reduce the validation cost. A design that has exceptional performance

properties yet requires the measurement of hundreds of parameters (for example, by time-consuming

fault-injection experiments) would be rejected over a less capable system that requires minimal exper-
imentation.
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3. The system is designed and verified using rigorous mathematical techniques, usually referred to as a
formal verification. It is assumed that the formal verification makes system failure due to design faults

negligible so the reliability model does not include transitions representing design errors.

4. The reliability (or performance) model is shown to be accurate with respect to the system implemen-

tation. This is accomplished analytically not experimentally.

Thus, a major objective of this approach is to minimize the amount of experimental testing required and

maximize the ability to reason mathematically about correctness of the design. Although testing cannot be

eliminated from the design/validation process, the primary basis of belief in the dependability of the system

must come from analysis rather than from testing.

4.1.1 The Reliable Computing Platform

The Reliable Computing Platform dispatches control-law application tasks and executes them on redundant

processors as illustrated in figure 1. The intended applications are safety critical with reliability requirements

( 7 i

Figure 1: Intended Application of RCP

on the order of 1 - 10 -9. The reliable computing platform performs the necessary fault-tolerant functions

and provides an interface to the network of sensors and actuators.

The RCP operating system provides the applications software developer with a reliable mechanism for

dispatching periodic tasks on a fault-tolerant computing base that appears to him as a single ultrareliable

processor. A multi-level hierarchical specification of the RCP is shown in figure 2.

The top level of the hierarchy describes the operating system as a function that sequentially invokes

application tasks. This view of the operating system will be referred to as the uniprocessor specification (US),

which is formalized as a state transition system and forms the basis of the specification for the RCP. Fault

tolerance is achieved by voting results computed by the replicated processors operating on the same inputs.

Interactive consistency checks on sensor inputs and voting of actuator outputs require synchronization of the

replicated processors. The second level in the hierarchy (RS) describes the operating system as a synchronous
system where each replicated processor executes the same application tasks. The existence of a global time

base, an interactive consistency mechanism and a reliable voting mechanism are assumed at this level.

Level 3 of the hierarchy (DS) breaks a frame into four sequential phases. This allows a more explicit

modeling of interprocessor communication and the time phasing of computation, communication, and voting.

At the fourth level (DA), the assumptions of the synchronous model must be discharged. Rushby and von

Henke [79] report on the formal verification of Lamport and Melliar-Smith's [50] interactive-convergence clock

synchronization algorithm. This algorithm can serve as a foundation for the implementation of the replicated

system by bounding the amount of asynchrony in the system so that it can duplicate the functionality of the

DS model. Dedicated hardware implementations of the clock synchronization function are a long-term goal.

In the LE model, a more detailed specification of the activities on a local processor are presented. In

particular, three areas of activity are elaborated in detail: (1) task dispatching and execution, (2) minimal
voting, and (3) interprocessor communication via mailboxes. An intermediate model, DA_minv, that sim-

plified the construction of the LE model was used. Some of the refinements occur in the DA_minv model

and some in the LE model. For example, the concept of minimal voting is addressed in considerable detail
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Figure 2: Hierarchical Specification of the Reliable Computing Platform.

in the DA_rninv model. Of primary importance in the LE specification is the use of a memory management

unit by the local executive in order to prevent the overwriting of incorrect memory locations while recovering
from the effects of a transient fault.

Figure 3 depicts the generic hardware architecture assumed for implementing the replicated system.

The hardware architecture is a classic N-modular redundant (NMR) system with a small number, N, of

processors. Single-source sensor inputs are distributed by special purpose hardware executing a Byzantine

agreement algorithm. Replicated actuator outputs are all delivered in parallel to the actuators, where force-

sum voting occurs. Interprocessor communication links allow replicated processors to exchange and vote on
the results of task computations.

The top two levels of the RCP were originally formally specified in standard mathematical notation and

connected via mathematical (i.e. level 2 formal methods) proof [25, 24, 22]. Under the assumption that a

majority of processors is working in each frame, the proof establishes that the replicated system computes

the same results as a single processor system not subject to failures. Sufficient conditions were developed
that guarantee that the replicated system recovers from transient faults within a bounded amount of time.

SRI subsequently generalized the models and constructed a mechanical proof in EHDM [75]. Next, the local

team developed the third and fourth level models. The top two levels and the two new models (i.e. DS and
DA) were then specified in EHDM and all of the proofs were done mechanically using the EHDM 5.2 prover
[12, 23].

Both the DA_zninv model and the LE model were specified formally and have been verified using

the EHDM verification system[13]. All RCP specifications and proofs are available electronically via the

Internet using anonymous FTP or World Wide Web (WWW) access. Anonymous FTP access is avail-

able through the host deduction.larc.nasa.gov using the path pub/fm/larc/RCP-specs. WWW ac-_

cess to the FTP directory is provided through the NASA Langley Formal Methods Program home page:
h_tp ://atb-www. late. nasa. gov/fm-top, html

4.1.2 Clock Synchronization

The redundancy management strategies of virtually all fault-tolerant systems depend on some form of voting,
which in turn depends on synchronization. Although in many systems the clock synchronization function

has not been decoupled from the applications (e.g. the redundant versions of the applications synchronize

by messages), research and experience have led us to believe that solving the synchronization problem

independently from the applications design can provide significant simplification of the system [49, 32]. The
operating system is built on top of this clock-synchronization foundation. Of course, the correctness of
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this foundation is essential. Thus, the clock synchronization algorithm and its implementation are prime

candidates for formal methods. The verification strategy shown in figure 4 is being explored.

Maximum Clock Skew Property ]
T
I

[ Synchronization Algorithm]
T
I

[ Digital Circuit Implementation]

Figure 4: Hierarchical Verification of Clock Synchronization

The top-level in the hierarchy is an abstract property of the form:

V non-faulty p,q: lOp(t) -- Cq(t)l < 6

where _ is the maximum clock skew guaranteed by the algorithm as long as a sufficient number of clocks

(and the processors they are attached to) are working. The function Cp(t) gives the value of clock p at real

time t. The middle level in the hierarchy is a mathematical definition of the synchronization algorithm. The

bottom level is a detailed digital design of a circuit that implements the algorithm. The bottom level is

sufficiently detailed to make translation into silicon straight forward.

The verification process involves two important steps: (1) verification that the algorithm satisfies the

maximum skew property and (2) verification that the digital circuitry correctly implements the algorithm.

The first step was completed by SRI International. The first such proof was accomplished during the design

and verification of SIFT [50]. The proof was done by hand in the style of journal proofs. More recently this

proof step was mechanically verified using the EHDM theorem prover[79, 80]. In addition, SRI mechanically

verified Schneider's clock synchronization paradigm [81] using EHDM[88, 89]. A further generalization was
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found at NASA Langley [60] s. The design of a digital circuit to distribute clock values in support of
fault-tolerant synchronization was completed by SRI and was partially verified. 6 CLI reproduced the SRI

verification of the interactive convergence algorithm using the Boyer-Moore theorem prover [100].
NASA Langley researchers designed and implemented a fault-tolerant clock synchronization circuit ca-

pable of recovery from transient faults [62, 61, 60]. The top-level specification for the design is the EHDM

verification of Schneider's paradigm. The circuit was implemented with programmable logic devices (PLDs)
and FOXI fiber optic communications chips [63].

Using a combination of formal techniques, a verified clock synchronization circuit design has also been

developed[64]. The principal design tool was the Digital Design Derivation system (DDD) developed by

Indiana University[8]. Some design optimizations that were not possible within DDD were verified using
PVS.

4.1.3 Byzantine Agreement Algorithms

Fault-tolerant systems, although internally redundant, must deal with single-source information from the

external world. For example, a flight control system is built around the notion of feedback from physical

sensors such as accelerometers, position sensors, and pressure sensors. Although these can be replicated (and

they usually are), the replicates do not produce identical results. To use bit-by-bit majority voting, all of

the computational replicates must operate on identical input data. Thus, the sensor values (the complete

redundant suite) must be distributed to each processor in a manner which guarantees that all working
processors receive exactly the same value even in the presence of some faulty processors. This is the classic

Byzantine Generals problem [51]; algorithms to solve the problem are called Byzantine agreement algorithms.
CLI investigated the formal verification and implementation of such algorithms. They formally verified the

original Marshall, Shostak, and Lamport version of this algorithm using the Boyer Moore theorem prover

[5]. They also implemented this algorithm down to the register-transfer level and demonstrated that it

implements the mathematical algorithm [6], and then subsequently verified the design down to a hardware

description language HDL developed at CLI [66]. A more efficient mechanical proof of the oral messages

algorithm was also developed by SRI[76].

ORA also investigated the formal verification of Byzantine Generals algorithms. They focused on the

practical implementation of a Byzantine-resilient communications mechanism between Mini-Cayuga micro-

processors [92, 7]. The Mini-Cayuga is a small but formally verified microprocessor developed by ORA. It is

a research prototype and has not been fabricated. The communications circuitry would serve as a foundation

for a fault-tolerant architecture. It was designed assuming that the underlying processors were synchronized

(say by a clock synchronization circuit). The issues involved with connecting the Byzantine communications

circuit with a clock synchronization circuit and verifying the combination has not yet been explored.

Thambidurai and Park [94] introduced a fault model that classified faults into three categories: asym-

metric, symmetric, and benign. They further suggested the need for and developed an algorithm that had

capabilities beyond that of the earlier Byzantine generals algorithms. In particular, their algorithm can mask

the effects of a less severe class of faults, in a more effective way. SRI has formally verified an improved

version of this algorithm [55, 54, 56]

The newly developed hybrid-fault theory was then applied to the analysis of the Charles Stark Draper

Labs "Fault-Tolerant Processor" (FTP). A unique feature of this architecture is its use of "interstages"

to relay messages between processors. These are significantly smaller than a processor and lead to an

asymmetric architecture that is far more efficient than the traditional Byzantine agreement architectures.

The SRI work not only formalized the existing informal analysis but extended it to cover a wider range of
faulty behavior[57].

Also SRI subsequently generalized their clock synchronization work to encompass the hybrid fault model
[78].

4.2 Verification of Software

Our past software verification projects are described in this section.

5The bounded delay assumption was shown to follow from the other assttmptions of the theory.
6Unlike the NASA circuit, the SRI intent is that the convergence algorithm be implemented in software.
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4.2.1 FormalSpecificationof SpaceShuttleJet Select

NASA Langley worked with NASA Johnson Space Center and the Jet Propulsion Laboratory (JPL) in a study

to explore the feasibility and utility of applying mechanically-supported formal methods to requirements

analysis for space applications. The team worked jointly to develop a formal specification of the Jet Select

function of the NASA Space Shuttle, which is a portion of the Shuttle's Orbit Digital Auto-Pilot (DAP).

Specifications were written at three different levels of abstraction. The highest level specifications were

proved to meet a set of critical properties. This formal analysis uncovered hidden problems in a highly

critical and mature FSSR specification for Shuttle. This project impressed several key members of the

Shuttle software community that the benefits of formal methods are concrete and economically realizable.

A very favorable reaction was received from the IBM (now Loral) requirements analysts and senior JSC

personnel (Bob Hinson, in particular). They would like to work with us "to build a different paradigm where

engineers write requirements like this before passing the requirements to software development."

This demonstration project was funded by the Office of Safety and Mission Quality at NASA Headquar-

ters, which controls funding for verification and validation of all major NASA space projects.

4.2.2 Honeywell Navigation Specification

A cooperative research effort was initiated in 1993 with Honeywell Air Transport Systems Division (Phoenix)

to study the incorporation of formal methods into the company's software development processes. In the

initial project in this effort, NASA Langley funded ORA to identify a component of the Boeing 777 sys-

tem to which formal specification techniques could be applied, and to develop the formal specifications for

that component. ORA, in collaboration with personnel from Langley and Honeywell, chose the navigation

subsystem as a suitable application.

Using documents supplied to them by Honeywell, ORA developed a specification that addressed the

following aspects of navigation:

• basic mathematical concepts such as functions over the reals, and physical units such as distance,

velocity, and acceleration

• definition of objects such as aircraft, radios, sensors, navigation aids, and the navigation database

• definition of algorithms such as complementary filter processing, navigation aid selection, navigation

mode selection, and position determination

• relating the mathematical model to Ada by partitioning the system in Ada package specifications, and

annotating individual Ada functions and procedures with formal specifications

The specification was done using ORA's Penelope tool.

4.2.3 Verification of Existing Ada Applications Software

Odyssey Research Associates completed two tasks applying their Ada verification tools to aerospace appli-

cations. The first task was to verify some utility routines obtained from the NASA Goddard Space Flight

Center and the NASA Lewis Research Center using their Ada Verification Tool named Penelope [33]. This

task was accomplished in two steps: (1) formal specification of the routines and (2) formal verification of the
routines. Both steps uncovered errors [26]. The second task was to formally specify the mode-control panel

logic of a Boeing 737 experimental aircraft system using Larch (the specification language used by Penelope)
[34].

4.3 Verification of Hardware Devices

Our past research and technology transfer efforts in the area of formal verification of hardware devices are
described below.
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4.3.1 Boeing Hardware Devices

The Boeing Company was contracted by NASA Langley to develop advanced validation and verification

techniques for fly-by-wire systems. As part of the project, Boeing explored the use of formal methods. The

goal of this work was two-fold: (1) technology transfer of formal methods to Boeing, and (2) assessment of
formal methods technology maturity.

The first phase of this project focused on the formal verification of "real" hardware devices using the

ttOL hardware verification methodology. With the assistance of a subcontract with U. C. Davis, Boeing
partially verified a set of hardware devices, including a microprocessor[98], a floating-point coprocessor

similar to the Intel 8087 but smaller[72, 71], a direct memory access (DMA) controller similar to the Intel

8237A but smaller[46], and a set of memory-management units[86, 83]. U. C. Davis also developed the

generic-interpreter theory to aid in the formal specification and verification of hardware devices[99, 97, 96],

and a horizontal-integration theory for composing verified devices into a system[85, 84, 73, 45]. After
demonstrating the feasibility of verifying standard hardware devices, Boeing applied the methodology to a

proprietary hardware devi_e called the Processor Interface Unit (PIU) that is being developed for aeronautics

and space applications[29].

Boeing and U.C. Davis also performed an assessment of the U.K. Royal Signals and Radar Establishment's

(RSRE) VIPER chip [53]. This was part of a now-completed 3 year Memorandum of Understanding (MOU)

with RSRE. CLI and Langley researchers also performed assessments of the VIPER project[10, 19, 17].
Application of formal methods to the suite of Intel-like devices and the PIU demonstrated that formal

methods can be practically applied to the digital hardware devices being developed by Boeing today and

provided insight on how to make the process more cost effective.

4.3.2 CSDL Scoreboard Hardware

A joint project between ORA and Charles Stark Draper Laboratory (CSDL) was completed in 1993. NASA
Langley and the Army had been funding CSDL to build fault-tolerant computer systems for over two decades.

During this project, CSDL became interested in the use of formal methods to increase confidence in their

designs. ORA was given the task of formally specifying and verifying a key circuit (called the scoreboard) of
the Fault-Tolerant Parallel Processor (FTPP) [38] in Clio [93]. The formal verification uncovered previously

unknown design errors. When the scoreboard chip was fabricated, it worked without any error manifestation.

It was the first time that CSDL produced a chip that worked "perfectly" on a first fabrication. CSDL credits

• HDL-_,c,c,oe_,,ent tools _ c^.-- 1 --o+L_o........ •,a ........... for the success.

4.3.3 Asynchronous Communication

CLI developed a formal model of asynchronous communication and demonstrated its utility by formally ver-

ifying a widely used protocol for asynchronous communication called the hi-phase mark protocol, also known

as "Bi-_-M," "FM" or "single density" [65]. It is one of several protocols implemented by microcontrollers
such as the Intel 82530 and is used in the Intel 82C501AD Ethernet Serial Interface.

4.3.4 Digital Design Derivation

Funded in part by a NASA Langley Graduate Student Research Program fellowship, Bhaskar Bose devel-

oped the Digital Design Derivation system (DDD) and used it to design a verified microprocessor. DDD

implements a formal design algebra that allows a designer to transform a formal specification into a cor-

rect implementation[8]. Bose formally derived the DDD-FMg001[9] microprocessor from Hunt's top-level
specification of the FM9001 microprocessor[39].

4.4 Civil Air Transport Requirements Specification

Work with Boeing to develop a prototype interface for formal requirements analysis of a civil air transport

was completed in 1992127, 28]. This work, performed under a subcontract to California Polytechnic State

University, included development of a Wide-Spectrum Requirements Specification Language (WSRSL) and

prototype tools to support the language. Portions of a set of requirements for an Advanced Subsonic Civil

261



Transport (ASCT) developed by a Boeing engineer under previous NASA funding were rewritten in WSRSL
to demonstrate the use of the language and toolset. Since WSRSL is a formal language, the specifications

can be formally analyzed for syntactic correctness, completeness, and consistency.

5 Summary

The NASA Langley program in formal methods has two major goals: (1) develop formal methods technology

suitable for a wide range of aerospace designs and (2) facilitate technology transfer by initiating joint projects

between formal methods researchers and aerospace industries to apply the results of the research to real

systems. Starting in 1991, NASA Langley initiated several aggressive projects designed to move FM into

productive use in the aerospace community:

• Boeing PIU Project (1991)

• Charles Stark Draper FTPP Scoreboard Project (1991)

• Allied Signal Hybrid Fault Models (1992)

• Shuttle Tile Project (1992)

• Space Shuttle Jet Select Project (1993) 7

• Honeywell Navigation (1993)

• Rockwell Collins AAMP5 (1993)

• Honeywell Tablewise (1994)

• Union Switch and Signal (1994)

• Rockwell Collins AAMP-FV (1995)

NASA's program has advanced aerospace-related formal methods in the United States to the point where

commercial exploitation of formal methods is near. Our program has driven the development of PVS, the

most advanced general-purpose theorem prover in the world [70], and the Odyssey Research Associates

VHDL-verification tool. Commercial industry has been anxious to work with our team, although we have

not had sufficient resources to work with as many as we would have liked. Nevertheless, we have helped lay

the necessary foundation for productive use of formal methods in several companies.

Fundamental research has been performed in the design and verification of a fault-tolerant reliable com-

puting platform that can support real-time control applications. Also much progress has been made in

developing and demonstrating formal methods for critical subsystems of the RCP such as clock synchroniza-

tion, Byzantine agreement, and voting.
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