Distributing Formal Verification: The Evidential Tool Bus

Florent Kirchner

Computer Science Laboratory
SRI International
Diagram of wires along first division (Looking from Denver)
ANSI/NFPA 70
National Electrical Code
Heterogeneous pipes and mappings
Distributed framework for formal verification tools
\[\Gamma \vdash \text{c}(C) \quad \Gamma \vdash F[\Theta] \\
\Gamma \vdash \Delta \\
\Gamma \vdash F[\Xi] \]
\[\Gamma \vdash c(C) \quad \Gamma \vdash F[\Theta] \quad \Gamma \vdash \Delta \quad \Gamma \vdash F[\Xi]\]

Blackboard
- Store proof obligations
- Record proof discharges
- Trace proof developments
$\Gamma \vdash c(C) \quad \Gamma \vdash F[\Theta]$

$\Gamma \vdash \Delta$

$\Gamma \vdash F\{\Xi\}$

Blackboard
- Store proof obligations
- Record proof discharges
- Trace proof developments

Language DB
- Register formal language declarations
- Query dialect intersections
\(\Gamma \vdash c(C) \quad \Gamma \vdash F[\Theta] \quad \Gamma \vdash \Delta \quad \Gamma \vdash F\{\Xi\} \)

Blackboard
- Store proof obligations
- Record proof discharges
- Trace proof developments

Language DB
- Register formal language declarations
- Query dialect intersections

Facilitator
- Register agent capabilities
- Resolve and route requests
- Abstract network geometry
default namespace = "http://etb.csl.sri.com/ns/foa"
datatypes xsd = "http://www.w3.org/2001/XMLSchema-datatypes"

start = element-sequent

element-sequent = element sequent {
 attribute structure {"set"}
 & element antecedent {element-formula}*
 & element consequent {element-formula}*
 & element activeformula {xsd:anyURI}? }
...
element-connectives = {
 element and {
 element-formula, element-formula}
 | element implies {
 element-formula, element-formula}
 | element forall {
 element-formula}
default namespace = "http://etb.csl.sri.com/ns/foa"
datatypes xsd = "http://www.w3.org/2001/XMLSchema-datatypes"

scli: revised 2008-01-21 2008-01-24 2008-02-06 # YYYY-MM-DD
scli: status experimental # official|experimental|private|obsolete
scli: shelf-life 2008-12-31 # YYYY-MM-DD

start = element-sequent

element-sequent = element consequent {element-formula}*
& element antecedent {element-formula}*
& element activeformula {xsd:anyURI}?
}

...
element-connectives = {
 element and {
 # scli: G, and(A,B)|-D <==> G,A,B|-D # multiplicative conjunction
 element-formula, element-formula}
 | element implies {
 # scli: G|-implies(A,B),D <==> G,A|-B,D # classical implication
 element-formula, element-formula}
 | elementforall {
 # scli: G|-forall(A),D <==> all(t) G|-A{1<-t},D
 element-formula}
Agent interface

- Declare formal language
- Declare agent capabilities
- Use standard rpc
- CEGAR loop: predicate abstractor, model-checker, SAT-solver
- CSP specification: deadlock detector, code generator, trace monitors
- Autocode certificates: certification browser, automatic checker
- Regulation analysis: UML, Z, Roz, Jaza Animator, Alloy Analyzer
- Numerical + Predicate abstraction: NEXPoint, NTBDD, NDD checkers
- Verifying compiler: proof assistant, VC generator, automated prover
• *Open Agent Architecture*, DARPA CALO Project (A. Cheyer et al.)

• *Evidential Tool Bus*, Java, Perl, Scheme, Relax-NG, XML

• *SAL – Yices*, Callback procedure integrated into the ETB

• *Cybertrail*, NSF Medium Project Proposal (N. Shankar, A. Gehani)
Diagram of wires along first division (Looking from Denver)
Semantic Interoperability

Facets Logical frameworks and embeddings
Semantical formalisms for checkers / solvers

Objectives Meta-logical backdrops for PVS, Isabelle and Coq
Proof trace generation for Yices
Translations and embeddings

With Logical, Protheo, University of Warsaw
SRI International, DCS, Mosel
Formal Distribution

Facets
- Formalizing the distribution framework
- Distributed proofs authentication
- Coordination languages

Objectives
- Interaction model and semantics
- Distributed proof validation system
- Description tool for coordination scenarios

With
- SRI International, Harvard, Mosel, Phoenix
Implementation

Facets Extension of the distributed ecosystem
 Applications and performance

Objectives Integrate PVS, Isabelle and Harvey, Coq and Why
 Verification of aeronautical systems

With Mosel, University of Munich
 NASA, DGAC, Dassault