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Is Boeing a Software Company?
Software development and verification account for 1/3 cost 

Important to build reliable, dependable commercial avionics systems

The industry is heavily regulated by the FAA

The military side is also very dependent on software
1960 - 8% F4 fighter capability                                                            
came from software

2000 - 85% F22 fighter capability                                                        
provided by software

Even more now

Boeing’s core competence is system integration
New business model

Dependent on large network of suppliers, globally distributed



Integrated Modular Avionics

Powerful computer processing 
modules handle multiple apps

Cabinets are connected to 
global data bus, IO modules, 
LRUs, sensors, actuators, etc.

Integration, configuration, 
assembly?
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Past: federated systems

IMA: shared resources

COTS components

Multiplexed communication

Smaller, lighter, cost-effective 
components



Component-Based System Design
Goals of CBSD

Construction of systems from independent components
Use of commercial-off-the-shelf (COTS) components

Separation of concerns

Decrease risk, system complexity, development time & cost

Increase reliability, malleability, and flexibility

Domain-specific challenges
System architecture

Interface definitions

Trusted infrastructure

Problem domain decomposition

…



System Assembly

The general challenge is the system assembly problem:
From a pool of available components,
Which should be selected &
How should they be connected, integrated, assembled
So that system requirements are satisfied?

Currently this is application specific and labor intensive
Our focus is on automation

Algorithmically find optimal solutions directly from requirements
Insight: We can reduce system assembly to a satisfiability question
Does there exist a way of selecting & assembling components that 
satisfies the system requirements?



CoBaSA System

Developed CoBaSA: Component-Based System Assembly

An object-oriented modeling language

A declarative constraint language 

Assembly is solved using formal verification technology

Used CoBaSA to solve actual Boeing problems
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CoBaSA Modeling Language

Needed complete control of syntax and semantics

Developed our own language

Object-oriented language

Functions as a target language

This is what we did with the Boeing project



CoBaSA Data Types

Basic data types:
Booleans 
Strings
Integers & integer ranges
Enumerated data types

Complex data types include:
Recursive data types
Entities (classes)
Multidimensional arrays 



CoBaSA Language: Entities

entity server {
  ;id string
  ;ram-available int
  ;cpu-time-available 10000
  ;secure bool

}

entity linux-server extends server {
  ;max-num-procs int
  ;neighbor linux-server
}

entity process {
  ;id string
  ;ram-req int
  ;cpu-time-req int
  ;sec-req bool
}



CoBaSA Language: Maps
Variable declarations
var linux-server[20] linux-servers =


         [ { ;120 ; ;”LS-001” ;1024 ; ;False}, …
             { ;80 ;ls[2] ;”LS-020” ;512 ; ;True}]

var process[500] processes = ... 

Objects can be assigned values, but write-once memory
assign linux-servers[0].neighbor = linux-servers[19]

Map constraints: map consumers to resource providers
map proc-serve processes linux-servers

Field constraints: specify dependence between consumer and 
resource fields
constraint proc-serve ((ram-req, cpu-time-req))
                      ((ram-available, cpu-time-available))



CoBaSA Language: Constraints

Arbitrary Boolean & relational constraints

Boolean expressions with map references

Relational arithmetic expressions

Quantification: universal and summation

Preprocessing w/ Lisp code: (let ((v1 a1) … (vn an)) <lisp code>)

For_all p in processes
   For_all s in linux-servers
      (proc-serve(p,s) and p.sec-req) implies s.secure

For_all s in linux-servers
   Sum p in processes proc-serve(p,s)
   <= (let ((v1 s.max-num-procs))
          _(floor (* 0.75 v1))_)        



More CoBaSA Constraints
Optimization

An objective function can maximized or minimized

Interdependent maps
Result of one map affects the result of another map
Arise from hierarchies of resource/consumer 
relationships

Examples of generalized notion of maps
To express relation, r, over A, B: map >= 0 r A B

2-function, f, from D to R: map = 2 f D R
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CoBaSA programs are reducible to 0-1 integer programming

Also known as pseudo-boolean SAT problems

Linear constraints of the form                       

For each map                      ,  we have an implicit constraint that elements 
of C map to elements of P

CoBaSA Constraint Solving

expression. For instance, in the proxy example, we may
want to minimize the overhead, while setting a maximum of
75Mbps. We can do this with the following command.

Minimize Sum x in px Sum r in pr
(* pr-px(r,x) (let ((bwr r.bw-req)

(po x.percent-overhead))
_(* (/ po 100) bwr)_))

<= 75

3. CoBaSA COMPILER
The CBSA problem is reducible to the 0-1 Integer Pro-

gramming Problem (also known as Pseudo-Boolean Satisfi-
ability), which involves solving two sets of constraints. The
first is a set of linear constraints of the form

Pn
i=1 cixi R c

where c and all the ci are constant integer values, each xi is
a variable that ranges over the values {0, 1}, and R is either
‘≤’, ‘≥’, or ‘=’. The second is a Boolean formula over the
same variables in conjunctive normal form (CNF). In this
context, variables are viewed as Boolean, i.e., False for 0
and True for 1. The problem is satisfied if there is an as-
signment for the variables (False/0 or True/1) such that
all of the linear constraints as well as the Boolean formulas
are satisfied. In addition, the Pseudo-Boolean problem al-
lows for an optimization sum of the form O

Pn
i=1 cixi (or

sometimes O
Pn

i=1 cixi R c), where O is either Maximize
or Minimize. In this case, the solution returned must be
optimal, i.e., the solution must maximize or minimize the
objective function as specified by the user.

The CoBaSA compiler performs the transformation from
a CBSA problem to a pseudo-Boolean problem. The goal of
CBSA is to find a definition for each map that satisfies the
constraints. In order to convert this into a pseudo-Boolean
problem, we must first represent the maps using pseudo-
Boolean variables. For each map, M : C → P , we create
|C| ∗ |P | Boolean variables {Mc

p |c ∈ C, p ∈ P}. Intuitively,
Mc

p represents the Boolean expression M(c) = p. We then
compile the user provided constraints and optimization func-
tion to pseudo-Boolean constraints over these variables such
that the following two conditions hold:

1. A satisfying assignment to the pseudo-Boolean prob-
lem exists if and only if a satisfying assignment to the
original CBSA problem exists,

2. Given an optimal satisfying assignment to the pseudo-
Boolean problem, the assignment such that each func-
tion, M , is defined by M(c) = p iff Mc

p = true, and
each Boolean variable, b is true iff it is true in the
pseudo-Boolean solution, is an optimal satisfying as-
signment to the original CBSA problem.

3.1 Implicit Map Constraints
For each map, we have the implicit constraint that each

element of the domain maps to the appropriate number of
elements in the range, according to the user specified rela-
tion, R, and natural number, k (or = and 1 if the user did
not specify any). To represent this in the pseudo-Boolean
format, we add the following constraint for each consumer
component, c ∈ C, of a map M : C → P :

X

p∈P

Mc
p R k.

For example, the implicit map constraint of proc-serve
from Section 2.2.1 for each process p ∈ pr would be

X

s∈(ls∪ws)

proc-servep
s = 1

3.2 Implicit Field Constraints
As with each map definition, there is an implicit pseudo-

Boolean constraint implied by each field constraint. Namely,
all the “needs” of all the consumers that map to a given
provider – by any map – need to be met by the appropriate
fields of the provider. Given a producer component, p, let
Mp = {M : C → P | p ∈ P}. That is, Mp is the set of
all maps with a range containing p. We need to assure that
p can satisfy all of the field constraints, as defined by the
constraint statements of the given CBSA problem defini-
tion. Recall that such constraints tell us which fields of the
consumers are supplied by which fields of the producers. So,
for each field, f , of p, we add the following constraint:

n
X

i=1

ci.fi ∗ (Mi)
ci
p ≤ p.f

where Mi ∈ Mp, and each ci and fi is a pair such that ci is a
consumer of Mi and fi is a field of ci that is a need supplied
by p.f according to some field constraint. Note that neither
the Mi nor the ci are necessarily distinct, since each map
can map several consumers to p, and each consumer can
have several fields that draw from field f of p.

Consider the proc-serve field constraint from Section 2.2.1.
In this case, for each s ∈ (ls∪ ws), we have two constraints:
one for the memory requirement and one for the disk re-
quirement.

X

p∈pr

(p.mem-req ∗ proc-servep
s) ≤ s.mem

X

p∈pr

(p.disk-req ∗ proc-servep
s) ≤ s.disk

Note that if all the fields involved have concrete integer
values, these are proper pseudo-Boolean constraints. How-
ever, recall that fields can also be set to a pseudo-Boolean
arithmetic expression using the special relational constraint
as defined in Section 2.2.3. In this case, we substitute the
expression for the field, giving us a term in the field con-
straint sum in which a Boolean variable is multiplied by
some arithmetic expression. For example, consider the con-
straints generated by the first field constraint in Figure 3.
For each s ∈ sv, we have a constraint of the form:

X

p∈px

(p.bw-req ∗ px-svp
s) ≤ s.bandwidth

However, each p.bw-req was defined in Section 2.2.3 as
the sum of the bandwidth requirements of the processes
mapped to p multiplied by some overhead. If we substi-
tute this into the above equation, we get something different
than the required form for pseudo-Boolean constraints. Sim-
ilarly, our language allows relational constraints comparing
two arbitrary arithmetic expressions over pseudo-Boolean
variables involving addition, subtraction, and multiplica-
tion. We deal with all of these constraints in a similar way.

3.3 ArbitraryArithmeticRelationConstraints
Given an expression of the form E1 R E2, we subtract

E2 from both sides, giving us E1 − E2 R 0. We then focus

expression. For instance, in the proxy example, we may
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We have to guarantee that p can provide resources for every consumer, c, 
mapped to p

Solving Field Constraints 

We express the above using pseudo-boolean constraints
And we continue with a sequence of such transformations
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Case Study: Boeing
Models developed over several years
The models are complex; they include:

I/O time
Latency 
Network jitter
Context switching time
Cache flushing time
Memory latencies
Thousands of constraints

Based on worst-case execution time
Models are over 500K in size



Evaluation of Case Study
Given collection of models from simple to complete
No feasible solution was previously known
Even the very simple, initial models:

Takes 3 person-weeks to describe problem & check solution
Much longer to solve with previous approaches

We solve simple models in seconds
We can solve the most complex models in minutes
Allowed Boeing “to solve, in person-weeks, problems that 
were previously taking person-years”
Flexible enough to accommodate what Boeing described 
as “serious architecture changes”
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Summary

Introduced the notion of system assembly
Showed how to automatically solve system assembly 
problems [MSV’07,SAT’07,CAV’07]
Developed CoBaSA system

Object oriented modeling language
Declarative constraint language
Decision procedure

Showed the effectiveness and applicability of our work by 
solving problems arising in design of Boeing Dreamliner
Can solve problems previously taking person-years



Future Work
Algorithmic extensions

Hierarchical refinement (a component is a collection)
Better decision procedures

Design support
If assembly is not possible, why not?
Threat analysis: what will drastically affect solution landscape? 

Adaptive assembly
Can we assemble & reconfigure in real time? 
In response to system failure? account environmental factors?
Changes in mission priorities? response to invalid assumptions?
Under extreme conditions (low power, long latencies, …)

Scheduling, power, weight, geometry, … .


