

Automating System Assembly of
Aerospace Systems

Pete Manolios

Northeastern University
Joint work with
Gayatri Subramanian and Daron Vroon

OEY

@Y LANGLEY FORMAL METHODS

Newport News, VA April 2008

Commercial Air Transport

- 77 1

Code Size

Object
code
(Mbytes)

747-400

247-200 757/767

0 @
1970 1995
Year

Air Transport Development Costs

Miscellaneous

Is Boeing a Software Company?

Software development and verification account for 1/3 cost
Important to build reliable, dependable commercial avionics systems
The industry is heavily regulated by the FAA

The military side is also very dependent on software

1960 - 8% F4 fighter capability
came from software

2000 - 85% F22 fighter capability
provided by software

Even more now

Boeing’s core competence is system integration

New business model
Dependent on large network of suppliers, globally distributed

Integrated Modular Avionics

Past: federated systems
IMA: shared resources
COTS components
Multiplexed communication

Smaller, lighter, cost-effective
components

Powerful computer processing
modules handle multiple apps

Cabinets are connected to
global data bus, IO modules,
LRUs, sensors, actuators, etc.

Integration, configuration,
assembly?

Cabinet 8

Cablnet 3

Cabinet 2

Cabinet 1

| Function 1

Function 2

Function 21

Function 22

Gateway

(Switch)

Module

Actuator

LRU

Sensor |

Component-Based System Design

Goals of CBSD

Construction of systems from independent components
Use of commercial-off-the-shelf (COTS) components
Separation of concerns

Decrease risk, system complexity, development time & cost
Increase reliability, malleability, and flexibility

Domain-specific challenges
System architecture
Interface definitions
Trusted infrastructure
Problem domain decomposition

System Assembly

The general challenge is the system assembly problem:
From a pool of available components,
Which should be selected &

How should they be connected, integrated, assembled
So that system requirements are satisfied?

Currently this is application specific and labor intensive
Our focus is on automation

Algorithmically find optimal solutions directly from requirements
Insight: We can reduce system assembly to a satisfiability question

Does there exist a way of selecting & assembling components that
satisfies the system requirements?

CoBaSA System

Developed CoBaSA: Component-Based System Assembly

An object-oriented modeling language
A declarative constraint language

Assembly is solved using formal verification technology

Used CoBaSA to solve actual Boeing problems

Assembly of Avionics Systems

Parse and
Type Check

Compile and
Reduce

Model & Intermediate

Requirements Representation
7y
Extract ERefIine Analyze | Compile
xplore
A 4

[Sysam BAT, CNF. ILP, or
Architect Pseudo-Boolean

I \ Assemble | system
Analyze Map and Allocation

Start or No Solution

‘%

Quitline

Motivation

System Assembly

(

CoBaSA Language

)

CoBaSA Constraint Solving
Case Study

Conclusions and Future Work

CoBaSA Modeling Language

Needed complete control of syntax and semantics
Developed our own language

Object-oriented language

Functions as a target language

This is what we did with the Boeing project

CoBaSA Data Types

Basic data types:
Booleans
Strings
Integers & integer ranges
Enumerated data types

Complex data types include:
Recursive data types
Entities (classes)
Multidimensional arrays

CoBaSA Language: Entities

entity server { entity process {
;1d string ;1d string
;ram-available int ;ram-req int
:cpu-time-available 10000 ;Cpu-time-req int
;secure bool ;sec-req bool

} ¥

entity linux-server extends server {
;max-num-procs int
;neighbor linux-server

}

CoBaSA Language: Maps

Variable declarations

var linux-server[20] linux-servers =
[{ ;120 ; ;”LS-001” ;1024 ; ;False}, ..

{ ;80 ;1s[2] ;”LS-020” ;512 ; ;True}]
var process[500] processes = ...

Objects can be assigned values, but write-once memory
assign linux-servers[@].neighbor = linux-servers[19]

Map constraints: map consumers to resource providers
map proc-serve processes linux-servers

Field constraints: specify dependence between consumer and
resource fields

constraint proc-serve ((ram-req, cpu-time-req))
((ram-available, cpu-time-available))

CoBaSA Language: Constraints

Arbitrary Boolean & relational constraints
Boolean expressions with map references
Relational arithmetic expressions

Quantification: universal and summation

For_all p in processes
For_all s in linux-servers

(proc-serve(p,s) and p.sec-req) implies s.secure

Preprocessing w/ Lisp code: (let ((vl al) ... (vn an)) <lisp code>)

For_all s in linux-servers
Sum p 1n processes proc-serve(p,s)
<= (let ((vl s.max-num-procs))
(floor (* 0.75 v1)))

More CoBaSA Constraints

Optimization
An objective function can maximized or minimized
Interdependent maps

Result of one map affects the result of another map

Arise from hierarchies of resource/consumer
relationships

Examples of generalized notion of maps
To express relation, r, over A, B: map >=0rAB
2-function, f, from DtoR: map=2fDR

Quitline

Motivation
System Assembly
CoBaSA Language
(CoBaSA Constraint Solving)
Case Study

Conclusions and Future Work

CoBaSA Constraint Solving

CoBaSA programs are reducible to 0-1 integer programming
Also known as pseudo-boolean SAT problems
Linear constraints of the form >_;", cizi R ¢

Foreachmap M : C — E we have an implicit constraint that elements
of C map to elements of P

Foreachcin C: Y _ Mg =1
pEP

Solving Field Constraints

We have to guarantee that p can provide resources for every consumer, c,
mapped to p

We express the above using pseudo-boolean constraints
And we continue with a sequence of such transformations

Quitline

Motivation
System Assembly
CoBaSA Language
CoBaSA Constraint Solving

(

Case Study

)

Conclusions and Future Work

Case Study: Boeing

Models developed over several years

The models are complex; they include:
I/O time
Latency
Network jitter
Context switching time
Cache flushing time
Memory latencies
Thousands of constraints
Based on worst-case execution time

Models are over 500K in size

Evaluation of Case Study

Given collection of models from simple to complete
No feasible solution was previously known

Even the very simple, initial models:
Takes 3 person-weeks to describe problem & check solution
Much longer to solve with previous approaches

We solve simple models in seconds
We can solve the most complex models in minutes

Allowed Boeing "to solve, in person-weeks, problems that
were previously taking person-years”

Flexible enough to accommodate what Boeing described
as “serious architecture changes”

Quitline

Motivation
System Assembly
CoBaSA Language
CoBaSA Constraint Solving
Case Study
(Conclusions and Future Work)

Summary

Introduced the notion of system assembly

Showed how to automatically solve system assembly
problems [MSV'07,SAT'07,CAV'07]
Developed CoBaSA system

Object oriented modeling language

Declarative constraint language

Decision procedure

Showed the effectiveness and applicability of our work by
solving problems arising in design of Boeing Dreamliner

Can solve problems previously taking person-years

Future Work

Algorithmic extensions

Hierarchical refinement (a component is a collection)
Better decision procedures

Design support
If assembly is not possible, why not?
Threat analysis: what will drastically affect solution landscape?

Adaptive assembly
Can we assemble & reconfigure in real time?
In response to system failure? account environmental factors?
Changes in mission priorities? response to invalid assumptions?
Under extreme conditions (low power, long latencies, ...)

Scheduling, power, weight, geometry,

