Toward a Formal Evaluation of Refactorings

John Paul, Nadya Kuzmina,
Ruben Gamboa, and James Caldwell

Department of Computer Science
University of Wyoming
Laramie, Wyoming 82071-3315

Structural design

Employee

-monthlySalary : Integer
-bonus : Integer
-commission : Integer
-type : Occupation

[any

<enumerations
Occupation

+getType() : Occupation
+payAmount() : Integer

< describes

ENGINEER
SALESMAN
MANAGER

Specification

> context Employee::payAmount (): Integer
pre: this.type=ENGINEER
post: return=this.monthlySalary

> context Employee::payAmount (): Integer
pre: this.type=SALESMAN
post: return=this.monthlySalary + this.commission

> context Employee::payAmount (): Integer
pre: this.type=MANAGER
post: return=this.monthlySalary + this.bonus

Program

public class Employee {

private int monthlySalary,
private Occupation type;

commission,

bonus;
public int payAmount () {
//pre

switch (type) {
case ENGINEER:

return monthlySalary;
case SALESMAN:

return monthlySalary + commission;

case MANAGER: return monthlySalary + bonus;
default:

}

throw new RuntimeException ("Unknown Occupation");

N

Observed behavior

context Employee::payAmount (): Integer
pre: true
post: return >= monthlySalary

Formalizing a design D

» D is modeled as a first-order theory (¥, R).

» Y is a relational signature extracted from D.
» R is a set of X-sentences describing D's behavior.

» S expresses what it means for D to be correct
> A set of Y-sentences

» Specification
» D is verifiable w.r.t. ¢p € S if

R

How does changing the design help?

<enumeration.
Occupation
ENGINEER 1
SALESMAN
MANAGER
Employee -
-monthlySalary : Integer v describes
-bonus : Integer
-commission : Integer EmployeeType
-type : EmployeeType >hastype _ -employee : Employee 1x

+getMonthlySalary : Integer
+getBonus : Integer
+getCommission : Integer
-setType (type EmployeeType)
+getType() : Occupation
+payAmount() : Integer

1 < for 1 +payAmount(): Integer
+getTypeCode(): Occupation

Engineer Manager Salesman

Comparing D with D’

» Construct o : X — Y’
» Translate every ¢y € S

» D’ is better verifiable than D w.r.t. 1) € S if

R' | o(1), but R j= 1)

Translated specification

> context Employee::payAmount (): Integer
pre: this.getType ()=ENGINEER
post: return=this.monthlySalary

> context Employee::payAmount (): Integer
pre: this.getType ()=SALESMAN
post: return=this.monthlySalary + this.commission

> context Employee::payAmount (): Integer
pre: this.getType () =MANAGER
post: return=this.monthlySalary + this.bonus

Facts: composition of Engineer with Employee

> context Engineer::getTypeCode(): Occupation
pre: true
post: return = ENGINEER

> context Engineer::payAmount (): Integer
pre: true

post: return=this.employee.getMonthlySalary ()

> context Employee::getMonthlySalary(): Integer
pre: true
post: return = this.monthlySalary

Facts: composition of Employee with Engineer

> context Employee::getType(): Occupation
pre: true

post: return = this.type.getTypeCode ()

> context Employee::payAmount (): Integer
pre: true
post: return = this.type.payAmount ()

> context Employee inv:
this.monthlySalary=this.type.employee.monthlySalary

Our prototype

Alloy Model of the

Target Program
A
code (Alloy signatures) | "
S Allcy vahfi
Human Essential Specification, | /27, | assertions
L pec
operator (Alloy assertions) invalid
Auto R assertions
Recovered | Transiation Constraints on the
==

Output

number of number of

assertion number of checked checked
kind assertions assertions assertions
for D for D'
on fields 4 4 (100%) 4 (100%)
on payAmount 7 4 (57%) 7 (100%)
on getType 4 4 (100%) 4 (100%)
total 15 12 (80%) 15 (100%)

Comparative evaluation of designs D and D' of the Employee
example by Daikon.

Conclusion

» Refactoring can improve verifiability.
» favor critical properties

» May even help to determine if D’ is a refactoring.

» Future Work
> lIdentify useful refactorings
> Incorporate decision procedures

» Consider other properties

