
Toward a Formal Evaluation of Refactorings

John Paul, Nadya Kuzmina,
Ruben Gamboa, and James Caldwell

Department of Computer Science
University of Wyoming

Laramie, Wyoming 82071-3315

Structural design

Employee
-monthlySalary : Integer
-bonus : Integer
-commission : Integer
-type : Occupation
+getType() : Occupation
+payAmount() : Integer

≪enumeration≫
Occupation

ENGINEER
SALESMAN
MANAGER

*
⊳ describes

1

Specification

I context Employee::payAmount(): Integer
pre: this.type=ENGINEER

post: return=this.monthlySalary

I context Employee::payAmount(): Integer
pre: this.type=SALESMAN

post: return=this.monthlySalary + this.commission

I context Employee::payAmount(): Integer
pre: this.type=MANAGER

post: return=this.monthlySalary + this.bonus

Program

public class Employee {
private int monthlySalary, commission, bonus;
private Occupation type;

.....

public int payAmount() {
//pre

switch (type) {
case ENGINEER: return monthlySalary;

case SALESMAN: return monthlySalary + commission;

case MANAGER: return monthlySalary + bonus;

default: throw new RuntimeException("Unknown Occupation");
}
//post

}

.....
}

Observed behavior

context Employee::payAmount(): Integer
pre: true

post: return >= monthlySalary

Formalizing a design D

I D is modeled as a first-order theory 〈Σ,R〉.
I Σ is a relational signature extracted from D.

I R is a set of Σ-sentences describing D’s behavior.

I S expresses what it means for D to be correct
I A set of Σ-sentences

I Specification

I D is verifiable w.r.t. ψ ∈ S if

R |= ψ

How does changing the design help?

Employee
-monthlySalary : Integer
-bonus : Integer
-commission : Integer
-type : EmployeeType
+getMonthlySalary : Integer
+getBonus : Integer
+getCommission : Integer
-setType (type EmployeeType)
+getType() : Occupation
+payAmount() : Integer

EmployeeType
-employee : Employee
+payAmount(): Integer
+getTypeCode(): Occupation

≪enumeration≫
Occupation

ENGINEER
SALESMAN
MANAGER

Engineer Manager Salesman

1
⊲ has type

⊳ for 1

1

*

▽ describes

Comparing D with D ′

I Construct σ : Σ → Σ′

I Translate every ψ ∈ S

I D ′ is better verifiable than D w.r.t. ψ ∈ S if

R′ |= σ(ψ), but R 6|= ψ

Translated specification

I context Employee::payAmount(): Integer
pre: this.getType()=ENGINEER

post: return=this.monthlySalary

I context Employee::payAmount(): Integer
pre: this.getType()=SALESMAN

post: return=this.monthlySalary + this.commission

I context Employee::payAmount(): Integer
pre: this.getType()=MANAGER

post: return=this.monthlySalary + this.bonus

Facts: composition of Engineer with Employee

I context Engineer::getTypeCode(): Occupation
pre: true

post: return = ENGINEER

I context Engineer::payAmount(): Integer
pre: true

post: return=this.employee.getMonthlySalary()

I context Employee::getMonthlySalary(): Integer
pre: true

post: return = this.monthlySalary

Facts: composition of Employee with Engineer

I context Employee::getType(): Occupation
pre: true

post: return = this.type.getTypeCode()

I context Employee::payAmount(): Integer
pre: true

post: return = this.type.payAmount()

I context Employee inv:
this.monthlySalary=this.type.employee.monthlySalary

Our prototype

Output

number of number of
assertion number of checked checked
kind assertions assertions assertions

for D for D ′

on fields 4 4 (100%) 4 (100%)
on payAmount 7 4 (57%) 7 (100%)
on getType 4 4 (100%) 4 (100%)
total 15 12 (80%) 15 (100%)

Comparative evaluation of designs D and D ′ of the Employee
example by Daikon.

Conclusion

I Refactoring can improve verifiability.
I favor critical properties

I May even help to determine if D ′ is a refactoring.

I Future Work
I Identify useful refactorings

I Incorporate decision procedures

I Consider other properties

